151
|
Abstract
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.
Collapse
Affiliation(s)
- Christin Bissig
- Biochemistry Department, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
152
|
Nour AM, Li Y, Wolenski J, Modis Y. Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses. PLoS Pathog 2013; 9:e1003585. [PMID: 24039574 PMCID: PMC3764215 DOI: 10.1371/journal.ppat.1003585] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/12/2013] [Indexed: 12/12/2022] Open
Abstract
Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion. Many viruses package their genetic material into a lipid envelope. In order to deliver their genome into the host-cell cytoplasm, where it can be replicated, viruses must fuse their envelope with a cellular lipid membrane. This fusion event is therefore a critical step in the entry of an enveloped virus into the cell. In this study, we used various cell biological and biochemical approaches to map precisely the cell entry pathway of two major human pathogens from the flavivirus family, yellow fever virus and Japanese encephalitis virus. We discovered that these viruses co-opt cellular phospholipid signaling to promote the fusion of their envelope with the lipid envelope of small compartments inside the host-cell endosomes. The viral genome remains trapped in these compartments for several minutes until the compartments fuse with the surrounding endosomal membrane. It is this second membrane fusion event that delivers the viral genome into the cytoplasm. We also showed that the antibody fragment scFv11 inhibits the fusion of the viral envelope with small lipid compartments, explaining the therapeutic activity of the scFv11 antibody. Our work identifies new vulnerabilities in the entry pathway of flaviviruses, including the formation of small endosomal compartments and two distinct membrane fusion events involving these compartments.
Collapse
Affiliation(s)
- Adel M. Nour
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Yue Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Joseph Wolenski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Yorgo Modis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
153
|
Bosch B, Berger AC, Khandelwal S, Heipertz EL, Scharf B, Santambrogio L, Roche PA. Disruption of multivesicular body vesicles does not affect major histocompatibility complex (MHC) class II-peptide complex formation and antigen presentation by dendritic cells. J Biol Chem 2013; 288:24286-92. [PMID: 23846690 DOI: 10.1074/jbc.m113.461996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The antigen processing compartments in antigen-presenting cells (APCs) have well known characteristics of multivesicular bodies (MVBs). However, the importance of MVB integrity to APC function remains unknown. In this study, we have altered the ultrastructure of the MVB by perturbing cholesterol content genetically through the use of a deletion of the lipid transporter Niemann-Pick type C1 (NPC1). Immunofluorescence and electron microscopic analyses reveal that the antigen processing compartments in NPC1(-/-) dendritic cells (DCs) have an abnormal ultrastructure in that the organelles are enlarged and the intraluminal vesicles are almost completely absent and those remaining are completely disorganized. MHC-II is restricted to the limiting membrane of these enlarged MVBs where it colocalizes with the peptide editor H2-DM. Curiously, proteolytic removal of the chaperone protein Invariant chain from MHC-II, degradation of internalized foreign antigens, and antigenic-peptide binding to nascent MHC-II are normal in NPC1(-/-) DCs. Antigen-pulsed NPC1(-/-) DCs are able to effectively activate antigen-specific CD4 T cells in vitro, and immunization of NPC1(-/-) mice reveals surprisingly normal CD4 T cell activation in vivo. Our data thus reveal that the localization of MHC-II on the intraluminal vesicles of multivesicular antigen processing compartments is not required for efficient antigen presentation by DCs.
Collapse
Affiliation(s)
- Berta Bosch
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
154
|
Luquain-Costaz C, Lefai E, Arnal-Levron M, Markina D, Sakaï S, Euthine V, Makino A, Guichardant M, Yamashita S, Kobayashi T, Lagarde M, Moulin P, Delton-Vandenbroucke I. Bis(monoacylglycero)phosphate accumulation in macrophages induces intracellular cholesterol redistribution, attenuates liver-X receptor/ATP-Binding cassette transporter A1/ATP-binding cassette transporter G1 pathway, and impairs cholesterol efflux. Arterioscler Thromb Vasc Biol 2013; 33:1803-11. [PMID: 23788762 DOI: 10.1161/atvbaha.113.301857] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endosomal signature phospholipid bis(monoacylglycero)phosphate (BMP) has been involved in the regulation of cellular cholesterol homeostasis. Accumulation of BMP is a hallmark of lipid storage disorders and was recently reported as a noticeable feature of oxidized low-density lipoprotein-laden macrophages. This study was designed to delineate the consequences of macrophage BMP accumulation on intracellular cholesterol distribution, metabolism, and efflux and to unravel the underlying molecular mechanisms. APPROACH AND RESULTS We have developed an experimental design to specifically increase BMP content in RAW 264.7 macrophages. After BMP accumulation, cell cholesterol distribution was markedly altered, despite no change in low-density lipoprotein uptake and hydrolysis, cholesterol esterification, or total cell cholesterol content. The expression of cholesterol-regulated genes sterol regulatory element-binding protein 2 and hydroxymethylglutaryl-coenzyme A reductase was decreased by 40%, indicative of an increase of endoplasmic reticulum-associated cholesterol. Cholesterol delivery to plasma membrane was reduced as evidenced by the 20% decrease of efflux by cyclodextrin. Functionally, BMP accumulation reduced cholesterol efflux to both apolipoprotein A1 and high-density lipoprotein by 40% and correlated with a 40% decrease in mRNA contents of ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, and liver-X receptor α and β. Foam cell formation induced by oxidized low-density lipoprotein exposure was exacerbated in BMP-enriched cells. CONCLUSIONS The present work shows for the first time a strong functional link between BMP and cholesterol-regulating genes involved in both intracellular metabolism and efflux. We propose that accumulation of cellular BMP might contribute to the deregulation of cholesterol homeostasis in atheromatous macrophages.
Collapse
Affiliation(s)
- Céline Luquain-Costaz
- Université de Lyon, UMR 1060 Inserm, CarMeN, Institut National des Sciences Appliquées-Lyon, Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Bissig C, Lenoir M, Velluz MC, Kufareva I, Abagyan R, Overduin M, Gruenberg J. Viral infection controlled by a calcium-dependent lipid-binding module in ALIX. Dev Cell 2013; 25:364-73. [PMID: 23664863 DOI: 10.1016/j.devcel.2013.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/13/2013] [Accepted: 03/29/2013] [Indexed: 11/25/2022]
Abstract
ALIX plays a role in nucleocapsid release during viral infection, as does lysobisphosphatidic acid (LBPA). However, the mechanism remains unclear. Here we report that LBPA is recognized within an exposed site in ALIX Bro1 domain predicted by MODA, an algorithm for discovering membrane-docking areas in proteins. LBPA interactions revealed a strict requirement for a structural calcium tightly bound near the lipid interaction site. Unlike other calcium- and phospholipid-binding proteins, the all-helical triangle-shaped fold of the Bro1 domain confers selectivity for LBPA via a pair of hydrophobic residues in a flexible loop, which undergoes a conformational change upon membrane association. Both LBPA and calcium binding are necessary for endosome association and virus infection, as are ALIX ESCRT binding and dimerization capacity. We conclude that LBPA recruits ALIX onto late endosomes via the calcium-bound Bro1 domain, triggering a conformational change in ALIX to mediate the delivery of viral nucleocapsids to the cytosol during infection.
Collapse
Affiliation(s)
- Christin Bissig
- Biochemistry Department, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
156
|
Shoemaker CJ, Schornberg KL, Delos SE, Scully C, Pajouhesh H, Olinger GG, Johansen LM, White JM. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection. PLoS One 2013; 8:e56265. [PMID: 23441171 PMCID: PMC3575416 DOI: 10.1371/journal.pone.0056265] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022] Open
Abstract
Ebola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC50 1.6 to 8.0 µM) at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann–Pick C1 protein (NPC1), a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents) inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target.
Collapse
Affiliation(s)
- Charles J. Shoemaker
- Departmentof Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kathryn L. Schornberg
- Departmentof Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sue E. Delos
- Departmentof Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Corinne Scully
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Hassan Pajouhesh
- Zalicus Inc., Cambridge, Massachusetts, United States of America
| | - Gene G. Olinger
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Lisa M. Johansen
- Zalicus Inc., Cambridge, Massachusetts, United States of America
| | - Judith M. White
- Departmentof Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Departmentof Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
157
|
Jeong J, Walker JM, Wang F, Park JG, Palmer AE, Giunta C, Rohrbach M, Steinmann B, Eide DJ. Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers-Danlos syndrome. Proc Natl Acad Sci U S A 2012; 109:E3530-8. [PMID: 23213233 PMCID: PMC3529093 DOI: 10.1073/pnas.1211775110] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zinc is essential but potentially toxic, so intracellular zinc levels are tightly controlled. A key strategy used by many organisms to buffer cytosolic zinc is to store it within vesicles and organelles.It is yet unknown whether vesicular or organellar sites perform this function in mammals. Human ZIP13, a member of the Zrt/Irt-like protein (ZIP) metal transporter family, might provide an answer to this question. Mutations in the ZIP13 gene, SLC39A13, previously were found to cause the spondylocheiro dysplastic form of Ehlers–Danlos syndrome (SCD-EDS), a heritable connective tissue disorder.Those previous studies suggested that ZIP13 transports excess zinc out of the early secretory pathway and that zinc overload in the endoplasmic reticulum (ER) occurs in SCD-EDS patients. In contrast,this study indicates that ZIP13’s role is to release labile zinc from vesicular stores for use in the ER and other compartments. We propose that SCD-EDS is the result of vesicular zinc trapping and ER zinc deficiency rather than overload.
