151
|
Henderson B, Pockley AG. Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 2010; 88:445-62. [PMID: 20445014 DOI: 10.1189/jlb.1209779] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review critically examines the hypothesis that molecular chaperones and protein-folding catalysts from prokaryotes and eukaryotes can be secreted by cells and function as intercellular signals, principally but not exclusively, for leukocytes. A growing number of molecular chaperones have been reported to function as ligands for selected receptors and/or receptors for specific ligands. Molecular chaperones initially appeared to act primarily as stimulatory signals for leukocytes and thus, were seen as proinflammatory mediators. However, evidence is now emerging that molecular chaperones can have anti-inflammatory actions or, depending on the protein and concentration, anti- and proinflammatory functions. Recasting the original hypothesis, we propose that molecular chaperones and protein-folding catalysts are "moonlighting" proteins that function as homeostatic immune regulators but may also under certain circumstances, contribute to tissue pathology. One of the key issues in the field of molecular chaperone biology relates to the role of microbial contaminants in their signaling activity; this too will be evaluated critically. The most fascinating aspect of molecular chaperones probably relates to evidence for their therapeutic potential in human disease, and ongoing studies are evaluating this potential in a range of clinical settings.
Collapse
Affiliation(s)
- Brian Henderson
- Department of Microbial Diseases, UCL-Eastman Dental Institute, University College London, 256 Gray's Inn Rd., London, WC1X 8LD, UK.
| | | |
Collapse
|
152
|
Aponte RA, Zimmermann S, Reinstein J. Directed evolution of the DnaK chaperone: mutations in the lid domain result in enhanced chaperone activity. J Mol Biol 2010; 399:154-67. [PMID: 20381501 DOI: 10.1016/j.jmb.2010.03.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 11/18/2022]
Abstract
We improved the DnaK molecular chaperone system for increased folding efficiency towards two target proteins, by using a multi-parameter screening procedure. First, we used a folding-deficient C-terminal truncated chloramphenicol acetyl transferase (CAT_Cd9) to obtain tunable selective pressure for enhanced DnaK chaperon function in vivo. Second, we screened selected clones in vitro for CAT_Cd9 activity after growth under selective pressure. We then analyzed how these variants performed as compared to wild type DnaK towards folding assistance of a second target protein; namely, chemically denatured firefly luciferase. A total of 11 single point DnaK mutants and 1 truncated variant were identified using CAT_Cd9 as the protein target, while 4 of the 12 selected variants showed improved luciferase refolding in vitro. This shows that improving the DnaK chaperone by using a certain target substrate protein, does not necessarily result in a loss or reduction in its ability to assist other proteins. Of the 12 identified mutations, half were clustered in the nucleotide binding domain, and half in the lid domain (LD) of DnaK. The truncated variant is characterized by a 35-residue C-terminal truncation (Cd35) and exhibited the highest improvement for luciferase refolding. Cd35 showed a 7-fold increase in initial refolding rate for denatured luciferase and resulted in a 5-fold increase in maximal luminescence as compared to wild type DnaK. Given that the best in vitro performing mutants contained LD substitutions, and that the LD is not involved in ATP binding, ATP hydrolysis or client protein association, but is involved in allosteric regulation of the chaperone cycle, we propose that improved DnaK variants result in changes to allosteric domain communication, ultimately retuning the ATP-dependent chaperone cycle.
Collapse
Affiliation(s)
- Raphael A Aponte
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
153
|
Mukherjee K, Conway de Macario E, Macario AJL, Brocchieri L. Chaperonin genes on the rise: new divergent classes and intense duplication in human and other vertebrate genomes. BMC Evol Biol 2010; 10:64. [PMID: 20193073 PMCID: PMC2846930 DOI: 10.1186/1471-2148-10-64] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 03/01/2010] [Indexed: 11/29/2022] Open
Abstract
Background Chaperonin proteins are well known for the critical role they play in protein folding and in disease. However, the recent identification of three diverged chaperonin paralogs associated with the human Bardet-Biedl and McKusick-Kaufman Syndromes (BBS and MKKS, respectively) indicates that the eukaryotic chaperonin-gene family is larger and more differentiated than previously thought. The availability of complete genome sequences makes possible a definitive characterization of the complete set of chaperonin sequences in human and other species. Results We identified fifty-four chaperonin-like sequences in the human genome and similar numbers in the genomes of the model organisms mouse and rat. In mammal genomes we identified, besides the well-known CCT chaperonin genes and the three genes associated with the MKKS and BBS pathological conditions, a newly-defined class of chaperonin genes named CCT8L, represented in human by the two sequences CCT8L1 and CCT8L2. Comparative analyses from several vertebrate genomes established the monophyletic origin of chaperonin-like MKKS and BBS genes from the CCT8 lineage. The CCT8L gene originated from a later duplication also in the CCT8 lineage at the onset of mammal evolution and duplicated in primate genomes. The functionality of CCT8L genes in different species was confirmed by evolutionary analyses and in human by expression data. Detailed sequence analysis and structural predictions of MKKS, BBS and CCT8L proteins strongly suggested that they conserve a typical chaperonin-like core structure but that they are unlikely to form a CCT-like oligomeric complex. The characterization of many newly-discovered chaperonin pseudogenes uncovered the intense duplication activity of eukaryotic chaperonin genes. Conclusions In vertebrates, chaperonin genes, driven by intense duplication processes, have diversified into multiple classes and functionalities that extend beyond their well-known protein-folding role as part of the typical oligomeric chaperonin complex, emphasizing previous observations on the involvement of individual CCT monomers in microtubule elongation. The functional characterization of newly identified chaperonin genes will be a challenge for future experimental analyses.
Collapse
Affiliation(s)
- Krishanu Mukherjee
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, 1660 SW Archer Road, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
154
|
Kumar S, Deepak P, Kumar S, Kishore D, Acharya A. Autologous Hsp70 induces antigen specific Th1 immune responses in a murine T-cell lymphoma. Immunol Invest 2010; 38:449-65. [PMID: 19811405 DOI: 10.1080/08820130902802673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Heat Shock protein-70 derived from tumor cells is highly immunogenic and induces specific anti-tumor immune response by directly activating cytotoxic CD8(+) T cells. Additionally, Hsp70 is known to be a strong activator of antigen presenting cells and therefore, up regulates the production of pro-inflammatory cytokines and chemokines. In this study, we have shown the effect of tumor-derived Hsp70 on the induction of delayed type hypersensitivity reaction in a T cell lymphoma bearing mice. The autologous Hsp70 augments contact hypersensitivity and delayed type hypersensitivity responses in mice challenged with allergen in vehicle and antigens respectively. The adoptive transfer of splenocytes derived from Hsp70 immunized mice is able to enhance delayed type hypersensitivity response in antigen challenged normal and DL-bearing host. Furthermore, adoptive transfer of macrophages incubated with autologous Hsp70 also enhances DTH reactivity in mice. The pro-inflammatory cytokines and C-C chemokines are found to be elevated in the DTH footpad extract of antigen challenged normal and DL-bearing mice. Increased production of IFN-gamma and MIP-1alpha+/- suggest that autologous Hsp70 augments the recruitment of antigen specific Th1 cells, which further secretes pro-inflammatory cytokines and C-C chemokines mediating the hypersensitivity reaction upon challenge with antigens.
