151
|
Park YD, Kinger M, Min C, Lee SY, Byun Y, Park JW, Jeon J. Synthesis and evaluation of curcumin-based near-infrared fluorescent probes for the in vivo optical imaging of amyloid-β plaques. Bioorg Chem 2021; 115:105167. [PMID: 34358800 DOI: 10.1016/j.bioorg.2021.105167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023]
Abstract
The abnormal self-assembly of amyloid-beta (Aβ) peptides into oligomers, as well as insoluble fibrils, has been identified as a key factor for monitoring the progression of Alzheimer's disease (AD). The noninvasive imaging of Aβ aggregates utilizing chemical probes can be a powerful and practical technique for accurately diagnosing and monitoring the progress of AD, as well as evaluating the effectiveness of therapeutic drug candidates in treating or managing it. Particularly, the near-infrared (NIR) fluorescence imaging of Aβ plaques is a potentially promising approach toward the efficient detection of the biomarker. In this study, we describe a new NIR fluorophore, which was based on curcumin derivatives. The fluorophore is equipped with desirable optical properties for in vivo brain imaging. The emission wavelength of the probe, 8b, is 667 nm, and its fluorescent intensity is significantly increased through binding with the Aβ aggregates. The probe allows the clear visualization of the Aβ plaques 10 min post administration, and the intensity of the fluorescent signal in the brain of a 5XFAD transgenic mouse model is more than three times higher than that of the normal control group. These results demonstrate that the designed probe can be an effective tool for visualizing Aβ plaques, as well as investigating the pathological progress of AD.
Collapse
Affiliation(s)
- Yong Dae Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Mayank Kinger
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea; Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India
| | - Changho Min
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang Yeob Lee
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngjoo Byun
- Department of Pharmacy, College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Jin Woo Park
- BioActs Co., Ltd., Cheongneung-daero, Incheon 21666, Republic of Korea
| | - Jongho Jeon
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
152
|
Patel K, Shah SKH, Prabhakaran P. Aggregation-induced emission materials for protein fibrils imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 185:113-136. [PMID: 34782102 DOI: 10.1016/bs.pmbts.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein fibrillation is linked to many devastating diseases including neurodegenerative disorders. Fluorescence probes play a significant role in the detection of amyloid aggregates, monitoring amyloid kinetics, and in the development of amyloid inhibitors. Despite the considerable progress in this area, the mechanism of amyloid fibril formation in vivo is not completely understood. Recent studies in amyloidosis indicate that oligomers and prefibrillar species are more cytotoxic than the fibrils. Hence, early diagnosis of fibrillation has high therapeutical relevance. The gold standard for amyloid staining is thioflavin-T and its major drawbacks are aggregation caused quenching and inability in the detection of oligomers. New amyloid staining probes with novel properties are highly desirable as they can give valuable insights into the complicated process and can replace conventional probes. Aggregation-induced emission probes (AIE-probes) with desirable features are promising candidates in protein fibrils imaging. AIE probes in staining different amyloid fibrils, monitoring amyloid kinetics, and early-stage conformers are reported. Other remarkable features are they can be modified as NIR probes, multifunctional probes, theranostic probes, and super-resolution imaging probes. We aim to provide a broad perspective on the progress attained with AIE probes in protein fibrils imaging and thereby emphasizing the scope of these smart probes in translative research.
Collapse
Affiliation(s)
- Karma Patel
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | | | | |
Collapse
|
153
|
Köse K, Kehribar DY, Uzun L. Molecularly imprinted polymers in toxicology: a literature survey for the last 5 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35437-35471. [PMID: 34024002 DOI: 10.1007/s11356-021-14510-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
The science of toxicology dates back almost to the beginning of human history. Toxic chemicals, which are encountered in different forms, are always among the chemicals that should be investigated in criminal field, environmental application, pharmaceutic, and even industry, where many researches have been carried out studies for years. Almost all of not only drugs but also industrial dyes have toxic side and direct effects. Environmental micropollutants accumulate in the tissues of all living things, especially plants, and show short- or long-term toxic symptoms. Chemicals in forensic science can be known by detecting the effect they cause to the body with the similar mechanism. It is clear that the best tracking tool among analysis methods is molecularly printed polymer-based analytical setups. Different polymeric combinations of molecularly imprinted polymers allow further study on detection or extraction using chromatographic and spectroscopic instruments. In particular, methods used in forensic medicine can detect trace amounts of poison or biological residues on the scene. Molecularly imprinted polymers are still in their infancy and have many variables that need to be developed. In this review, we summarized how molecular imprinted polymers and toxicology intersect and what has been done about molecular imprinted polymers in toxicology by looking at the studies conducted in the last 5 years.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Joint Courses, Hitit University, Çorum, Turkey.
| | - Demet Yalçın Kehribar
- Department of Internal Medicine, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
154
|
Park EJ, Jin SW, Lim HJ, Kim HY, Kang MS, Yang S. Whole Cigarette Smoke Condensates Induce Accumulation of Amyloid Beta Precursor Protein with Oxidative Stress in Murine Astrocytes. TOXICS 2021; 9:150. [PMID: 34203397 PMCID: PMC8309752 DOI: 10.3390/toxics9070150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
Although cigarette smoking has been postulated to be a potential risk factor for Alzheimer's disease (AD), the toxic mechanism is still unclear. Additionally, astrocytes have been identified as a potential target, given they play multiple roles in maintaining normal brain function. In this study, we explored the toxic mechanism of whole cigarette smoke condensates (WCSC) using murine astrocytes. Cell proliferation, the percentage of cells in the G2/M phase, and LDH concentrations in the cell supernatants were all reduced in WCSC-treated cells. In addition, oxidative stress was induced, together with shortening of processes, structural damage of organelles, disturbances in mitochondrial function, blockage of autophagic signals, accumulation of amyloid β precursor protein, and loss of chemotactic functions. Based on these results, we hypothesize that dysfunction of astrocytes may contribute to the occurrence of cigarette-smoking-induced AD.
Collapse
Affiliation(s)
- Eun-Jung Park
- East–West Medical Science Research Institute, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02447, Korea
- Human Health and Environmental Toxins Research Center, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-W.J.); (H.-J.L.); (M.-S.K.)
| | - Seung-Woo Jin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-W.J.); (H.-J.L.); (M.-S.K.)
| | - Hyun-Ji Lim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-W.J.); (H.-J.L.); (M.-S.K.)
| | - Hyeon-Young Kim
- Inhalation Toxicology Center for Airborne Risk Factors, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea;
| | - Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-W.J.); (H.-J.L.); (M.-S.K.)
- General Toxicology & Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea;
- Degenerative InterDiseases Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
155
|
Wang Y, Li Q, Zhang J, Qi W, You S, Su R, He Z. Self-Templated, Enantioselective Assembly of an Amyloid-like Dipeptide into Multifunctional Hierarchical Helical Arrays. ACS NANO 2021; 15:9827-9840. [PMID: 34047550 DOI: 10.1021/acsnano.1c00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chiral self-assembly of peptides has attracted great interest owing to their promising applications in biomedicine, chemistry, and materials science. However, compared with the rich knowledge about their chiral self-assembly at the molecular or nanoscale, the formation of long-range-ordered hierarchical helical arrays (HHAs) from simple peptides remains a formidable challenge. Herein, we report the self-templated assembly of an amyloid-like dipeptide into long-range-ordered HHAs by their spontaneous fibrillization and hierarchical helical assembly within a confined film. The chiral interactions between the peptide and diamines result in geometry frustration and the phase transition of self-assembling peptide films from achiral spherulite structures into chiral HHAs. By changing the chirality and enantioselective interactions, we can control the phase behavior, handedness, and chiroptics of the self-assembled HHAs precisely. Moreover, the redox activity of the HHAs allows the in situ decoration of nanoparticles with high catalytic activity. These results provide insights into the chiral self-assembly of peptides and the fabrication of highly ordered materials with complex architectures and promising applications in chiroptics and catalysis.
Collapse
Affiliation(s)
- Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Qing Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Shengping You
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
156
|
Kumar D, Sharma A, Sharma L. A Comprehensive Review of Alzheimer's Association with Related Proteins: Pathological Role and Therapeutic Significance. Curr Neuropharmacol 2021; 18:674-695. [PMID: 32172687 PMCID: PMC7536827 DOI: 10.2174/1570159x18666200203101828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's is an insidious, progressive, chronic neurodegenerative disease which causes the devastation of neurons. Alzheimer's possesses complex pathologies of heterogeneous nature counting proteins as one major factor along with enzymes and mutated genes. Proteins such as amyloid precursor protein (APP), apolipoprotein E (ApoE), presenilin, mortalin, calbindin-D28K, creactive protein, heat shock proteins (HSPs), and prion protein are some of the chief elements in the foremost hypotheses of AD like amyloid-beta (Aβ) cascade hypothesis, tau hypothesis, cholinergic neuron damage, etc. Disturbed expression of these proteins results in synaptic dysfunction, cognitive impairment, memory loss, and neuronal degradation. On the therapeutic ground, attempts of developing anti-amyloid, anti-inflammatory, anti-tau therapies are on peak, having APP and tau as putative targets. Some proteins, e.g., HSPs, which ameliorate oxidative stress, calpains, which help in regulating synaptic plasticity, and calmodulin-like skin protein (CLSP) with its neuroprotective role are few promising future targets for developing anti-AD therapies. On diagnostic grounds of AD C-reactive protein, pentraxins, collapsin response mediator protein-2, and growth-associated protein-43 represent the future of new possible biomarkers for diagnosing AD. The last few decades were concentrated over identifying and studying protein targets of AD. Here, we reviewed the physiological/pathological roles and therapeutic significance of nearly all the proteins associated with AD that addresses putative as well as probable targets for developing effective anti-AD therapies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| |
Collapse
|
157
|
Molecular insight into the early stage of amyloid-β(1-42) Homodimers aggregation influenced by histidine tautomerism. Int J Biol Macromol 2021; 184:887-897. [PMID: 34153362 DOI: 10.1016/j.ijbiomac.2021.06.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/23/2021] [Accepted: 06/10/2021] [Indexed: 11/20/2022]
Abstract
Aggregated amyloid β-peptide (Aβ) in small oligomeric forms inside the brain causes synaptic function disruption and the development of Alzheimer's disease (AD). Histidine is an important amino acid that may lead to structural changes. Aβ42 monomer chain includes 3 histidine residues that considering two ε and δ tautomers 8 isomers, including (εεε) and (εδδ) could be formed. Molecular dynamics simulation on homodimerization of (εεε) (the most common type of tautomers) and (εδδ) tautomers with different initial configurations using monomer chains from our previous work were performed to uncover the tautomeric behavior of histidine on Aβ42 aggregation in a physiological pH which is still largely unknown and impossible to observe experimentally. We found a higher propensity of forming β-sheet in (εδδ) homodimers and specifically in a greater amount from Aβ42 than from Aβ40. A smaller amount of β-sheet formation was observed for (εεε) homodimers compared with (εδδ). Additionally, interactions in (εδδ) homodimers may indicate the importance of the hydrophobic core and C-/N-terminals during oligomerization. Our findings indicate the important role of the tautomeric effect of histidine and (εδδ) homodimers at the early stage of Aβ aggregation.