Collapse
Affiliation(s)
- Jeeyon Jeong
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Kollmann K, Damme M, Markmann S, Morelle W, Schweizer M, Hermans-Borgmeyer I, Röchert AK, Pohl S, Lübke T, Michalski JC, Käkelä R, Walkley SU, Braulke T. Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice. ACTA ACUST UNITED AC 2012; 135:2661-75. [PMID: 22961545 DOI: 10.1093/brain/aws209] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mucolipidosis II is a neurometabolic lysosomal trafficking disorder of infancy caused by loss of mannose 6-phosphate targeting signals on lysosomal proteins, leading to lysosomal dysfunction and accumulation of non-degraded material. However, the identity of storage material and mechanisms of neurodegeneration in mucolipidosis II are unknown. We have generated 'knock-in' mice with a common mucolipidosis II patient mutation that show growth retardation, progressive brain atrophy, skeletal abnormalities, elevated lysosomal enzyme activities in serum, lysosomal storage in fibroblasts and brain and premature death, closely mimicking the mucolipidosis II disease in humans. The examination of affected mouse brains at different ages by immunohistochemistry, ultrastructural analysis, immunoblotting and mass spectrometric analyses of glycans and anionic lipids revealed that the expression and proteolytic processing of distinct lysosomal proteins such as α-l-fucosidase, β-hexosaminidase, α-mannosidase or Niemann-Pick C2 protein are more significantly impacted by the loss of mannose 6-phosphate residues than enzymes reaching lysosomes independently of this targeting mechanism. As a consequence, fucosylated N-glycans, GM2 and GM3 gangliosides, cholesterol and bis(monoacylglycero)phosphate accumulate progressively in the brain of mucolipidosis II mice. Prominent astrogliosis and the accumulation of organelles and storage material in focally swollen axons were observed in the cerebellum and were accompanied by a loss of Purkinje cells. Moreover, an increased neuronal level of the microtubule-associated protein 1 light chain 3 and the formation of p62-positive neuronal aggregates indicate an impairment of constitutive autophagy in the mucolipidosis II brain. Our findings demonstrate the essential role of mannose 6-phosphate for selected lysosomal proteins to maintain the capability for degradation of sequestered components in lysosomes and autophagolysosomes and prevent neurodegeneration. These lysosomal proteins might be a potential target for a valid therapeutic approach for mucolipidosis II disease.
Collapse
Affiliation(s)
- K Kollmann
- Department of Biochemistry, Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Viegas MS, Estronca LMBB, Vieira OV. Comparison of the kinetics of maturation of phagosomes containing apoptotic cells and IgG-opsonized particles. PLoS One 2012; 7:e48391. [PMID: 23119002 PMCID: PMC3485219 DOI: 10.1371/journal.pone.0048391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
Defective clearance of apoptotic cells has emerged as an important contributing factor to the pathogenesis of many diseases. Although many efforts have been made to understand the machinery involved in the recognition between phagocytes and potential targets, little is known about the intracellular transport of phagosomes containing apoptotic cells within mammalian cells. We have, therefore, performed a detailed study on the maturation of phagosomes containing apoptotic cells in a non-professional phagocytic cell line. This process was compared with the maturation of IgG-opsonized particles, which are internalized via the Fcγ-receptor (Fcγ-R), one of the best characterized phagocytic receptor, in the same cell line stably expressing the Fcγ-RIIA. By comparing markers from different stages of phagosome maturation, we have found that phagosomes carrying apoptotic particles reach the lysosomes with a delay compared to those containing IgG-opsonized particles. Enrichment of the apoptotic particles in phosphatidylserine (PS) neither changed the kinetics of their engulfment nor the maturation process of the phagosome.
Collapse
Affiliation(s)
- Michelle S. Viegas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Luís M. B. B. Estronca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Otília V. Vieira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
160
|
Kirkbride KC, Hong NH, French CL, Clark ES, Jerome WG, Weaver AM. Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton (Hoboken) 2012; 69:625-43. [PMID: 22991200 PMCID: PMC3746372 DOI: 10.1002/cm.21051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 01/23/2023]
Abstract
Cortactin is a branched actin regulator and tumor-overexpressed protein that promotes vesicular trafficking at a variety of cellular sites, including endosomes and the trans-Golgi network. To better understand its role in secretory trafficking, we investigated its function in Golgi homeostasis. Here, we report that knockdown (KD) of cortactin leads to a dramatic change in Golgi morphology by light microscopy, dependent on binding the Arp2/3 actin-nucleating complex. Surprisingly, there was little effect of cortactin-KD on anterograde trafficking of the constitutive cargo vesicular stomatitis virus glycoprotein (VSVG), Golgi assembly from endoplasmic reticulum membranes upon Brefeldin A washout, or Golgi ultrastructure. Instead, electron microscopy studies revealed that cortactin-KD cells contained a large number of immature-appearing late endosomal/lysosomal (LE/Lys) hybrid organelles, similar to those found in lysosomal storage diseases. Consistent with a defect in LE/Lys trafficking, cortactin-KD cells also exhibited accumulation of free cholesterol and retention of the retrograde Golgi cargo mannose-6-phosphate receptor in LE. Inhibition of LE maturation by treatment of control cells with Rab7 siRNA or chloroquine led to a compact Golgi morphology similar to that observed in cortactin-KD cells. Furthermore, the Golgi morphology defects of cortactin-KD cells could be rescued by removal of cholesterol-containing lipids from the media, suggesting that buildup of cholesterol-rich membranes in immature LE/Lys induced disturbances in retrograde trafficking. Taken together, these data reveal that LE/Lys maturation and trafficking are highly sensitive to cortactin-regulated branched actin assembly and suggests that cytoskeletal-induced Golgi morphology changes can be a consequence of altered trafficking at late endosomes.
Collapse
Affiliation(s)
- Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
161
|
Fairn GD, Grinstein S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol 2012; 33:397-405. [DOI: 10.1016/j.it.2012.03.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/15/2012] [Accepted: 03/24/2012] [Indexed: 01/18/2023]
|
162
|
Intracytoplasmic trapping of influenza virus by a lipophilic derivative of aglycoristocetin. J Virol 2012; 86:9416-31. [PMID: 22740402 DOI: 10.1128/jvi.07032-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We report on a new anti-influenza virus agent, SA-19, a lipophilic glycopeptide derivative consisting of aglycoristocetin coupled to a phenylbenzyl-substituted cyclobutenedione. In Madin-Darby canine kidney cells infected with influenza A/H1N1, A/H3N2, or B virus, SA-19 displayed a 50% antivirally effective concentration of 0.60 μM and a selectivity index (ratio of cytotoxic versus antiviral concentration) of 112. SA-19 was 11-fold more potent than unsubstituted aglycoristocetin and was active in human and nonhuman cell lines. Virus yield at 72 h p.i. was reduced by 3.6 logs at 0.8 μM SA-19. In contrast to amantadine and oseltamivir, SA-19 did not select for resistance upon prolonged virus exposure. SA-19 was shown to inhibit an early postbinding step in virus replication. The compound had no effect on hemagglutinin (HA)-mediated membrane fusion in an HA-polykaryon assay and did not inhibit the low-pH-induced refolding of the HA in a tryptic digestion assay. However, a marked inhibitory effect on the transduction exerted by retroviral pseudoparticles carrying an HA or vesicular stomatitis virus glycoprotein (VSV-G) fusion protein was noted, suggesting that SA-19 targets a cellular factor with a role in influenza virus and VSV entry. Using confocal microscopy with antinucleoprotein staining, SA-19 was proven to completely prevent the influenza virus nuclear entry. This virus arrest was characterized by the formation of cytoplasmic aggregates. SA-19 appeared to disturb the endocytic uptake and trap the influenza virus in vesicles distinct from early, late, or recycling endosomes. The aglycoristocetin derivative SA-19 represents a new class of potent and broad-acting influenza virus inhibitors with potential clinical relevance.
Collapse
|
163
|
Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet 2012; 44:797-802. [DOI: 10.1038/ng.2325] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/16/2012] [Indexed: 11/08/2022]
|
164
|
Dawson G, Fuller M, Helmsley KM, Hopwood JJ. Abnormal gangliosides are localized in lipid rafts in Sanfilippo (MPS3a) mouse brain. Neurochem Res 2012; 37:1372-80. [PMID: 22484966 PMCID: PMC3646418 DOI: 10.1007/s11064-012-0761-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/29/2012] [Accepted: 03/22/2012] [Indexed: 01/16/2023]
Abstract
Allogenic stem cell transplantation can reduce lysosomal storage of heparan sulfate-derived oligosaccharides by up to 27 % in Sanfilippo MPS3a brain, but does not reduce the abnormal storage of sialolactosylceramide (G(M3)) or improve neurological symptoms, suggesting that ganglioside storage is in a non-lysosomal compartment. To investigate this further we isolated the Triton X100-insoluble at 4 °C, lipid raft (LR) fraction from a sucrose-density gradient from cerebral hemispheres of a 7 month old mouse model of Sanfilippo MPS3a and age-matched control mouse brain. HPLC/MS/MS analysis revealed the expected enrichment of normal complex gangliosides, ceramides, galatosylceramides and sphingomyelin enrichment in this LR fraction. The abnormal HS-derived oligosaccharide storage material was in the Triton X100-soluble at 4 °C fractions (8-12),whereas both GM3 and sialo[GalNAc]lactosylceramide (GM2) were found exclusively in the LR fraction (fractions 3 and 4) and were >90 % C18:0 fatty acid, suggesting a neuronal origin. Further analysis also revealed a >threefold increase in the late-endosome marker bis (monoacylglycerol) phosphate (>70 % as C22:6/22:6-BMP) in non-LR fractions 8-12 whereas different forms of the proposed BMP precursor, phosphatidylglycerol (PG) were in both LR and non-LR fractions and were less elevated in MPS3a brain. Thus heparan sulfate-derived oligosaccharide storage is associated with abnormal lipid accumulation in both lysosomal (BMP) and non-lysosomal (GM3 and GM2) compartments.