Collapse
Affiliation(s)
- Sanjay Kumar
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi, U.P., India
| | | | | | | | | |
Collapse
|
155
|
Cui YD, Du YZ, Lu MX, Qiang CK. Cloning of the heat shock protein 60 gene from the stem borer, Chilo suppressalis, and analysis of expression characteristics under heat stress. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:100. [PMID: 20673188 PMCID: PMC3016842 DOI: 10.1673/031.010.10001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Heat shock protein 60 is an important chaperonin. In this paper, hsp60 of the stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), was cloned by RT-PCR and rapid amplification of cDNA end (RACE) reactions. The full length cDNA of hsp6 degrees Consisted of 2142 bp, with an ORF of 1719 bp, encoding 572 amino acid residues, with a 5'UTR of 158 bp and a 3'UTR of 265 bp. Cluster analysis confirmed that the deduced amino acid sequence shared high identity with the reported sequences from other insects (77%-86%). To investigate whether hsp60 in C. suppressalis responds to thermal stress, the expression levels of hsp60 mRNA in larval haemocytes across temperature gradients from 31 to 39 degrees C were analysed by real-time quantitative PCR. There was no significant difference for hsp60 expression from 28 to 31 degrees C. he temperatures for maximal induction of hsp60 expression in haemocytes was close to 36 degrees C. Hsp60 expression was observed by using flow cytometry. These results revealed that thermal stress significantly induced hsp60 expression and Hsp60 synthesis in larval haemocytes, and the expression profiles of Hsp60 at the mRNA and protein levels were in high agreement with each other from 33 to 39 degrees C.
Collapse
Affiliation(s)
- Ya-Dong Cui
- Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
- Department of Life Science, Fuyang Teachers College, Fuyang, 236032, China
| | - Yu-Zhou Du
- Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Ming-Xing Lu
- Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Cheng-Kui Qiang
- Department of Agriculture and Landscape Engineering, Xuzhou Higher Vocational School of Bioengineering, Xuzhou, 221006, China
| |
Collapse
|
156
|
Molecular and functional characterisation of the heat shock protein 10 of Strongyloides ratti. Mol Biochem Parasitol 2009; 168:149-57. [DOI: 10.1016/j.molbiopara.2009.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/14/2009] [Accepted: 07/14/2009] [Indexed: 11/20/2022]
|
157
|
Clark PL, Ugrinov KG. Measuring cotranslational folding of nascent polypeptide chains on ribosomes. Methods Enzymol 2009; 466:567-90. [PMID: 21609877 DOI: 10.1016/s0076-6879(09)66024-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein folding has been studied extensively in vitro, but much less is known about how folding proceeds in vivo. A particular distinction of folding in vivo is that folding begins while the nascent polypeptide chain is still undergoing synthesis by the ribosome. Studies of cotranslational protein folding are inherently much more complex than classical in vitro protein folding studies, and historically there have been few methods available to produce the quantities of pure material required for biophysical studies of the nascent chain, or assays to specifically interrogate its conformation. However, the past few years have produced dramatic methodological advances, which now place cotranslational folding studies within reach of more biochemists, enabling a detailed comparison of the earliest stages of protein folding on the ribosome to the wealth of information available for the refolding of full-length polypeptide chains in vitro.
Collapse
Affiliation(s)
- Patricia L Clark
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | | |
Collapse
|
158
|
Bonshtien AL, Parnas A, Sharkia R, Niv A, Mizrahi I, Azem A, Weiss C. Differential effects of co-chaperonin homologs on cpn60 oligomers. Cell Stress Chaperones 2009; 14:509-19. [PMID: 19224397 PMCID: PMC2728284 DOI: 10.1007/s12192-009-0104-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 01/29/2009] [Accepted: 02/01/2009] [Indexed: 01/13/2023] Open
Abstract
In this study, we have investigated the relationship between chaperonin/co-chaperonin binding, ATP hydrolysis, and protein refolding in heterologous chaperonin systems from bacteria, chloroplast, and mitochondria. We characterized two types of chloroplast cpn60 oligomers, ch-cpn60 composed of alpha and beta subunits (alpha(7)beta(7) ch-cpn60) and one composed of all beta subunits (beta(14) ch-cpn60). In terms of ATPase activity, the rate of ATP hydrolysis increased with protein concentration up to 60 microM, reflecting a concentration at which the oligomers are stable. At high concentrations of cpn60, all cpn10 homologs inhibited ATPase activity of alpha(7)beta(7) ch-cpn60. In contrast, ATPase of beta(14) ch-cpn60 was inhibited only by mitochondrial cpn10, supporting previous reports showing that beta(14) is functional only with mitochondrial cpn10 and not with other cpn10 homologs. Surprisingly, direct binding assays showed that both ch-cpn60 oligomer types bind to bacterial, mitochondrial, and chloroplast cpn10 homologs with an equal apparent affinity. Moreover, mitochondrial cpn60 binds chloroplast cpn20 with which it is not able to refold denatured proteins. Protein refolding experiments showed that in such instances, the bound protein is released in a conformation that is not able to refold. The presence of glycerol, or subsequent addition of mitochondrial cpn10, allows us to recover enzymatic activity of the substrate protein. Thus, in our systems, the formation of co-chaperonin/chaperonin complexes does not necessarily lead to protein folding. By using heterologous oligomer systems, we are able to separate the functions of binding and refolding in order to better understand the chaperonin mechanism.
Collapse
Affiliation(s)
- Anat L. Bonshtien
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| | - Avital Parnas
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| | - Rajach Sharkia
- Beit-Berl College, Beit-Berl, 44905 Israel
- The Triangle Research and Development Center, P.O. Box 2167, Kfar Qari’, 30075 Israel
| | - Adina Niv
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| | - Itzhak Mizrahi
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| | - Abdussalam Azem
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| | - Celeste Weiss
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| |
Collapse
|
159
|
CHANG Z. Posttranslational modulation on the biological activities of molecular chaperones. ACTA ACUST UNITED AC 2009; 52:515-20. [PMID: 19557328 DOI: 10.1007/s11427-009-0084-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/28/2009] [Indexed: 01/13/2023]
Abstract
Molecular chaperones are a family of proteins that were first noticed to exist about 45 years ago from their increased transcription under heat shock conditions. As a result, the regulation of their encoding genes has been subject to extensive studies. Recent studies revealed that the biological activities of molecular chaperones can also be effectively modulated at the protein level. The ways of modulation so far elucidated include allosteric effect, covalent modification, protein-protein interaction, and conformational alteration induced by such macro-environmental conditions as temperature and pH. These latter aspects were reviewed here. Emphasized here is the importance of such immediate structural alterations that lead to an immediate activity increase, providing the immediate protection needed for the cells to survive the stress conditions.
Collapse
Affiliation(s)
- ZengYi CHANG
- Center for Protein Science, School of Life Science, National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
160
|
Masters M, Blakely G, Coulson A, McLennan N, Yerko V, Acord J. Protein folding in Escherichia coli: the chaperonin GroE and its substrates. Res Microbiol 2009; 160:267-77. [PMID: 19393741 DOI: 10.1016/j.resmic.2009.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/02/2009] [Accepted: 04/10/2009] [Indexed: 10/20/2022]
Abstract
A brief summary of the role of DnaK and GroE chaperones in protein folding precedes a discussion of the role of GroE in Escherichia coli. We consider its obligate substrates, the 8 that are both obligate and essential, and the prospects for constructing a mutant that could survive without it. Structural features of GroE-dependent polypeptides are also considered.