Collapse
|
158
|
Kolaj I, Wang Y, Ye K, Meek A, Liyanage SI, Santos C, Weaver DF. Ferulic acid amide derivatives with varying inhibition of amyloid-β oligomerization and fibrillization. Bioorg Med Chem 2021; 43:116247. [PMID: 34157569 DOI: 10.1016/j.bmc.2021.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized, in part, by the misfolding, oligomerization and fibrillization of amyloid-β (Aβ). Evidence suggests that the mechanisms underpinning Aβ oligomerization and subsequent fibrillization are distinct, and may therefore require equally distinct therapeutic approaches. Prior studies have suggested that amide derivatives of ferulic acid, a natural polyphenol, may combat multiple AD pathologies, though its impact on Aβ aggregation is controversial. We designed and synthesized a systematic library of amide derivatives of ferulic acid and evaluated their anti-oligomeric and anti-fibrillary capacities independently. Azetidine tethered, triphenyl derivatives were the most potent anti-oligomeric agents (compound 2i: IC50 = 1.8 µM ± 0.73 µM); notably these were only modest anti-fibrillary agents (20.57% inhibition of fibrillization), and exemplify the poor correlation between anti-oligomeric/fibrillary activities. These data were subsequently codified in an in silico QSAR model, which yielded a strong predictive model of anti-Aβ oligomeric activity (κ = 0.919 for test set; κ = 0.737 for validation set).
Collapse
Affiliation(s)
- Igri Kolaj
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Yanfei Wang
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Kailin Ye
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada; Department of Pharmaceutical Chemistry, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Autumn Meek
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - S Imindu Liyanage
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Clarissa Santos
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Donald F Weaver
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada; Department of Pharmaceutical Chemistry, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
159
|
Reduced coupling between cerebrospinal fluid flow and global brain activity is linked to Alzheimer disease-related pathology. PLoS Biol 2021; 19:e3001233. [PMID: 34061820 PMCID: PMC8168893 DOI: 10.1371/journal.pbio.3001233] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022] Open
Abstract
The glymphatic system plays an important role in clearing the amyloid-β (Aβ) and tau proteins that are closely linked to Alzheimer disease (AD) pathology. Glymphatic clearance, as well as Aβ accumulation, is highly dependent on sleep, but the sleep-dependent driving forces behind cerebrospinal fluid (CSF) movements essential to the glymphatic flux remain largely unclear. Recent studies have reported that widespread, high-amplitude spontaneous brain activations in the drowsy state and during sleep, which are shown as large global signal peaks in resting-state functional magnetic resonance imaging (rsfMRI), are coupled with CSF movements, suggesting their potential link to glymphatic flux and metabolite clearance. By analyzing multimodal data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project, here we showed that the coupling between the global fMRI signal and CSF influx is correlated with AD-related pathology, including various risk factors for AD, the severity of AD-related diseases, the cortical Aβ level, and cognitive decline over a 2-year follow-up. These results provide critical initial evidence for involvement of sleep-dependent global brain activity, as well as the associated physiological modulations, in the clearance of AD-related brain waste. This study reveals strong coupling between the global fMRI signal and cerebrospinal fluid influx, finding that this is correlated with Alzheimer’s disease-related pathology, disease severity, and cognitive decline. This supports a link between spontaneous low-frequency brain dynamics and Alzheimer’s disease pathology, presumably due to their role in glymphatic clearance.
Collapse
|
160
|
Son SH, Do JM, Yoo JN, Lee HW, Kim NK, Yoo HS, Gee MS, Kim JH, Seong JH, Inn KS, Seo MD, Lee JK, Kim NJ. Identification of ortho catechol-containing isoflavone as a privileged scaffold that directly prevents the aggregation of both amyloid β plaques and tau-mediated neurofibrillary tangles and its in vivo evaluation. Bioorg Chem 2021; 113:105022. [PMID: 34098397 DOI: 10.1016/j.bioorg.2021.105022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/03/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022]
Abstract
In this study, polyhydroxyisoflavones that directly prevent the aggregation of both amyloid β (Aβ) and tau were expediently synthesized via divergent Pd(0)-catalyzed Suzuki-Miyaura coupling and then biologically evaluated. By preliminary structure-activity relationship studies using thioflavin T (ThT) assays, an ortho-catechol containing isoflavone scaffold was proven to be crucial for preventing both Aβ aggregation and tau-mediated neurofibrillary tangle formation. Additional TEM experiment confirmed that ortho-catechol containing isoflavone 4d significantly prevented the aggregation of both Aβ and tau. To investigate the mode of action (MOA) of 4d, which possesses an ortho-catechol moiety, 1H-15N HSQC NMR analysis was thoroughly performed and the result indicated that 4d could directly inhibit both the formation of Aβ42 fibrils and the formation of tau-derived neurofibrils, probably through the catechol-mediated nucleation of tau. Finally, 4d was demonstrated to alleviate cognitive impairment and pathologies related to Alzheimer's disease in a 5XFAD transgenic mouse model.
Collapse
Affiliation(s)
- Seung Hwan Son
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Min Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Na Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun Woo Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Nam Kwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Sung Gee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Ho Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Hye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Soo Inn
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Duk Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Jong Kil Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
161
|
Jasonia glutinosa (L.) DC., a Traditional Herbal Tea, Exerts Antioxidant and Neuroprotective Properties in Different In Vitro and In Vivo Systems. BIOLOGY 2021; 10:biology10050443. [PMID: 34069854 PMCID: PMC8157368 DOI: 10.3390/biology10050443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary Jasonia glutinosa (L.) DC or rock tea (RT) is a plant traditionally used to treat different pathologies. In this study the neuroprotective potential of an ethanolic extract of RT is analyzed. Caenorhabditis elegans model and in vitro assays with relevant central nervous system enzymes were used. The results showed antioxidant and neuroprotective potential of this plant. Abstract In traditional medicine, Jasonia glutinosa (L.) DC or rock tea (RT) has been mainly used to treat digestive and respiratory pathologies but also as an antimicrobial or an antidepressant herbal remedy. An ethanolic extract of RT has been demonstrated to have antioxidant and anti-inflammatory effects, which may be explained by its phytochemical profile, rich in polyphenols and pigments. The aim of this study is to investigate the neuroprotective potential of RT. For this purpose, the ethanolic extract of RT is assayed in Caenorhabditis elegans (C. elegans) as an in vivo model, and through in vitro assays using monoamine oxidase A, tyrosinase and acetylcholinesterase as enzymes. The RT extract reduces juglone-induced oxidative stress in worms and increases the lifespan and prevents paralysis of C. elegans CL4176, a model of Alzheimer’s disease; the extract is also able to inhibit enzymes such as acetylcholinesterase, monoamine oxidase A and tyrosinase in vitro. Together these results demonstrate that Jasonia glutinosa is a good candidate with antioxidant and neuroprotective potential for the development of new products with pharmaceutical interests.
Collapse
|
162
|
Sen N, Hause G, Binder WH. Membrane Anchored Polymers Modulate Amyloid Fibrillation. Macromol Rapid Commun 2021; 42:e2100120. [PMID: 33987913 DOI: 10.1002/marc.202100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Indexed: 12/24/2022]
Abstract
The nucleating role of cellular membrane components, such as lipid moieties on amyloid beta (Aβ1-40 ) fibrillation, has been reported in recent years. The influence of conjugates fabricated from lipid anchors (cholesterol, diacylglycerol) and hydrophilic polymers on Aβ1-40 fibrillation is reported here, aiming to understand the impact of polymers cloud point temperature (Tcp ) and its hydrophobic tails on the amyloid fibrillation. Novel lipid-polymer conjugates, consisting of poly(oligo(ethylene glycol)m acrylates) and hydrophobic groups (diacylglyceryl-, cholesteryl-, octyl-, decyl-, hexadecyl-) as anchors are synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization, allowing to tune the hydrophilic-hydrophobic profile of the conjugates by varying both, the degree of polymerization (n) and number of ethylene glycol units (m) in their side chain. The impact of these conjugates on Aβ1-40 fibrillation is investigated via in vitro kinetic studies and transmission electron microscopy (TEM). Hydrophobic lipid-anchors are significantly delaying fibrillation (both lag- and half times), observing similar fibrillar structures via TEM when compared to native Aβ1-40 . Other hydrophobic end groups are also delaying fibrillation of Aβ1-40 , irrespective of their "n" and "m," whereas more hydrophilic polymers (both with longer ethylene glycol-sidechains, m = 3 for octyl, decyl and m = 5 for cholesterol) are only marginally inhibited fibrillation.