Collapse
Affiliation(s)
- G Dawson
- University of Chicago, Chicago, IL, USA.
| | | | | | | |
Collapse
|
165
|
Vázquez MC, Martínez P, Alvarez AR, González M, Zanlungo S. Increased copper levels in in vitro and in vivo models of Niemann-Pick C disease. Biometals 2012; 25:777-86. [DOI: 10.1007/s10534-012-9546-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
|
166
|
Abstract
Viruses of the genera Ebolavirus and Marburgvirus are filoviruses that cause haemorrhagic fever in primates, with extremely high fatality rates. Studies have focused on elucidating how these viruses enter host cells, with the aim of developing therapeutics. The ebolavirus glycoprotein has been found to play key parts in all steps of entry. Furthermore, recent studies have identified Niemann-Pick C1 (NPC1), a protein that resides deep in the endocytic pathway, as an important host factor in this process.
Collapse
|
167
|
Abstract
Toxins secreted by bacteria can impact the host in a number of different ways. In some infections, toxins play a crucial and central role in pathogenesis (i.e., anthrax), while in other bacterial infections, the role of toxins is less understood. The cholesterol-dependent cytolysins (CDCs), of which streptolysin O is a prototype, are a class of pore-forming toxins produced by many gram-positive bacteria and have only been studied in a few experimental infection models. Our laboratory has demonstrated that CDCs have effects on macrophages that are both pro- and anti-inflammatory. Here, we review evidence that CDCs promote inflammation by driving secretion of IL-1β and HMGB-1 from macrophages in a NLRP3-dependent manner, while also causing shedding of membrane microvesicles from cells that can interact with macrophages and inhibit TNF-α release. CDCs thus impact macrophage function in ways that may be both beneficial and detrimental to the host.
Collapse
|
168
|
Otomo T, Higaki K, Nanba E, Ozono K, Sakai N. Lysosomal storage causes cellular dysfunction in mucolipidosis II skin fibroblasts. J Biol Chem 2011; 286:35283-90. [PMID: 21846724 PMCID: PMC3186395 DOI: 10.1074/jbc.m111.267930] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/14/2011] [Indexed: 11/06/2022] Open
Abstract
Mucolipidosis II (ML-II) is a fatal inherited metabolic disease caused by deficiency of GlcNAc-phosphotransferase, which plays a role in generating the mannose 6-phosphate recognition marker on lysosomal enzymes. In ML-II, many lysosomal acid hydrolases are mistargeted out of cells, and lysosomes become filled with undigested substrates, which explains inclusion cell disease as an alternative name for this disease. In this study, we revealed various cellular phenotypes in ML-II skin fibroblasts. We quantitated phospholipid and cholesterol within cells and showed ~2-fold accumulation in ML-II as compared with normal cells. Lysosomal pH of ML-II cells was higher than that of normal cells (5.29 ± 0.08 versus 4.79 ± 0.10, p < 0.001). The proliferated lysosomes in ML-II cells were accumulated ~3-fold in amount as compared with normal cells. Intracellular logistics including endocytosis and mannose 6-phosphate receptor recycling were impaired in ML-II cells. To confirm whether these ML-II cellular phenotypes derive from deficient lysosomal acid hydrolases within lysosomes, we performed supplementation of lysosomal enzymes using a partially purified total enzyme mixture, which was derived from the conditioned culture medium of normal skin fibroblasts after NH(4)Cl treatment. This supplementation corrected all of the previously described ML-II phenotypes. In addition, the autophagic and mitochondrial impairment that we have previously reported improved, and inclusion bodies disappeared on electron micrography following total lysosomal enzyme supplementation. Our results indicate that various cellular phenotypes in ML-II are caused by the deficiency of many lysosomal enzymes and massive accumulation of undigested substrates.
Collapse
Affiliation(s)
- Takanobu Otomo
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
169
|
Abstract
PURPOSE Niemann-Pick disease type C1 (NPC1) is a genetic neurovisceral disorder characterized by abnormalities in intracellular sterol trafficking. A knockout mouse model (NPC1) is an important tool for the study of pathogenesis and treatment strategies. In the present study, NPC1 mice were examined for pathological changes in the cornea. METHODS Fifteen inbred homozygous NPC1 knockout mice (NPC1, 5-10 weeks old), 5 age-matched heterozygous mice (NPC1), and 14 wild-type control mice (NPC1) were examined. In vivo confocal laser scanning microscopy (CLSM) was performed on both eyes of each animal; afterward, the eyes were processed for histology, electron microscopy, and lipid analysis. RESULTS In vivo CLSM disclosed hyperreflective intracellular deposits in the intermediate and basal cell layers of corneal epithelium in all NPC1 mice. At the electron microscopy level, however, vacuolated cytoplasmic structures, 200-500 nm in diameter, with electron-dense material appeared in all structures investigated, including all epithelial layers and stromal keratocytes. These deposits were negative for filipin, a marker for unesterified cholesterol. Lipid analysis showed a marked increase in disialotetrahexosylganglioside 2 (GM2) level in NPC1 mice corneas, whereas no changes were detected in free cholesterol and disialotetrahexosylganglioside 3 (GM3) levels when compared with controls. CONCLUSIONS Morphological changes characteristic for the NPC1 mouse cornea were visualized in all epithelial layers and keratocytes. In vivo CLSM findings were confirmed by other techniques. In vivo detection of ocular manifestations and analysis of ocular tissue have the potential to aid the diagnosis of NPC1 disease and to monitor the efficacy of treatment.
Collapse
|
170
|
Ishitsuka R, Saito T, Osada H, Ohno-Iwashita Y, Kobayashi T. Fluorescence image screening for chemical compounds modifying cholesterol metabolism and distribution. J Lipid Res 2011; 52:2084-94. [PMID: 21862703 DOI: 10.1194/jlr.d018184] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
An automated fluorescence microscopy assay using a nontoxic cholesterol binding protein, toxin domain 4, (D4), was developed in order to identify chemical compounds modifying intracellular cholesterol metabolism and distribution. Using this method, we screened a library of 1,056 compounds and identified 35 compounds that decreased D4 binding to the cell surface. Among them, 8 compounds were already reported to alter the biosynthesis or the intracellular distribution of cholesterol. The remaining 27 hit compounds were further analyzed biochemically and histochemically. Cell staining with another fluorescent cholesterol probe, filipin, revealed that 17 compounds accumulated cholesterol in the late endosomes. Five compounds decreased cholesterol biosynthesis, and two compounds inhibited the binding of D4 to the membrane. This visual screening method, based on the cholesterol-specific probe D4 in combination with biochemical analyses, is a cell-based, sensitive technique for identifying new chemical compounds and modifying cholesterol distribution and metabolism. Furthermore, it is suitable for high-throughput analysis for drug discovery.
Collapse
Affiliation(s)
- Reiko Ishitsuka
- Lipid Biology Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
171
|
Piccoli E, Nadai M, Caretta CM, Bergonzini V, Del Vecchio C, Ha HR, Bigler L, Dal Zoppo D, Faggin E, Pettenazzo A, Orlando R, Salata C, Calistri A, Palù G, Baritussio A. Amiodarone impairs trafficking through late endosomes inducing a Niemann-Pick C-like phenotype. Biochem Pharmacol 2011; 82:1234-49. [PMID: 21878321 PMCID: PMC7092840 DOI: 10.1016/j.bcp.2011.07.090] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 02/03/2023]
Abstract
Patients treated with amiodarone accumulate lysobisphosphatidic acid (LBPA), also known as bis(monoacylglycero)phosphate, in airway secretions and develop in different tissues vacuoles and inclusion bodies thought to originate from endosomes. To clarify the origin of these changes, we studied in vitro the effects of amiodarone on endosomal activities like transferrin recycling, Shiga toxin processing, ESCRT-dependent lentivirus budding, fluid phase endocytosis, proteolysis and exosome secretion. Furthermore, since the accumulation of LBPA might point to a broader disturbance in lipid homeostasis, we studied the effect of amiodarone on the distribution of LBPA, unesterified cholesterol, sphingomyelin and glycosphyngolipids. Amiodarone analogues were also studied, including the recently developed derivative dronedarone. We found that amiodarone does not affect early endosomal activities, like transferrin recycling, Shiga toxin processing and lentivirus budding. Amiodarone, instead, interferes with late compartments of the endocytic pathway, blocking the progression of fluid phase endocytosis and causing fusion of organelles, collapse of lumenal structures, accumulation of undegraded substrates and amassing of different types of lipids. Not all late endocytic compartments are affected, since exosome secretion is spared. These changes recall the Niemann-Pick type-C phenotype (NPC), but originate by a different mechanism, since, differently from NPC, they are not alleviated by cholesterol removal. Studies with analogues indicate that basic pKa and high water-solubility at acidic pH are crucial requirements for the interference with late endosomes/lysosomes and that, in this respect, dronedarone is at least as potent as amiodarone. These findings may have relevance in fields unrelated to rhythm control.