Collapse
Affiliation(s)
- Millicent Masters
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Edinburgh EH93JR, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
161
|
Abstract
A significant proportion of bacteria express two or more chaperonin genes. Chaperonins are a group of molecular chaperones, defined by sequence similarity, required for the folding of some cellular proteins. Chaperonin monomers have a mass of c. 60 kDa, and are typically found as large protein complexes containing 14 subunits arranged in two rings. The mechanism of action of the Escherichia coli GroEL protein has been studied in great detail. It acts by binding to unfolded proteins and enabling them to fold in a protected environment where they do not interact with any other proteins. GroEL can assist the folding of many proteins of different sizes, sequences, and structures, and homologues from many different bacteria can functionally replace GroEL in E. coli. What then are the functions of multiple chaperonins? Do they provide a mechanism for cells to increase their general chaperoning ability, or have they become specialized to take on specific novel cellular roles? Here I will review the genetic, biochemical, and phylogenetic evidence that has a bearing on this question, and show that there is good evidence for at least some specificity of function in multiple chaperonin genes.
Collapse
Affiliation(s)
- Peter A Lund
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
162
|
Altschuler GM, Willison KR. Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin. J R Soc Interface 2009; 5:1391-408. [PMID: 18708324 DOI: 10.1098/rsif.2008.0185] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A free-energy-based approach is used to describe the mechanism through which chaperonin-containing TCP-1 (CCT) folds the filament-forming cytoskeletal protein actin, which is one of its primary substrates. The experimental observations on the actin folding and unfolding pathways are collated and then re-examined from this perspective, allowing us to determine the position of the CCT intervention on the actin free-energy folding landscape. The essential role for CCT in actin folding is to provide a free-energy contribution from its ATP cycle, which drives actin to fold from a stable, trapped intermediate I3, to a less stable but now productive folding intermediate I2. We develop two hypothetical mechanisms for actin folding founded upon concepts established for the bacterial type I chaperonin GroEL and extend them to the much more complex CCT system of eukaryotes. A new model is presented in which CCT facilitates free-energy transfer through direct coupling of the nucleotide hydrolysis cycle to the phases of actin substrate maturation.
Collapse
Affiliation(s)
- Gabriel M Altschuler
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
163
|
Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host Microbe 2009; 4:519-27. [PMID: 19064253 PMCID: PMC2752846 DOI: 10.1016/j.chom.2008.10.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 10/17/2008] [Accepted: 10/24/2008] [Indexed: 11/23/2022]
Abstract
Infectious organisms have to cope with demanding and rapidly changing environments during establishment in the host. This is particularly relevant for pathogens that utilize different hosts to complete their life cycle. In addition to homeotic environmental challenges, other stressful factors, such as oxidative bursts, are often triggered in response to infection. It is not surprising that many successful pathogens have developed robust chaperone systems to conquer the stressful environments in the host. In addition to discussing ingenious ways by which pathogens have utilized chaperones, the potential of exploiting pathogen chaperones as drug targets is also discussed.
Collapse
|
164
|
|
165
|
Chen HJ, Tsai JC, Chang TC, Hung WC, Tseng SP, Hsueh PR, Teng LJ. PCR-RFLP assay for species and subspecies differentiation of the Streptococcus bovis group based on groESL sequences. J Med Microbiol 2008; 57:432-438. [DOI: 10.1099/jmm.0.47628-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The sequence diversity of groESL genes among Streptococcus bovis group isolates was analysed, including five reference strains and 36 clinical isolates. Phylogenetic analysis of the groES and groEL sequences showed that the isolates that belonged to the same species or subspecies usually clustered together. The intergenic spacer region between groES and groEL was variable in size (67–342 bp) and sequence and appeared to be a unique marker for species or subspecies determination. Sequence similarities of the groESL genes among species and subspecies ranged from 84.2 to 99.0 % in groES, and from 88.0 to 99.0 % in groEL. Based on the sequences determined, a Streptococcus bovis group-specific PCR assay was developed, which may provide an alternative means of distinguishing the bovis group from other viridans streptococci. Restriction digestion of the amplicon with AclI further differentiated the species and subspecies.
Collapse
Affiliation(s)
- Hsiao-Jan Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jui-Chang Tsai
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Center for Optoelectronic Biomedicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tsung-Chain Chang
- Department of Medical Laboratory Science and Biotechnology, School of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chun Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Pin Tseng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Jene Teng
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
166
|
Affiliation(s)
- Michel Morange
- Centre Cavaillés, Ecole normale supérieure, 29 rue d'Ulm, 75230 Paris Cedex 05, France.
| |
Collapse
|
167
|
Identification and characterization of a gibberellin-regulated protein, which is ASR5, in the basal region of rice leaf sheaths. Mol Genet Genomics 2008; 279:359-70. [PMID: 18210155 DOI: 10.1007/s00438-007-0317-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Accepted: 12/29/2007] [Indexed: 01/13/2023]
Abstract
Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA(3) were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA(3) treatment. ASR5 out of these six proteins was significantly regulated by GA(3) at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA(3), these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.
Collapse
|
168
|
Henderson B, Mesher J. The search for the chaperonin 60 receptors. Methods 2007; 43:223-8. [DOI: 10.1016/j.ymeth.2007.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022] Open
|
169
|
Portis AR, Parry MAJ. Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. PHOTOSYNTHESIS RESEARCH 2007; 94:121-43. [PMID: 17665149 DOI: 10.1007/s11120-007-9225-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/04/2007] [Indexed: 05/16/2023]
Abstract
Historic discoveries and key observations related to Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase), from 1947 to 2006, are presented. Currently, around 200 papers describing Rubisco research are published each year and the literature contains more than 5000 manuscripts on the subject. While trying to ensure that all the major events over this period are recorded, this analysis will inevitably be incomplete and will reflect the areas of particular interest to the authors.
Collapse
Affiliation(s)
- Archie R Portis
- Photosynthesis Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Illinois, 1201 West Gregory Drive, Urbana, IL 61801, USA.
| | | |
Collapse
|
170
|
Lupi O, Peryassu MA. An emerging concept of prion infections as a form of transmissible cerebral amyloidosis. Prion 2007; 1:223-7. [PMID: 19172115 DOI: 10.4161/pri.1.4.5816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proteins are a major constituent of cells with specific biological functions. Besides the primary structure that is simply the sequence of amino acids that comprise a protein, the secondary structure represents the first step of folding defining its general conformation. The biological functions of proteins are directly dependent on the acquisition of their conformation. The same protein can have different stable states, which may participate with different functions in the cell. The amyloid diseases comprise Alzheimer's and Parkinson's diseases, type II diabetes mellitus and systemic amyloidosis. Amyloid fibers are insoluble, resistant to proteolysis and show an extremely high content of beta-sheet, in a very similar structure to the one observed among prion rods, associated to the transmissible spongiform encephalopathies. All these diseases are "infectious" in the sense that misfolded beta-sheeted conformers formed in a nucleation process in which preformed metastable oligomer acts as a seed to convert a normal isoform into an abnormal protein with a misfolded conformation. Only prion infections have a proven infectivity in a microbiological sense; some recent observations, however, detected the transmissibility of systemic amyloidosis by a prion-like mechanism among mice. Prions diseases and amyloidosis present many similar aspects of the so-called conformational diseases; according to this interpretation the prion infections could be considered as a form of transmissible cerebral amyloidosis.
Collapse
Affiliation(s)
- Omar Lupi
- Department of Dermatology, Universidade Federal do Estado do Rio de Janerio, Rio de Janeiro, Brazil.
| | | |
Collapse
|
171
|
Ellis RJ. Protein misassembly: macromolecular crowding and molecular chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:1-13. [PMID: 17205670 DOI: 10.1007/978-0-387-39975-1_1] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generic tendency of proteins to misassemble into nonfunctional, and sometimes cytotoxic, structures poses a universal problem for all types of cell. This problem is exacerbated by the high total concentration of macromolecules found within most intracellular compartments but it is solved by the actions of molecular chaperones. This review discusses some of the basic evidence and key concepts relating to this conclusion.
