151
|
Guazzi S, Pintonello ML, Viganò A, Boncinelli E. Regulatory interactions between the human HOXB1, HOXB2, and HOXB3 proteins and the upstream sequence of the Otx2 gene in embryonal carcinoma cells. J Biol Chem 1998; 273:11092-9. [PMID: 9556594 DOI: 10.1074/jbc.273.18.11092] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate Hox and Otx genes encode homeodomain-containing transcription factors thought to transduce positional information along the body axis in the segmental portion of the trunk and in the rostral brain, respectively. Moreover, Hox and Otx2 genes show a complementary spatial regulation during embryogenesis. In this report, we show that a 1821-base pair (bp) upstream DNA fragment of the Otx2 gene is positively regulated by co-transfection with expression vectors for the human HOXB1, HOXB2, and HOXB3 proteins in an embryonal carcinoma cell line (NT2/D1) and that a shorter fragment of only 534 bp is able to drive this regulation. We also identified the HOXB1, HOXB2, and HOXB3 DNA-binding region on the 534-bp Otx2 genomic fragment using nuclear extracts from Hox-transfected COS cells and 12.5 days postcoitum mouse embryos or HOXB3 homeodomain-containing bacterial extracts. HOXB1, HOXB3, and nuclear extracts from 12.5 days postcoitum mouse embryos bind to a sequence containing two palindromic TAATTA sites, which bear four copies of the ATTA core sequence, a common feature of most HOM-C/HOX binding sites. HOXB2 protected an adjacent site containing a direct repeat of an ACTT sequence, quite divergent from the ATTA consensus. The region bound by the three homeoproteins is strikingly conserved through evolution and necessary (at least for HOXB1 and HOXB3) to mediate the up-regulation of the Otx2 transcription. Taken together, our data support the hypothesis that anteriorly expressed Hox genes might play a role in the refinement of the Otx2 early expression boundaries in vivo.
Collapse
Affiliation(s)
- S Guazzi
- Department of Biology and Biotechnology, H. San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| | | | | | | |
Collapse
|
152
|
Abstract
Regionally expressed cell surface molecules are thought to mediate contact-dependent interactions that regulate pattern formation and axon pathfinding in the developing vertebrate central nervous system (CNS). We recently isolated monoclonal antibody (mAb) CARO 2 through a screen for positional markers in the developing rat CNS. Between embryonic day (E)11.5 and E13, mAb CARO 2 specifically labels both the floor plate and notochord in the developing spinal cord. In contrast to the distribution of several well-characterized ventral midline markers, mAb CARO 2 labeling is restricted to the apical portion of the floor plate and the outer surface of the notochord. The anterior limit of mAb CARO 2 immunoreactivity corresponds to the midbrain/hindbrain border. Floor plate labeling persists throughout embryogenesis, whereas notochord labeling is not detectable after E13. During later stages of embryonic development (E16-E20) apically restricted floor plate labeling is present only in the rostral spinal cord. In postnatal rats, mAb CARO immunoreactivity is not present in any region of the CNS. Immunoblot analyses show that mAb CARO 2 recognizes an epitope on a 28-kD protein that is enriched in the floor plate, transiently expressed during embryogenesis, and membrane-associated. Consistent with the latter result, mAb CARO 2 labels the surfaces of floor plate cells. These findings suggest that the CARO 2 antigen is a new cell surface marker of the floor plate and notochord which may participate in neural cell patterning and/or axon guidance in the developing rat spinal cord.