Collapse
Affiliation(s)
- Elena Piccoli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, via A. Gabelli 63, 35121, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Seo Y, Yang SR, Jee MK, Joo EK, Roh KH, Seo MS, Han TH, Lee SY, Ryu PD, Jung JW, Seo KW, Kang SK, Kang KS. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Protect against Neuronal Cell Death and Ameliorate Motor Deficits in Niemann Pick Type C1 Mice. Cell Transplant 2011; 20:1033-47. [DOI: 10.3727/096368910x545086] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Niemann Pick disease type C1 (NPC) is an autosomal recessive disease characterized by progressive neurological deterioration leading to premature death. In this study, we hypothesized that human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have the multifunctional abilities to ameliorate NPC symptoms in the brain. To test this hypothesis, hUCB-MSCs were transplanted into the hippocampus of NPC mice in the early asymptomatic stage. This transplantation resulted in the recovery of motor function in the Rota Rod test and impaired cholesterol homeostasis leading to increased levels of cholesterol efflux-related genes such as LXRα, ABCA1, and ABCG5 while decreased levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase were observed in NPC mice. In the cerebrum, hUCB-MSCs enhanced neuronal cell survival and proliferation, where they directly differentiated into electrically active MAP2-positive neurons as demonstrated by whole-cell patch clamping. In addition, we observed that hUCB-MSCs reduced Purkinje neuronal loss by suppression of inflammatory and apoptotic signaling in the cerebellum as shown by immunohistochemistry. We further investigated how hUCB-MSCs enhance cellular survival and inhibit apoptosis in NPC mice. Neuronal cell survival was associated with increased PI3K/AKT and JAK2/STAT3 signaling; moreover, hUCB-MSCs modulated the levels of GABA/glutamate transporters such as GAT1, EAAT2, EAAT3, and GAD6 in NPC mice as assessed by Western blot analysis. Taken together, our findings suggest that hUCB-MSCs might play multifunctional roles in neuronal cell survival and ameliorating motor deficits of NPC mice.
Collapse
Affiliation(s)
- Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se-Ran Yang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Ki Jee
- Department of Veterinary Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun Kyung Joo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Hwan Roh
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min-Soo Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae Hee Han
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - So Yeong Lee
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Pan Dong Ryu
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Won Jung
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Won Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Soo-Kyung Kang
- Department of Veterinary Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
173
|
Blom T, Somerharju P, Ikonen E. Synthesis and biosynthetic trafficking of membrane lipids. Cold Spring Harb Perspect Biol 2011; 3:a004713. [PMID: 21482741 DOI: 10.1101/cshperspect.a004713] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic cells can synthesize thousands of different lipid molecules that are incorporated into their membranes. This involves the activity of hundreds of enzymes with the task of creating lipid diversity. In addition, there are several, typically redundant, mechanisms to transport lipids from their site of synthesis to other cellular membranes. Biosynthetic lipid transport helps to ensure that each cellular compartment will have its characteristic lipid composition that supports the functions of the associated proteins. In this article, we provide an overview of the biosynthesis of the major lipid constituents of cell membranes, that is, glycerophospholipids, sphingolipids, and sterols, and discuss the mechanisms by which these newly synthesized lipids are delivered to their target membranes.
Collapse
Affiliation(s)
- Tomas Blom
- Institute of Biomedicine, Department of Anatomy, University of Helsinki, FIN-00014 Finland.
| | | | | |
Collapse
|
174
|
Brankatschk B, Pons V, Parton RG, Gruenberg J. Role of SNX16 in the dynamics of tubulo-cisternal membrane domains of late endosomes. PLoS One 2011; 6:e21771. [PMID: 21754999 PMCID: PMC3130770 DOI: 10.1371/journal.pone.0021771] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022] Open
Abstract
In this paper, we report that the PX domain-containing protein SNX16, a member of the sorting nexin family, is associated with late endosome membranes. We find that SNX16 is selectively enriched on tubulo-cisternal elements of this membrane system, whose highly dynamic properties and formation depend on intact microtubules. By contrast, SNX16 was not found on vacuolar elements that typically contain LBPA, and thus presumably correspond to multivesicular endosomes. We conclude that SNX16, together with its partner phosphoinositide, define a highly dynamic subset of late endosomal membranes, supporting the notion that late endosomes are organized in distinct morphological and functional regions. Our data also indicate that SNX16 is involved in tubule formation and cholesterol transport as well as trafficking of the tetraspanin CD81, suggesting that the protein plays a role in the regulation of late endosome membrane dynamics.
Collapse
Affiliation(s)
- Ben Brankatschk
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Véronique Pons
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Robert G. Parton
- Institute for Molecular Bioscience and Center for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
175
|
Laulagnier K, Schieber NL, Maritzen T, Haucke V, Parton RG, Gruenberg J. Role of AP1 and Gadkin in the traffic of secretory endo-lysosomes. Mol Biol Cell 2011; 22:2068-82. [PMID: 21525240 PMCID: PMC3113771 DOI: 10.1091/mbc.e11-03-0193] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 11/11/2022] Open
Abstract
Whereas lysosome-related organelles (LRO) of specialized cells display both exocytic and endocytic features, lysosomes in nonspecialized cells can also acquire the property to fuse with the plasma membrane upon an acute rise in cytosolic calcium. Here, we characterize this unconventional secretory pathway in fibroblast-like cells, by monitoring the appearance of Lamp1 on the plasma membrane and the release of lysosomal enzymes into the medium. After sequential ablation of endocytic compartments in living cells, we find that donor membranes primarily derive from a late compartment, but that an early compartment is also involved. Strikingly, this endo-secretory process is not affected by treatments that inhibit endosome dynamics (microtubule depolymerization, cholesterol accumulation, overexpression of Rab7 or its effector Rab-interacting lysosomal protein [RILP], overexpression of Rab5 mutants), but depends on Rab27a, a GTPase involved in LRO secretion, and is controlled by F-actin. Moreover, we find that this unconventional endo-secretory pathway requires the adaptor protein complexes AP1, Gadkin (which recruits AP1 by binding to the γ1 subunit), and AP2, but not AP3. We conclude that a specific fraction of the AP2-derived endocytic pathway is dedicated to secretory purposes under the control of AP1 and Gadkin.
Collapse
Affiliation(s)
- Karine Laulagnier
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| | - Nicole L. Schieber
- Institute for Molecular Bioscience and Center for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia
| | - Tanja Maritzen
- Laboratory of Membrane Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Volker Haucke
- Laboratory of Membrane Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Robert G. Parton
- Institute for Molecular Bioscience and Center for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| |
Collapse
|
176
|
Abstract
Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a "traffic jam." This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement.
Collapse
Affiliation(s)
- Heike Schulze
- Life and Medical Sciences Institute, Membrane Biology and Lipid Biochemistry Unit, University of Bonn, Germany
| | | |
Collapse
|
177
|
Appelqvist H, Nilsson C, Garner B, Brown AJ, Kågedal K, Ollinger K. Attenuation of the lysosomal death pathway by lysosomal cholesterol accumulation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:629-39. [PMID: 21281795 DOI: 10.1016/j.ajpath.2010.10.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/24/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
In the past decade, lysosomal membrane permeabilization (LMP) has emerged as a significant component of cell death signaling. The mechanisms by which lysosomal stability is regulated are not yet fully understood, but changes in the lysosomal membrane lipid composition have been suggested to be involved. Our aim was to investigate the importance of cholesterol in the regulation of lysosomal membrane permeability and its potential impact on apoptosis. Treatment of normal human fibroblasts with U18666A, an amphiphilic drug that inhibits cholesterol transport and causes accumulation of cholesterol in lysosomes, rescued cells from lysosome-dependent cell death induced by the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH), staurosporine (STS), or cisplatin. LMP was decreased by pretreating cells with U18666A, and there was a linear relationship between the cholesterol content of lysosomes and their resistance to permeabilization induced by MSDH. U18666A did not induce changes in expression or localization of 70-kDa heat shock proteins (Hsp70) or antiapoptotic Bcl-2 proteins known to protect the lysosomal membrane. Induction of autophagy also was excluded as a contributor to the protective mechanism. By using Chinese hamster ovary (CHO) cells with lysosomal cholesterol overload due to a mutation in the cholesterol transporting protein Niemann-Pick type C1 (NPC1), the relationship between lysosomal cholesterol accumulation and protection from lysosome-dependent cell death was confirmed. Cholesterol accumulation in lysosomes attenuates apoptosis by increasing lysosomal membrane stability.