Collapse
Affiliation(s)
- R John Ellis
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
172
|
Hanania U, Velcheva M, Or E, Flaishman M, Sahar N, Perl A. Silencing of chaperonin 21, that was differentially expressed in inflorescence of seedless and seeded grapes, promoted seed abortion in tobacco and tomato fruits. Transgenic Res 2007; 16:515-25. [PMID: 17103240 DOI: 10.1007/s11248-006-9044-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/22/2006] [Indexed: 11/29/2022]
Abstract
Vitis vinifera L. cv. 'Thompson Seedless' presents a type of stenospermocarpy in grape where fertilization occurs but seeds abort and fail to develop. To unravel the molecular basis for stenospermocarpy in grapes, subtractive hybridization was carried out in order to isolate differentially regulated genes that participate in the seedlessness machinery. Two 'Thompson' lines, a seeded and a seedless, were screened during different flower developmental stages. One of the genes, that was differentially expressed between the seeded and seedless lines, was the chloroplast chaperonin 21 (ch-Cpn21). ch-Cpn21 is a 21-kDa co-chaperonin polypeptide formed by two GroES-like domains fused together in tandem. Silencing of ch-Cpn21 in Nicotiana benthamiana plants resulted in leaf stunting, chlorosis, as well as ovary necrogenesis leading to seed abortion. Moreover, organ-specific silencing of ch-Cpn21 only in Lycopersicum esculentum fruits resulted in the development of seedless tomatoes. These results suggest that ch-Cpn21 may play a role in seed abortion in stenospermocarpic grapes.
Collapse
Affiliation(s)
- Uri Hanania
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Bet-Dagan, Israel
| | | | | | | | | | | |
Collapse
|
173
|
Yang P, Chen H, Liang Y, Shen S. Proteomic analysis of de-etiolated rice seedlings upon exposure to light. Proteomics 2007; 7:2459-68. [PMID: 17570521 DOI: 10.1002/pmic.200600215] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two-week-old dark-grown rice seedlings were de-etiolated upon exposure to light. A comparison of 2-DE protein profiles between the dark-grown control and the rice seedlings illuminated respectively for 6, 12 and 24 h revealed 52 differentially expressed CBB-stained spots. Of these changed spots, the identity of 51 protein spots was determined by MALDI-TOF MS. Of these identified proteins, 13 proteins were related to light reactions of photosynthesis, photosynthetic carbon assimilation and chlorophyll biosynthesis, indicating the complex process of biogenesis of photosynthetic apparatus was correlated to the transition from a dark-grown (etiolated) to a light-grown (de-etiolated) morphology. In addition, three proteins related to antioxidation and detoxification decreased in de-etiolated rice seedlings implied, that the etiolated rice seedlings possibly be under an oxidative stress which could be released during their early stages of de-etiolation. The increase of S-adenosylmethionine synthetase that is involved in the biosynthesis of the phytohormone ethylene might contribute to the phenotypic development of the apical hook in the de-etiolated rice seedlings. These results yield a comprehensive picture of the post-transcriptional response for de-etiolation of rice seedlings and serve as a basic platform for further characterization of gene function and regulation in light-induced development of plants.
Collapse
Affiliation(s)
- Pingfang Yang
- Key laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
174
|
Kim HK, Park WS, Kang SH, Warda M, Kim N, Ko JH, Prince AEB, Han J. Mitochondrial alterations in human gastric carcinoma cell line. Am J Physiol Cell Physiol 2007; 293:C761-71. [PMID: 17537807 DOI: 10.1152/ajpcell.00043.2007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We compared mitochondrial function, morphology, and proteome in the rat normal gastric cell line RGM-1 and the human gastric cancer cell line AGS. Total numbers and cross-sectional sizes of mitochondria were smaller in AGS cells. Mitochondria in AGS cells were deformed and consumed less oxygen. Confocal microscopy indicated that the mitochondrial inner membrane potential was hyperpolarized and the mitochondrial Ca(2+) concentration was elevated in AGS cells. Interestingly, two-dimensional electrophoresis proteomics on the mitochondria-enriched fraction revealed high expression of four mitochondrial proteins in AGS cells: ubiquinol-cytochrome c reductase, mitochondrial short-chain enoyl-coenzyme A hydratase-1, heat shock protein 60, and mitochondria elongation factor Tu. The results provide clues as to the mechanism of the mitochondrial changes in cancer at the protein level and may serve as potential cancer biomarkers in mitochondria.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- Mitochondrial Signaling Laboratory, Mitochondria Research Group, Dept of Physiology and Biophysics, College of Medicine, Biohealth Products Research Center, Cardiovascular and Metabolic Disease Center, Inje University, Busanjin-Gu, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
175
|
|
176
|
Georgopoulos C. Toothpicks, serendipity and the emergence of the Escherichia coli DnaK (Hsp70) and GroEL (Hsp60) chaperone machines. Genetics 2007; 174:1699-707. [PMID: 17182732 PMCID: PMC1698650 DOI: 10.1534/genetics.104.68262] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Costa Georgopoulos
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
177
|
Steptoe A, Shamaei-Tousi A, Gylfe A, Bailey L, Bergström S, Coates AR, Henderson B. Protective effect of human heat shock protein 60 suggested by its association with decreased seropositivity to pathogens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:204-7. [PMID: 17202307 PMCID: PMC1797791 DOI: 10.1128/cvi.00179-06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presence of heat shock protein 60 (Hsp60) in human plasma has been linked with cardiovascular disease (CVD). In this study, the examination of the relationship between Hsp60 in plasma and seropositivity for three microbial agents, which are thought to be risk factors for CVD, surprisingly revealed a negative association between Hsp60 and seropositivity, suggesting a protective effect of this circulating stress protein.
Collapse
Affiliation(s)
- A Steptoe
- Department of Epidemiology and Public Health, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
178
|
Gadkar V, Rillig MC. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 2006; 263:93-101. [PMID: 16958856 DOI: 10.1111/j.1574-6968.2006.00412.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Work on glomalin-related soil protein produced by arbuscular mycorrhizal (AM) fungi (AMF) has been limited because of the unknown identity of the protein. A protein band cross-reactive with the glomalin-specific antibody MAb32B11 from the AM fungus Glomus intraradices was partially sequenced using tandem liquid chromatography-mass spectrometry. A 17 amino acid sequence showing similarity to heat shock protein 60 (hsp 60) was obtained. Based on degenerate PCR, a full-length cDNA of 1773 bp length encoding the hsp 60 gene was isolated from a G. intraradices cDNA library. The ORF was predicted to encode a protein of 590 amino acids. The protein sequence had three N-terminal glycosylation sites and a string of GGM motifs at the C-terminal end. The GiHsp 60 ORF had three introns of 67, 76 and 131 bp length. The GiHsp 60 was expressed using an in vitro translation system, and the protein was purified using the 6xHis-tag system. A dot-blot assay on the purified protein showed that it was highly cross-reactive with the glomalin-specific antibody MAb32B11. The present work provides the first evidence for the identity of the glomalin protein in the model AMF G. intraradices, thus facilitating further characterization of this protein, which is of great interest in soil ecology.