Collapse
Affiliation(s)
- Q Zhu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
153
|
Grapin-Botton A, Bonnin MA, Sieweke M, Le Douarin NM. Defined concentrations of a posteriorizing signal are critical for MafB/Kreisler segmental expression in the hindbrain. Development 1998; 125:1173-81. [PMID: 9477316 DOI: 10.1242/dev.125.7.1173] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been shown by using the quail/chick chimera system that Hox gene expression in the hindbrain is influenced by positional signals arising from the environment. In order to decipher the pathway that leads to Hox gene induction, we have investigated whether a Hox gene regulator, the leucine zipper transcription factor MafB/Kr, is itself transcriptionally regulated by the environmental signals. This gene is normally expressed in rhombomeres (r) 5 and 6 and their associated neural crest. MafB/Kr expression is maintained in r5/6 when grafted into the environment of r3/4. On the contrary, the environment of rhombomeres 7/8 represses MafB/Kr expression. Thus, as previously shown for the expression of Hox genes, MafB/Kr expression is regulated by a posterior-dominant signal, which in this case induces the loss of expression of this gene. We also show that the posterior signal can be transferred to the r5/6 neuroepithelium by posterior somites (somites 7 to 10) grafted laterally to r5/6. At the r4 level, the same somites induce MafB/Kr in r4, leading it to behave like r5/6. The posterior environment regulates MafB/Kr expression in the neural crest as it does in the corresponding hindbrain level, showing that some positional regulatory mechanisms are shared by neural tube and neural crest cells. Retinoic acid beads mimic the effect produced by the somites in repressing MafB/Kr in r5/6 and progressively inducing it more rostrally as its concentration increases. We therefore propose that the MafB/Kr expression domain is defined by a molecule unevenly distributed in the paraxial mesoderm. This molecule would allow the expression of the MafB/Kr gene in a narrow window of concentration by activating its expression at a definite threshold and repressing it at higher levels, accounting for its limited domain of expression in only two rhombomeres. It thus appears that the regulation of MafB/Kr expression in the rhombomeres could be controlled by the same posteriorizing factor(s) as Hox genes.
Collapse
Affiliation(s)
- A Grapin-Botton
- Institut d'Embryologie Cellulaire et Moleculare du CNRS et du College de France, Nogent-sur-Marne, France
| | | | | | | |
Collapse
|
154
|
Min W, Woo HJ, Lee CS, Lee KK, Yoon WK, Park HW, Kim MH. 307-bp fragment in HOXA7 upstream sequence is sufficient for anterior boundary formation. DNA Cell Biol 1998; 17:293-9. [PMID: 9539109 DOI: 10.1089/dna.1998.17.293] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The HOX genes are expressed in a positionally and temporally restricted manner involving anteroposterior axial pattern formation during early embryogenesis. Previously, we studied the sequence and function of an upstream regulatory region of the human HOXA7 gene. To identify a critical cis-acting element, a deletion analysis was performed along the human control region (HCR) (about 1.1 kb), which was sufficient for setting the anterior boundary of expression in transgenic mice. We demonstrated that a 307-bp control region contains a cis-acting element(s) specifying an anterior boundary as well as a dorsal-ventral restriction in the neural tube at day 12.5 postconception (p.c.). The distinct anterior limit of expression was noted at the level of C7/T1 in the neural tube and spinal ganglia. In addition, our deletion experiments revealed that the HCR consisted of several cis-acting elements which were individually capable of driving regionally restricted expression patterns in the neural tube and limb buds.
Collapse
Affiliation(s)
- W Min
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
155
|
Dräger UC, Wagner E, McCaffery P. Aldehyde dehydrogenases in the generation of retinoic acid in the developing vertebrate: a central role of the eye. J Nutr 1998; 128:463S-466S. [PMID: 9478049 DOI: 10.1093/jn/128.2.463s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the developing vertebrate, retinoic acid is distributed in patterns that are highly regulated, both in the spatial and temporal domains. These patterns are generated by the localized expression of retinoic acid-synthesizing aldehyde dehydrogenases, which form the origins of retinoic acid-diffusion gradients in the surrounding tissues. The developing eye, known to be exceptionally vulnerable to vitamin A deficiency, is one of the retinoic acid-richest regions in the embryo. Several aldehyde dehydrogenases are expressed here, and they create a ventro-dorsal retinoic acid gradient in the embryonic retina. Aldehyde dehydrogenase expression persists in the mature eye and is stable, but the amount of retinoic acid synthesized is variable, depending on ambient light levels. This phenomenon is due to changing levels of the retinoic acid precursor retinaldehyde, which is released from illuminated rhodopsin, thus providing a mechanism by which light can directly influence gene expression. For arrestin mRNA, which is one of the factors known to be regulated by light, the light effect can be mimicked in the dark by injection of retinoic acid. The light-induced release of retinaldehyde from rhodopsin, which occurs only in vertebrate but not invertebrate photoreceptors, may have accelerated the rapid evolution of retinoic acid-mediated transcriptional regulation at the transition from invertebrates to vertebrates, and it may explain the prominent role of retinoic acid in the eye.