Collapse
Affiliation(s)
- Newton Sen
- Chair of Macromolecular Chemistry, Faculty of Natural Science II, Von-Danckelmann-Platz 4, Institute of Chemistry, Martin-Luther University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| | - Gerd Hause
- Biocenter, Martin-Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), D-06120, Germany
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Faculty of Natural Science II, Von-Danckelmann-Platz 4, Institute of Chemistry, Martin-Luther University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| |
Collapse
|
163
|
Hamley IW. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021; 22:1835-1855. [PMID: 33843196 PMCID: PMC8154259 DOI: 10.1021/acs.biomac.1c00240] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Peptides and their conjugates (to lipids, bulky N-terminals, or other groups) can self-assemble into nanostructures such as fibrils, nanotubes, coiled coil bundles, and micelles, and these can be used as platforms to present functional residues in order to catalyze a diversity of reactions. Peptide structures can be used to template catalytic sites inspired by those present in natural enzymes as well as simpler constructs using individual catalytic amino acids, especially proline and histidine. The literature on the use of peptide (and peptide conjugate) α-helical and β-sheet structures as well as turn or disordered peptides in the biocatalysis of a range of organic reactions including hydrolysis and a variety of coupling reactions (e.g., aldol reactions) is reviewed. The simpler design rules for peptide structures compared to those of folded proteins permit ready ab initio design (minimalist approach) of effective catalytic structures that mimic the binding pockets of natural enzymes or which simply present catalytic motifs at high density on nanostructure scaffolds. Research on these topics is summarized, along with a discussion of metal nanoparticle catalysts templated by peptide nanostructures, especially fibrils. Research showing the high activities of different classes of peptides in catalyzing many reactions is highlighted. Advances in peptide design and synthesis methods mean they hold great potential for future developments of effective bioinspired and biocompatible catalysts.
Collapse
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, RG6 6AD Reading, United Kingdom
| |
Collapse
|
164
|
Gorecki L, Uliassi E, Bartolini M, Janockova J, Hrabinova M, Hepnarova V, Prchal L, Muckova L, Pejchal J, Karasova JZ, Mezeiova E, Benkova M, Kobrlova T, Soukup O, Petralla S, Monti B, Korabecny J, Bolognesi ML. Phenothiazine-Tacrine Heterodimers: Pursuing Multitarget Directed Approach in Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1698-1715. [PMID: 33852284 DOI: 10.1021/acschemneuro.1c00184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since 2002, no clinical candidate against Alzheimer's disease has reached the market; hence, an effective therapy is urgently needed. We followed the so-called "multitarget directed ligand" approach and designed 36 novel tacrine-phenothiazine heterodimers which were in vitro evaluated for their anticholinesterase properties. The assessment of the structure-activity relationships of such derivatives highlighted compound 1dC as a potent and selective acetylcholinesterase inhibitor with IC50 = 8 nM and 1aA as a potent butyrylcholinesterase inhibitor with IC50 = 15 nM. Selected hybrids, namely, 1aC, 1bC, 1cC, 1dC, and 2dC, showed a significant inhibitory activity toward τ(306-336) peptide aggregation with percent inhibition ranging from 50.5 to 62.1%. Likewise, 1dC and 2dC exerted a remarkable ability to inhibit self-induced Aβ1-42 aggregation. Notwithstanding, in vitro studies displayed cytotoxicity toward HepG2 cells and cerebellar granule neurons; no pathophysiological abnormality was observed when 1dC was administered to mice at 14 mg/kg (i.p.). 1dC was also able to permeate to the CNS as shown by in vitro and in vivo models. The maximum brain concentration was close to the IC50 value for acetylcholinesterase inhibition with a relatively slow elimination half-time. 1dC showed an acceptable safety and good pharmacokinetic properties and a multifunctional biological profile.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jana Z. Karasova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Marketa Benkova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
165
|
Du Z, Li M, Ren J, Qu X. Current Strategies for Modulating Aβ Aggregation with Multifunctional Agents. Acc Chem Res 2021; 54:2172-2184. [PMID: 33881820 DOI: 10.1021/acs.accounts.1c00055] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), as the primary cause of dementia, has seriously affected millions of people worldwide and brought a very heavy financial and social burden. With the growth of population and aging, the situation will worsen unless efficacious drugs are found to reverse, stop, or even slow down disease progression. More and more evidence has demonstrated that amyloid-β (Aβ) aggregation is an upstream causative factor in AD pathogenesis and then triggers a slew of pathological events. Furthermore, the concentrated redox metal ions in the AD brain, especially Cu(II), can significantly exacerbate Aβ aggregation and contribute to the formation of neurotoxic reactive oxygen species (ROS). Therefore, the inhibition of Aβ aggregation and relief of amyloidosis-initiated neurotoxicity play a critical role in AD treatment. Until now, several methods have been proposed to modulate Aβ aggregation, such as developing aggregation inhibitors to interfere with Aβ assembly via noncovalent interactions, copper chelators to cut off metal-accelerated Aβ aggregation and concomitant cytotoxicity, photooxidation to reduce the hydrophobicity and aggregation tendency of Aβ, thermal dissociation to disrupt amyloid aggregates susceptible to temperature, degradation with artificial protease to fracture the Aβ peptide into small fragments, and the clearance of peripheral Aβ to bypass the obstruction of the BBB and reduce the Aβ burden.In this Account, we focus on our contributions to the development of Aβ-targeted multifunctional molecules and nanoparticles, emphasizing the diversified strategies and synergistic therapeutic effects. These therapeutic agents possess the following multifunctionalities: (1) compared with frequently used aggregation inhibitors restricted by intrinsically feeble and sensitive noncovalent interactions, multifunctional agents can efficiently block Aβ aggregation by exploiting two or more Aβ-specific inhibition strategies simultaneously; (2) apart from regulating Aβ aggregation, multipronged agents can also target and modulate other pathological factors in AD pathogenesis, such as increased oxidative stress, abnormal copper accumulation, and irreversible neuron loss; (3) multifunctional platforms with both diagnostic and therapeutic modalities through integrating in situ imaging, real-time diagnostics, a multitarget direction, stimuli-responsive drug release, and the blood-brain barrier (BBB) translocation features are instrumental in improving drug levels at trouble sites, diminishing off-target adverse reactions, evaluating therapeutic effects, and averting overtreatment.Given the fact that amyloid aggregation, local inflammation, and metal dyshomeostasis are universal biomarkers shared by various neurodegenerative disorders, this Account provides a perspective for the evolution of customized therapeutic agents with multiple reactivities for other neurodegenerative diseases. In addition, recent studies have indicated that Aβ aggregates can enter the nucleus and induce DNA damage and anomalous conformational transition. We also explore the influences of DNA on the biological effects of Aβ aggregates.
Collapse
Affiliation(s)
- Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Meng Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
166
|
Tau/Aβ chimera peptides: A Thioflavin-T and MALDI-TOF study of Aβ amyloidosis in the presence of Cu(II) or Zn(II) ions and total lipid brain extract (TLBE) vesicles. Chem Phys Lipids 2021; 237:105085. [PMID: 33895131 DOI: 10.1016/j.chemphyslip.2021.105085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023]
Abstract
Currently, Alzheimer's Disease (AD) is a complex neurodegenerative condition, with limited therapeutic options. Several factors, like Amyloid β (Aβ) aggregation, tau protein hyperphosphorylation, bio-metals dyshomeostasis and oxidative stress contribute to AD pathogenesis. These pathogenic processes might occur in the aqueous phase but also on neuronal membranes. Thus, investigating the connection between Aβ and biomembranes, becomes important for unveiling the molecular mechanism underlying Aβ amyloidosis as a critical event in AD pathology. In this work, the interaction of two peptides, made up with hybrid sequences from Tau protein 9-16 (EVMEDHAG) or 26-33 (QGGYTMHQ) N-terminal domain and Aβ16-20 (KLVFF) hydrophobic region, with full length Aβ40 or Aβ42 peptides is reported. The studied "chimera" peptides Ac-EVMEDHAGKLVFF-NH2 (τ9-16-KL) and Ac-QGGYTMHQKLVFF-NH2 (τ26-33-KL) are endowed with Aβ recognition and metal ion interaction capabilities provided by the tau or Aβ sequences, respectively. These peptides were characterized in previous study along with their metal dependent interaction and amyloidogenesis, either in the presence or absence of metal ion and artificial membranes made up with Total Lipid Brain Extract (TLBE) components, (Sciacca et al., 2020). In the present paper, the ability of the two peptides to inhibit Aβ aggregation is studied using composite experimental conditions including aqueous solution, the presence of metal ions (Cu or Zn), the presence of lipid vesicles mimicking neuronal membranes as well as the co-presence of metals and TLBE artificial membranes. We used Thioflavine-T (ThT) fluorescence or MALDI-TOF spectrometry analysis of Aβ limited proteolysis to respectively monitor the Aβ aggregation kinetic or validation of the Aβ interacting regions. We demonstrate that τ9-16-KL and τ26-33-KL peptides differently affect Aβ aggregation kinetics, with the tau sequence playing a crucial role. The results are discussed in terms of chimera's peptides hydrophobicity and electrostatic driven interactions at the aqueous/membrane interface.
Collapse
|
167
|
Ismaili L, Monnin J, Etievant A, Arribas RL, Viejo L, Refouvelet B, Soukup O, Janockova J, Hepnarova V, Korabecny J, Kucera T, Jun D, Andrys R, Musilek K, Baguet A, García-Frutos EM, De Simone A, Andrisano V, Bartolini M, de los Ríos C, Marco-Contelles J, Haffen E. (±)- BIGI-3h: Pentatarget-Directed Ligand combining Cholinesterase, Monoamine Oxidase, and Glycogen Synthase Kinase 3β Inhibition with Calcium Channel Antagonism and Antiaggregating Properties for Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1328-1342. [PMID: 33797877 DOI: 10.1021/acschemneuro.0c00803] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multitarget-directed ligands (MTDLs) are considered a promising therapeutic strategy to address the multifactorial nature of Alzheimer's disease (AD). Novel MTDLs have been designed as inhibitors of human acetylcholinesterases/butyrylcholinesterases, monoamine oxidase A/B, and glycogen synthase kinase 3β and as calcium channel antagonists via the Biginelli multicomponent reaction. Among these MTDLs, (±)-BIGI-3h was identified as a promising new hit compound showing in vitro balanced activities toward the aforementioned recognized AD targets. Additional in vitro studies demonstrated antioxidant effects and brain penetration, along with the ability to inhibit the aggregation of both τ protein and β-amyloid peptide. The in vivo studies have shown that (±)-BIGI-3h (10 mg/kg intraperitoneally) significantly reduces scopolamine-induced cognitive deficits.