Collapse
Affiliation(s)
- Vijay Gadkar
- Microbial Ecology Program, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
179
|
Velazquez-Muriel JA, Carazo JMA. Flexible fitting in 3D-EM with incomplete data on superfamily variability. J Struct Biol 2006; 158:165-81. [PMID: 17257856 DOI: 10.1016/j.jsb.2006.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/20/2006] [Accepted: 10/13/2006] [Indexed: 11/26/2022]
Abstract
We present a substantial improvement of S-flexfit, our recently proposed method for flexible fitting in three dimensional electron microscopy (3D-EM) at a resolution range of 8-12A, together with a comparison of the method capabilities with Normal Mode Analysis (NMA), application examples and a user's guide. S-flexfit uses the evolutionary information contained in protein domain databases like CATH, by means of the structural alignment of the elements of a protein superfamily. The added development is based on a recent extension of the Singular Value Decomposition (SVD) algorithm specifically designed for situations with missing data: Incremental Singular Value Decomposition (ISVD). ISVD can manage gaps and allows considering more aminoacids in the structural alignment of a superfamily, extending the range of application and producing better models for the fitting step of our methodology. Our previous SVD-based flexible fitting approach can only take into account positions with no gaps in the alignment, being appropriate when the superfamily members are relatively similar and there are few gaps. However, with new data coming from structural proteomics works, the later situation is becoming less likely, making ISVD the technique of choice for further works. We present the results of using ISVD in the process of flexible fitting with both simulated and experimental 3D-EM maps (GroEL and Poliovirus 135S cell entry intermediate).
Collapse
Affiliation(s)
- Javier A Velazquez-Muriel
- Biocomputing Unit, National Center for Biotechnology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
180
|
Horst R, Wider G, Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K. Proton-proton Overhauser NMR spectroscopy with polypeptide chains in large structures. Proc Natl Acad Sci U S A 2006; 103:15445-50. [PMID: 17032756 PMCID: PMC1622842 DOI: 10.1073/pnas.0607141103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The use of 1H-1H nuclear Overhauser effects (NOE) for structural studies of uniformly deuterated polypeptide chains in large structures is investigated by model calculations and NMR experiments. Detailed analysis of the evolution of the magnetization during 1H-1H NOE experiments under slow-motion conditions shows that the maximal 1H-1H NOE transfer is independent of the overall rotational correlation time, even in the presence of chemical exchange with the bulk water, provided that the mixing time is adjusted for the size of the structure studied. 1H-1H NOE buildup measurements were performed for the 472-kDa complex of the 72-kDa cochaperonin GroES with a 400-kDa single-ring variant of the chaperonin GroEL (SR1). These experiments demonstrate that multidimensional NOESY experiments with cross-correlated relaxation-enhanced polarization transfer and transverse relaxation-optimized spectroscopy elements can be applied to structures of molecular masses up to several hundred kilodaltabs, which opens new possibilities for studying functional interactions in large maromolecular assemblies in solution.
Collapse
Affiliation(s)
- Reto Horst
- *Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Gerhard Wider
- *Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Jocelyne Fiaux
- *Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Eric B. Bertelsen
- Howard Hughes Medical Institute and Department of Genetics, Yale University School of Medicine, New Haven, CT 06510; and
| | - Arthur L. Horwich
- Howard Hughes Medical Institute and Department of Genetics, Yale University School of Medicine, New Haven, CT 06510; and
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Kurt Wüthrich
- *Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
181
|
Endo A, Sasaki M, Maruyama A, Kurusu Y. Temperature adaptation of Bacillus subtilis by chromosomal groEL replacement. Biosci Biotechnol Biochem 2006; 70:2357-62. [PMID: 17031040 DOI: 10.1271/bbb.50689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated a temperature adaptation of Bacillus subtilis 168 in which chromosomal groEL was replaced with a psychrophilic groEL. This strain can grow at 50 degrees C but not at 51 degrees C, a temperature at which wild-type B. subtilis can grow. Using in vivo random mutagenesis by the B. subtilis mutator strain (mutS, mutM, mutY), two thermo-adaptants were isolated from the groEL substituted strain at 52 degrees C. They contained novel amino acid alterations in their ATP binding motif (T93I) and the inter-monomer contact (R285H) region of GroEL. These results suggest that GroEL participates in bacterial temperature adaptation.
Collapse
Affiliation(s)
- Ayako Endo
- Laboratory of Molecular Microbiology, College of Agriculture, Ibaraki University, Japan
| | | | | | | |
Collapse
|
182
|
Sharma S, Reddy P, Rohilla MS, Tiwari P. Expression of HSP60 homologue in sheep blowfly Lucilia cuprina during development and heat stress. J Therm Biol 2006. [DOI: 10.1016/j.jtherbio.2006.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
183
|
Carmicle S, Steede NK, Landry SJ. Antigen three-dimensional structure guides the processing and presentation of helper T-cell epitopes. Mol Immunol 2006; 44:1159-68. [PMID: 16893568 DOI: 10.1016/j.molimm.2006.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 06/28/2006] [Accepted: 06/30/2006] [Indexed: 11/18/2022]
Abstract
Antigen three-dimensional structure potentially controls presentation of CD4(+) T-cell epitopes by limiting the access of proteolytic enzymes and MHC class II antigen-presenting proteins. The protease-sensitive mobile loops of Hsp10s from mycobacteria, Escherichia coli, and bacteriophage T4 (T4Hsp10) are associated with adjacent immunodominant helper T-cell epitopes, and a mobile-loop deletion in T4Hsp10 eliminated the protease sensitivity and the associated epitope immunodominance. In the present work, protease-sensitivity and epitope presentation was analyzed in a group of T4Hsp10 variants. Two mobile-loop sequence variants of T4Hsp10 were constructed by replacing different segments of the mobile loop with an irrelevant sequence from hen egg lysozyme. The variant proteins retained native-like structure, and the mobile loops retained protease sensitivity. Mobile-loop deletion and reconstruction affected the presentation of two epitopes according to whether the epitope was protease-independent or protease-dependent. The protease-independent epitope lies within the mobile loop, and the protease-dependent epitope lies in a well-ordered segment on the carboxy-terminal flank of the mobile loop. The results are consistent with a model for processing of the protease-dependent epitope in which an endoproteolytic nick in the mobile-loop unlocks T4Hsp10 three-dimensional structure, and then the epitope becomes available for binding to the MHC protein.
Collapse
Affiliation(s)
- Stephanie Carmicle
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
184
|
Rassow J, Pfanner N. Molecular chaperones and intracellular protein translocation. Rev Physiol Biochem Pharmacol 2006; 126:199-264. [PMID: 7886379 DOI: 10.1007/bfb0049777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Rassow
- Biochemisches Institut, Universität Freiburg, Germany
| | | |
Collapse
|
185
|
Henderson B, Allan E, Coates ARM. Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect Immun 2006; 74:3693-706. [PMID: 16790742 PMCID: PMC1489680 DOI: 10.1128/iai.01882-05] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Brian Henderson
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X, United Kingdom.