Collapse
Affiliation(s)
- Hanna Appelqvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
178
|
Ulatowski L, Parker R, Davidson C, Yanjanin N, Kelley TJ, Corey D, Atkinson J, Porter F, Arai H, Walkley SU, Manor D. Altered vitamin E status in Niemann-Pick type C disease. J Lipid Res 2011; 52:1400-10. [PMID: 21550990 DOI: 10.1194/jlr.m015560] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vitamin E (α-tocopherol) is the major lipid-soluble antioxidant in many species. Niemann-Pick type C (NPC) disease is a lysosomal storage disorder caused by mutations in the NPC1 or NPC2 gene, which regulates lipid transport through the endocytic pathway. NPC disease is characterized by massive intracellular accumulation of unesterified cholesterol and other lipids in lysosomal vesicles. We examined the roles that NPC1/2 proteins play in the intracellular trafficking of tocopherol. Reduction of NPC1 or NPC2 expression or function in cultured cells caused a marked lysosomal accumulation of vitamin E in cultured cells. In vivo, tocopherol significantly accumulated in murine Npc1-null and Npc2-null livers, Npc2-null cerebella, and Npc1-null cerebral cortices. Plasma tocopherol levels were within the normal range in Npc1-null and Npc2-null mice, and in plasma samples from human NPC patients. The binding affinity of tocopherol to the purified sterol-binding domain of NPC1 and to purified NPC2 was significantly weaker than that of cholesterol (measurements kindly performed by R. Infante, University of Texas Southwestern Medical Center, Dallas, TX). Taken together, our observations indicate that functionality of NPC1/2 proteins is necessary for proper bioavailability of vitamin E and that the NPC pathology might involve tissue-specific perturbations of vitamin E status.
Collapse
Affiliation(s)
- L Ulatowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 2011; 93:313-40. [PMID: 21216273 PMCID: PMC3055956 DOI: 10.1016/j.pneurobio.2011.01.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/27/2022]
Abstract
Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of "geometrically simpler" cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer's, Huntington's, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons.
Collapse
Affiliation(s)
- Christopher S Von Bartheld
- Department of Physiology and Cell Biology, Mailstop 352, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
180
|
Abstract
Cholesterol is an important lipid of mammalian cells. Its unique physicochemical properties modulate membrane behavior and it serves as the precursor for steroid hormones, oxysterols and vitamin D. Cholesterol is effluxed from the late endosomes/lysosomes via the concerted action of at least two distinct proteins: Niemann-Pick C (NPC)1 and NPC2. Mutations in these two proteins manifest as NPC disease - a very rare, usually fatal, autosomal, recessive, neurovisceral, lysosomal storage disorder. In this review, we discuss the possible mechanisms of action for NPC1 and NPC2 in mediating cholesterol efflux, as well as the different therapeutic approaches being pursued for the treatment of this lipid storage disorder.
Collapse
Affiliation(s)
- Anton I Rosenbaum
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, USA
| | | |
Collapse
|
181
|
Du X, Kumar J, Ferguson C, Schulz TA, Ong YS, Hong W, Prinz WA, Parton RG, Brown AJ, Yang H. A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. ACTA ACUST UNITED AC 2011; 192:121-35. [PMID: 21220512 PMCID: PMC3019559 DOI: 10.1083/jcb.201004142] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ORP5 works together with Niemann Pick C-1 to facilitate exit of cholesterol from endosomes and lysosomes. Oxysterol-binding protein (OSBP) and its related proteins (ORPs) constitute a large and evolutionarily conserved family of lipid-binding proteins that target organelle membranes to mediate sterol signaling and/or transport. Here we characterize ORP5, a tail-anchored ORP protein that localizes to the endoplasmic reticulum. Knocking down ORP5 causes cholesterol accumulation in late endosomes and lysosomes, which is reminiscent of the cholesterol trafficking defect in Niemann Pick C (NPC) fibroblasts. Cholesterol appears to accumulate in the limiting membranes of endosomal compartments in ORP5-depleted cells, whereas depletion of NPC1 or both ORP5 and NPC1 results in luminal accumulation of cholesterol. Moreover, trans-Golgi resident proteins mislocalize to endosomal compartments upon ORP5 depletion, which depends on a functional NPC1. Our results establish the first link between NPC1 and a cytoplasmic sterol carrier, and suggest that ORP5 may cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes.
Collapse
Affiliation(s)
- Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Bhattacharyya S, Hope TJ. Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum. Virol J 2011; 8:11. [PMID: 21223600 PMCID: PMC3024955 DOI: 10.1186/1743-422x-8-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 01/12/2011] [Indexed: 02/02/2023] Open
Abstract
The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP) of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1). However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin) Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER), Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP), it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
- Current Address: Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Thomas J Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| |
Collapse
|
183
|
Goursot A, Mineva T, Bissig C, Gruenberg J, Salahub DR. Structure, dynamics, and energetics of lysobisphosphatidic acid (LBPA) isomers. J Phys Chem B 2010; 114:15712-20. [PMID: 21053942 DOI: 10.1021/jp108361d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lysobisphosphatidic acid (LBPA), or bis(monoacylglycerol)phosphate, is a very interesting lipid, that is mainly found in late endosomes. It has several intriguing characteristics, which differ from those of other animal glycerophospholipids, that may be related to its specific functions, particularly in the metabolism of cholesterol. Its phosphodiester group is bonded at the sn-1 (sn-1') positions of the glycerols rather than at sn-3 (sn-3'); the position of the two fatty acid chains is still under debate but, increasingly, arguments favor the sn-2, sn-2' position in the native molecule, whereas isolation procedures or acidic conditions lead to the thermodynamically more stable sn-3, sn-3' structure. Because of these peculiar features, it can be expected that LBPA shape and interactions with membrane lipids and proteins are related to its structure at the molecular level. We applied quantum mechanical methods to study the structures and stabilities of the 2,2' and 3,3' LBPA isomers, using a step-by-step procedure from glycerol to precursors (in vitro syntheses) and to the final isoforms. The structures of the two positional LBPA isomers are substantially different, showing that the binding positions of the fatty acid chains on the glycerol backbone determine the shape of the LBPA molecule and thus, possibly, its functions. The 3,3' LBPA structures obtained are more stable with respect to the 2,2' form, as expected from experiment. If one argues that the in vivo synthesis starts from the present glycerol conformers and considering the most stable bis(glycero)phosphate structures, the 2,2' isoform should be the most probable isomer.
Collapse
Affiliation(s)
- A Goursot
- UMR 5253 CNRS/ENSCM/UM2/UM1 Ecole de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296, Montpellier, Cedex 5, France
| | | | | | | | | |
Collapse
|
184
|
Pathology and current treatment of neurodegenerative sphingolipidoses. Neuromolecular Med 2010; 12:362-82. [PMID: 20730629 DOI: 10.1007/s12017-010-8133-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 08/10/2010] [Indexed: 01/09/2023]
Abstract
Sphingolipidoses constitute a large subgroup of lysosomal storage disorders (LSDs). Many of them are associated with a progressive neurodegeneration. As is the case for LSDs in general, most sphingolipidoses are caused by deficiencies in lysosomal hydrolases. However, accumulation of sphingolipids can also result from deficiencies in proteins involved in the transport or posttranslational modification of lysosomal enzymes, transport of lipids, or lysosomal membrane proteins required for transport of lysosomal degradation end products. The accumulation of sphingolipids in the lysosome together with secondary changes in the concentration and localization of other lipids may cause trafficking defects of membrane lipids and proteins, affect calcium homeostasis, induce the unfolded protein response, activate apoptotic cascades, and affect various signal transduction pathways. To what extent, however, these changes contribute to the pathogenesis of the diseases is not fully understood. Currently, there is no cure for sphingolipidoses. Therapies like enzyme replacement, pharmacological chaperone, and substrate reduction therapy, which have been shown to be efficient in non-neuronopathic LSDs, are currently evaluated in clinical trials of neuronopathic sphingolipidoses. In the future, neural stem cell therapy and gene therapy may become an option for these disorders.
Collapse
|
185
|
Murine cytomegalovirus perturbs endosomal trafficking of major histocompatibility complex class I molecules in the early phase of infection. J Virol 2010; 84:11101-12. [PMID: 20719942 DOI: 10.1128/jvi.00988-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Murine cytomegalovirus (MCMV) functions interfere with protein trafficking in the secretory pathway. In this report we used Δm138-MCMV, a recombinant virus with a deleted viral Fc receptor, to demonstrate that MCMV also perturbs endosomal trafficking in the early phase of infection. This perturbation had a striking impact on cell surface-resident major histocompatibility complex class I (MHC-I) molecules due to the complementary effect of MCMV immunoevasins, which block their egress from the secretory pathway. In infected cells, constitutively endocytosed cell surface-resident MHC-I molecules were arrested and retained in early endosomal antigen 1 (EEA1)-positive and lysobisphosphatidic acid (LBPA)-negative perinuclear endosomes together with clathrin-dependent cargo (transferrin receptor, Lamp1, and epidermal growth factor receptor). Their progression from these endosomes into recycling and degradative routes was inhibited. This arrest was associated with a reduction of the intracellular content of Rab7 and Rab11, small GTPases that are essential for the maturation of recycling and endolysosomal domains of early endosomes. The reduced recycling of MHC-I in Δm138-MCMV-infected cells was accompanied by their accelerated loss from the cell surface. The MCMV function that affects cell surface-resident MHC-I was activated in later stages of the early phase of viral replication, after the expression of known immunoevasins. MCMV without the three immunoevasins (the m04, m06, and m152 proteins) encoded a function that affects endosomal trafficking. This function, however, was not sufficient to reduce the cell surface expression of MHC-I in the absence of the transport block in the secretory pathway.