Collapse
Affiliation(s)
- U C Dräger
- E. Kennedy Shriver Center, Waltham, MA 02254, USA
| | | | | |
Collapse
|
156
|
Andrews PW. Teratocarcinomas and human embryology: pluripotent human EC cell lines. Review article. APMIS 1998; 106:158-67; discussion 167-8. [PMID: 9524574 DOI: 10.1111/j.1699-0463.1998.tb01331.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The histogenesis of germ cell tumours (GCT) reflects the normal processes of gametogenesis, fertilisation and subsequent embryonic cell differentiation. Understanding the mechanisms that control the differentiation of embryonal carcinoma (EC) cells into a variety of embryonic and extraembryonic cell types is pertinent to understanding the progression of GCT. EC cells also provide a tool for analysing the mechanisms that control differentiation during embryonic development, and particularly the mechanisms that control differentiation along alternative cell line, NTERA2, into neurones and other cell types in response to agents such as retinoic acid, HMBA and the bone morphogenetic proteins. We have also compared the pluripotent NTERA2 EC cells with other human EC cell lines that exhibit a much reduced capacity for cell differentiation. A variety of genes are activated during NTERA2 differentiation. In particular we have identified a novel human member of the wnt family. This wnt gene is activated following retinoic acid induction of differentiation but is later down-regulated as the cells mature into neurones and other cell types. We have also observed expression of genes belonging to the Frizzled family, which is likely to include genes encoding receptors for the wnt gene products. Thus in the NTERA2 system, genes pertinent to regulating cell differentiation during embryonic development are activated and appear to play a role in modulating how these pluripotent human EC cells differentiate.
Collapse
Affiliation(s)
- P W Andrews
- Department of Biomedical Science, University of Sheffield, UK
| |
Collapse
|
157
|
Kuratani S, Ueki T, Hirano S, Aizawa S. Rostral truncation of a cyclostome, Lampetra japonica, induced by all-trans retinoic acid defines the head/trunk interface of the vertebrate body. Dev Dyn 1998; 211:35-51. [PMID: 9438422 DOI: 10.1002/(sici)1097-0177(199801)211:1<35::aid-aja4>3.0.co;2-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effect of all-trans retinoic acid on embryogenesis was studied in a cyclostome, Lampetra japonica. Treatment with 0.05-0.5 microM retinoic acid on early gastrula and early neurula resulted in loss of the pharynx and in the rostral truncation of the neural tube. The mouth, pharynx, esophagus, heart, endostyle, and rostral brain were missing with graded severity. In the severest case, the embryo consisted only of trunk segments, especially myotomes that extended to the rostral end of the axis. The effect appeared to be dose- and stage-dependent: Rostral pharyngeal arches were more vulnerable to a lower amount of retinoic acid, and earlier treatment resulted in severer defects. The initial protrusion of the anterior axis started equally in control and retinoic acid-treated embryos, implying that the head morphogenesis is omitted in treated embryos. By identifying the number of myotomes based on the differentiation of hypobranchial muscles, there seemed to be no myotomes lost by retinoic acid-induced truncation. The rostral truncation, therefore, was not simply a limitation of the anterior axis but was restricted to the ventral portion; only the branchial arches disappeared with normally developing myotomes dorsally. The absent region can be defined as the vertebrate head in a morphological sense, including the branchiomeric and preotic paraxial regions as well as the heart. The results suggest the presence of distinct programs between somitomeric and branchiomeric portions of the body, providing a developmental basis for the dual-metamerical body plan of vertebrates.
Collapse
Affiliation(s)
- S Kuratani
- Department of Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Japan.
| | | | | | | |
Collapse
|
158
|
Mazzarella R, Schlessinger D. Duplication and distribution of repetitive elements and non-unique regions in the human genome. Gene 1997; 205:29-38. [PMID: 9461377 DOI: 10.1016/s0378-1119(97)00477-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genome mapping efforts and the initial sequencing of large segments of human DNA permit ongoing assessment of the patterns and extent of sequence duplication and divergence in the human genome. Initial sequence data indicate that the most highly repetitive sequences show isochore-related enrichment and clustering produced by successive insertional recombination and local duplication of particular repetitive elements. Regional duplication is also observed for a number of otherwise unique genomic sequences and thereby makes these segments become repetitive. The consequences of these duplication events are: (1) clustering of related genes, along with a variety of coregulatory mechanisms; and (2) recombinations between the nearby homologous sequences, which can delete genes in individuals and account for a significant fraction of human genetic disease.