| | | | | |
Collapse
|
186
|
Affiliation(s)
- Arthur L Horwich
- Department of Genetics and Howard Hughes Medical Institute, Yale School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
187
|
Naletova IN, Muronetz VI, Schmalhausen EV. Unfolded, oxidized, and thermoinactivated forms of glyceraldehyde-3-phosphate dehydrogenase interact with the chaperonin GroEL in different ways. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:831-8. [PMID: 16551514 DOI: 10.1016/j.bbapap.2006.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/27/2006] [Accepted: 02/09/2006] [Indexed: 11/22/2022]
Abstract
The interaction of GroEL with different denatured forms of glyceraldehyde-3-phosphate dehydrogenase* (GAPDH) has been investigated. GroEL does not prevent thermal denaturation of GAPDH, but effectively interacts with the thermodenatured enzyme, thus preventing the aggregation of denatured molecules. Binding of the thermodenatured GAPDH shifts the Tm value of the GroEL thermodenaturation curve by 3 degrees towards higher temperatures and increases the DeltaHcal value 1.44-fold, indicating a significant increase in the thermal stability of the resulting complex. GAPDH thermodenatured in the presence of GroEL cannot be reactivated by the addition of GroES, Mg2+, and ATP. In contrast, GAPDH denatured in guanidine hydrochloride (GAPDHden) is reactivated in the presence of GroEL, GroES, Mg2+, and ATP, yielding 11-15% of its original activity, while the spontaneous reactivation yields only 2-3%. The oxidation of GAPDH with hydrogen peroxide in the presence of 4 M guanidine hydrochloride results in the formation of the enzyme (GAPDHox) that cannot acquire its native conformation and binds to GroEL irreversibly. Binding of GAPDHox to one of the GroEL rings completely inhibits the GroEL-assisted reactivation of GAPDHden, but does not affect the GroEL-assisted reactivation of lactate dehydrogenase (LDH). The data suggest that LDH can be successfully reactivated due to the binding of the denatured molecules to the apical domain of the opposite GroEL ring with their subsequent release into the solution without encapsulation (trans-mechanism). In contrast, GAPDH requires the hydrophilic cavity for the reactivation (cis-mechanism).
Collapse
Affiliation(s)
- I N Naletova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie gory, Moscow 119992, Russia
| | | | | |
Collapse
|
188
|
Kawe M, Plückthun A. GroEL Walks the Fine Line: The Subtle Balance of Substrate and Co-chaperonin Binding by GroEL. A Combinatorial Investigation by Design, Selection and Screening. J Mol Biol 2006; 357:411-26. [PMID: 16427651 DOI: 10.1016/j.jmb.2005.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 11/23/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
While support in protein folding by molecular chaperones is extremely efficient for endogenous polypeptides, it often fails for recombinant proteins in a bacterial host, thus constituting a major hurdle for protein research and biotechnology. To understand the reasons for this difference and to answer the question of whether it is feasible to design tailor-made chaperones, we investigated one of the most prominent bacterial chaperones, the GroEL/ES ring complex. On the basis of structural data, we designed and constructed a combinatorial GroEL library, where the substrate-binding site was randomized. Screening and selection experiments with this library demonstrated that substrate binding and release is supported by many variants, but the majority of the library members failed to assist in chaperonin-mediated protein folding under conditions where spontaneous folding is suppressed. These findings revealed a conflict between binding of substrate and binding of the co-chaperonin GroES. As a consequence, the window of mutational freedom in that region of GroEL is very small. In screening experiments, we could identify GroEL variants slightly improved for a given substrate, which were still promiscuous. As the substrate-binding site of the GroEL molecule overlaps strongly with the site of cofactor binding, the outcome of our experiments suggests that maintenance of cofactor binding affinity is more critical for chaperonin-mediated protein folding than energetically optimized substrate recognition.
Collapse
Affiliation(s)
- Martin Kawe
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
189
|
Kayukawa T, Chen B, Miyazaki S, Itoyama K, Shinoda T, Ishikawa Y. Expression of mRNA for the t-complex polypeptide-1, a subunit of chaperonin CCT, is upregulated in association with increased cold hardiness in Delia antiqua. Cell Stress Chaperones 2005; 10:204-10. [PMID: 16184765 PMCID: PMC1226018 DOI: 10.1379/csc-106r.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Summer-diapause and winter-diapause pupae of the onion maggot, Delia antiqua (Diptera: Anthomyiidae), were significantly more cold hardy than nondiapause, prediapause, and postdiapause pupae. Moreover, cold acclimation of nondiapause pupae conferred strong cold hardiness comparable with that of diapause pupae. Differential display analysis revealed that the expression of a gene encoding TCP-1 (the t-complex polypeptide-1), a subunit of chaperonin CCT, in D antiqua (DaTCP-1) is upregulated in the pupae that express enhanced cold hardiness. Quantitative real-time polymerase chain reaction analyses showed that the levels of DaTCP-1 messenger RNA in pupal tissues, brain, and midgut in particular, are highly correlated with the cold hardiness of the pupae. These findings suggest that the upregulation of DaTCP-1 expression is related to enhanced cold hardiness in D antiqua. The upregulation of CCT in response to low temperature in an organism other than the yeast is newly reported.
Collapse
Affiliation(s)
- Takumi Kayukawa
- Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
190
|
Melkani GC, Zardeneta G, Mendoza JA. On the chaperonin activity of GroEL at heat-shock temperature. Int J Biochem Cell Biol 2005; 37:1375-85. [PMID: 15833270 DOI: 10.1016/j.biocel.2005.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2004] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
Abstract
The studies of GroEL, almost exclusively, have been concerned with the function of the chaperonin under non-stress conditions, and little is known about the role of GroEL during heat shock. Being a heat shock protein, GroEL deserves to be studied under heat shock temperature. As a model for heat shock in vitro, we have investigated the interaction of GroEL with the enzyme rhodanese undergoing thermal unfolding at 43 degrees C. GroEL interacted strongly with the unfolding enzyme forming a binary complex. Active rhodanese (82%) could be recovered by releasing the enzyme from GroEL after the addition of several components, e.g. ATP and the co-chaperonin GroES. After evaluating the stability of the GroEL-rhodanese complex, as a function of the percentage of active rhodanese that could be released from GroEL with time, we found that the complex had a half-life of only one and half-hours at 43 degrees C; while, it remained stable at 25 degrees C for more than 2 weeks. Interestingly, the GroEL-rhodanese complex remained intact and only 13% of its ATPase activity was lost during its incubation at 43 degrees C. Further, rhodanese underwent a conformational change over time while it was bound to GroEL at 43 degrees C. Overall, our results indicated that the inability to recover active enzyme at 43 degrees C from the GroEL-rhodanese complex was not due to the disruption of the complex or aggregation of rhodanese, but rather to the partial loss of its ATPase activity and/or to the inability of rhodanese to be released from GroEL due to a conformational change.
Collapse
Affiliation(s)
- Girish C Melkani
- Department of Chemistry and Biochemistry, California State University San Marcos, 333 S Twin Oaks Valley RD, San Marcos, CA 92096-0001, USA
| | | | | |
Collapse
|
191
|
Bakkes PJ, Faber BW, van Heerikhuizen H, van der Vies SM. The T4-encoded cochaperonin, gp31, has unique properties that explain its requirement for the folding of the T4 major capsid protein. Proc Natl Acad Sci U S A 2005; 102:8144-9. [PMID: 15919824 PMCID: PMC1149413 DOI: 10.1073/pnas.0500048102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 04/04/2005] [Indexed: 12/30/2022] Open
Abstract
The morphogenesis of bacteriophage T4 requires a specialized bacteriophage-encoded molecular chaperone (gp31) that is essential for the folding of the T4 major capsid protein (gp23). gp31 is related to GroES, the chaperonin of the Escherichia coli host because it displays a similar overall structure and properties. Why GroES is unable to fold the T4 capsid protein in conjunction with GroEL is unknown. Here we show that gp23 binds to the GroEL heptameric ring opposite to the ring that is bound by gp31 (the so-called trans-ring), while no binding to the trans-ring of the GroEL-GroES complex is observed. Although gp23 can be enclosed within the folding cage of the GroEL-gp31 complex, encapsulation within the GroEL-GroES complex is not possible. So it appears that folding of the T4 major capsid protein requires a gp31-dependent cis-folding mechanism likely inside an enlarged "Anfinsen cage" provided by GroEL and gp31.
