151
|
Watson DC, Wakarchuk WW, Leclerc S, Schur MJ, Schoenhofen IC, Young NM, Gilbert M. Sialyltransferases with enhanced legionaminic acid transferase activity for the preparation of analogs of sialoglycoconjugates. Glycobiology 2015; 25:767-73. [DOI: 10.1093/glycob/cwv017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/10/2015] [Indexed: 11/15/2022] Open
|
152
|
Schmölzer K, Czabany T, Luley-Goedl C, Pavkov-Keller T, Ribitsch D, Schwab H, Gruber K, Weber H, Nidetzky B. Complete switch from α-2,3- to α-2,6-regioselectivity in Pasteurella dagmatis β-d-galactoside sialyltransferase by active-site redesign. Chem Commun (Camb) 2015; 51:3083-6. [DOI: 10.1039/c4cc09772f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Incorporation of Pro7His and Met117Ala substitutions resulted in a completely regioselective and highly efficient α-2,6-sialyltransferase.
Collapse
Affiliation(s)
| | - Tibor Czabany
- Institute of Biotechnology and Biochemical Engineering
- Graz University of Technology
- 8010 Graz
- Austria
| | | | | | - Doris Ribitsch
- Austrian Centre of Industrial Biotechnology
- 8010 Graz
- Austria
| | - Helmut Schwab
- Institute of Molecular Biotechnology
- Graz University of Technology
- 8010 Graz
- Austria
| | - Karl Gruber
- Institute of Molecular Biosciences
- University of Graz
- 8010 Graz
- Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology
- 8010 Graz
- Austria
- Institute of Biotechnology and Biochemical Engineering
- Graz University of Technology
| |
Collapse
|
153
|
Chemoenzymatic synthesis of lacto-N-tetrasaccharide and sialyl lacto-N-tetrasaccharides. Carbohydr Res 2015; 401:5-10. [DOI: 10.1016/j.carres.2014.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/30/2023]
|
154
|
Abstract
The important roles played by human milk oligosaccharides (HMOS), the third major component of human milk, in the health of breast-fed infants have been increasingly recognized, as the structures of more than 100 different HMOS have now been elucidated. Despite the recognition of the various functions of HMOS as prebiotics, antiadhesive antimicrobials, and immunomodulators, the roles and the applications of individual HMOS species are less clear. This is mainly due to the limited accessibility to large amounts of individual HMOS in their pure forms. Current advances in the development of enzymatic, chemoenzymatic, whole-cell, and living-cell systems allow for the production of a growing number of HMOS in increasing amounts. This effort will greatly facilitate the elucidation of the important roles of HMOS and allow exploration into the applications of HMOS both as individual compounds and as mixtures of defined structures with desired functions. The structures, functions, and enzyme-catalyzed synthesis of HMOS are briefly surveyed to provide a general picture about the current progress on these aspects. Future efforts should be devoted to elucidating the structures of more complex HMOS, synthesizing more complex HMOS including those with branched structures, and developing HMOS-based or HMOS-inspired prebiotics, additives, and therapeutics.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|
155
|
Liang DM, Liu JH, Wu H, Wang BB, Zhu HJ, Qiao JJ. Glycosyltransferases: mechanisms and applications in natural product development. Chem Soc Rev 2015; 44:8350-74. [DOI: 10.1039/c5cs00600g] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation reactions mainly catalyzed by glycosyltransferases (Gts) occur almost everywhere in the biosphere, and always play crucial roles in vital processes.
Collapse
Affiliation(s)
- Dong-Mei Liang
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jia-Heng Liu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Hao Wu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Bin-Bin Wang
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Hong-Ji Zhu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jian-Jun Qiao
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
156
|
Rashidian M, Dozier JK, Distefano MD. Enzymatic labeling of proteins: techniques and approaches. Bioconjug Chem 2014; 24:1277-94. [PMID: 23837885 DOI: 10.1021/bc400102w] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Site-specific modification of proteins is a major challenge in modern chemical biology due to the large number of reactive functional groups typically present in polypeptides. Because of its importance in biology and medicine, the development of methods for site-specific modification of proteins is an area of intense research. Selective protein modification procedures have been useful for oriented protein immobilization, for studies of naturally occurring post-translational modifications, for creating antibody–drug conjugates, for the introduction of fluorophores and other small molecules on to proteins, for examining protein structure, folding, dynamics, and protein–protein interactions, and for the preparation of protein–polymer conjugates. One of the most important approaches for protein labeling is to incorporate bioorthogonal functionalities into proteins at specific sites via enzymatic reactions. The incorporated tags then enable reactions that are chemoselective, whose functional groups not only are inert in biological media, but also do not occur natively in proteins or other macromolecules. This review article summarizes the enzymatic strategies, which enable site-specific functionalization of proteins with a variety of different functional groups. The enzymes covered in this review include formylglycine generating enzyme, sialyltransferases, phosphopantetheinyltransferases, O-GlcNAc post-translational modification, sortagging, transglutaminase, farnesyltransferase, biotin ligase, lipoic acid ligase, and N-myristoyltransferase.
Collapse
|
157
|
Ding L, Zhao C, Qu J, Li Y, Sugiarto G, Yu H, Wang J, Chen X. A Photobacterium sp. α2-6-sialyltransferase (Psp2,6ST) mutant with an increased expression level and improved activities in sialylating Tn antigens. Carbohydr Res 2014; 408:127-33. [PMID: 25593075 DOI: 10.1016/j.carres.2014.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/11/2023]
Abstract
In order to improve the catalytic efficiency of recombinant Photobacterium sp. JT-ISH-224 α2-6-sialyltransferase Psp2,6ST(15-501)-His6 in sialylating α-GalNAc-containing acceptors for the synthesis of tumor-associated carbohydrate antigens sialyl Tn (STn), protein crystal structure-based mutagenesis studies were carried out. Among several mutants obtained by altering the residues close to the acceptor substrate binding pocket, mutant A366G was shown to improve the sialyltransferase activity of Psp2,6ST(15-501)-His6 toward α-GalNAc-containing acceptors by 21-115% without significantly affecting its sialylation activity to β-galactosides. Furthermore, the expression level was improved from 18-40 mg L(-1) for the wild-type enzyme to 72-110 mg L(-1) for the A366G mutant. In situ generation of CMP-sialic acid in a one-pot two-enzyme system was shown effective in overcoming the high donor hydrolysis of the enzyme. Mutant A366G performed better than the wild-type Psp2,6ST(15-501)-His6 for synthesizing Neu5Acα2-6GalNAcαOSer/Thr STn antigens.
Collapse
Affiliation(s)
- Li Ding
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhao
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; Department of Nutrition and Food Safety, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jingyao Qu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Go Sugiarto
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Junru Wang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
158
|
Huynh N, Li Y, Yu H, Huang S, Lau K, Chen X, Fisher AJ. Crystal structures of sialyltransferase from Photobacterium damselae. FEBS Lett 2014; 588:4720-9. [PMID: 25451227 DOI: 10.1016/j.febslet.2014.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 12/29/2022]
Abstract
Sialyltransferase structures fall into either GT-A or GT-B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N-terminal immunoglobulin (Ig)-like domain. Photobacterium damselae α2-6-sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2-6-linked sialosides. Here we report three crystal structures of this enzyme. Two structures with and without a donor substrate analog CMP-3F(a)Neu5Ac contain an immunoglobulin (Ig)-like domain and adopt the GT-B sialyltransferase fold. The binary structure reveals a non-productive pre-Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks the Ig-domain. Comparison of the three structures reveals small inherent flexibility between the two Rossmann-like domains of the GT-B fold.