Collapse
Affiliation(s)
- Lhassane Ismaili
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Julie Monnin
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Adeline Etievant
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Raquel L. Arribas
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Lucía Viejo
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Bernard Refouvelet
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department of Chemistry, University Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Aurelie Baguet
- Université Bourgogne Franche Comté, INSERM, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Eva M. García-Frutos
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso di Augusto, 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso di Augusto, 237, 47921 Rimini, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Cristóbal de los Ríos
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Emmanuel Haffen
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
168
|
Wang X, Gu X, Li L, Yu B, Lv L, Chen Q, Xu M. An excellent electrochemical aptasensor for amyloid-β oligomers based on a triple-helix aptamer switch via target-triggered signal transduction DNA displacement events. Anal Bioanal Chem 2021; 413:3707-3716. [PMID: 33861355 DOI: 10.1007/s00216-021-03319-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
An excellent aptasensor for electrochemical detection of amyloid-β oligomers (AβOs) at trace levels was fabricated based on a triple-helix aptamer switch (THAS) via target-triggered signal transduction DNA displacement events. Specifically, a single-stranded anti-AβO aptamer (Apt) carrying two symmetrical arm segments was first attached via Au-S binding to an Au electrode. Gold nanoparticle (GNP)-tagged signal transduction probes (GNP-STPs) were simultaneously hybridized with the two arm segments of the Apt, and a rigid THAS was formed on the Au electrode. Compared to the conventional hybrid, the number of GNPs on the Au electrode increased significantly with the THAS, effectively improving the stability of the Apt to avoid lodging. Trithiocyanuric acid (TA) was utilized to further gather the GNPs and form network-like TA/GNPs. As a result, the differential pulse voltammetry (DPV) response of GNPs was clearly enhanced. When AβOs were present, target-triggered signal transduction DNA displacement events were carried out from THAS via the reaction of the Apt with the AβOs, which caused the GNP-STP to dissociate from the Au electrode, and thus a significant reduction in the DPV response was observed. The assay was able to sensitively detect trace AβOs by monitoring the AβO-controlled DPV response change. It exhibited a wide linear range from 1 fM to 10 pM with a low detection limit of 0.5 fM, and was successfully employed for the determination of AβOs in 20 serum samples, with good recovery. Moreover, the developed assay can provide a sensitive and selective platform for many studies or investigations related to Alzheimer's disease (AD) monitoring and treatment.
Collapse
Affiliation(s)
- Xiaoying Wang
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Xuan Gu
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Linyu Li
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bingjia Yu
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Liangrui Lv
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qingqing Chen
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Mingming Xu
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| |
Collapse
|
169
|
Dyne E, Prakash PS, Li J, Yu B, Schmidt TL, Huang S, Kim MH. Mild magnetic nanoparticle hyperthermia promotes the disaggregation and microglia-mediated clearance of beta-amyloid plaques. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102397. [PMID: 33857686 DOI: 10.1016/j.nano.2021.102397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
The formation of beta-amyloid (Aβ) plaques is a classical hallmark of Alzheimer's disease (AD) that is associated with the promotion of neuroinflammation and subsequent neurotoxicity. Given the limited therapeutic options for targeting and clearing Aβ plaques in AD, there is an urgent need to develop effective approaches to reduce plaque accumulation. The objective of this study was to validate mild magnetic nanoparticle (MNP) hyperthermia technology as a strategy to clear Aβ deposits and determine the impact on microglia functionality. Our results demonstrated that the heating of MNPs localized to Aβ aggregates upon exposure to high frequency alternating magnetic field (AMF) was sufficient to disrupt Aβ plaques, resulting in its fragmentation. Importantly, this could facilitate the phagocytic clearance of Aβ as well as attenuate pro-inflammatory responses by human microglial cells. Our results support the feasibility of mild MNP/AMF hyperthermia as a new strategy for reducing beta-amyloid burdens in Alzheimer's disease.
Collapse
Affiliation(s)
- Eric Dyne
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Praneetha Sundar Prakash
- School of Biomedical Sciences, Kent State University, Kent, OH, USA; Department of Physics, Kent State University, Kent, OH, USA
| | - Junfeng Li
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | - Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Thorsten-Lars Schmidt
- School of Biomedical Sciences, Kent State University, Kent, OH, USA; Department of Physics, Kent State University, Kent, OH, USA
| | - Songping Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | - Min-Ho Kim
- School of Biomedical Sciences, Kent State University, Kent, OH, USA; Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
170
|
Amyloid-β: A double agent in Alzheimer's disease? Biomed Pharmacother 2021; 139:111575. [PMID: 33845371 DOI: 10.1016/j.biopha.2021.111575] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 01/23/2023] Open
Abstract
Amyloid-β (Aβ) accumulation is one of the cardinal pathological hallmarks of Alzheimer's disease and plays an important role in its pathogenesis. Although the neurotoxic effects of Aβ has been extensively studied, recent studies have revealed that it may also have protective effects. Here, we review novel findings that have shifted our understanding of the role of Aβ in the pathogenesis of Alzheimer's disease. An in-depth and comprehensive understanding of Aβ will provide us with a broader perspective on the treatment of Alzheimer's disease.
Collapse
|
171
|
Dolai G, Giri RS, Roy S, Mandal B. Crystal structure and supramolecular arrangement of heterochiral tripeptides. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gobinda Dolai
- Department of Chemistry, Laboratory of Peptide and Amyloid Research Indian Institute of Technology Guwahati Assam India
| | - Rajat Subhra Giri
- Department of Chemistry, Laboratory of Peptide and Amyloid Research Indian Institute of Technology Guwahati Assam India
| | - Sayanta Roy
- Department of Chemistry, Laboratory of Peptide and Amyloid Research Indian Institute of Technology Guwahati Assam India
| | - Bhubaneswar Mandal
- Department of Chemistry, Laboratory of Peptide and Amyloid Research Indian Institute of Technology Guwahati Assam India
| |
Collapse
|
172
|
Paul S, Saha D, Bk B. Mitochondrial Dysfunction and Mitophagy Closely Cooperate in Neurological Deficits Associated with Alzheimer's Disease and Type 2 Diabetes. Mol Neurobiol 2021; 58:3677-3691. [PMID: 33797062 DOI: 10.1007/s12035-021-02365-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/19/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are known to be correlated in terms of their epidemiology, histopathology, and molecular and biochemical characteristics. The prevalence of T2D leading to AD is approximately 50-70%. Moreover, AD is often considered type III diabetes because of the common risk factors. Uncontrolled T2D may affect the brain, leading to memory and learning deficits in patients. In addition, metabolic disorders and impaired oxidative phosphorylation in AD and T2D patients suggest that mitochondrial dysfunction is involved in both diseases. The dysregulation of pathways involved in maintaining mitochondrial dynamics, biogenesis and mitophagy are responsible for exacerbating the impact of hyperglycemia on the brain and neurodegeneration under T2D conditions. The first section of this review describes the recent views on mitochondrial dysfunction that connect these two disease conditions, as the pathways are observed to overlap. The second section of the review highlights the importance of different mitochondrial miRNAs (mitomiRs) involved in the regulation of mitochondrial dynamics and their association with the pathogenesis of T2D and AD. Therefore, targeting mitochondrial biogenesis and mitophagy pathways, along with the use of mitomiRs, could be a potent therapeutic strategy for T2D-related AD. The last section of the review highlights the known drugs targeting mitochondrial function for the treatment of both disease conditions.
Collapse
Affiliation(s)
- Sangita Paul
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debarpita Saha
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Binukumar Bk
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
173
|
Hatakawa Y, Nakamura R, Konishi M, Sakane T, Tanaka A, Matsuda A, Saito M, Akizawa T. Amyloid beta cleavage by ANA-TA9, a synthetic peptide from the ANA/BTG3 Box A region. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12146. [PMID: 33816760 PMCID: PMC8012241 DOI: 10.1002/trc2.12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/12/2020] [Accepted: 01/06/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We recently discovered a short synthetic peptide derived from the ANA/BTG3 protein Box A region called ANA-TA9 (SKGQAYRMI), which possesses catalytic activity. Herein we demonstrated the proteolytic activity of ANA-TA9 against amyloid beta 42 (Aβ42). METHODS The proteolytic activity of ANA-TA9 against both the authentic soluble form Aβ42 (a-Aβ42) and the solid insoluble form Aβ42 (s-Aβ42) was analyzed by high-performance liquid chromatography and mass spectrometry. Plasma clearance, brain uptake, and cell viability were examined. RESULTS ANA-TA9 cleaved not only a-Aβ42 but also s-Aβ42. Proteolytic activity was partially inhibited by 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, a serine protease inhibitor. Plasma clearance was very rapid, and the brain concentration indicated efficient brain delivery of ANA-TA9 via nasal application. Cell viability analysis indicated that ANA-TA9 did not display toxicity. DISCUSSION ANA-TA9 is an attractive potential candidate for the development of novel peptide drugs in Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Pharmaceutical TechnologyKobe Pharmaceutical UniversityHigashinadaKobeJapan
| | - Rina Nakamura
- O‐Force Co., LtdHata‐gunKochiJapan
- Laboratory of PharmacologySchool of MedicineKohasuOko‐choKochi UniversityNankokuKochiJapan
| | - Motomi Konishi
- Department of Integrative Pharmaceutical ScienceFaculty of Pharmaceutical SciencesSetsunan UniversityHirakataOsakaJapan
| | - Toshiyasu Sakane
- Pharmaceutical TechnologyKobe Pharmaceutical UniversityHigashinadaKobeJapan
| | - Akiko Tanaka
- Pharmaceutical TechnologyKobe Pharmaceutical UniversityHigashinadaKobeJapan
| | - Akira Matsuda
- Laboratory of Medicinal and Biochemical AnalysisFaculty of Pharmaceutical SciencesHiroshima International UniversityKureHiroshimaJapan
| | - Motoaki Saito
- Laboratory of PharmacologySchool of MedicineKohasuOko‐choKochi UniversityNankokuKochiJapan
| | - Toshifumi Akizawa
- O‐Force Co., LtdHata‐gunKochiJapan
- Laboratory of PharmacologySchool of MedicineKohasuOko‐choKochi UniversityNankokuKochiJapan
| |
Collapse
|
174
|
Sohn E, Kim YJ, Jeong SJ. Korean traditional herbal formula Soshiho-tang attenuates memory impairment and neuronal damage in mice with amyloid-beta-induced Alzheimer's disease. Integr Med Res 2021; 10:100723. [PMID: 33898246 PMCID: PMC8059063 DOI: 10.1016/j.imr.2021.100723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Soshiho-tang (SST), also known as Xiaochaihu-tang in China and Sho-saiko-to in Japan, is an Oriental herbal formula traditionally used to treat febrile diseases. Recently, several in vitro and in vivo studies have reported the anti-cancer, anti-liver disease, and anti-inflammatory activities of SST. However, there is little evidence of its effects on neurological diseases. We previously reported the inhibitory effects of SST on in vitro acetylcholinesterase (AChE) activation and amyloid-β (Aβ) aggregation, which are crucial hallmarks of Alzheimer's disease (AD). In the present study, we report that SST has preventive effects on memory impairment and neuronal cell changes in an Aβ-induced AD-like mouse model. Methods Male mice underwent injection of Aβ aggregates and administered SST (500, 1,000, or 2,000 mg/kg/day) for 20 days. Behavioral tests (passive avoidance task [PAT] and Morris water maze [MWM] test) were conducted. Lastly, brain sections were obtained from sacrificed mice for quantitative analysis. Results Intracerebroventricular (ICV) injection of Aβ aggregates significantly decreased the latency time in the PAT and MWM test compared to normal control. In contrast, SST administration markedly reversed the latency caused by Aβ injection. Additionally, our data revealed that SST-mediated improvements in memory impairment are related to its neuroprotective and anti-neuroinflammatory effects. On histological analysis, SST treatment protected neuronal loss and damage as well as microglial activation, and ameliorated amount of Aβ in brain of mouse model of AD. Conclusion Our findings suggest that SST may be a promising candidate for the development of novel drugs for AD.