Collapse
Affiliation(s)
- Patrick J Bakkes
- Section of Biochemistry and Molecular Biology, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
192
|
Abstract
Protein maturation in eukaryotic organelles requires the type I chaperonin system; this comprises chaperonin 60 (Cpn60) and its cochaperonin. We have re-examined and revised the sequence of the nuclear genes specifying organellar cochaperonins in Plasmodium falciparum (Pf). One gene encodes a typical cochaperonin (PfCpn10) whereas the other (encoding PfCpn20) specifies two Cpn10 domains arranged in tandem as in plant chloroplasts. Transfection experiments using fluorescent reporters showed specific localization of PfCpn10 to the mitochondrion and PfCpn20 to the plastid. As P. falciparum also has two Cpn60s, one of which is targeted specifically to the mitochondrion and the other exclusively to the plastid, each organelle has a distinct type I chaperonin system. Comparative sequence analysis extended these findings to several other apicomplexan parasites that have both a mitochondrion and a plastid. Phylogenetic analysis suggests the Cpn10s and Cpn20s of apicomplexans are independently monophyletic. The apicomplexan Cpn10 is phylogenetically related to other mitochondrial versions but a significant relationship between apicomplexan Cpn20s and other cochaperonins was not established.
Collapse
Affiliation(s)
- Shigeharu Sato
- Division of Parasitology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
193
|
Maguire M, Poole S, Coates ARM, Tormay P, Wheeler-Jones C, Henderson B. Comparative cell signalling activity of ultrapure recombinant chaperonin 60 proteins from prokaryotes and eukaryotes. Immunology 2005; 115:231-8. [PMID: 15885129 PMCID: PMC1782147 DOI: 10.1111/j.1365-2567.2005.02155.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 02/02/2005] [Accepted: 02/08/2005] [Indexed: 01/13/2023] Open
Abstract
Heat-shock protein (hsp)60/chaperonin 60 is a potent immunogen which has recently been claimed to have cell-signalling actions upon myeloid and vascular endothelial cells. The literature is controversial with different chaperonin 60 proteins producing different patterns of cellular activation and the ever-present criticism that activity is the result of bacterial contaminants. To clarify the situation we have cloned, expressed and purified to homogeneity the chaperonin 60 proteins from Chlamydia pneumoniae, Helicobacter pylori and the human mitochondrion. These highly purified proteins were compared for their ability to stimulate human peripheral blood mononuclear cell (PBMC) cytokine synthesis and vascular endothelial cell adhesion protein expression. In spite of their significant sequence homology, the H. pylori protein was the most potent PBMC activator with the human protein the least potent. PBMC activation by C. pneumoniae and human, but not H. pylori, chaperonin 60 was blocked by antibody neutralization of Toll-like receptor-4. The C. pneumoniae chaperonin 60 was the most potent endothelial cell activator, with the human protein being significantly less active than bacterial chaperonin 60 proteins. These results have implications for the role of chaperonin 60 proteins as pathological factors in autoimmune and cardiovascular disease, and raise the possibility that each of these proteins may result in different pathological effects in such diseases.
Collapse
Affiliation(s)
- Maria Maguire
- Division of Microbial Diseases, Eastman Dental Institute, University College LondonLondon, United Kingdom
| | - Stephen Poole
- Division of Endocrinology, NIBSC, Potter's BarLondon, United Kingdom
| | - Anthony R M Coates
- Medical Microbiology, Department of Cellular and Molecular Sciences, St George's Hospital Medical SchoolLondon, United Kingdom
| | - Peter Tormay
- Medical Microbiology, Department of Cellular and Molecular Sciences, St George's Hospital Medical SchoolLondon, United Kingdom
| | - Caroline Wheeler-Jones
- Cardiovascular Biology and Inflammation Group, Royal Veterinary CollegeLondon, United Kingdom
| | - Brian Henderson
- Division of Microbial Diseases, Eastman Dental Institute, University College LondonLondon, United Kingdom
| |
Collapse
|
194
|
Kovács IA, Szalay MS, Csermely P. Water and molecular chaperones act as weak links of protein folding networks: energy landscape and punctuated equilibrium changes point towards a game theory of proteins. FEBS Lett 2005; 579:2254-60. [PMID: 15848154 DOI: 10.1016/j.febslet.2005.03.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 03/14/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
Water molecules and molecular chaperones efficiently help the protein folding process. Here we describe their action in the context of the energy and topological networks of proteins. In energy terms water and chaperones were suggested to decrease the activation energy between various local energy minima smoothing the energy landscape, rescuing misfolded proteins from conformational traps and stabilizing their native structure. In kinetic terms water and chaperones may make the punctuated equilibrium of conformational changes less punctuated and help protein relaxation. Finally, water and chaperones may help the convergence of multiple energy landscapes during protein-macromolecule interactions. We also discuss the possibility of the introduction of protein games to narrow the multitude of the energy landscapes when a protein binds to another macromolecule. Both water and chaperones provide a diffuse set of rapidly fluctuating weak links (low affinity and low probability interactions), which allow the generalization of all these statements to a multitude of networks.
Collapse
Affiliation(s)
- István A Kovács
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
195
|
Choresh O, Loya Y, Müller WEG, Wiedenmann J, Azem A. The mitochondrial 60-kDa heat shock protein in marine invertebrates: biochemical purification and molecular characterization. Cell Stress Chaperones 2005; 9:38-48. [PMID: 15270076 PMCID: PMC1065304 DOI: 10.1379/469.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sessile marine invertebrates undergo constant direct exposure to the surrounding environmental conditions, including local and global environmental fluctuations that may lead to fatal protein damage. Induction of heat shock proteins (Hsps) constitutes an important defense mechanism that protects these organisms from deleterious stress conditions. In a previous study, we reported the immunological detection of a 60-kDa Hsp (Hsp60) in the sea anemone Anemonia viridis (formerly called Anemonia sulcata) and studied its expression under a variety of stress conditions. In the present study, we show that the sponge Tetilla sp. from tidal habitats with a highly variable temperature regime is characterized by an increased level of Hsp60. Moreover, we show the expression of Hsp60 in various species among Porifera and Cnidaria, suggesting a general importance of this protein among marine invertebrates. We further cloned the hsp60 gene from A viridis, using a combination of conventional protein isolation methods and screening of a complementary deoxyribonucleic acid library by polymerase chain reaction. The cloned sequence (1764 bp) encodes for a protein of 62.8 kDa (588 amino acids). The 62.8-kDa protein, which contains an amino terminal extension that may serve as a mitochondrial targeting signal, shares a significant identity with mitochondrial Hsp60s from several animals but less identity with Hsp60s from either bacteria or plants.