Collapse
Affiliation(s)
- Nhung Huynh
- Cell Biology Graduate Program, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Shengshu Huang
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Kam Lau
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Andrew J Fisher
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
159
|
Ribitsch D, Zitzenbacher S, Augustin P, Schmölzer K, Czabany T, Luley-Goedl C, Thomann M, Jung C, Sobek H, Müller R, Nidetzky B, Schwab H. High-quality production of human α-2,6-sialyltransferase in Pichia pastoris requires control over N-terminal truncations by host-inherent protease activities. Microb Cell Fact 2014; 13:138. [PMID: 25365915 PMCID: PMC4172862 DOI: 10.1186/s12934-014-0138-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND α-2,6-sialyltransferase catalyzes the terminal step of complex N-glycan biosynthesis on human glycoproteins, attaching sialic acid to outermost galactosyl residues on otherwise fully assembled branched glycans. This "capping" of N-glycans is critical for therapeutic efficacy of pharmaceutical glycoproteins, making the degree of sialylation an important parameter of glycoprotein quality control. Expression of recombinant glycoproteins in mammalian cells usually delivers heterogeneous N-glycans, with a minor degree of sialylation. In-vitro chemo-enzymatic glycoengineering of the N-glycans provides an elegant solution to increase the degree of sialylation for analytical purposes but also possibly for modification of therapeutic proteins. RESULTS Human α-2,6-sialyltransferase (ST6Gal-I) was secretory expressed in P.pastoris KM71H. ST6Gal-I featuring complete deletion of both the N-terminal cytoplasmic tail and the transmembrane domain, and also partial truncation of the stem region up to residue 108 were expressed N-terminally fused to a His or FLAG-Tag. FLAG-tagged proteins proved much more resistant to proteolysis during production than the corresponding His-tagged proteins. Because volumetric transferase activity measured on small-molecule and native glycoprotein acceptor substrates did not correlate to ST6Gal-I in the supernatant, enzymes were purified and characterized in their action on non-sialylated protein-linked and released N-glycans, and the respective N-terminal sequences were determined by automated Edman degradation. Irrespective of deletion construct used (Δ27, Δ48, Δ62, Δ89), isolated proteins showed N-terminal processing to a highly similar degree, with prominent truncations at residue 108 - 114, whereby only Δ108ST6Gal-I retained activity. FLAG-tagged Δ108ST6Gal-I was therefore produced and obtained with a yield of 4.5 mg protein/L medium. The protein was isolated and shown by MS to be intact. Purified enzyme exhibited useful activity (0.18 U/mg) for sialylation of different substrates. CONCLUSIONS Functional expression of human ST6Gal-I as secretory protein in P.pastoris necessitates that N-terminal truncations promoted by host-inherent proteases be tightly controlled. N-terminal FLAG-Tag contributes extra stability to the N-terminal region as compared to N-terminal His-Tag. Proteolytic degradation proceeds up to residues 108 - 114 and of the resulting short-form variants, only Δ108ST6Gal-I seems to be active. FLAG-Δ108ST6Gal-I transfers sialic acids to monoclonal antibody substrate with sufficient yields, and because it is stably produced in P.pastoris, it is identified here as an interesting glycoengineering catalyst.
Collapse
|
160
|
Li X, Fang T, Boons G. Preparation of Well‐Defined Antibody–Drug Conjugates through Glycan Remodeling and Strain‐Promoted Azide–Alkyne Cycloadditions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402606] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiuru Li
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Tao Fang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
- Department of Chemistry, University of Georgia (USA)
| | - Geert‐Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
- Department of Chemistry, University of Georgia (USA)
| |
Collapse
|
161
|
Li X, Fang T, Boons GJ. Preparation of well-defined antibody-drug conjugates through glycan remodeling and strain-promoted azide-alkyne cycloadditions. Angew Chem Int Ed Engl 2014; 53:7179-82. [PMID: 24862406 DOI: 10.1002/anie.201402606] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Indexed: 11/08/2022]
Abstract
Antibody-drug conjugates hold considerable promise as anticancer agents, however, producing them remains a challenge and there is a need for mild, broadly applicable, site-specific conjugation methods that yield homogenous products. It was envisaged that enzymatic remodeling of the oligosaccharides of an antibody would enable the introduction of reactive groups that can be exploited for the site-specific attachment of cytotoxic drugs. This is based on the observation that glycosyltransferases often tolerate chemical modifications in their sugar nucleotide substrates, thus allowing the installation of reactive functionalities. An azide was incorporated because this functional group is virtually absent in biological systems and can be reacted by strain-promoted alkyne-azide cycloaddition. This method, which does not require genetic engineering, was used to produce an anti-CD22 antibody modified with doxorubicin to selectively target and kill lymphoma cells.
Collapse
Affiliation(s)
- Xiuru Li
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | | | | |
Collapse
|
162
|
Yu H, Lau K, Thon V, Autran CA, Jantscher-Krenn E, Xue M, Li Y, Sugiarto G, Qu J, Mu S, Ding L, Bode L, Chen X. Synthetic Disialyl Hexasaccharides Protect Neonatal Rats from Necrotizing Enterocolitis. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
163
|
Yu H, Lau K, Thon V, Autran CA, Jantscher-Krenn E, Xue M, Li Y, Sugiarto G, Qu J, Mu S, Ding L, Bode L, Chen X. Synthetic disialyl hexasaccharides protect neonatal rats from necrotizing enterocolitis. Angew Chem Int Ed Engl 2014; 53:6687-91. [PMID: 24848971 DOI: 10.1002/anie.201403588] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 12/29/2022]
Abstract
Two novel synthetic α2-6-linked disialyl hexasaccharides, disialyllacto-N-neotetraose (DSLNnT) and α2-6-linked disialyllacto-N-tetraose (DS'LNT), were readily obtained by highly efficient one-pot multienzyme (OPME) reactions. The sequential OPME systems described herein allowed the use of an inexpensive disaccharide and simple monosaccharides to synthesize the desired complex oligosaccharides with high efficiency and selectivity. DSLNnT and DS'LNT were shown to protect neonatal rats from necrotizing enterocolitis (NEC) and are good therapeutic candidates for preclinical experiments and clinical application in treating NEC in preterm infants.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 (USA)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Preidl JJ, Gnanapragassam VS, Lisurek M, Saupe J, Horstkorte R, Rademann J. Fluoreszente Mimetika von CMP-Neu5Ac sind hochaffine, zellgängige Polarisationssonden eukaryotischer und bakterieller Sialyltransferasen und inhibieren die zelluläre Sialylierung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
165
|
Preidl JJ, Gnanapragassam VS, Lisurek M, Saupe J, Horstkorte R, Rademann J. Fluorescent mimetics of CMP-Neu5Ac are highly potent, cell-permeable polarization probes of eukaryotic and bacterial sialyltransferases and inhibit cellular sialylation. Angew Chem Int Ed Engl 2014; 53:5700-5. [PMID: 24737687 DOI: 10.1002/anie.201400394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Indexed: 12/23/2022]
Abstract
Oligosaccharides of the glycolipids and glycoproteins at the outer membranes of human cells carry terminal neuraminic acids, which are responsible for recognition events and adhesion of cells, bacteria, and virus particles. The synthesis of neuraminic acid containing glycosides is accomplished by intracellular sialyl transferases. Therefore, the chemical manipulation of cellular sialylation could be very important to interfere with cancer development, inflammations, and infections. The development and applications of the first nanomolar fluorescent inhibitors of sialyl transferases are described herein. The obtained carbohydrate-nucleotide mimetics were found to bind all four commercially available and tested eukaryotic and bacterial sialyl transferases in a fluorescence polarization assay. Moreover, it was observed that the anionic mimetics intruded rapidly and efficiently into cells in vesicles and translocated to cellular organelles surrounding the nucleus of CHO cells. The new compounds inhibit cellular sialylation in two cell lines and open new perspectives for investigations of cellular sialylation.