Collapse
|
186
|
Malnar M, Kosicek M, Mitterreiter S, Omerbasic D, Lichtenthaler SF, Goate A, Hecimovic S. Niemann-Pick type C cells show cholesterol dependent decrease of APP expression at the cell surface and its increased processing through the beta-secretase pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:682-91. [PMID: 20493254 PMCID: PMC2903680 DOI: 10.1016/j.bbadis.2010.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/30/2010] [Accepted: 05/11/2010] [Indexed: 12/28/2022]
Abstract
The link between cholesterol and Alzheimer's disease has recently been revealed in Niemann-Pick type C disease. We found that NPC1(-/-) cells show decreased expression of APP at the cell surface and increased processing of APP through the beta-secretase pathway resulting in increased C99, sAPPbeta and intracellular Abeta40 levels. This effect is dependent on increased cholesterol levels, since cholesterol depletion reversed cell surface APP expression and lowered Abeta/C99 levels in NPC1(-)(/)(-) cells to the levels observed in wt cells. Finding that overexpression of C99, a direct gamma-secretase substrate, does not lead to increased intracellular Abeta levels in NPC1(-)(/)(-) cells vs. CHOwt suggests that the effect on intracellular Abeta upon cholesterol accumulation in NPC1(-)(/)(-) cells is not due to increased APP cleavage by gamma-secretase. Our results indicate that cholesterol may modulate APP processing indirectly by modulating APP expression at the cell surface and thus its cleavage by beta-secretase.
Collapse
Affiliation(s)
- Martina Malnar
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Marko Kosicek
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Stefan Mitterreiter
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) & Adolf Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Schillerstr. 44, 80336 Munich, Germany
| | - Damir Omerbasic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Stefan F. Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) & Adolf Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Schillerstr. 44, 80336 Munich, Germany
| | - Alison Goate
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Silva Hecimovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
187
|
Valero RA, Oeste CL, Stamatakis K, Ramos I, Herrera M, Boya P, Pérez-Sala D. Structural determinants allowing endolysosomal sorting and degradation of endosomal GTPases. Traffic 2010; 11:1221-33. [PMID: 20573066 DOI: 10.1111/j.1600-0854.2010.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid control of protein degradation is usually achieved through the ubiquitin-proteasome pathway. We recently found that the short-lived GTPase RhoB is degraded in lysosomes. Moreover, the fusion of the RhoB C-terminal sequence CINCCKVL, containing the isoprenylation and palmitoylation sites, to other proteins directs their sorting into multivesicular bodies (MVBs) and rapid lysosomal degradation. Here, we show that this process is highly specific for RhoB. Alteration of late endosome lipid dynamics produced the accumulation of RhoB, but not of other endosomal GTPases, including Rab5, Rab7, Rab9 or Rab11, into enlarged MVB. Other isoprenylated and bipalmitoylated GTPases, such as H-Ras, Rap2A, Rap2B and TC10, were not accumulated into MVB and were stable. Remarkably, although TC10, which is highly homologous to RhoB, was stable, a sequence derived from its C-terminus (CINCCLIT) elicited MVB sorting and degradation of a green fluorescent protein (GFP)-chimeric protein. This led us to identify a cluster of basic amino acids (KKH) in the TC10 hypervariable region, constituting a secondary signal potentially involved in electrostatic interactions with membrane lipids. Mutation of this cluster allowed TC10 MVB sorting and degradation, whereas inserting it into RhoB hypervariable region rescued this protein from its lysosomal degradation pathway. These findings define a highly specific structural module for entering the MVB pathway and rapid lysosomal degradation.
Collapse
Affiliation(s)
- Ruth A Valero
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
188
|
Frederick TE, Goff PC, Mair CE, Farver RS, Long JR, Fanucci GE. Effects of the endosomal lipid bis(monoacylglycero)phosphate on the thermotropic properties of DPPC: A 2H NMR and spin label EPR study. Chem Phys Lipids 2010; 163:703-11. [PMID: 20599855 DOI: 10.1016/j.chemphyslip.2010.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 11/25/2022]
Abstract
Bis(monoacylglycero)phosphate (BMP) is an endosomal lipid with a unique structure that is implicated in the formation of intraendosomal vesicular bodies. Here we have characterized the effects of dioleoyl-BMP (BMP(18:1)) at concentrations of 5, 10, 15 and 20mol% on the thermotropic behavior of dipalmitoyl phosphatidylcholine (DPPC) vesicles, and compared them to those of equimolar concentrations of dioleoyl phosphatidylglycerol (DOPG), a structural isoform of BMP(18:1). Because BMP is found in the acidic environments of the late endosome and intralysosomal vesicles, samples were prepared at pH 4.2 to mimic the pH of the lysosome. Both (2)H NMR of perdeuterated DPPC and spin-labeled EPR with 16-doxyl phosphatidylcholine were utilized in these investigations. NMR and EPR results show that BMP(18:1) induces a lowering in the main phase transition temperature of DPPC similar to that of DOPG. The EPR studies reveal that BMP(18:1) induced more disorder in the L(beta) phase when compared to equimolar concentrations of DOPG. Analysis from dePaked (2)H NMR spectra in the L(alpha) phase reveals that BMP(18:1) induces less disorder than equal concentrations of DOPG. Additionally, the results demonstrate that BMP mixes with other phospholipids as a phospholipid and not as a detergent molecule as once speculated.
Collapse
Affiliation(s)
- Thomas E Frederick
- Department of Chemistry, P.O. Box 117200, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | | | | | |
Collapse
|
189
|
Guillaumot P, Luquain C, Malek M, Huber AL, Brugière S, Garin J, Grunwald D, Régnier D, Pétrilli V, Lefai E, Manié SN. Pdro, a protein associated with late endosomes and lysosomes and implicated in cellular cholesterol homeostasis. PLoS One 2010; 5:e10977. [PMID: 20544018 PMCID: PMC2882324 DOI: 10.1371/journal.pone.0010977] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 05/13/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cellular cholesterol is a vital component of the cell membrane. Its concentration is tightly controlled by mechanisms that remain only partially characterized. In this study, we describe a late endosome/lysosomes-associated protein whose expression level affects cellular free cholesterol content. METHODOLOGY/PRINCIPAL FINDINGS Using a restricted proteomic analysis of detergent-resistant membranes (DRMs), we have identified a protein encoded by gene C11orf59. It is mainly localized to late endosome/lysosome (LE/LY) compartment through N-terminal myristoylation and palmitoylation. We named it Pdro for protein associated with DRMs and endosomes. Very recently, three studies have reported on the same protein under two other names: the human p27RF-Rho that regulates RhoA activation and actin dynamics, and its rodent orthologue p18 that controls both LE/LY dynamics through the MERK-ERK pathway and the lysosomal activation of mammalian target of rapamycin complex 1 by amino acids. We found that, consistent with the presence of sterol-responsive element consensus sequences in the promoter region of C11orf59, Pdro mRNA and protein expression levels are regulated positively by cellular cholesterol depletion and negatively by cellular cholesterol loading. Conversely, Pdro is involved in the regulation of cholesterol homeostasis, since its depletion by siRNA increases cellular free cholesterol content that is accompanied by an increased cholesterol efflux from cells. On the other hand, cells stably overexpressing Pdro display reduced cellular free cholesterol content. Pdro depletion-mediated excess cholesterol results, at least in part, from a stimulated low-density lipoprotein (LDL) uptake and an increased cholesterol egress from LE/LY. CONCLUSIONS/SIGNIFICANCE LDL-derived cholesterol release involves LE/LY motility that is linked to actin dynamics. Because Pdro regulates these two processes, we propose that modulation of Pdro expression in response to sterol levels regulates LDL-derived cholesterol through both LDL uptake and LE/LY dynamics, to ultimately control free cholesterol homeostasis.
Collapse
Affiliation(s)
- Patricia Guillaumot
- Génétique Moléculaire, Signalisation et Cancer, UMR 5201 CNRS, Centre Leon Berard, Lyon, France
| | - Céline Luquain
- Regulation Métabolique, Nutrition et Diabète, UMR 870 INSERM/Insa-Lyon, Villeurbanne, France
| | - Mouhannad Malek
- Génétique Moléculaire, Signalisation et Cancer, UMR 5201 CNRS, Centre Leon Berard, Lyon, France
| | - Anne-Laure Huber
- Génétique Moléculaire, Signalisation et Cancer, UMR 5201 CNRS, Centre Leon Berard, Lyon, France
| | - Sabine Brugière
- Laboratoire de Chimie des Protéines, ERM 201 INSERM/CEA/UJF, CEA/Grenoble, Grenoble, France
| | - Jérome Garin
- Laboratoire de Chimie des Protéines, ERM 201 INSERM/CEA/UJF, CEA/Grenoble, Grenoble, France
| | - Didier Grunwald
- Laboratoire Transduction de Signal, Unité 873, INSERM/CEA/DSV, Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble, France
| | - Daniel Régnier
- Génétique Moléculaire, Signalisation et Cancer, UMR 5201 CNRS, Centre Leon Berard, Lyon, France
| | - Virginie Pétrilli
- Génétique Moléculaire, Signalisation et Cancer, UMR 5201 CNRS, Centre Leon Berard, Lyon, France
| | | | - Serge N. Manié
- Génétique Moléculaire, Signalisation et Cancer, UMR 5201 CNRS, Centre Leon Berard, Lyon, France
- * E-mail:
| |
Collapse
|
190
|
Devlin C, Pipalia NH, Liao X, Schuchman EH, Maxfield FR, Tabas I. Improvement in lipid and protein trafficking in Niemann-Pick C1 cells by correction of a secondary enzyme defect. Traffic 2010; 11:601-15. [PMID: 20412078 PMCID: PMC3000737 DOI: 10.1111/j.1600-0854.2010.01046.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Different primary lysosomal trafficking defects lead to common alterations in lipid trafficking, suggesting cooperative interactions among lysosomal lipids. However, cellular analysis of the functional consequences of this phenomenon is lacking. As a test case, we studied cells with defective Niemann-Pick C1 (NPC1) protein, a cholesterol trafficking protein whose defect gives rise to lysosomal accumulation of cholesterol and other lipids, leading to NPC disease. NPC1 cells also develop a secondary defect in acid sphingomyelinase (SMase) activity despite a normal acid SMase gene (SMPD1). When acid SMase activity was restored to normal levels in NPC1-deficient CHO cells through SMPD1 transfection, there was a dramatic reduction in lysosomal cholesterol. Two other defects, excess lysosomal bis-(monoacylglycerol) phosphate (BMP) and defective transferrin receptor (TfR) recycling, were also markedly improved. To test its relevance in human cells, the acid SMase activity defect in fibroblasts from NPC1 patients was corrected by SMPD1 transfection or acid SMase enzyme replacement. Both treatments resulted in a dramatic reduction in lysosomal cholesterol. These data show that correcting one aspect of a complex lysosomal lipid storage disease can reduce the cellular consequences even if the primary genetic defect is not corrected.