Collapse
Affiliation(s)
- Eunjin Sohn
- Clinical Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Yu Jin Kim
- Clinical Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Soo-Jin Jeong
- Clinical Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
175
|
Madhuranthakam CMR, Shakeri A, Rao PPN. Modeling the Inhibition Kinetics of Curcumin, Orange G, and Resveratrol with Amyloid-β Peptide. ACS OMEGA 2021; 6:8680-8686. [PMID: 33817530 PMCID: PMC8015079 DOI: 10.1021/acsomega.1c00610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The β-amyloid (Aβ) protein aggregation into toxic forms is one of the major factors in the Alzheimer's disease (AD) pathology. Screening compound libraries as inhibitors of Aβ-aggregation is a common strategy to discover novel molecules as potential therapeutics in AD. In this regard, thioflavin T (ThT)-based fluorescence spectroscopy is a widely used in vitro method to identify inhibitors of Aβ aggregation. However, conventional data processing of the ThT assay experimental results generally provides only qualitative output and lacks inhibitor-specific quantitative data, which can offer a number of advantages such as identification of critical inhibitor-specific parameters required to design superior inhibitors and reduce the need to conduct extensive in vitro kinetic studies. Therefore, we carried out mathematical modeling based on logistic equation and power law (PL) model to correlate the experimental results obtained from the ThT-based Aβ40 aggregation kinetics for small-molecule inhibitors curcumin, orange G, and resveratrol and quantitatively fit the data in a logistic equation. This approach provides important inhibitor-specific parameters such as lag time λ, inflection point τ, maximum slope v m, and apparent rate constant k app, which are particularly useful in comparing the effectiveness of potential Aβ40 aggregation inhibitors and can be applied in drug discovery campaigns to compare and contrast Aβ40 inhibition data for large compound libraries.
Collapse
Affiliation(s)
| | - Arash Shakeri
- School
of Pharmacy, Health Sciences Campus, University
of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Praveen P. N. Rao
- School
of Pharmacy, Health Sciences Campus, University
of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
176
|
Narayanan T, Rüter A, Olsson U. Multiscale Structural Elucidation of Peptide Nanotubes by X-Ray Scattering Methods. Front Bioeng Biotechnol 2021; 9:654339. [PMID: 33855016 PMCID: PMC8039368 DOI: 10.3389/fbioe.2021.654339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
This mini-review presents the structural investigations of the self-assembled peptide nanotubes using X-ray scattering techniques. As compared to electron microscopy, scattering methods enable studies of nanotubes in solution under the appropriate physicochemical conditions and probe their formation mechanism. In addition, a combination of X-ray scattering methods allow the elucidation of structural organization from the molecular scale to the dimension of nanotubes.
Collapse
Affiliation(s)
| | - Axel Rüter
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Ulf Olsson
- Division of Physical Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
177
|
Kumari A, Shrivastava N, Mishra M, Somvanshi P, Grover A. Inhibitory mechanism of an antifungal drug, caspofungin against amyloid β peptide aggregation: Repurposing via neuroinformatics and an experimental approach. Mol Cell Neurosci 2021; 112:103612. [PMID: 33722677 DOI: 10.1016/j.mcn.2021.103612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/01/2022] Open
Abstract
The multifactorial neurological condition called Alzheimer's disease (AD) primarily affects elderly individuals. Despite the calamitous consequences of AD, curative strategies for a regimen to apply remain inadequate as several factors contribute to AD etiology. Drug repurposing is an advance strategy prior to drug discovery as various effective drugs perform through alteration of multiple targets, and the present "poly-pharmacology" can be a curative approach to complex disorders. AD's multifactorial behavior actively encourages the hypothesis for a drug design approach focused on drug repurposing. In this study, we discovered that an antifungal drug, Caspofungin (CAS) is a potent Aβ aggregation inhibitor that displays significantly reduced toxicity associated with AD. Drug reprofiling and REMD simulations demonstrated that CAS interacts with the β-sheet section, known as Aβ amyloid fibrils hotspot. CAS leads to destabilization of β-sheet and, conclusively, in its devaluation. Later, in vitro experiments were acquired in which the fibrillar volume was reduced for CAS-treated Aβ peptide. For the first time ever, this study has determined an antifungal agent as the Aβ amyloid aggregation's potent inhibitor. Several efficient sequence-reliant potent inhibitors can be developed in future against the amyloid aggregation for different amyloid peptide by the processing and conformational optimization of CAS.
Collapse
Affiliation(s)
- Anchala Kumari
- Department of Biotechnology, Teri School of Advanced Studies, New Delhi 110070, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nidhi Shrivastava
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohit Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pallavi Somvanshi
- Department of Biotechnology, Teri School of Advanced Studies, New Delhi 110070, India.
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
178
|
Tian R, Xu J, Luo Q, Hou C, Liu J. Rational Design and Biological Application of Antioxidant Nanozymes. Front Chem 2021; 8:831. [PMID: 33644000 PMCID: PMC7905316 DOI: 10.3389/fchem.2020.00831] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Nanozyme is a type of nanostructured material with intrinsic enzyme mimicking activity, which has been increasingly studied in the biological field. Compared with natural enzymes, nanozymes have many advantages, such as higher stability, higher design flexibility, and more economical production costs. Nanozymes can be used to mimic natural antioxidant enzymes to treat diseases caused by oxidative stress through reasonable design and modification. Oxidative stress is caused by imbalances in the production and elimination of reactive oxygen species (ROS) and reactive nitrogen species (RNS). This continuous oxidative stress can cause damage to some biomolecules and significant destruction to cell structure and function, leading to many physiological diseases. In this paper, the methods to improve the antioxidant properties of nanozymes were reviewed, and the applications of nanozyme antioxidant in the fields of anti-aging, cell protection, anti-inflammation, wound repair, cancer, traumatic brain injury, and nervous system diseases were introduced. Finally, the future challenges and prospects of nanozyme as an ideal antioxidant were discussed.
Collapse
Affiliation(s)
- Ruizhen Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
179
|
Abedin F, Tatulian SA. Mutual structural effects of unmodified and pyroglutamylated amyloid β peptides during aggregation. J Pept Sci 2021; 27:e3312. [PMID: 33631839 DOI: 10.1002/psc.3312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 11/09/2022]
Abstract
Amyloid β (Aβ) peptide aggregates are linked to Alzheimer's disease (AD). Posttranslationally pyroglutamylated Aβ (pEAβ) occurs in AD brains in significant quantities and is hypertoxic, but the underlying structural and aggregation properties remain poorly understood. Here, the structure and aggregation of Aβ1-40 and pEAβ3-40 are analyzed separately and in equimolar combination. Circular dichroism data show that Aβ1-40 , pEAβ3-40 , and their combination assume α-helical structure in dry state and transition to unordered structure in aqueous buffer. Aβ1-40 and the 1:1 combination gradually acquire β-sheet structure while pEAβ3-40 adopts an α-helix/β-sheet conformation. Thioflavin-T fluorescence studies suggest that the two peptides mutually inhibit fibrillogenesis. Fourier transform infrared (FTIR) spectroscopy identifies the presence of β-turn and α-helical structures in addition to β-sheet structure in peptides in aqueous buffer. The kinetics of transitions from the initial α-helical structure to β-sheet structure were resolved by slow hydration of dry peptides by D2 O vapor, coupled with isotope-edited FTIR. These data confirmed the mutual suppression of β-sheet formation by the two peptides. Remarkably, pEAβ3-40 maintained a significant fraction of α-helical structure in the combined sample, implying a reduced β-sheet propensity of pEAβ3-40 . Altogether, the data imply that the combination of unmodified and pyroglutamylated Aβ peptides resists fibrillogenesis and favors the prefibrillar state, which may underlie hypertoxicity of pEAβ.