Collapse
Affiliation(s)
- Johannes J Preidl
- Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin (Germany) http://www.bcp.fu-berlin.de/ag-rademann; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin (Germany)
| | | | | | | | | | | |
Collapse
|
166
|
Meng X, Yao W, Cheng J, Zhang X, Jin L, Yu H, Chen X, Wang F, Cao H. Regioselective chemoenzymatic synthesis of ganglioside disialyl tetrasaccharide epitopes. J Am Chem Soc 2014; 136:5205-8. [PMID: 24649890 PMCID: PMC4210053 DOI: 10.1021/ja5000609] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 02/01/2023]
Abstract
A novel chemoenzymatic approach for the synthesis of disialyl tetrasaccharide epitopes found as the terminal oligosaccharides of GD1α, GT1aα, and GQ1bα is described. It relies on chemical manipulation of enzymatically generated trisaccharides as conformationally constrained acceptors for regioselective enzymatic α2-6-sialylation. This strategy provides a new route for easy access to disialyl tetrasaccharide epitopes and their derivatives.
Collapse
Affiliation(s)
- Xin Meng
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Wenlong Yao
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Jiansong Cheng
- College
of Pharmacy, Nankai University, Tianjin 300071, China
| | - Xu Zhang
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Lan Jin
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Hai Yu
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Xi Chen
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Fengshan Wang
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
- Key
Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan 250012, China
| | - Hongzhi Cao
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| |
Collapse
|
167
|
Chemoenzymatic synthesis of sialosides containing C7-modified sialic acids and their application in sialidase substrate specificity studies. Carbohydr Res 2014; 389:100-11. [PMID: 24680514 DOI: 10.1016/j.carres.2014.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/20/2014] [Indexed: 01/12/2023]
Abstract
Modifications at the glycerol side chain of sialic acid in sialosides modulate their recognition by sialic acid-binding proteins and sialidases. However, limited work has been focused on the synthesis and functional studies of sialosides with C7-modified sialic acids. Here we report chemical synthesis of C4-modified ManNAc and mannose and their application as sialic acid precursors in a highly efficient one-pot three-enzyme system for chemoenzymatic synthesis of α2-3- and α2-6-linked sialyl para-nitrophenyl galactosides in which the C7-hydroxyl group in sialic acid (N-acetylneuraminic acid, Neu5Ac, or 2-keto-3-deoxynonulosonic acid, Kdn) was systematically substituted by -F, -OMe, -H, and -N3 groups. Substrate specificity study of bacterial and human sialidases using the obtained sialoside library containing C7-modified sialic acids showed that sialosides containing C7-deoxy Neu5Ac were selective substrates for all bacterial sialidases tested but not for human NEU2. The information obtained from sialidase substrate specificity can be used to guide the design of new inhibitors that are selective against bacterial sialidases.
Collapse
|
168
|
Amon R, Reuven EM, Leviatan Ben-Arye S, Padler-Karavani V. Glycans in immune recognition and response. Carbohydr Res 2014; 389:115-22. [PMID: 24680512 DOI: 10.1016/j.carres.2014.02.004] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 11/16/2022]
Abstract
Glycans at the forefront of cells facilitate immune recognition processes. Cancer cells commonly present altered cell surface glycosylation, especially manifested in the expression of sialic acid at the termini of glycolipids and glycoproteins. Although tumor-associated carbohydrate antigens (TACAs) result in expression of altered-self, most such carbohydrates do not elicit strong humoral responses. Various strategies had been devised to elicit increased immunogenicity of such TACA aiming for potent immunotherapeutic antibodies or cancer vaccines. However some carbohydrates are immunogenic in humans and hold potential for novel glycotherapies. N-Glycolylneuraminic acid (Neu5Gc) is a foreign immunogenic sugar in humans originating from the diet (e.g., red meat) and subsequently expressed on the cell surface, especially accumulating on carcinoma. Consequently, the human immune system detects this non-self carbohydrate generating a broad anti-Neu5Gc antibody response. The co-existence of Neu5Gc/anti-Neu5Gc within humans spurs chronic inflammation mediated disease, including cancer. Concurrently, anti-Neu5Gc antibodies hold potential for novel targeted therapy. αGal is another foreign immunogenic carbohydrate antigen in humans and all humans have circulating anti-Gal antibodies. This review aims to describe the immunogenicity of Neu5Gc and its implications for human diseases, highlighting differences and similarities with αGal and its potential for novel targeted theranostics.
Collapse
Affiliation(s)
- Ron Amon
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eliran Moshe Reuven
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
169
|
Guo Y, Jers C, Meyer AS, Arnous A, Li H, Kirpekar F, Mikkelsen JD. A Pasteurella multocida sialyltransferase displaying dual trans-sialidase activities for production of 3′-sialyl and 6′-sialyl glycans. J Biotechnol 2014; 170:60-7. [DOI: 10.1016/j.jbiotec.2013.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 11/26/2022]
|
170
|
Nycholat CM, Peng W, McBride R, Antonopoulos A, de Vries RP, Polonskaya Z, Finn MG, Dell A, Haslam SM, Paulson JC. Synthesis of biologically active N- and O-linked glycans with multisialylated poly-N-acetyllactosamine extensions using P. damsela α2-6 sialyltransferase. J Am Chem Soc 2013; 135:18280-18283. [PMID: 24256304 PMCID: PMC3901641 DOI: 10.1021/ja409781c] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sialosides on N- and O-linked glycoproteins play a fundamental role in many biological processes, and synthetic glycan probes have proven to be valuable tools for elucidating these functions. Though sialic acids are typically found α2-3- or α2-6-linked to a terminal nonreducing end galactose, poly-LacNAc extended core-3 O-linked glycans isolated from rat salivary glands and human colonic mucins have been reported to contain multiple internal Neu5Acα2-6Gal epitopes. Here, we have developed an efficient approach for the synthesis of a library of N- and O-linked glycans with multisialylated poly-LacNAc extensions, including naturally occurring multisialylated core-3 O-linked glycans. We have found that a recombinant α2-6 sialyltransferase from Photobacterium damsela (Pd2,6ST) exhibits unique regioselectivity and is able to sialylate internal galactose residues in poly-LacNAc extended glycans which was confirmed by MS/MS analysis. Using a glycan microarray displaying this library, we found that Neu5Acα2-6Gal specific influenza virus hemagglutinins, siglecs, and plant lectins are largely unaffected by adjacent internal sialylation, and in several cases the internal sialic acids are recognized as ligands. Polyclonal IgY antibodies specific for internal sialoside epitopes were elicited in inoculated chickens.