Collapse
Affiliation(s)
- Omer Choresh
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
196
|
Kishimoto J, Fukuma Y, Mizuno A, Nemoto TK. Identification of the pentapeptide constituting a dominant epitope common to all eukaryotic heat shock protein 90 molecular chaperones. Cell Stress Chaperones 2005; 10:296-311. [PMID: 16333984 PMCID: PMC1283875 DOI: 10.1379/csc-129r.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 07/01/2005] [Accepted: 07/05/2005] [Indexed: 01/13/2023] Open
Abstract
We previously reported that, in human heat shock protein (Hsp) 90 (hHsp90), there are 4 highly immunogenic sites, designated sites Ia, Ib, Ic, and II. This study was performed to further characterize their epitopes and to identify the epitope that is potentially common to all members of the Hsp90 family. Panning of a bacterial library carrying randomized dodecapeptides revealed that Glu251-Ser-X-Asp254 constituted site Ia and Pro295-Ile-Trp-Thr-Arg299, site Ic. Site II (Asp701-Pro717) was composed of several epitopes. When 19 anti-hHsp90 monoclonal antibodies (mAbs) were subjected to immunoblotting against recombinant forms of 7 Hsp90-family members, 2 mAbs (K41110 and K41116C) that recognized site Ic bound to yeast Hsp90 with affinity identical to that for hHsp90, and 1 mAb (K3729) that recognized Glu222-Ala23, of hHsp90beta could bind to human 94-kDa glucose-regulated protein (Grp94), an endoplasmic reticulum paralog of Hsp90. Among the 5 amino acids constituting site Ic, Trp297 and Pro295 were essential for recognition by all anti-site-Ic mAbs, and Arg299 was important for most of them. The necessity of Ile296, Thr298, and Arg299, which are replaced by Leu, Met/Leu, and Lys, respectively, in some eukaryotic Hsp90, was dependent on the mAbs, and K41110 and K41116C could react with Hsp90s carrying these substitutions. From these data taken together, we propose that the pentapeptide Pro295-Ile-Trp-Thr-Arg299 of hHsp90 functions as an immunodominant epitope common to all eukaryotic Hsp90.
Collapse
Affiliation(s)
- Jun Kishimoto
- Division of Oral and Maxillofacial Surgery, Department of Developmental and Reconstructive Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | | | | | | |
Collapse
|
197
|
Stürzenbaum SR, Arts MSJ, Kammenga JE. Molecular cloning and characterization of Cpn60 in the free-living nematode Plectus acuminatus. Cell Stress Chaperones 2005; 10:79-85. [PMID: 16038405 PMCID: PMC1176475 DOI: 10.1379/csc-84r.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 12/08/2004] [Accepted: 12/09/2004] [Indexed: 11/24/2022] Open
Abstract
Heat shock proteins (Hsps) have provoked interest not only because of their involvement in human diseases but also for their potential as biomarkers of environmental pollution. Whereas the former interest is covered by numerous reports, the latter is an exciting new field of research. We report the isolation of the full-length cpn60 messenger ribonucleic acid (mRNA) and partial genomic deoxyribonucleic acid from the free-living, environmental sentinel nematode Plectus acuminatus, a species used in classical ecotoxicity tests. Although the primary sequence displays high identity scores to other nematodes and human Cpn60 (75% and 70%, respectively), the intron-exon structure differs markedly. Furthermore, although mRNA levels remained constant after exposure to ZnCl2 (0-330 microM) under laboratory conditions, protein levels increased significantly in a dose-dependent manner. In conclusion, this first account of molecular genetic similarities and differences of Cpn60 in a neglected nematode taxon provides a valuable insight into its potential uses in gene-based ecotoxicological risk assessment exercises.
Collapse
Affiliation(s)
- S R Stürzenbaum
- Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK.
| | | | | |
Collapse
|
198
|
Stan G, Brooks BR, Lorimer GH, Thirumalai D. Identifying natural substrates for chaperonins using a sequence-based approach. Protein Sci 2004; 14:193-201. [PMID: 15576562 PMCID: PMC2253340 DOI: 10.1110/ps.04933205] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Escherichia coli chaperonin machinery, GroEL, assists the folding of a number of proteins. We describe a sequence-based approach to identify the natural substrate proteins (SPs) for GroEL. Our method is based on the hypothesis that natural SPs are those that contain patterns of residues similar to those found in either GroES mobile loop and/or strongly binding peptide in complex with GroEL. The method is validated by comparing the predicted results with experimentally determined natural SPs for GroEL. We have searched for such patterns in five genomes. In the E. coli genome, we identify 1422 (about one-third) sequences that are putative natural SPs. In Saccharomyces cerevisiae, 2885 (32%) of sequences can be natural substrates for Hsp60, which is the analog of GroEL. The precise number of natural SPs is shown to be a function of the number of contacts an SP makes with the apical domain (N(C)) and the number of binding sites (N(B)) in the oligomer with which it interacts. For known SPs for GroEL, we find approximately 4 < N(C) < 5 and 2 <or= N(B) <or= 4. A limited analysis of the predicted binding sequences shows that they do not adopt any preferred secondary structure. Our method also predicts the putative binding regions in the identified SPs. The results of our study show that a variety of SPs, associated with diverse functions, can interact with GroEL.
Collapse
Affiliation(s)
- George Stan
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
199
|
Arts MJSJ, Schill RO, Knigge T, Eckwert H, Kammenga JE, Köhler HR. Stress proteins (hsp70, hsp60) induced in isopods and nematodes by field exposure to metals in a gradient near Avonmouth, UK. ECOTOXICOLOGY (LONDON, ENGLAND) 2004; 13:739-755. [PMID: 15736846 DOI: 10.1007/s10646-003-4473-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Heat shock proteins (hsps) are potential biomarkers for monitoring environmental pollution. In this study, the use of hsps as biomarkers in field bioassays was evaluated in terrestrial invertebrates exposed to a metal gradient near Avonmouth, UK. We investigated the hsp70 response in resident and transplanted isopods of the species Oniscus asellus and Porcellio scaber and the hsp60 response in transplanted nematodes of the species Plectus acuminatus in six field sites along the metal gradient. Considerable differences were detected in the stress responses between nematodes and isopods (isopods responded in a gradient-specific manner, nematodes did not), the two isopod species and the transplanted and resident specimens of each isopod species: in the sites closest to the smelter, O. asellus residents showed high hsp70 levels while O. asellus transplanted from an unpolluted site displayed comparatively low hsp70 levels. For P. scaber, it was just the opposite. In resident isopod populations of both species, tolerant phenotypes were revealed in the most contaminated field sites. The hsp70 level in both isopod species was a suitable biomarker of effect (but of exposure only in non-tolerant individuals) even in long-term metal-contaminated field sites. The hsp60 response in the nematode alone was not a suitable biomarker for heavily contaminated soils. However, it had indicative value when related to the hsp70 response in the isopods and could be a suitable biomarker for less heavily contaminated soils.
Collapse
Affiliation(s)
- Marie-José S J Arts
- Laboratory of Nematology, Wageningen University, Binnenhaven 5, NL-6709 PD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
200
|
Onizuka T, Endo S, Akiyama H, Kanai S, Hirano M, Yokota A, Tanaka S, Miyasaka H. The rbcX gene product promotes the production and assembly of ribulose-1,5-bisphosphate carboxylase/oxygenase of Synechococcus sp. PCC7002 in Escherichia coli. PLANT & CELL PHYSIOLOGY 2004; 45:1390-5. [PMID: 15564522 DOI: 10.1093/pcp/pch160] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The operon encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the cyanobacterium Synechococcus sp. PCC7002 contains three rbc genes, rbcL, rbcX and rbcS, in this order. Introduction of translational frameshift into the rbcX gene resulted in a significant decrease in the production of large (RbcL) and small (RbcS) subunits of the Rubisco protein in Synechococcus sp. PCC7002 and in Escherichia coli. To investigate the function of the rbcX gene product (RbcX), we constructed the expression plasmid for the rbcX gene and examined the effects of RbcX on the recombinant Rubisco production in Escherichia coli. The coexpression experiments revealed that RbcX had marked effects on the production of large and small subunits of Rubisco without any significant influence on the mRNA level of rbc genes and/or the post-translational assembly of the Rubisco protein. The present rbcX coexpression system provides a novel and useful method for investigating the Rubisco maturation pathway.
Collapse
Affiliation(s)
- Takuo Onizuka
- Biological Science Laboratories, Toray Research Center, Inc., 1111 Tebiro, Kamakura, Kanagawa, 248-8555 Japan.
| | | | | | | | | | | | | | | |
Collapse
|