Collapse
Affiliation(s)
- Faisal Abedin
- Physics Graduate Program, University of Central Florida, Orlando, Florida, USA
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
180
|
Zhu J, Liu X, Zheng J, Jiang D. Tuning the conformation of G-quadruplexes by sodium and potassium ions: application to photometric and fluorometric determination of amyloid β(1-40). Mikrochim Acta 2021; 188:98. [PMID: 33624166 DOI: 10.1007/s00604-021-04736-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
Abstract
A dual channel method is described for the determination of the amyloid-β peptide Aβ(1-40) that is associated with Alzheimer's disease. The method exploits (a) conformational changes of a G-quadruplex that are triggered by Na+ and K+ ions and (b) the strong affinity between Aβ(1-40) and Cu2+. A G-quadruplex DNA forms an antiparallel structure in the presence of Na+ and can catalyze the oxidation of tetramethylbenzidine by H2O2 system in the presence of Cu2+ to form a visible blue color. If, however, Cu2+ binds to Aβ(1-40), the blue color is no longer formed. Measuring the absorption decrease at 452 nm, the determination of Aβ(1-40) is realized. If K+ is added to the Na+-containing buffer, the antiparallel G-quadruplex DNA is transformed to parallel. This leads to the insertion of protoporphyrin IX (PPIX) into the G-quadruplex and generates enhanced fluorescent signal, with excitation/emission wavelength at 410/630 nm. The G-quadruplex then catalyzes the metalation of PPIX by Cu2+, and the fluorescence intensity decreases. In the presence of Aβ(1-40), the formation of Aβ(1-40)-Cu2+ triggers the recovery of the fluorescence. The Na+/K+-induced tuning of the conformation of the G-quadruplex with the same sequence enables dual (colorimetric and fluorometric) determination of Aβ(1-40), with detection limits of 4.9 pM and 2.3 pM, respectively. The cost is quite low since the developed strategy is label free and enzyme free by using low-cost DNA and Cu2+. More importantly, the dual channel determination operation is very simple without any further modification process. Tuning the conformation of G-quadruplexes by sodium(I) and potassium(I): application to photometric and fluorometric determination of amyloid β(1-40).
Collapse
Affiliation(s)
- Jing Zhu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China.
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China.
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Jinxue Zheng
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China.
| |
Collapse
|
181
|
Evidence of the existence of micellar-like aggregates for α-synuclein. Int J Biol Macromol 2021; 177:392-400. [PMID: 33631264 DOI: 10.1016/j.ijbiomac.2021.02.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 11/20/2022]
Abstract
We have been investigating the early stages of α-synuclein (Syn) aggregation, a small presynaptic protein implicated in Parkinson's disease. We previously reported that for pH jumps (1000 s) from pH 7 to pH 2 the variation of the Syn intrinsic fluorescence intensity did not change in the concentration range of ca. 10-50 μM (ref. 16). Additionally, I reported dynamic light scattering (DLS) experiments revealing the formation of early large Syn aggregates (ref. 7). These reported results mean that some molecular entity is being early formed. Herein, it was decided to investigate in detail these early Syn aggregates by using light scattering. By DLS analysis, these aggregates exhibited a hydrodynamic diameter of ca. 420 nm along with a high scattering intensity, characteristic of micellar-like aggregates formation. The critical micelle concentration (CMC) at which the Syn micellar-like aggregates are formed was ca. 10 μM. DLS analysis has also revealed that the micellar-like aggregates for Syn evolved, for protein concentrations >100 μM, to the formation of smaller aggregates (hydrodynamic diameter of ca. 165 nm), possibly Syn oligomers. The Syn micellar-like aggregates formed at pH 7 solutions seem to be active species and to have a role in this protein aggregation mechanism.
Collapse
|
182
|
Wu T, Lai R, Yao C, Juang J, Lin S. Supramolecular Bait to Trigger Non-Equilibrium Co-Assembly and Clearance of Aβ42. Angew Chem Int Ed Engl 2021; 60:4014-4017. [PMID: 33191624 PMCID: PMC7898541 DOI: 10.1002/anie.202013754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/20/2022]
Abstract
In living systems, non-equilibrium states that control the assembly-disassembly of cellular components underlie the gradual complexification of life, whereas in nonliving systems, most molecules follow the laws of thermodynamic equilibrium to sustain dynamic consistency. Little is known about the roles of non-equilibrium states of interactions between supramolecules in living systems. Here, a non-equilibrium state of interaction between supramolecular lipopolysaccharide (LPS) and Aβ42, an aggregate-prone protein that causes Alzheimer's disease (AD), was identified. Structurally, Aβ42 presents a specific groove that is recognized by the amphiphilicity of LPS bait in a non-equilibrium manner. Functionally, the transient complex elicits a cellular response to clear extracellular Aβ42 deposits in neuronal cells. Since the impaired clearance of toxic Aβ42 deposits correlates with AD pathology, the non-equilibrium LPS and Aβ42 could represent a useful target for developing AD therapeutics.
Collapse
Affiliation(s)
- Te‐Haw Wu
- Institute of Biomedical Engineering and NanomedicineNational Health Research Institutes (NHRI)Miaoli County35053Taiwan
| | - Rai‐Hua Lai
- Institute of Molecular and Genomic MedicineNHRITaiwan
| | - Chun‐Nien Yao
- Institute of Biomedical Engineering and NanomedicineNational Health Research Institutes (NHRI)Miaoli County35053Taiwan
| | - Jyh‐Lyh Juang
- Institute of Molecular and Genomic MedicineNHRITaiwan
| | - Shu‐Yi Lin
- Institute of Biomedical Engineering and NanomedicineNational Health Research Institutes (NHRI)Miaoli County35053Taiwan
| |
Collapse
|
183
|
Li J, Gao G, Tang X, Yu M, He M, Sun T. Isomeric Effect of Nano-Inhibitors on Aβ 40 Fibrillation at The Nano-Bio Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4894-4904. [PMID: 33486955 DOI: 10.1021/acsami.0c21906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical and physical properties of nanobio interface substantially affect the conformational transitions of adjacent biomolecules. Previous studies have reported the chiral effect and charge effect of nanobio interface on the misfolding, aggregation, and fibrillation of amyloid protein. However, the isomeric effect of nanobio interface on protein/peptides amyloidosis is still unclear. Here, three isomeric nanobio interfaces were designed and fabricated based on the same sized gold nanoclusters (AuNCs) modified with 4-mercaptobenzoic acid (p-MBA), 3-mercaptobenzoic acid (m-MBA), and 2-mercaptobenzoic acid (o-MBA). Then three isomeric AuNCs were employed as models to explore the isomeric effect on the misfolding, aggregation, and fibrillation of Aβ40 at nanobio interfaces. Site-specific replacement experiments on the basis of theoretical analysis revealed the possible mechanism of Aβ40 interacting with isomeric ligands of AuNCs at the nanobio interfaces. The distance and orientation of -COOH group from the surface of AuNCs can affect the electrostatic interaction between isomeric ligands and the positively charged residues (R5, K16, and K28) of Aβ40, which may affect the inhibition efficiency of isomeric AuNCs on protein amyloidosis. Actually, the amyloid fibrillation kinetics results together with atomic force microscope (AFM) images, dynamic light scattering (DLS) results and circular dichroism (CD) spectra indeed proved that all the three isomeric AuNCs could inhibit the misfolding, aggregation and fibrillation of Aβ40 in a dose-dependent manner, and the inhibition efficiency was definitely different from each other. The inhibition efficiency of o-MBA-AuNCs was higher than that of m-MBA-AuNCs and p-MBA-AuNCs at the same dosage. These results provide an insight for isomeric effect at nanobio interfaces, and open an avenue for structure-based nanodrug design target Alzheimer's disease (AD) and even other protein conformational diseases.
Collapse
Affiliation(s)
- Jianhang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| | - Xintong Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| | - Meng Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
184
|
Babu E, Bhuvaneswari J, Rajakumar K, Sathish V, Thanasekaran P. Non-conventional photoactive transition metal complexes that mediated sensing and inhibition of amyloidogenic aggregates. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
185
|
Ye Z, Geng X, Wei L, Li Z, Lin S, Xiao L. Length-Dependent Distinct Cytotoxic Effect of Amyloid Fibrils beyond Optical Diffraction Limit Revealed by Nanoscopic Imaging. ACS NANO 2021; 15:934-943. [PMID: 33320527 DOI: 10.1021/acsnano.0c07555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fibrillar species have been proposed to play an essential role in the cytotoxicity of amyloid peptide and the pathogenesis of neurodegenerative diseases. Discrimination of Aβ aggregates in situ at high spatial resolution is therefore significant for the development of a therapeutic method. In this work, we adopt a rhodamine-like structure as luminescent centers to fabricate carbonized fluorescent nanoparticles (i.e., carbon dots, RhoCDs) with tunable emission wavelengths from green to red and burst-like photoblinking property for localization-based nanoscopic imaging. These RhoCDs contain lipophilic cationic and carboxyl groups which can specifically bind with Aβ1-40 aggregates via electrostatic interaction and hydrogen bonding. According to the nanoscopic imaging in the Aβ1-40 fibrillation and disaggregation process, different types of Aβ1-40 aggregates beyond the optical diffraction limit have been disclosed. Additionally, length-dependent toxic effect of Aβ1-40 aggregates beyond the optical diffraction limit is unveiled. Short amyloid assemblies with length of 187 ± 3.9 nm in the early stage are more toxic than the elongated amyloid fibrils. Second, disassembly of long fibrils into short species by Gramicidin S (GS-2) peptide might enhance the cytotoxicity. These results lay the foundation to develop functional fluorophore for nanoscopic imaging and also provide deep insight into morphology-dependent cytotoxicity from amyloid peptides.