Collapse
Affiliation(s)
- Corwin M. Nycholat
- Department of Cell and Molecular Biology, and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenjie Peng
- Department of Cell and Molecular Biology, and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Cell and Molecular Biology, and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Robert P. de Vries
- Department of Cell and Molecular Biology, and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zinaida Polonskaya
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - M. G. Finn
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - James C. Paulson
- Department of Cell and Molecular Biology, and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
171
|
Adak AK, Yu CC, Liang CF, Lin CC. Synthesis of sialic acid-containing saccharides. Curr Opin Chem Biol 2013; 17:1030-8. [PMID: 24182749 DOI: 10.1016/j.cbpa.2013.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/25/2022]
Abstract
Sialic acids are a diverse family of negatively charged monosaccharides with a shared nine-carbon carboxylated backbone, and they often serve as the terminal positions of cell surface glycoproteins and glycolipids. Sialic acids play essential roles in mediating or modulating numerous pathological, biological, and immunological recognition events. Advances in synthesis have provided chemically well-defined and structurally homogeneous sialic acid-containing carbohydrates that are crucial for studying glycobiology. This review highlights recent innovations in the chemical and chemoenzymatic synthesis of difficult α-sialosides, with a particular focus on methods developed for α-selective sialylation in the synthesis of O-linked and S-linked oligosialic acids.
Collapse
Affiliation(s)
- Avijit K Adak
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | |
Collapse
|
172
|
Choi YH, Kim JH, Park JH, Lee N, Kim DH, Jang KS, Park ILH, Kim BG. Protein engineering of α2,3/2,6-sialyltransferase to improve the yield and productivity of in vitro sialyllactose synthesis. Glycobiology 2013; 24:159-69. [DOI: 10.1093/glycob/cwt092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
173
|
Deng L, Chen X, Varki A. Exploration of sialic acid diversity and biology using sialoglycan microarrays. Biopolymers 2013; 99:650-65. [PMID: 23765393 PMCID: PMC7161822 DOI: 10.1002/bip.22314] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 06/04/2013] [Indexed: 12/13/2022]
Abstract
Sialic acids (Sias) are a group of α-keto acids with a nine-carbon backbone, which display many types of modifications in nature. The diversity of natural Sia presentations is magnified by a variety of glycosidic linkages to underlying glycans, the sequences and classes of such glycans, as well as the spatial organization of Sias with their surroundings. This diversity is closely linked to the numerous and varied biological functions of Sias. Relatively large libraries of natural and unnatural Sias have recently been chemically/chemoenzymatically synthesized and/or isolated from natural sources. The resulting sialoglycan microarrays have proved to be valuable tools for the exploration of diversity and biology of Sias. Here we provide an overview of Sia diversity in nature, the approaches used to generate sialoglycan microarrays, and the achievements and challenges arising.
Collapse
Affiliation(s)
- Lingquan Deng
- Departments of Medicine and Cellular & Molecular MedicineGlycobiology Research and Training Center, University of CaliforniaSan Diego, La JollaCA92093‐0687
| | - Xi Chen
- Department of ChemistryUniversity of CaliforniaDavisCA95616
| | - Ajit Varki
- Departments of Medicine and Cellular & Molecular MedicineGlycobiology Research and Training Center, University of CaliforniaSan Diego, La JollaCA92093‐0687
| |
Collapse
|
174
|
Benito-Alifonso D, Jones RA, Tran AT, Woodward H, Smith N, Galan MC. Synthesis of mucin-type O-glycan probes as aminopropyl glycosides. Beilstein J Org Chem 2013; 9:1867-72. [PMID: 24062854 PMCID: PMC3778329 DOI: 10.3762/bjoc.9.218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/16/2013] [Indexed: 01/18/2023] Open
Abstract
The chemical synthesis of a series of mucin-type oligosaccharide fragments 1-7 containing an α-linked aminopropyl spacer ready for glycoarray attachment is reported. A highly convergent and stereoselective strategy that employs two different orthogonal protected galactosamine building blocks was used to access all of the targets. A tandem deprotection sequence, that did not require chromatography-based purification between steps, was employed to globally unmask all protecting groups and all final targets were isolated in good to excellent yields.
Collapse
Affiliation(s)
- David Benito-Alifonso
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK Fax: (0)1179298611, Tel: (0)1179287654
| | - Rachel A Jones
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK Fax: (0)1179298611, Tel: (0)1179287654
| | - Anh-Tuan Tran
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK Fax: (0)1179298611, Tel: (0)1179287654
| | - Hannah Woodward
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK Fax: (0)1179298611, Tel: (0)1179287654
| | - Nichola Smith
- Novartis Institute for Biomolecular Research, Novartis Horsham Research Centre, Horsham RH12 5AB, UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK Fax: (0)1179298611, Tel: (0)1179287654
| |
Collapse
|
175
|
Yi D, He N, Kickstein M, Metzner J, Weiß M, Berry A, Fessner W. Engineering of a Cytidine 5′‐Monophosphate‐Sialic Acid Synthetase for Improved Tolerance to Functional Sialic Acids. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dong Yi
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany, Fax: (+49)‐6151‐166636
| | - Ning He
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany, Fax: (+49)‐6151‐166636
| | - Michael Kickstein
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany, Fax: (+49)‐6151‐166636
| | - Julia Metzner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany, Fax: (+49)‐6151‐166636
| | - Martin Weiß
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany, Fax: (+49)‐6151‐166636
| | - Alan Berry
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9 JT, U.K
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany, Fax: (+49)‐6151‐166636
| |
Collapse
|
176
|
Schmölzer K, Ribitsch D, Czabany T, Luley-Goedl C, Kokot D, Lyskowski A, Zitzenbacher S, Schwab H, Nidetzky B. Characterization of a multifunctional α2,3-sialyltransferase from Pasteurella dagmatis. Glycobiology 2013; 23:1293-304. [DOI: 10.1093/glycob/cwt066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
177
|
Pfrengle F, Macauley MS, Kawasaki N, Paulson JC. Copresentation of antigen and ligands of Siglec-G induces B cell tolerance independent of CD22. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1724-31. [PMID: 23836061 PMCID: PMC3735655 DOI: 10.4049/jimmunol.1300921] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differentiation of self from nonself is indispensable for maintaining B cell tolerance in peripheral tissues. CD22 and Siglec-G (sialic acid-binding Ig-like lectin G) are two inhibitory coreceptors of the BCR that are implicated in maintenance of tolerance to self Ags. Enforced ligation of CD22 and the BCR by a nanoparticle displaying both Ag and CD22 ligands induces a tolerogenic circuit resulting in apoptosis of the Ag-reactive B cell. Whether Siglec-G also has this property has not been investigated in large part owing to the lack of a selective Siglec-G ligand. In this article, we report the development of a selective high-affinity ligand for Siglec-G and its application as a chemical tool to investigate the tolerogenic potential of Siglec-G. We find that liposomal nanoparticles decorated with Ag and Siglec-G ligand inhibit BCR signaling in both B1 and B2 B cells compared with liposomes displaying Ag alone. Not only is inhibition of B cell activation observed by ligating the BCR with Siglec-G, but robust tolerance toward T-independent and T-dependent Ags is also induced in mice. The ability of Siglec-G to inhibit B cell activation equally in both B1 and B2 subsets is consistent with our observation that Siglec-G is expressed at a relatively constant level throughout numerous B cell subsets. These results suggest that Siglec-G may contribute to maintenance of B cell tolerance toward self Ags in various B cell compartments.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- B-Lymphocyte Subsets/immunology