Collapse
Affiliation(s)
- Cecilia Devlin
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Nina H. Pipalia
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Xianghai Liao
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Edward H. Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Departments of Pathology & Cell Biology, and Physiology & Cellular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
191
|
Chebukati JN, Goff PC, Frederick TE, Fanucci GE. Bis(monoacylglycero)phosphate and ganglioside GM1 spontaneously form small homogeneous vesicles at specific concentrations. Biochem Biophys Res Commun 2010; 394:509-14. [PMID: 20206128 PMCID: PMC2860179 DOI: 10.1016/j.bbrc.2010.02.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 02/26/2010] [Indexed: 11/18/2022]
Abstract
The morphology and size of hydrated lipid dispersions of bis(monoacylglycero)phosphate (BMP) mixed with varying mole percentages of the ganglioside GM1 were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Electron paramagnetic resonance (EPR) spectroscopy of these same mixtures, doped at 0.5 mol% with doxyl labeled lipids, was used to investigate acyl-chain packing. Results show that for 20-30% GM1, hydrated BMP:GM1 mixtures spontaneously form small spherical vesicles with diameters approximately 100 nm and a narrow size distribution profile. For other concentrations of GM1, hydrated dispersions with BMP have non-spherical shapes and heterogeneous size profiles, with average vesicle diameters>400 nm. All samples were prepared at pH 5.5 to mimic the lumen acidity of the late endosome where BMP is an essential component of intraendosomal vesicle budding, lipid sorting and trafficking. These findings indicate that GM1 and BMP under a limited concentration range spontaneously form small vesicles of homogeneous size in an energy independent manner without the need of protein templating. Because BMP is essential for intraendosomal vesicle formation, these results imply that lipid-lipid interactions may play a critical role in the endosomal process of lipid sorting and trafficking.
Collapse
Affiliation(s)
- Janetricks N. Chebukati
- Department of Chemistry, P.O. Box 117200, University of Florida, Gainesville, Fl 32611-7200, Tel: +1 352 392 2345; Fax: +1 352 392 0872
| | - Philip C. Goff
- Department of Chemistry, P.O. Box 117200, University of Florida, Gainesville, Fl 32611-7200, Tel: +1 352 392 2345; Fax: +1 352 392 0872
| | - Thomas E. Frederick
- Department of Chemistry, P.O. Box 117200, University of Florida, Gainesville, Fl 32611-7200, Tel: +1 352 392 2345; Fax: +1 352 392 0872
| | - Gail E. Fanucci
- Department of Chemistry, P.O. Box 117200, University of Florida, Gainesville, Fl 32611-7200, Tel: +1 352 392 2345; Fax: +1 352 392 0872
| |
Collapse
|
192
|
Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res 2010; 340:357-69. [DOI: 10.1007/s00441-010-0942-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/03/2010] [Indexed: 12/19/2022]
|
193
|
Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proc Natl Acad Sci U S A 2010; 107:5477-82. [PMID: 20212119 DOI: 10.1073/pnas.0914309107] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Niemann-Pick type C disease (NPC) is a lysosomal storage disorder causing accumulation of unesterified cholesterol in lysosomal storage organelles. Recent studies have shown that hydroxypropyl-beta-cyclodextrin injections in npc1(-/-) mice are partially effective in treating this disease. Using cultured fibroblasts, we have investigated the cellular mechanisms responsible for reduction of cholesterol accumulation. We show that decreased levels of cholesterol accumulation are maintained for several days after removal of cyclodextrin from the culture medium. This suggests that endocytosed cyclodextrin can reduce the cholesterol storage by acting from inside endocytic organelles rather than by removing cholesterol from the plasma membrane. To test this further, we incubated both NPC1 and NPC2 mutant cells with cholesterol-loaded cyclodextrin for 1 h, followed by chase in serum-containing medium. Although the cholesterol content of the treated cells increased after the 1-h incubation, the cholesterol levels in the storage organelles were later reduced significantly. We covalently coupled cyclodextrin to fluorescent dextran polymers. These cyclodextrin-dextran conjugates were delivered to cholesterol-enriched lysosomal storage organelles and were effective at reducing the cholesterol accumulation. We demonstrate that methyl-beta-cyclodextrin is more potent than hydroxypropyl-beta-cyclodextrin in reducing both cholesterol and bis(monoacylglycerol) phosphate accumulation in NPC mutant fibroblasts. Brief treatment of cells with cyclodextrins causes an increase in cholesterol esterification by acyl CoA:cholesterol acyl transferase, indicating increased cholesterol delivery to the endoplasmic reticulum. These findings suggest that cyclodextrin-mediated enhanced cholesterol transport from the endocytic system can reduce cholesterol accumulation in cells with defects in either NPC1 or NPC2.
Collapse
|
194
|
Abdul-Hammed M, Breiden B, Adebayo MA, Babalola JO, Schwarzmann G, Sandhoff K. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J Lipid Res 2010; 51:1747-60. [PMID: 20179319 PMCID: PMC2882726 DOI: 10.1194/jlr.m003822] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We examined the effect of Niemann-Pick disease type 2 (NPC2) protein and some late endosomal lipids [sphingomyelin, ceramide and bis(monoacylglycero)phosphate (BMP)] on cholesterol transfer and membrane fusion. Of all lipid-binding proteins tested, only NPC2 transferred cholesterol at a substantial rate, with no transfer of ceramide, GM3, galactosylceramide, sulfatide, phosphatidylethanolamine, or phosphatidylserine. Cholesterol transfer was greatly stimulated by BMP, little by ceramide, and strongly inhibited by sphingomyelin. Cholesterol and ceramide were also significantly transferred in the absence of protein. This spontaneous transfer of cholesterol was greatly enhanced by ceramide, slightly by BMP, and strongly inhibited by sphingomyelin. In our transfer assay, biotinylated donor liposomes were separated from fluorescent acceptor liposomes by streptavidin-coated magnetic beads. Thus, the loss of fluorescence indicated membrane fusion. Ceramide induced spontaneous fusion of lipid vesicles even at very low concentrations, while BMP and sphingomyelin did so at about 20 mol% and 10 mol% concentrations, respectively. In addition to transfer of cholesterol, NPC2 induced membrane fusion, although less than saposin-C. In this process, BMP and ceramide had a strong and mild stimulating effect, and sphingomyelin an inhibiting effect, respectively. Note that the effects of the lipids on cholesterol transfer mediated by NPC2 were similar to their effect on membrane fusion induced by NPC2 and saposin-C.
Collapse
Affiliation(s)
- Misbaudeen Abdul-Hammed
- Membrane Biology and Biochemistry Unit, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | | | | | | | | | | |
Collapse
|
195
|
Adibhatla RM, Hatcher JF. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2010; 12:125-69. [PMID: 19624272 DOI: 10.1089/ars.2009.2668] [Citation(s) in RCA: 332] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) are produced at low levels in mammalian cells by various metabolic processes, such as oxidative phosphorylation by the mitochondrial respiratory chain, NAD(P)H oxidases, and arachidonic acid oxidative metabolism. To maintain physiological redox balance, cells have endogenous antioxidant defenses regulated at the transcriptional level by Nrf2/ARE. Oxidative stress results when ROS production exceeds the cell's ability to detoxify ROS. Overproduction of ROS damages cellular components, including lipids, leading to decline in physiological function and cell death. Reaction of ROS with lipids produces oxidized phospholipids, which give rise to 4-hydroxynonenal, 4-oxo-2-nonenal, and acrolein. The brain is susceptible to oxidative damage due to its high lipid content and oxygen consumption. Neurodegenerative diseases (AD, ALS, bipolar disorder, epilepsy, Friedreich's ataxia, HD, MS, NBIA, NPC, PD, peroxisomal disorders, schizophrenia, Wallerian degeneration, Zellweger syndrome) and CNS traumas (stroke, TBI, SCI) are problems of vast clinical importance. Free iron can react with H(2)O(2) via the Fenton reaction, a primary cause of lipid peroxidation, and may be of particular importance for these CNS injuries and disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Atherosclerosis, the major risk factor for ischemic stroke, involves accumulation of oxidized LDL in the arteries, leading to foam cell formation and plaque development. This review will discuss the role of lipid oxidation/peroxidation in various CNS injuries/disorders.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-3232, USA.
| | | |
Collapse
|
196
|
Abstract
Niemann-Pick Type C (NPC) disease is associated with accumulation of cholesterol and other lipids in late endosomes/lysosomes in virtually every organ; however, neurodegeneration represents the fatal cause for the disease. Genetic analysis has identified loss-of-function mutations in NPC1 and NPC2 genes as the molecular triggers for the disease. Although the precise function of these proteins has not yet been clarified, recent research suggests that they orchestrate cholesterol efflux from late endosomes/lysosomes. NPC protein deficits result in impairment in intracellular cholesterol trafficking and dysregulation of cholesterol biosynthesis. Disruption of cholesterol homeostasis is also associated with deregulation of autophagic activity and early-onset neuroinflammation, which may contribute to the pathogenesis of NPC disease. This chapter reviews recent achievements in the investigation of disruption of cholesterol homeostasis-induced neurodegeneration in NPC disease, and provides new insight for developing a potential therapeutic strategy for this disorder.