Collapse
Affiliation(s)
- R Mazzarella
- Washington University School of Medicine, Department of Molecular Microbiology, St. Louis, MO 63110, USA.
| | | |
Collapse
|
159
|
Knoepfler PS, Calvo KR, Chen H, Antonarakis SE, Kamps MP. Meis1 and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface disrupted in oncoprotein E2a-Pbx1. Proc Natl Acad Sci U S A 1997; 94:14553-8. [PMID: 9405651 PMCID: PMC25052 DOI: 10.1073/pnas.94.26.14553] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/1997] [Indexed: 02/05/2023] Open
Abstract
E2a-Pbx1 is a chimeric transcription factor oncoprotein produced by the t(1;19) translocation in human pre-B cell leukemia. Class I Hox proteins bind DNA cooperatively with both Pbx proteins and oncoprotein E2a-Pbx1, suggesting that leukemogenesis by E2a-Pbx1 and Hox proteins may alter transcription of cellular genes regulated by Pbx-Hox motifs. Likewise, in murine myeloid leukemia, transcriptional coactivation of Meis1 with HoxA7/A9 suggests that Meis1-HoxA7/9 heterodimers may evoke aberrant gene transcription. Here, we demonstrate that both Meis1 and its relative, pKnox1, dimerize with Pbx1 on the same TGATTGAC motif selected by dimers of Pbx proteins and unidentified partner(s) in nuclear extracts, including those from t(1;19) pre-B cells. Outside their homeodomains, Meis1 and pKnox1 were highly conserved only in two motifs required for cooperativity with Pbx1. Like the unidentified endogenous partner(s), both Meis1 and pKnox1 failed to dimerize significantly with E2a-Pbx1. The Meis1/pKnox1-interaction domain in Pbx1 resided predominantly in a conserved N-terminal Pbx domain deleted in E2a-Pbx1. Thus, the leukemic potential of E2a-Pbx1 may require abrogation of its interaction with members of the Meis and pKnox families of transcription factors, permitting selective targeting of genes regulated by Pbx-Hox complexes. In addition, because most motifs bound by Pbx-Meis1/pKnox1 were not bound by Pbx1-Hox complexes, the leukemic potential of Meis1 in myeloid leukemias may involve shifting Pbx proteins from promoters containing Pbx-Hox motifs to those containing Pbx-Meis motifs.
Collapse
Affiliation(s)
- P S Knoepfler
- Department of Pathology, University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
160
|
Folberg A, Kovács EN, Featherstone MS. Characterization and retinoic acid responsiveness of the murine Hoxd4 transcription unit. J Biol Chem 1997; 272:29151-7. [PMID: 9360992 DOI: 10.1074/jbc.272.46.29151] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have characterized the transcription unit of a murine Hox gene in the fourth paralogous group, Hoxd4. We have identified two Hoxd4 transcription start sites by S1 analysis. The upstream promoter (P2) is 5.2 kilobase pairs upstream from the coding region, while the downstream promoter (P1) is 1.1 kilobase pairs distant. Both promoters bear a cluster of start sites. Multiple transcripts were identified by Northern blot, originating from both promoters and multiple polyadenylation signals. Expression of P1 transcripts in the neural tube shows an anterior border at the rhombomere 6/7 boundary, corresponding to previous reports (Gaunt, S. J., Krumlauf, R., and Duboule, D. (1989) Development 107, 131-141; Morrison, A., Moroni, M. C., Ariza-McNaughton, L., Krumlauf, R., and Mavilio, F. (1996) Development 122, 1895-1907). A more posterior boundary in the central nervous system was observed for P2 transcripts. We observed strong expression up to somite 6 and weak expression in somite 5, correlating with the phenotype of Hoxd4 null mutant mice (Horan, G. S. B., Nagy Kovàcs, E., Behringer, R. R., and Featherstone, M. S. (1995) Dev. Biol. 169, 359-372). In response to retinoic acid, expression from P1 in the hindbrain was anteriorized after 4 or 24 h of treatment. P2 transcripts seemed to be less responsive and/or to have an indirect response to retinoic acid. The long 5'-untranslated region found in all Hoxd4 transcripts suggests that translation does not occur by a classical ribosome scanning mechanism.