- Calcium Signaling
- Dendritic Cells/immunology
- Gene Expression Regulation
- Germinal Center/cytology
- Immune Tolerance/immunology
- Immunologic Memory
- Lectins/biosynthesis
- Lectins/genetics
- Lectins/immunology
- Ligands
- Liposomes
- Lymphopoiesis
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Organ Specificity
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/immunology
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Sialic Acid Binding Ig-like Lectin 2/immunology
- Sialic Acid Binding Immunoglobulin-like Lectins
Collapse
Affiliation(s)
- Fabian Pfrengle
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 (USA)
| | - Matthew S. Macauley
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 (USA)
| | - Norihito Kawasaki
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 (USA)
| | - James C. Paulson
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 (USA)
| |
Collapse
|
178
|
Kikkeri R, Padler-Karavani V, Diaz S, Verhagen A, Yu H, Cao H, Langereis MA, De Groot RJ, Chen X, Varki A. Quantum dot nanometal surface energy transfer based biosensing of sialic acid compositions and linkages in biological samples. Anal Chem 2013; 85:3864-70. [PMID: 23489180 PMCID: PMC5996995 DOI: 10.1021/ac400320n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current methods for analyzing sialic acid diversity in modifications and linkages require multistep processing, derivatization, and chromatographic analyses. We here report a single-step optical method for identification and quantification of different compositions of sialoglycans on glycoproteins and in serum. This was achieved by measuring and quantifying nanometal surface energy transfer (NSET) signals between quantum dots and gold nanoparticles bound to specific sialic acid binding proteins (SBPs) and sialic acid moieties, respectively. The biosensing process is based on the NSET turn-on by external sialic acid species that compete for binding to the SBPs. Selectivity of the biosensor toward sialoglycans can be designed to detect the total amount, glycosylation linkages (α2-6 vs α2-3), and modifications (9-O-acetyl and N-glycolyl groups) in the samples. This nanobiosensor is a prototype expected to achieve limits of the detection down to the micromolar range for high-throughput quantification and analysis of different compositions of sialoglycans present in biological or biomedical samples.
Collapse
Affiliation(s)
- Raghavendra Kikkeri
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States
| | - Vered Padler-Karavani
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States
| | - Sandra Diaz
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States
| | - Andrea Verhagen
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Hongzhi Cao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Martijn A. Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Raoul J. De Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
179
|
Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells. Nat Immunol 2013; 14:514-22. [PMID: 23563688 PMCID: PMC3631452 DOI: 10.1038/ni.2569] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 02/12/2013] [Indexed: 12/14/2022]
Abstract
We identified B cells as a major source for rapid, innate-like interleukin 17 (IL-17) production in vivo in response to Trypanosoma cruzi infection. IL-17+ B cells exhibited a plasmablast phenotype, outnumbered TH17 cells and were required for optimal response to this pathogen. Using both murine and human primary B cells, we demonstrate that exposure to parasite-derived trans-sialidase in vitro was sufficient to trigger modification of the cell surface mucin, CD45, leading to Btk-dependent signaling and IL-17A or IL-17F production via an ROR-γt and AHR-independent transcriptional program. Our combined data suggest that generation of IL-17+ B cells may be an unappreciated feature of innate immune responses required for pathogen control or IL-17-mediated autoimmunity.
Collapse
|
180
|
One-pot multi-enzyme (OPME) chemoenzymatic synthesis of sialyl-Tn-MUC1 and sialyl-T-MUC1 glycopeptides containing natural or non-natural sialic acid. Bioorg Med Chem 2013; 21:4778-85. [PMID: 23535562 DOI: 10.1016/j.bmc.2013.02.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/17/2013] [Accepted: 02/26/2013] [Indexed: 02/01/2023]
Abstract
A series of STn-MUC1 and ST-MUC1 glycopeptides containing naturally occurring and non-natural sialic acids have been chemoenzymatically synthesized from Tn-MUC1 glycopeptide using one-pot multienzyme (OPME) approaches. In situ generation of the sialyltransferase donor cytidine 5'-monophosphate-sialic acid (CMP-Sia) using a CMP-sialic acid synthetase in the presence of an extra amount of cytidine 5'-triphosphate (CTP) and removal of CMP from the reaction mixture by flash C18 cartridge purification allow the complete consumption of Tn-MUC1 glycopeptide for quantitative synthesis of STn-MUC1. A Campylobacter jejuni β1-3GalT (CjCgtBΔ30-His6) mutant has been found to catalyze the transfer of one or more galactose residues to Tn-MUC1 for the synthesis of T-MUC1 and galactosylated T-MUC1. Sialylation of T-MUC1 using Pasteurella multocida α2-3-sialyltransferase 3 (PmST3) with Neisseria meningitidis CMP-sialic acid synthetase (NmCSS) and Escherichia coli sialic acid aldolase in one pot produced ST-MUC1 efficiently. These glycopeptides are potential cancer vaccine candidates.
Collapse
|
181
|
Yan J, Chen X, Wang F, Cao H. Chemoenzymatic synthesis of mono- and di-fluorinated Thomsen-Friedenreich (T) antigens and their sialylated derivatives. Org Biomol Chem 2013; 11:842-8. [PMID: 23241945 PMCID: PMC3616747 DOI: 10.1039/c2ob26989a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorinated Thomsen-Friedenreich (T) antigens were synthesized efficiently from chemically produced fluorinated monosaccharides using a highly efficient one-pot two-enzyme chemoenzymatic approach containing a galactokinase and a D-galactosyl-β1-3-N-acetyl-D-hexosamine phosphorylase. These fluorinated T-antigens were further sialylated to form fluorinated ST-antigens using a one-pot two-enzyme system containing a CMP-sialic acid synthetase and an α-2-3-sialyltransferase.
Collapse
Affiliation(s)
- Jun Yan
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China. Fax: +86 531 88363002; Tel: + 86 531 88382235; Fax: +86 531 88382548; Tel: + 86 53188382589
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA. Fax: +1 530 7528995; Tel: + 1 530 7546037
| | - Fengshan Wang
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China. Fax: +86 531 88363002; Tel: + 86 531 88382235; Fax: +86 531 88382548; Tel: + 86 53188382589
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan 250012,China
| | - Hongzhi Cao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China. Fax: +86 531 88363002; Tel: + 86 531 88382235; Fax: +86 531 88382548; Tel: + 86 53188382589
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
182
|
Bateman LA, Zaro BW, Chuh KN, Pratt MR. N-Propargyloxycarbamate monosaccharides as metabolic chemical reporters of carbohydrate salvage pathways and protein glycosylation. Chem Commun (Camb) 2012; 49:4328-30. [PMID: 23235740 DOI: 10.1039/c2cc37963e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic chemical reporters of glycosylation allow for the visualization and identification of a variety of glycoconjugates by taking advantage of the promiscuity of carbohydrate metabolism. Here we describe the synthesis and characterization of metabolic chemical reporters bearing an N-propargyloxycarbamate (Poc) group that creates discrimination between glycosylation pathways.