Collapse
Affiliation(s)
- Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Geng
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Wei
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zhaohui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shen Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
186
|
Norjmaa G, Solé-Daura A, Besora M, Ricart JM, Carbó JJ. Peptide Hydrolysis by Metal (Oxa)cyclen Complexes: Revisiting the Mechanism and Assessing Ligand Effects. Inorg Chem 2021; 60:807-815. [PMID: 33411534 DOI: 10.1021/acs.inorgchem.0c02859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism responsible for peptide bond hydrolysis by Co(III) and Cu(II) complexes with (oxa)cyclen ligands has been revisited by means of computational tools. We propose that the mechanism starts by substrate coordination and an outer-sphere attack on the amide C atom of a solvent water molecule assisted by the metal hydroxo moiety as a general base, which occurs through six-membered ring transition states. This new mechanism represents a more likely scenario than the previously proposed mechanisms that involved an inner-sphere nucleophilic attack through more strained four-membered rings transition states. The corresponding computed overall free-energy barrier of 25.2 kcal mol-1 for hydrolysis of the peptide bond in Phe-Ala by a cobalt(III) oxacyclen catalyst (1) is consistent with the experimental values obtained from rate constants. Also, we assessed the influence of the nature of the ligand throughout a systematic replacement of N by O atoms in the (oxa)cyclen ligand. Increasing the number of coordinating O atoms accelerates the reaction by increasing the Lewis acidity of the metal ion. On the other hand, the higher reactivity observed for the copper(II) oxacyclen catalyst with respect to the analogous Co(III) complex can be attributed to the larger Brönsted basicity of the copper(II) hydroxo ligand. Ultimately, the detailed understanding of the ligand and metal nature effects allowed us to identify the double role of the metal hydroxo complexes as Lewis acids and Brönsted bases and to rationalize the observed reactivity trends.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Albert Solé-Daura
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Maria Besora
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Josep M Ricart
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Jorge J Carbó
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
187
|
Tran M, Reddy PH. Defective Autophagy and Mitophagy in Aging and Alzheimer's Disease. Front Neurosci 2021; 14:612757. [PMID: 33488352 PMCID: PMC7820371 DOI: 10.3389/fnins.2020.612757] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is the time-dependent process that all living organisms go through characterized by declining physiological function due to alterations in metabolic and molecular pathways. Many decades of research have been devoted to uncovering the cellular changes and progression of aging and have revealed that not all organisms with the same chronological age exhibit the same age-related declines in physiological function. In assessing biological age, factors such as epigenetic changes, telomere length, oxidative damage, and mitochondrial dysfunction in rescue mechanisms such as autophagy all play major roles. Recent studies have focused on autophagy dysfunction in aging, particularly on mitophagy due to its major role in energy generation and reactive oxidative species generation of mitochondria. Mitophagy has been implicated in playing a role in the pathogenesis of many age-related diseases, including Alzheimer's disease (AD), Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The purpose of our article is to highlight the mechanisms of autophagy and mitophagy and how defects in these pathways contribute to the physiological markers of aging and AD. This article also discusses how mitochondrial dysfunction, abnormal mitochondrial dynamics, impaired biogenesis, and defective mitophagy are related to aging and AD progression. This article highlights recent studies of amyloid beta and phosphorylated tau in relation to autophagy and mitophagy in AD.
Collapse
Affiliation(s)
- Michael Tran
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
188
|
Discovery of potent glycogen synthase kinase 3/cholinesterase inhibitors with neuroprotection as potential therapeutic agent for Alzheimer’s disease. Bioorg Med Chem 2021; 30:115940. [DOI: 10.1016/j.bmc.2020.115940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
|
189
|
He P, Schulz P, Sierks MR. A conformation-specific antibody against oligomeric β-amyloid restores neuronal integrity in a mouse model of Alzheimer's disease. J Biol Chem 2021; 296:100241. [PMID: 33376140 PMCID: PMC7948963 DOI: 10.1074/jbc.ra120.015327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 11/06/2022] Open
Abstract
Conformationally distinct aggregates of the amyloid β (Aβ) peptide accumulate in brains of patients with Alzheimer's disease (AD), but the roles of the different aggregates in disease progression are not clear. We previously isolated two single-chain variable domain antibody fragments (scFvs), C6T and A4, that selectively bind different toxic conformational variants of oligomeric Aβ. Here, we utilize these scFvs to localize the presence of these Aβ variants in human AD brain and to demonstrate their potential as therapeutic agents for treating AD. Both A4 and C6T label oligomeric Aβ in extracellular amyloid plaques, whereas C6T also labels intracellular oligomeric Aβ in human AD brain tissue and in an AD mouse model. For therapeutic studies, the A4 and C6T scFvs were expressed in the AD mice by viral infection of liver cells. The scFvs were administered at 2 months of age, and mice sacrificed at 9 months. The scFvs contained a peptide tag to facilitate transport across the blood brain barrier. While treatment with C6T only slightly decreased Aβ deposits and plaque-associated inflammation, it restored neuronal integrity to WT levels, significantly promoted growth of new neurons, and impressively rescued survival rates to WT levels. Treatment with A4 on the other hand significantly decreased Aβ deposits but did not significantly decrease neuroinflammation or promote neuronal integrity, neurogenesis, or survival rate. These results suggest that the specific Aβ conformation targeted in therapeutic applications greatly affects the outcome, and the location of the targeted Aβ variants may also play a critical factor.
Collapse
Affiliation(s)
- Ping He
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, USA
| | - Philip Schulz
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, USA
| | - Michael R Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
190
|
Ma S, Chen G, Xu J, Liu Y, Li G, Chen T, Li Y, James TD. Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213553] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
191
|
Lakey-Beitia J, Burillo AM, Penna GL, Hegde ML, Rao K. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. J Alzheimers Dis 2021; 82:S335-S357. [PMID: 32568200 PMCID: PMC7809605 DOI: 10.3233/jad-200185] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 50 million people worldwide. The pathology of this multifactorial disease is primarily characterized by the formation of amyloid-β (Aβ) aggregates; however, other etiological factors including metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), play critical role in disease progression. Because these transition metal ions are important for cellular function, their imbalance can cause oxidative stress that leads to cellular death and eventual cognitive decay. Importantly, these transition metal ions can interact with the amyloid-β protein precursor (AβPP) and Aβ42 peptide, affecting Aβ aggregation and increasing its neurotoxicity. Considering how metal dyshomeostasis may substantially contribute to AD, this review discusses polyphenols and the underlying chemical principles that may enable them to act as natural chelators. Furthermore, polyphenols have various therapeutic effects, including antioxidant activity, metal chelation, mitochondrial function, and anti-amyloidogenic activity. These combined therapeutic effects of polyphenols make them strong candidates for a moderate chelation-based therapy for AD.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Andrea M. Burillo
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Giovanni La Penna
- National Research Council, Institute of Chemistry of Organometallic Compounds, Sesto Fiorentino (FI), Italy
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Medical College of Cornell University, New York, NY, USA
| | - K.S. Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
- Zhongke Jianlan Medical Institute, Hangzhou, Republic of China
| |
Collapse
|
192
|
Wu T, Lai R, Yao C, Juang J, Lin S. Supramolecular Bait to Trigger Non‐Equilibrium Co‐Assembly and Clearance of Aβ42. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Te‐Haw Wu
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes (NHRI) Miaoli County 35053 Taiwan
| | - Rai‐Hua Lai
- Institute of Molecular and Genomic Medicine NHRI Taiwan
| | - Chun‐Nien Yao
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes (NHRI) Miaoli County 35053 Taiwan
| | - Jyh‐Lyh Juang
- Institute of Molecular and Genomic Medicine NHRI Taiwan
| | - Shu‐Yi Lin
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes (NHRI) Miaoli County 35053 Taiwan
| |
Collapse
|
193
|
Yi Y, Lin Y, Han J, Lee HJ, Park N, Nam G, Park YS, Lee YH, Lim MH. Impact of sphingosine and acetylsphingosines on the aggregation and toxicity of metal-free and metal-treated amyloid-β. Chem Sci 2020; 12:2456-2466. [PMID: 34164011 PMCID: PMC8179336 DOI: 10.1039/d0sc04366d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pathophysiological shifts in the cerebral levels of sphingolipids in Alzheimer's disease (AD) patients suggest a link between sphingolipid metabolism and the disease pathology. Sphingosine (SP), a structural backbone of sphingolipids, is an amphiphilic molecule that is able to undergo aggregation into micelles and micellar aggregates. Considering its structural properties and cellular localization, we hypothesized that SP potentially interacts with amyloid-β (Aβ) and metal ions that are found as pathological components in AD-affected brains, with manifesting its reactivity towards metal-free Aβ and metal-bound Aβ (metal–Aβ). Herein, we report, for the first time, that SP is capable of interacting with both Aβ and metal ions and consequently affects the aggregation of metal-free Aβ and metal–Aβ. Moreover, incubation of SP with Aβ in the absence and presence of metal ions results in the aggravation of toxicity induced by metal-free Aβ and metal–Aβ in living cells. As the simplest acyl derivatives of SP, N-acetylsphingosine and 3-O-acetylsphingosine also influence metal-free Aβ and metal–Aβ aggregation to different degrees, compared to SP. Such slight structural modifications of SP neutralize its ability to exacerbate the cytotoxicity triggered by metal-free Aβ and metal–Aβ. Notably, the reactivity of SP and the acetylsphingosines towards metal-free Aβ and metal–Aβ is determined to be dependent on their formation of micelles and micellar aggregates. Our overall studies demonstrate that SP and its derivatives could directly interact with pathological factors in AD and modify their pathogenic properties at concentrations below and above critical aggregation concentrations. The reactivity of sphingosine and acetylsphingosines towards both metal-free and metal-treated amyloid-β is demonstrated showing a correlation of their micellization properties.![]()
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yuxi Lin
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea
| | - Jiyeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University Gongju 32588 Republic of Korea
| | - Nahye Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Young S Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea .,Research Headquarters, Korea Brain Research Institute (KBRI) Daegu 41068 Republic of Korea.,Bio-Analytical Science, University of Science and Technology (UST) Daejeon 34113 Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
194
|
Zhang M, Tang L, Jiang L, Wei J, Hu Y, Sheng R. Identification of N-phenyl-3-methoxy-4-pyridinones as orally bioavailable H 3 receptor antagonists and β-amyloid aggregation inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2020; 212:113096. [PMID: 33395621 DOI: 10.1016/j.ejmech.2020.113096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022]
Abstract
Based on our previous work, a series of N-phenyl-3-methoxy-4-pyridinone derivatives were designed as orally bioavailable dual functional agents for therapy of Alzheimer's disease, through introducing alkyloxy moiety into 4-pyridinone ring to avoid the possible phase II metabolism of 3-hydroxy-4-pyridinone in lead compound 3-hydroxy-2-methyl-1-(4-(3-(pyrrolidin-1-yl)propoxy)phenyl)-pyridin-4(1H)-one (4). In vitro studies indicated that most of these compounds exhibit excellent H3 receptor antagonistic activities and potent self-induced Aβ1-40/Aβ1-42 aggregation inhibitory activities. In particular, 3-methoxy-1-(4-(3-(pyrrolidin-1-yl)propoxy)phenyl)-pyridin-4(1H)-one (7i) demonstrated IC50 value of 0.52 nM in H3R antagonism and good selectivity over other histamine receptor subtypes. The transmission electron microscopy (TEM) images showed that compound 7i can inhibit self-mediated Aβ1-40/Aβ1-42 aggregation efficiently. As expected, it exhibited desirable pharmacokinetic properties in plasma and good BBB permeability. Furthermore, compound 7i can efficiently block (R)-α-methylhistamine- induced dipsogenia and reverse scopolamine-induced learning deficits of rats. All above results indicated that compound 7i was a promising orally bioavailable dual functional agents with potential use in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Minkui Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Liu Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Wei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongzhou Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
195
|
Park S, Yi Y, Lim MH. Reactivity of Flavonoids Containing a Catechol or Pyrogallol Moiety with Metal‐Free and Metal‐Associated Amyloid‐β. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Seongmin Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yelim Yi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
196
|
Gerbelli BB, Oliveira CLP, Silva ER, Hamley IW, Alves WA. Amyloid Formation by Short Peptides in the Presence of Dipalmitoylphosphatidylcholine Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14793-14801. [PMID: 33210929 DOI: 10.1021/acs.langmuir.0c02760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aggregation of two short peptides, [RF] and [RF]4 (where R = arginine and F = phenylalanine), at dipalmitoylphosphatidylcholine (DPPC) model membranes was investigated at the air-water interface using the Langmuir technique and vesicles in aqueous solutions. The molar ratio of the peptide and lipid components was varied to provide insights into the peptide-membrane interactions, which might be related to their cytotoxicity. Both peptides exhibited affinity to the DPPC membrane interface and rapidly adopted β-sheet-rich structures upon adsorption onto the surface of the zwitterionic membrane. Results from adsorption isotherm and small-angle X-ray scattering experiments showed changes in the structural and thermodynamic parameters of the membrane with increasing peptide concentration. Using atomic force microscopy, we showed the appearance of pores through the bilayer membranes and peptide aggregation at different interfaces, suggesting that the hydrophobic residues might have an effect on both pore size and layer structure, facilitating the membrane disruption and leading to different cytotoxicity effects.