Collapse
Affiliation(s)
- A Folberg
- McGill Cancer Centre, McGill University, 3655 Drummond St., Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
161
|
Wakeman JA, Heath PR, Pearson RC, Andrews PW. MAL mRNA is induced during the differentiation of human embryonal carcinoma cells into neurons and is also localised within specific regions of the human brain. Differentiation 1997; 62:97-105. [PMID: 9404004 DOI: 10.1046/j.1432-0436.1997.6220097.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have found that the MAL gene, which encodes a membrane proteolipid expressed during the late stages of T-lymphocyte maturation, is also activated during neuronal differentiation of NTERA2 human embryonal carcinoma cells following induction with retinoic acid. An RT-PCR fragment with a sequence identical to MAL was found amongst 30 cloned DNA fragments corresponding to genes putatively activated during NTERA2 differentiation and isolated using a differential display PCR screen. PCR and Northern blot analysis with a cloned MAL cDNA as a probe confirmed that MAL is not expressed by undifferentiated NTERA2 EC cells, but is expressed, predominantly as a 1.1 kb transcript, within 7 days of retinoic acid-induced differentiation and later in the post-mitotic neurons arising in such cultures. MAL was not expressed in the non-neuronal lineages induced by treatment of NTERA2 cells with the gratuitous inducer hexamethylene bisacetamide. Analysis of cDNA libraries constructed from EC cells, purified neurons and a sub-population of non-neuronal cells (ME311+), confirmed that expression of the MAL gene is activated in the neural lineage of NTERA2 differentiation. Using in situ hybridisation we found that MAL is expressed in the human CNS and especially in grey matter of the cerebral cortex, with less in the cerebellum and the amygdala and little or none in subcortical white matter. In contrast to reports concerning the expression pattern of a rat MAL homologue, MAL was expressed in the human brain predominantly in cell bodies which include neurons, correlating with in vitro data from the NTERA2 line.
Collapse
Affiliation(s)
- J A Wakeman
- Department of Biomedical Science, University of Sheffield, UK
| | | | | | | |
Collapse
|
162
|
Bauer UM, Schneider-Hirsch S, Reinhardt S, Pauly T, Maus A, Wang F, Heiermann R, Rentrop M, Maelicke A. Neuronal cell nuclear factor--a nuclear receptor possibly involved in the control of neurogenesis and neuronal differentiation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:826-37. [PMID: 9395333 DOI: 10.1111/j.1432-1033.1997.t01-1-00826.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have cloned from a cDNA library of neuronal derivatives of retinoic-acid-induced embryonic carcinoma cells a nuclear receptor that may be involved in the control of late neurogenesis and early neuronal differentiation. The receptor which is practically identical in sequence with germ cell nuclear factor, has been designated neuronal cell nuclear factor (NCNF). NCNF is exclusively expressed in the neuronal derivatives of PCC7-Mz1 cells, with the expression beginning within hours of exposure to retinoic acid. In the developing mouse brain, NCNF is expressed in the marginal zones of the neuroepithelium which are known to contain young postmitotic neurons. NCNF binds to the DR0 sequence thereby silencing transcription. Because NCNF does not recognize hormone response elements of other nuclear receptors tested and does not heterodimerize with these, it probably binds exclusively as a homodimer. NCNF may induce neuronal differentiation by repressing the activity of genes that permit cell fates other than the neuronal one.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Brain/cytology
- Brain/embryology
- Brain/metabolism
- Cell Differentiation
- Cloning, Molecular
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Ligands
- Mice
- Neurons/cytology
- Neurons/physiology
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Oligodeoxyribonucleotides/chemistry
- Oligodeoxyribonucleotides/genetics
- Oligodeoxyribonucleotides/metabolism
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- U M Bauer
- Laboratory of Molecular Neurobiology, Institute of Physiological Chemistry and Pathobiochemistry, Johannes Gutenberg-University Medical School, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
The burgeoning number of articles concerning the role of HOX genes and hematopoiesis ensures that this will continue to be an area of very active research. It seems clear that HOX genes are expressed in stage- and lineage-specific patterns during early stages of hematopoietic development and differentiation. Several lines of evidence suggest that multiple genes of the HOXB (B2, B4, B6-B9), HOXC (C6, C8), and HOXA (A5) are involved in erythropoiesis. Similarly, a number of genes of the HOXA, HOXB, and HOXC appear to play a role in lymphoid cells. Furthermore, several genes, such as A9, A10, B3, B7, and B8, may control myelomonocytic differentiation. The question arises as to whether such a multiplicity of HOX genes reflects redundancy or indicates subtlety of the regulatory machinary. A similar complexity has been observed for hematopoietic cytokines, and the current view is that, although multiple molecules may have similar or