Collapse
Affiliation(s)
- Leslie A Bateman
- Department of Chemistry, University of Southern California, Los Angeles, USA
| | | | | | | |
Collapse
|
183
|
Nycholat CM, Rademacher C, Kawasaki N, Paulson JC. In silico-aided design of a glycan ligand of sialoadhesin for in vivo targeting of macrophages. J Am Chem Soc 2012; 134:15696-9. [PMID: 22967315 DOI: 10.1021/ja307501e] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-specific delivery of therapeutic agents using ligand targeting is gaining interest because of its potential for increased efficacy and reduced side effects. The challenge is to develop a suitable ligand for a cell-surface receptor that is selectively expressed on the desired cell. Sialoadhesin (Sn, Siglec-1, CD169), a sialic acid-binding immunoglobulin-like lectin (Siglec) expressed on subsets of resident and inflammatory macrophages, is an attractive target for the development of a ligand-targeted delivery system. Here we report the development of a high-affinity and selective ligand for Sn that is an analogue of the natural ligand and is capable of targeting liposomal nanoparticles to Sn-expressing cells in vivo. An efficient in silico screen of a library of ∼8400 carboxylic acids was the key to identifying novel 9-N-acyl-substituted N-acetylneuramic acid (Neu5Ac) substituents as potential lead compounds. A small panel of targets were selected from the screen and synthesized to evaluate their affinities and selectivities. The most potent of these Sn ligands, 9-N-(4H-thieno[3,2-c]chromene-2-carbamoyl)-Neu5Acα2-3Galβ1-4GlcNAc ((TCC)Neu5Ac), was conjugated to lipids for display on a liposomal nanoparticle for evaluation of targeted delivery to cells. The (TCC)Neu5Ac liposomes were found to target liposomes selectively to cells expressing either murine or human Sn in vitro, and when administered to mice, they exhibited in vivo targeting to Sn-positive macrophages.
Collapse
Affiliation(s)
- Corwin M Nycholat
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
184
|
Loss-of-function mutation in bi-functional marine bacterial sialyltransferase. Biosci Biotechnol Biochem 2012; 76:1639-44. [PMID: 22972324 DOI: 10.1271/bbb.120133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An α2,3-sialyltransferase produced by Photobacterium phosphoreum JT-ISH-467 is a bi-functional enzyme showing both α2,3-sialyltransferase and α2,3-linkage specific sialidase activity. To date, the crystal structures of several sialyltransferases have been solved, but the roles of amino acid residues around the catalytic site have not been completely clarified. Hence we performed a mutational study using α2,3-sialyltransferase cloned from P. phosphoreum JT-ISH-467 as a model enzyme to study the role of the amino acid residues around the substrate-binding site. It was found that a mutation of the glutamic acid at position 342 in the sialyltransferase resulted in a loss of sialidase activity, although the mutant showed no decrease in sialyltransferase activity. Based on this result, it is strongly expected that the Glu342 of the enzyme is an important amino acid residue for sialidase activity.
Collapse
|
185
|
Yu H, Lau K, Li Y, Sugiarto G, Chen X. One-pot multienzyme synthesis of Lewis x and sialyl Lewis x antigens. ACTA ACUST UNITED AC 2012; 4:233-247. [PMID: 25000293 DOI: 10.1002/9780470559277.ch110277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
L-Fucose has been found abundantly in human milk oligosaccharides, bacterial lipopolysaccharides, glycolipids, and many N- and O-linked glycans produced by mammalian cells. Fucose-containing carbohydrates have important biological functions. Alterations in the expression of fucosylated oligosaccharides have been observed in several pathological processes such as cancer and atherosclerosis. Chemical formation of fucosidic bonds is challenging due to its acid lability. Enzymatic construction of fucosidic bonds by fucosyltransferases is highly efficient and selective but requires the expensive sugar nucleotide donor guanosine 5'- diphosphate-L-fucose (GDP-Fuc). Here, we describe a protocol for applying a one-pot three-enzyme system in synthesizing structurally defined fucose-containing oligosaccharides from free L-fucose. In this system, GDP-Fuc is generated from L-fucose, adenosine 5'-triphosphate (ATP), and guanosine 5'-triphosphate (GTP) by a bifunctional L-fucokinase/GDP-fucose pyrophosphorylase (FKP). An inorganic pyrophosphatase (PpA) is used to degrade the by-product pyrophosphate (PPi) to drive the reaction towards the formation of GDP-Fuc. In situ generated GDP-Fuc is then used by a suitable fucosyltransferase for the formation of fucosides. The three-enzyme reactions are carried out in one pot without the need for high cost sugar nucleotide or isolation of intermediates. The time for the synthesis is 4-24 hours. Purification and characterization of products can be completed in 2-3 days.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Kam Lau
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Yanhong Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Go Sugiarto
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
186
|
Khedri Z, Li Y, Cao H, Qu J, Yu H, Muthana MM, Chen X. Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2. Org Biomol Chem 2012; 10:6112-20. [PMID: 22641268 PMCID: PMC11302589 DOI: 10.1039/c2ob25335f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sialidases or neuraminidases catalyze the hydrolysis of terminal sialic acid residues from sialyl oligosaccharides and glycoconjugates. Despite successes in developing potent inhibitors specifically against influenza virus neuraminidases, the progress in designing and synthesizing selective inhibitors against bacterial and human sialidases has been slow. Guided by sialidase substrate specificity studies and sialidase crystal structural analysis, a number of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA or Neu5Ac2en) analogues with modifications at C9 or at both C5 and C9 were synthesized. Inhibition studies of various bacterial sialidases and human cytosolic sialidase NEU2 revealed that Neu5Gc9N(3)2en and Neu5AcN(3)9N(3)2en are selective inhibitors against V. cholerae sialidase and human NEU2, respectively.
Collapse
Affiliation(s)
| | | | | | - Jingyao Qu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Musleh M. Muthana
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
187
|
Ban L, Pettit N, Li L, Stuparu AD, Cai L, Chen W, Guan W, Han W, Wang PG, Mrksich M. Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry. Nat Chem Biol 2012; 8:769-73. [PMID: 22820418 PMCID: PMC3471075 DOI: 10.1038/nchembio.1022] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 06/08/2012] [Indexed: 01/23/2023]
Abstract
Glycosyltransferases (GTs) catalyze the reaction between an activated sugar donor and an acceptor to form a new glycosidic linkage. GTs are responsible for the assembly of oligosaccharides in vivo and are also important for the in vitro synthesis of these biomolecules. However, the functional identification and characterization of new GTs are both difficult and tedious. This paper describes an approach that combines arrays of reactions on an immobilized array of acceptors with analysis by mass spectrometry to screen putative GTs. A total of 14,280 combinations of GT, acceptor and donor in four buffer conditions were screened and led to the identification and characterization of four new GTs. This work is significant because it provides a label-free method for the rapid functional annotation of putative enzymes.