Collapse
Affiliation(s)
- Barbara B Gerbelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | | | - Emerson R Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, U.K
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| |
Collapse
|
197
|
Borgstedt L, Blobner M, Musiol M, Bratke S, Syryca F, Rammes G, Jungwirth B, Schmid S. Neurotoxicity of different amyloid beta subspecies in mice and their interaction with isoflurane anaesthesia. PLoS One 2020; 15:e0242989. [PMID: 33270674 PMCID: PMC7714346 DOI: 10.1371/journal.pone.0242989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/12/2020] [Indexed: 12/01/2022] Open
Abstract
Background The aim of this study was to assess different amyloid beta subspecies’ effects on behaviour and cognition in mice and their interaction with isoflurane anaesthesia. Methods After governmental approval, cannulas were implanted in the lateral cerebral ventricle. After 14 days the mice were randomly intracerebroventricularly injected with Aβ 1–40 (Aβ40), Aβ 1–42 (Aβ42), 3NTyr10-Aβ (Aβ nitro), AβpE3-42 (Aβ pyro), or phosphate buffered saline. Four days after the injection, 30 mice (6 animals per subgroup) underwent general anaesthesia with isoflurane. A “sham” anaesthetic procedure was performed in another 30 mice (6 animals per subgroup, 10 subgroups in total). During the next eight consecutive days a blinded assessor evaluated behavioural and cognitive performance using the modified hole-board test. Following the testing we investigated 2 brains per subgroup for insoluble amyloid deposits using methoxy staining. We used western blotting in 4 brains per subgroup for analysis of tumour-necrosis factor alpha, caspase 3, glutamate receptors NR2B, and mGlu5. Data were analysed using general linear modelling and analysis of variance. Results Aβ pyro improved overall cognitive performance (p = 0.038). This cognitive improvement was reversed by isoflurane anaesthesia (p = 0.007), presumably mediated by decreased exploratory behaviour (p = 0.022 and p = 0.037). Injection of Aβ42 was associated with increased anxiety (p = 0.079). Explorative analysis on a limited number of brains did not reveal insoluble amyloid deposits or differences in the expression of tumour-necrosis factor alpha, NR2B, mGlu5, or caspase 3. Conclusions Testing cognitive performance after intracerebroventricular injection of different amyloid beta subspecies revealed that Aβ pyro might be less harmful, which was reversed by isoflurane anaesthesia. There is minor evidence for Aβ42-mediated neurotoxicity. Preliminary molecular analysis of biomarkers did not clarify pathophysiological mechanisms.
Collapse
Affiliation(s)
- Laura Borgstedt
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Manfred Blobner
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Maximilian Musiol
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Sebastian Bratke
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Finn Syryca
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Bettina Jungwirth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Sebastian Schmid
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
- * E-mail:
| |
Collapse
|
198
|
Sun C, Xiong Z, Zhang J, Fang Y. Environmental parameters-dependent self-assembling behaviors of α-zein in aqueous ethanol solution studied by atomic force microscopy. Food Chem 2020; 331:127349. [PMID: 32593041 DOI: 10.1016/j.foodchem.2020.127349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022]
Abstract
Atomic force microscopy was applied to characterize the self-assembling behaviors of α-zein molecules in 70% (v/v) aqueous ethanol solution under different parameters including α-zein concentration (0.001%-0.1%, w/v), pH (2.0-8.0) and the thermal treatment (90 ℃, 2-24 h). α-Zein (0.1% and 0.01%, w/v) at pH 7.0 formed globules while α-zein assemblies (0.001%, w/v) exhibited the co-existence of worm-like strings, bundles of fibers, and rod-like fibers. Heating the aqueous ethanol solutions containing 0.001% (w/v) α-zein at 90 °C and pH 4.0 converted the irregular aggregates into regular spherical particles (100-120 nm), followed by fibrils (15-50 nm) at a prolonged times (8 h). Besides, fibrils were formed after heating aqueous ethanol solutions containing α-zein (0.001%, w/v) at pH 2.0 for 8 h. A two-step mechanism was proposed to explain such findings, which involved the aggregation of α-zein molecules to form aggregates, and followed by the rearrangement of α-zein molecules to form fibrils.
Collapse
Affiliation(s)
- Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheqiang Xiong
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junwei Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
199
|
Belwal VK, Chaudhary N. Amyloids and their untapped potential as hydrogelators. SOFT MATTER 2020; 16:10013-10028. [PMID: 33146652 DOI: 10.1039/d0sm01578d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amyloid fibrils are cross-β-sheet-rich fibrous aggregates. They were originally identified as disease-associated protein/peptide deposits. The cross-β motif was consequently labelled as an alien and pathogenic fold. Subsequent research revealed that the fibrillar aggregates were benign, and the cytotoxicity in the amyloid diseases was attributed to the pre-fibrillar structures. Research in the past two decades has identified the native functional amyloids in organisms ranging from bacteria to human. The amyloid-like fibrils, therefore, are not necessarily pathogenic, and the cross-β motif is very much native. This premise makes way for the amyloids to be used as biocompatible materials. Many naturally occurring amyloidogenic proteins/peptides or their fragments have been reported in the literature to form hydrogels. Hydrogels constitute one of the most interesting classes of soft materials that find application in diverse fields such as environmental, electronic, and biomedical engineering. Applications of hydrogels in medicine are particularly extensive. Among various classes of peptides that form hydrogels, the potential of amyloids is largely untapped. In this review, we have attempted to compile the literature on amyloid hydrogels and discuss their potential applications.
Collapse
Affiliation(s)
- Vinay Kumar Belwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781 039, India.
| | | |
Collapse
|
200
|
Mondal S, Podder D, Nandi SK, Roy Chowdhury S, Haldar D. Acid-responsive fibrillation and urease-assisted defibrillation of phenylalanine: a transient supramolecular hydrogel. SOFT MATTER 2020; 16:10115-10121. [PMID: 32761013 DOI: 10.1039/d0sm00774a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aggregation of proteins and peptides into fibrils is associated with many neurodegenerative diseases in humans, including Alzheimer's disease, Parkinson's disease and non-neurological type-II diabetes. A better understanding of the fibril formation process and defibrillation using biochemical tools is highly important for therapeutics. Under physiological conditions, acidic pH promotes the formation of toxic fibrils. Here, a mimic of living systems has been achieved by the acid-responsive assembly of benzyloxycarbonyl-l-phenylalanine to fibrils, as well as the urease-assisted disassembly of the said fibrils. The simultaneous incorporation of the two triggers helped to prepare a transient supramolecular hydrogel from benzyloxycarbonyl-l-phenylalanine-entangled fibrils with a high degree of control over the self-assembly lifetime and mechanical properties. Further, under acidic pH, the compound formed the O-HO[double bond, length as m-dash]C hydrogen-bonded dimer. The dimers were further self-assembled by intermolecular N-HO[double bond, length as m-dash]C hydrogen bonds and π-π stacking interactions to form fibrils with high mechanical properties, from this simple molecule. However, the self-assembly process is dynamic. Hence, the in situ-generated NH3 uniformly increased the pH and led to the homogeneous disassembly of the fibrils. Thus, this report provides a valuable approach to defibrillation.
Collapse
Affiliation(s)
- Sahabaj Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| | | | | | | | | |
Collapse
|