overlapping effects, each factor has a specific function and regulatory combinations appear to play a critical role in controlling hematopoietic cell processes (99). One challenge for the future is to delineate in more detail the precise expression patterns of these genes in the many distinct subpopulations of blood cells and during fetal development. Overexpression of HOX genes in hematopoietic cells can dramatically perturb the differentiation of various cell lineages and can contribute to leukemogenesis. Future studies may involve the overexpression of alternatively spliced versions of different HOX genes or of truncated versions of HOX genes to ascertain the functional domains of the proteins that mediate the biologic effects. The findings in HOX knockout mice confirm a role for these genes in normal blood cell development. Further work in this area will require careful examination of fetal hematopoiesis and of animals bearing multiple HOX gene knockouts. Involvement of HOX genes in leukemia is just beginning to be appreciated. Establishing the true extent of HOX gene mutations in human disease will require strategies such as comparative genomic hybridization (100) and analysis of high density oligonucleotide arrays (101). The holy grail of homeobox work is to discover the physiologic processes and specific target genes regulated by HOX proteins. Given the broad range of tissues in which HOX genes are expressed, they would appear to be involved in very basic cellular processes, e.g., cell proliferation and death, adhesion, and migration, etc., rather than the direct regulation of tissue-specific genes. The search for target genes may be made easier by the further characterization of cooperative DNA binding between HOX proteins and other transcription factors. We speculate that HOX proteins do not behave as conventional transcriptional activators or inhibitors but rather may mark genes for potential future activation, i.e., they may establish competency to execute specific differentiation programs, with the actual activation being accomplished by transcriptional pathways triggered by exogenous signals. This proposed function may be an architectural one, involving changes in the conformation of DNA and/or altering interactions between DNA and histones, thus making areas of the genome more or less accessible to other protein factors (102). If this is the case, we may need to develop new assays to discern the molecular action of HOX proteins. The ease of manipulating the hematopoietic systems would appear to make it a very attractive model for explicating the general functions of this remarkable family of genes.
Collapse
Affiliation(s)
- M C Magli
- Institute of Mutagenesis and Differentiation, CNR, Pisa, Italy
| | | | | |
Collapse
|
164
|
Abstract
The transcriptional activator retinoic acid (RA) has been shown to influence the early patterning of the vertebrate eye. Models for the establishment of the retinofugal projection postulate gradients of cell-surface markers across the retinal surface that are expressed by ganglion cells and mediate the correct connection of fibers within central target fields. Spatial asymmetries of RA and RA-producing enzymes, as have been found in the eyes of mice and zebrafish, could induce the required asymmetry in gene expression. Here we exploited the large size of the retina of the embryonic chick to analyze the spatial and temporal characteristics of the RA system by HPLC in combination with a reporter cell assay. As in other embryonic vertebrates, the chick retina was found to contain different RA-generating enzymes segregated along the dorsoventral axis. The major RA isomer in both dorsal and ventral retina was all-trans RA, and no 9-cis RA could be detected. This excludes a difference in production of these two isomers as an explanation for the expression of different RA-generating enzymes. At developmental stages embryonic days (E) 4 and 5, the ventral retina contained higher all-trans RA levels than the dorsal retina. After E8, however, the difference disappeared, and in embryos at E9 and older the RA concentration was slightly higher in dorsal than ventral retina.
Collapse
|
165
|
Flagiello D, Gibaud A, Dutrillaux B, Poupon MF, Malfoy B. Distinct patterns of all-trans retinoic acid dependent expression of HOXB and HOXC homeogenes in human embryonal and small-cell lung carcinoma cell lines. FEBS Lett 1997; 415:263-7. [PMID: 9357979 DOI: 10.1016/s0014-5793(97)01118-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression patterns of the class I homeogenes HOXB and HOXC clusters in the presence of retinoic acid (RA) were studied in two human small-cell lung cancer (SCLC) cell lines and compared to that of NT2/D1 embryonal carcinoma cells. Contrasting with the sequential 3'-5' induction of the HOX genes observed after RA treatment of embryonic NT2/D1 cells, in the SCLC cells the responding genes (induced or down-regulated) were interspersed with insensitive genes (expressed or unexpressed), while no genomic alteration affected the corresponding clusters. These findings imply that HOX gene regulatory mechanisms are altered in non-embryonic SCLC cells, perhaps reflecting their ability to respond to more diversified stimuli, in relation with their origin from adult tissues.