Collapse
Affiliation(s)
- Lan Ban
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Sugiarto G, Lau K, Qu J, Li Y, Lim S, Mu S, Ames JB, Fisher AJ, Chen X. A sialyltransferase mutant with decreased donor hydrolysis and reduced sialidase activities for directly sialylating LewisX. ACS Chem Biol 2012; 7:1232-40. [PMID: 22583967 DOI: 10.1021/cb300125k] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glycosyltransferases are important catalysts for enzymatic and chemoenzymatic synthesis of complex carbohydrates and glycoconjugates. The glycosylation efficiencies of wild-type glycosyltransferases vary considerably when different acceptor substrates are used. Using a multifunctional Pasteurella multocida sialyltransferase 1 (PmST1) as an example, we show here that the sugar nucleotide donor hydrolysis activity of glycosyltransferases contributes significantly to the low yield of glycosylation when a poor acceptor substrate is used. With a protein crystal structure-based rational design, we generated a single mutant (PmST1 M144D) with decreased donor hydrolysis activity without significantly affecting its α2-3-sialylation activity when a poor fucose-containing acceptor substrate was used. The single mutant also has a drastically decreased α2-3-sialidase activity. X-ray and NMR structural studies revealed that unlike the wild-type PmST1, which changes to a closed conformation once a donor binds, the M144D mutant structure adopts an open conformation even in the presence of the donor substrate. The PmST1 M144D mutant with decreased donor hydrolysis and reduced sialidase activity has been used as a powerful catalyst for efficient chemoenzymatic synthesis of complex sialyl Lewis(x) antigens containing different sialic acid forms. This work sheds new light on the effect of donor hydrolysis activity of glycosyltransferases on glycosyltransferase-catalyzed reactions and provides a novel strategy to improve glycosyltransferase substrate promiscuity by decreasing its donor hydrolysis activity.
Collapse
Affiliation(s)
- Go Sugiarto
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Kam Lau
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Jingyao Qu
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Yanhong Li
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Sunghyuk Lim
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Shengmao Mu
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - James B. Ames
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Andrew J. Fisher
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Xi Chen
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| |
Collapse
|
189
|
Nagashima I, Mine T, Yamamoto T, Shimizu H. Efficiency of organic solvents on the ability of α2,3-sialyltransferase from Photobacterium sp. JT-ISH-224 to control a hydrolysis side reaction. Carbohydr Res 2012; 358:31-6. [PMID: 22804915 DOI: 10.1016/j.carres.2012.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 11/30/2022]
Abstract
Enzymatic synthesis of oligosaccharides using specific sialyltransferases enables single-step glycosylation with high positional and anomeric structural selectivity. The α2,3-sialyltransferase cloned from the marine bacterium Photobacterium sp. JT-ISH-224 has unique and broad acceptor specificity, but this enzyme possesses not only sialyltransferase activity but also sialidase activity. To synthesize sialoside derivative effectively, only sialyltransferase activity is required. We report here that addition of organic solvents was effective to control the sialidase activity and a resulting product was not hydrolyzed. The enzyme was even active in the presence of acetonitrile, ethanol, methanol, or acetone. To determine the suitable concentrations of these organic solvents, only sialyltransferase activity could be allowed, and as a result, the stable synthesis of sialoside could be achieved.
Collapse
Affiliation(s)
- Izuru Nagashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, Japan
| | | | | | | |
Collapse
|
190
|
Cánepa GE, Mesías AC, Yu H, Chen X, Buscaglia CA. Structural features affecting trafficking, processing, and secretion of Trypanosoma cruzi mucins. J Biol Chem 2012; 287:26365-76. [PMID: 22707724 DOI: 10.1074/jbc.m112.354696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Trypanosoma cruzi is wrapped by a dense coat of mucin-type molecules encoded by complex gene families termed TcSMUG and TcMUC, which are expressed in the insect- and mammal-dwelling forms of the parasite, respectively. Here, we dissect the contribution of distinct post-translational modifications on the trafficking of these glycoconjugates. In vivo tracing and characterization of tagged-variants expressed by transfected epimastigotes indicate that although the N-terminal signal peptide is responsible for targeting TcSMUG products to the endoplasmic reticulum (ER), the glycosyl phosphatidylinositol (GPI)-anchor likely functions as a forward transport signal for their timely progression along the secretory pathway. GPI-minus variants accumulate in the ER, with only a minor fraction being ultimately released to the medium as anchorless products. Secreted products, but not ER-accumulated ones, display several diagnostic features of mature mucin-type molecules including extensive O-type glycosylation, Galf-based epitopes recognized by monoclonal antibodies, and terminal Galp residues that become readily sialylated upon addition of parasite trans-sialidases. Processing of N-glycosylation site(s) is dispensable for the overall TcSMUG mucin-type maturation and secretion. Despite undergoing different O-glycosylation elaboration, TcMUC reporters yielded quite similar results, thus indicating that (i) molecular trafficking signals are structurally and functionally conserved between mucin families, and (ii) TcMUC and TcSMUG products are recognized and processed by a distinct repertoire of stage-specific glycosyltransferases. Thus, using the fidelity of a homologous expression system, we have defined some biosynthetic aspects of T. cruzi mucins, key molecules involved in parasite protection and virulence.
Collapse
Affiliation(s)
- Gaspar E Cánepa
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde," Av. 25 de Mayo y Francia, Campus UNSAM, San Martín 1650, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
191
|
Padler-Karavani V, Song X, Yu H, Hurtado-Ziola N, Huang S, Muthana S, Chokhawala HA, Cheng J, Verhagen A, Langereis MA, Kleene R, Schachner M, de Groot RJ, Lasanajak Y, Matsuda H, Schwab R, Chen X, Smith DF, Cummings RD, Varki A. Cross-comparison of protein recognition of sialic acid diversity on two novel sialoglycan microarrays. J Biol Chem 2012; 287:22593-608. [PMID: 22549775 DOI: 10.1074/jbc.m112.359323] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA and protein arrays are commonly accepted as powerful exploratory tools in research. This has mainly been achieved by the establishment of proper guidelines for quality control, allowing cross-comparison between different array platforms. As a natural extension, glycan microarrays were subsequently developed, and recent advances using such arrays have greatly enhanced our understanding of protein-glycan recognition in nature. However, although it is assumed that biologically significant protein-glycan binding is robustly detected by glycan microarrays, there are wide variations in the methods used to produce, present, couple, and detect glycans, and systematic cross-comparisons are lacking. We address these issues by comparing two arrays that together represent the marked diversity of sialic acid modifications, linkages, and underlying glycans in nature, including some identical motifs. We compare and contrast binding interactions with various known and novel plant, vertebrate, and viral sialic acid-recognizing proteins and present a technical advance for assessing specificity using mild periodate oxidation of the sialic acid chain. These data demonstrate both the diversity of sialic acids and the analytical power of glycan arrays, showing that different presentations in different formats provide useful and complementary interpretations of glycan-binding protein specificity. They also highlight important challenges and questions for the future of glycan array technology and suggest that glycan arrays with similar glycan structures cannot be simply assumed to give similar results.