Collapse
Affiliation(s)
- Xiaoning Bi
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
197
|
Nie J, Hao X, Chen D, Han X, Chang Z, Shi Y. A novel function of the human CLS1 in phosphatidylglycerol synthesis and remodeling. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:438-45. [PMID: 20025994 DOI: 10.1016/j.bbalip.2009.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Phosphatidylglycerol (PG) is a precursor for the biosynthesis of cardiolipin and a signaling molecule required for various cellular functions. PG is subjected to remodeling subsequent to its de novo biosynthesis in mitochondria to incorporate appropriate acyl content for its biological functions and to prevent the harmful effect of lysophosphatidylglycerol (LPG) accumulation. Yet, a gene encoding a mitochondrial LPG acyltransferase has not been identified. In this report, we identified a novel function of the human cardiolipin synthase (hCLS1) in regulating PG remodeling. In addition to the reported cardiolipin synthase activity, the recombinant hCLS1 protein expressed in COS-7 cells and Sf-9 insect cells exhibited a strong acyl-CoA-dependent LPG acyltransferase activity, which was further confirmed by purified hCLS1 protein overexpressed in Sf-9 cells. The recombinant hCLS1 displayed an acyl selectivity profile in the order of in the order of C18:1>C18:2>C18:0>C16:0, which is similar to that of hCLS1 toward PGs in cardiolipin synthesis, suggesting that the PG remodeling by hCLS1 is an intrinsic property of the enzyme. In contrast, no significant acyltransferase activity was detected from the recombinant hCLS1 enzyme toward lysocardiolipin which shares a similar structure with LPG. In support of a key function of hCLS1 in PG remodeling, overexpression of hCLS1 in COS-7 cells significantly increased PG biosynthesis concurrent with elevated levels of cardiolipin without any significant effects on the biosynthesis of other phospholipids. These results demonstrate for the first time that hCLS1 catalyzes two consecutive steps in cardiolipin biosynthesis by acylating LPG to PG and then converting PG to cardiolipin.
Collapse
Affiliation(s)
- Jia Nie
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Drive, H166, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
198
|
Pérez-Sala D, Boya P, Ramos I, Herrera M, Stamatakis K. The C-terminal sequence of RhoB directs protein degradation through an endo-lysosomal pathway. PLoS One 2009; 4:e8117. [PMID: 19956591 PMCID: PMC2780327 DOI: 10.1371/journal.pone.0008117] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 11/05/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Protein degradation is essential for cell homeostasis. Targeting of proteins for degradation is often achieved by specific protein sequences or posttranslational modifications such as ubiquitination. METHODOLOGY/PRINCIPAL FINDINGS By using biochemical and genetic tools we have monitored the localization and degradation of endogenous and chimeric proteins in live primary cells by confocal microscopy and ultra-structural analysis. Here we identify an eight amino acid sequence from the C-terminus of the short-lived GTPase RhoB that directs the rapid degradation of both RhoB and chimeric proteins bearing this sequence through a lysosomal pathway. Elucidation of the RhoB degradation pathway unveils a mechanism dependent on protein isoprenylation and palmitoylation that involves sorting of the protein into multivesicular bodies, mediated by the ESCRT machinery. Moreover, RhoB sorting is regulated by late endosome specific lipid dynamics and is altered in human genetic lipid traffic disease. CONCLUSIONS/SIGNIFICANCE Our findings characterize a short-lived cytosolic protein that is degraded through a lysosomal pathway. In addition, we define a novel motif for protein sorting and rapid degradation, which allows controlling protein levels by means of clinically used drugs.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | | | | | | | |
Collapse
|
199
|
Robertson DK, Gu L, Rowe RK, Beatty WL. Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis. PLoS Pathog 2009; 5:e1000664. [PMID: 19936056 PMCID: PMC2774160 DOI: 10.1371/journal.ppat.1000664] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 10/26/2009] [Indexed: 11/25/2022] Open
Abstract
Chlamydiae are obligate intracellular pathogens that must coordinate the acquisition of host cell-derived biosynthetic constituents essential for bacterial survival. Purified chlamydiae contain several lipids that are typically found in eukaryotes, implying the translocation of host cell lipids to the chlamydial vacuole. Acquisition and incorporation of sphingomyelin occurs subsequent to transport from Golgi-derived exocytic vesicles, with possible intermediate transport through endosomal multivesicular bodies. Eukaryotic host cell-derived sphingomyelin is essential for intracellular growth of Chlamydia trachomatis, but the precise role of this lipid in development has not been delineated. The present study identifies specific phenotypic effects on inclusion membrane biogenesis and stability consequent to conditions of sphingomyelin deficiency. Culturing infected cells in the presence of inhibitors of serine palmitoyltransferase, the first enzyme in the biosynthetic pathway of host cell sphingomyelin, resulted in loss of inclusion membrane integrity with subsequent disruption in normal chlamydial inclusion development. Surprisingly, this was accompanied by premature redifferentiation to and release of infectious elementary bodies. Homotypic fusion of inclusions was also disrupted under conditions of sphingolipid deficiency. In addition, host cell sphingomyelin synthesis was essential for inclusion membrane stability and expansion that is vital to reactivation of persistent chlamydial infection. The present study implicates both the Golgi apparatus and multivesicular bodies as key sources of host-derived lipids, with multivesicular bodies being essential for normal inclusion development and reactivation of persistent C. trachomatis infection. The genus Chlamydia is composed of a group of obligate intracellular bacterial pathogens that cause several human diseases of medical significance. C. trachomatis is the most commonly encountered sexually transmitted pathogen, as well as the leading cause of preventable blindness worldwide. The prevalence of chlamydial infections, and the extraordinary morbidity and health care costs associated with chronic persisting disease, justifies the research efforts in this area of microbial pathogenesis. Despite their clinical importance, the mechanisms by which these intracellular bacteria obtain nutrients essential to their growth remain enigmatic. Acquisition of sphingolipids, from the cells that chlamydiae infect, is essential for bacterial propagation. This study identifies a requirement for the lipid sphingomyelin from the infected host cell for bacterial replication during infection, and for long-term subsistence in persistent chlamydial infection. Blockage of sphingomyelin acquisition results in premature release of bacteria, a reduced bacterial number, and failure of the bacteria to cause a persisting infection. In this study, we have identified and subsequently disrupted specific sphingomyelin transport pathways, providing important implications on therapeutic intervention targeting this successful microbial pathogen.
Collapse
Affiliation(s)
- D Kesley Robertson
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | |
Collapse
|
200
|
Amritraj A, Peake K, Kodam A, Salio C, Merighi A, Vance JE, Kar S. Increased activity and altered subcellular distribution of lysosomal enzymes determine neuronal vulnerability in Niemann-Pick type C1-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2540-56. [PMID: 19893049 DOI: 10.2353/ajpath.2009.081096] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Niemann-Pick disease type C (NPC), caused by mutations in the Npc1 or Npc2 genes, is a progressive neurodegenerative disorder characterized by intracellular accumulation/redistribution of cholesterol in a number of tissues including the brain. This is accompanied by a severe loss of neurons in selected brain regions. In this study, we evaluated the role of lysosomal enzymes, cathepsins B and D, in determining neuronal vulnerability in NPC1-deficient (Npc1(-/-)) mouse brains. Our results showed that Npc1(-/-) mice exhibit an age-dependent degeneration of neurons in the cerebellum but not in the hippocampus. The cellular level/expression and activity of cathepsins B and D are increased more predominantly in the cerebellum than in the hippocampus of Npc1(-/-) mice. In addition, the cytosolic levels of cathepsins, cytochrome c, and Bax2 are higher in the cerebellum than in the hippocampus of Npc1(-/-) mice, suggesting a role for these enzymes in the degeneration of neurons. This suggestion is supported by our observation that degeneration of cultured cortical neurons treated with U18666A, which induces an NPC1-like phenotype at the cellular level, can be attenuated by inhibition of cathepsin B or D enzyme activity. These results suggest that the increased level/activity and altered subcellular distribution of cathepsins may be associated with the underlying cause of neuronal vulnerability in Npc1(-/-) brains. Therefore, their inhibitors may have therapeutic potential in attenuating NPC pathology.
Collapse
Affiliation(s)
- Asha Amritraj
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|