Collapse
Affiliation(s)
- D Flagiello
- Institut Curie - CNRS, UMR 147, Paris, France
| | | | | | | | | |
Collapse
|
166
|
Zhang F, Pöpperl H, Morrison A, Kovàcs EN, Prideaux V, Schwarz L, Krumlauf R, Rossant J, Featherstone MS. Elements both 5' and 3' to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neurectoderm. Mech Dev 1997; 67:49-58. [PMID: 9347914 DOI: 10.1016/s0925-4773(97)00104-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this report, we show that a lacZ reporter spanning 12.5 kb of murine Hoxd4 genomic DNA contains the major regulatory elements controlling Hoxd4 expression in the mouse embryo. Mutational analysis revealed multiple regulatory regions both 5' and 3' to the coding region. These include a 3' enhancer region required for expression in the central nervous system (CNS) and setting the anterior border in the paraxial mesoderm, and a 5' mesodermal enhancer that directs expression in paraxial and lateral plate mesoderm. A previously defined retinoic acid response element (RARE) is a component of the 5' mesodermal enhancer. Our results support a model in which retinoic acid receptors (RARs) and HOX proteins mediate the initiation and maintenance of Hoxd4 expression.
Collapse
Affiliation(s)
- F Zhang
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Affiliation(s)
- G Eichele
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
168
|
Morrison A, Ariza-McNaughton L, Gould A, Featherstone M, Krumlauf R. HOXD4 and regulation of the group 4 paralog genes. Development 1997; 124:3135-46. [PMID: 9272954 DOI: 10.1242/dev.124.16.3135] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
From an evolutionary perspective, it is important to understand the degree of conservation of cis-regulatory mechanisms between paralogous Hox genes. In this study, we have used transgenic analysis of the human HOXD4 locus to identify one neural and two mesodermal 3′ enhancers that are capable of mediating the proper anterior limits of expression in the hindbrain and paraxial mesoderm (somites), respectively. In addition to directing expression in the central nervous system (CNS) up to the correct rhombomere 6/7 boundary in the hindbrain, the neural enhancer also mediates a three rhombomere anterior shift from this boundary in response to retinoic acid (RA), mimicking the endogenous Hoxd4 response. We have extended the transgenic analysis to Hoxa4 identifying mesodermal, neural and retinoid responsive components in the 3′ flanking region of that gene, which reflect aspects of endogenous Hoxa4 expression. Comparative analysis of the retinoid responses of Hoxd4, Hoxa4 and Hoxb4 reveals that, while they can be rapidly induced by RA, there is a window of competence for this response, which is different to that of more 3′ Hox genes. Mesodermal regulation involves multiple regions with overlapping or related activity and is complex, but with respect to neural regulation and response to RA, Hoxb4 and Hoxd4 appear to be more closely related to each other than Hoxa4. These results illustrate that much of the general positioning of 5′ and 3′ flanking regulatory regions has been conserved between three of the group 4 paralogs during vertebrate evolution, which most likely reflects the original positioning of regulatory regions in the ancestral Hox complex.
Collapse
Affiliation(s)
- A Morrison
- Division of Developmental Neurobiology, National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
169
|
Eliasson MJ, McCaffery P, Baughman RW, Dräger UC. A ventrodorsal GABA gradient in the embryonic retina prior to expression of glutamate decarboxylase. Neuroscience 1997; 79:863-9. [PMID: 9219949 DOI: 10.1016/s0306-4522(97)00032-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
GABA is known to function as a neurotransmitter in the mature nervous system, and in immature neurons it has been linked to neurotrophic actions. While most GABA is generated by glutamate decarboxylase (GAD), an alternative synthetic pathway is known to originate from putrescine, which is converted via gamma-aminobutyraldehyde in an aldehyde-dehydrogenase-requiring step to GABA. In a search for the role of two aldehyde dehydrogenases expressed in segregated compartments along the dorsoventral axis of the developing retina, we assayed dorsal and ventral retina fractions of the mouse for GABA by high performance liquid chromatography. We found GABA to be present in the embryonic retina, long before expression of GAD, and ventral GABA levels exceeded dorsal levels by more than three-fold. Postnatally, when GAD became detectable, overall GABA levels increased, and the ventrodorsal concentration difference disappeared. Our observations indicate that prior to the formation of synapses the embryonic retina contains a ventrodorsal GABA gradient generated by an alternate synthetic pathway.
Collapse
Affiliation(s)
- M J Eliasson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, U.S.A
| | | | | | | |
Collapse
|
170
|
Abstract
The evolutionarily conserved genomic organization of the Hox genes has been a puzzle ever since it was discovered that their order along the chromosome is similar to the order of their functional domains along the antero-posterior axis. Why has this colinearity been maintained throughout evolution? A close look at regulatory sequences from the mouse Hox clusters suggests that enhancer sharing between adjacent Hox genes may be one reason. Moreover, characterizing the activity of one of these mouse enhancers in Drosophila illustrates that despite many similarities, not all Hox clusters are built in the same way.