Collapse
Affiliation(s)
- Vered Padler-Karavani
- Department of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Schur MJ, Lameignere E, Strynadka NCJ, Wakarchuk WW. Characterization of α2,3- and α2,6-sialyltransferases from Helicobacter acinonychis. Glycobiology 2012; 22:997-1006. [PMID: 22504533 DOI: 10.1093/glycob/cws071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Genome sequence data were used to clone and express two sialyltransferase enzymes of the GT-42 family from Helicobacter acinonychis ATCC 51104, a gastric disease isolate from Cheetahs. The deposited genome sequence for these genes contains a large number of tandem repeat sequences in each of them: HAC1267 (RQKELE)(15) and HAC1268 (EEKLLEFKNI)(13). We obtained two clones with different numbers of repeat sequences for the HAC1267 gene homolog and a single clone for the HAC1268 gene homolog. Both genes could be expressed in Escherichia coli and sialyltransferase activity was measured using synthetic acceptor substrates containing a variety of terminal sugars. Both enzymes were shown to have a preference for N-acetyllactosamine, and they each made a product with a different linkage to the terminal galactose. HAC1267 is a mono-functional α2,3-sialyltransferase, whereas HAC1268 is a mono-functional α2,6-sialyltransferase and is the first member of GT-42 to show α2,6-sialyltransferase activity.
Collapse
Affiliation(s)
- Melissa J Schur
- National Research Council Canada, Institute for Biological Sciences, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
193
|
Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl Microbiol Biotechnol 2012; 94:887-905. [PMID: 22526796 DOI: 10.1007/s00253-012-4040-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
Abstract
Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.
Collapse
|
194
|
Yu CC, Kuo YY, Liang CF, Chien WT, Wu HT, Chang TC, Jan FD, Lin CC. Site-Specific Immobilization of Enzymes on Magnetic Nanoparticles and Their Use in Organic Synthesis. Bioconjug Chem 2012; 23:714-24. [DOI: 10.1021/bc200396r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ching-Ching Yu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Yu-Ying Kuo
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Chien-Fu Liang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Wei-Ting Chien
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Huan-Ting Wu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Tsung-Che Chang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Fan-Dan Jan
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| |
Collapse
|
195
|
Linman MJ, Yu H, Chen X, Cheng Q. Surface plasmon resonance imaging analysis of protein binding to a sialoside-based carbohydrate microarray. Methods Mol Biol 2012; 808:183-94. [PMID: 22057526 DOI: 10.1007/978-1-61779-373-8_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Monitoring multiple biological interactions in a multiplexed array format has numerous advantages. However, converting well-developed surface chemistry for spectroscopic measurements to array-based, high-throughput screening is not a trivial process and often proves to be the bottleneck in method development. This chapter reports the fabrication and characterization of a new carbohydrate microarray with synthetic sialosides for surface plasmon resonance imaging analysis of lectin-carbohydrate interactions. Contact printing of functional sialosides on neutravidin-coated surfaces was carried out and the properties of the resulting elements were characterized by fluorescence microscopy. Sambucus nigra agglutinin (SNA) was used for testing on four different carbohydrate-functionalized surfaces and differential binding was analyzed. Multiplexed detection of SNA/biotinylated sialoside interactions on arrays up to 400 elements has been performed with good data correlation, demonstrating the effectiveness of the biotin-neutravidin-based biointerface to control probe orientation for reproducible and efficient protein binding to carbohydrates.
Collapse
Affiliation(s)
- Matthew J Linman
- Department of Chemistry, University of California, Riverside, CA, USA
| | | | | | | |
Collapse
|
196
|
Khedri Z, Muthana MM, Li Y, Muthana SM, Yu H, Cao H, Chen X. Probe sialidase substrate specificity using chemoenzymatically synthesized sialosides containing C9-modified sialic acid. Chem Commun (Camb) 2012; 48:3357-9. [PMID: 22361713 DOI: 10.1039/c2cc17393j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A library of α2-3- and α2-6-linked sialyl galactosides containing C9-modified sialic acids was synthesized from C6-modified mannose derivatives using an efficient one-pot three-enzyme system. These sialosides were used in a high-throughput sialidase substrate specificity assay to elucidate the importance of C9-OH in sialidase recognition.
Collapse
Affiliation(s)
- Zahra Khedri
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
Sialic acids, also known as neuraminic acids, are a family of negatively charged α-keto acids with a nine-carbon backbone. These unique sugars have been found at the termini of many glycan chains of vertebrate cell surface, which play pivotal roles in mediating or modulating a variety of physiological and pathological processes. This brief review covers general approaches for synthesizing sialic acid containing structures. Recently developed synthetic methods along with structural diversities and biological functions of sialic acid are discussed.
Collapse
Affiliation(s)
- Hongzhi Cao
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, CA 95616, USA
| |
Collapse
|
198
|
Hsu CH, Hung SC, Wu CY, Wong CH. Toward automated oligosaccharide synthesis. Angew Chem Int Ed Engl 2011; 50:11872-923. [PMID: 22127846 DOI: 10.1002/anie.201100125] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Indexed: 12/16/2022]
Abstract
Carbohydrates have been shown to play important roles in biological processes. The pace of development in carbohydrate research is, however, relatively slow due to the problems associated with the complexity of carbohydrate structures and the lack of general synthetic methods and tools available for the study of this class of biomolecules. Recent advances in synthesis have demonstrated that many of these problems can be circumvented. In this Review, we describe the methods developed to tackle the problems of carbohydrate-mediated biological processes, with particular focus on the issue related to the development of the automated synthesis of oligosaccharides. Further applications of carbohydrate microarrays and vaccines to human diseases are also highlighted.
Collapse
Affiliation(s)
- Che-Hsiung Hsu
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
199
|
Hsu CH, Hung SC, Wu CY, Wong CH. Auf dem Weg zur automatisierten Oligosaccharid- Synthese. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
200
|
Thon V, Li Y, Yu H, Lau K, Chen X. PmST3 from Pasteurella multocida encoded by Pm1174 gene is a monofunctional α2-3-sialyltransferase. Appl Microbiol Biotechnol 2011; 94:977-85. [PMID: 22075637 DOI: 10.1007/s00253-011-3676-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/06/2011] [Accepted: 10/26/2011] [Indexed: 01/07/2023]
Abstract
Pasteurella multocida (Pm) strain Pm70 has three putative sialyltransferase genes including Pm0188, Pm0508, and Pm1174. A Pm0188 gene homolog in Pm strain P-1059 encodes a multifunctional α2-3-sialyltransferase, PmST1, that prefers oligosaccharide acceptors. A Pm0508 gene homolog in the same strain encodes a monofunctional sialyltransferase PmST2 that prefers glycolipid acceptors. Here, we report that the third sialyltransferase from Pm (PmST3) encoded by gene Pm1174 in strain Pm70 is a monofunctional α2-3-sialyltransferase that can use both oligosaccharides and glycolipids as efficient acceptors. Despite the existence of both Pm0188 and Pm0508 gene homologs encoding PmST1 and PmST2, respectively, in Pm strain P-1059, a Pm1174 gene homolog appears to be absent from Pm strains P-1059 and P-934. PmST3 was successfully obtained by cloning and expression using a synthetic gene of Pm1174 with codons optimized for Escherichia coli expression system as the DNA template for polymer chain reactions. Truncation of 35 amino acid residues from the carboxyl terminus was shown to improve the expression of a soluble and active enzyme in E. coli as a C-His(6)-tagged fusion protein. This sialidase-free monofunctional α2-3-sialyltransferase is a useful tool for synthesizing sialylated oligosaccharides and glycolipids.
Collapse
Affiliation(s)
- Vireak Thon
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|