Collapse
Affiliation(s)
- R S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
171
|
|
172
|
Kuratani S, Matsuo I, Aizawa S. Developmental patterning and evolution of the mammalian viscerocranium: genetic insights into comparative morphology. Dev Dyn 1997; 209:139-55. [PMID: 9186050 DOI: 10.1002/(sici)1097-0177(199706)209:2<139::aid-aja1>3.0.co;2-j] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The vertebrate cranium is generally classified into the neurocranium and the viscerocranium. The latter is derived from the neural crest and so is the prechordal portion of the neurocranium. A view we favor considers the prechordal neurocranium as the premandibular component of the viscerocranium, and the vertebrate skull to consist of the neural crest-derived viscerocranium and the mesodermal neurocranium. Of these developmental units, only the viscerocranium appears to have completely segmented metamerical organization. The Hox code which is known to function in specification of the viscerocranium does not extend rostrally into the mandibular and premandibular segments. By genetic manipulation of rostrally expressed non-Hox homeobox genes, the patterning mechanism of the head is now demonstrated to be more complicated than isomorphic registration of the Hox code to pharyngeal arches. The phenotype by haplo-insufficiency of Otx2 gene, in particular, implies the premandibular cranium shares a common specification mechanism with the mandibular arch. Our interpretation of the metamerical plan of the viscerocranium offers a new scheme of molecular codes associated with the vertebrate head evolution.
Collapse
Affiliation(s)
- S Kuratani
- Department of Morphogenesis, Kumamoto University School of Medicine, Japan.
| | | | | |
Collapse
|
173
|
Abstract
Exogenous retinoic acid (RA) administered during mouse embryogenesis can alter the pattern of the axial skeleton during two developmental periods: an early window (7 to 8.5 days post-coitum; dpc) and a late window (9.5 to 11.5 dpc). Treatment during the early window results in vertebral homeotic transformations (predominantly posteriorizations) concomitant with rostral shifts in Hox gene expression, while treatment at the later window results in similar transformations without detectable alterations in Hox gene expression patterns. Mice null for retinoic acid receptor gamma (RAR gamma) exhibit axial defects, including homeosis of several vertebrae, therefore establishing a role for this receptor in normal axial specification RAR gamma null mutants are also completely resistant to RA-induced spina bifida, which occurs in wildtype embryos treated at 8.5-9.0 dpc, suggesting that this receptor specifically transduces at least a subset of the teratogenic effects of retinoids. To further investigate the role of RAR gamma in RA-induced defects during the early and late windows of retinoid-sensitive vertebral patterning, RAR gamma heterozygotes were intercrossed, pregnant females treated with vehicle or RA at 7.3, 10.5 or 11.5 dpc and full-term fetuses assessed for skeletal defects. Relative to wildtype littermates, RAR gamma null mutants treated at 7.3 dpc were markedly resistant to RA-induced embryolethality, craniofacial malformations, and neural tube defects. Furthermore, while RAR gamma null mutants were modestly resistant to certain vertebral malformations elicited by RA treatment at 7.3, they exhibited more pronounced resistance following treatment at 10.5 and 11.5 dpc. Moreover, several of the vertebral defects inherent to the RAR gamma null phenotype were abolished by RA treatment specifically at 10.5 dpc, suggesting that RAR alpha and/or RAR beta isoforms may substitute for certain RAR gamma functions, and that RAR gamma may elicit its normal effects on vertebral morphogenesis at this developmental stage.
Collapse
Affiliation(s)
- A Iulianella
- Institut de Recherches Clinique de Montréal, Québec, Canada
| | | |
Collapse
|
174
|
Kloen P, Visker MH, Olijve W, van Zoelen EJ, Boersma CJ. Cell-type-specific modulation of Hox gene expression by members of the TGF-beta superfamily: a comparison between human osteosarcoma and neuroblastoma cell lines. Biochem Biophys Res Commun 1997; 233:365-9. [PMID: 9144540 DOI: 10.1006/bbrc.1997.6458] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Homeobox gene expression in osteoblast-like cells was investigated using the polymerase chain reaction (PCR). A total of 13 homeobox genes was detected in U-2 OS (human osteosarcoma) and MC3T3-E1 (mouse osteoblast) cells by sequencing cloned PCR products. Using specific primers, a different pattern of Hox gene expression was shown for the neuroblastoma cell line SK-N-SH relative to U-2 OS and MC3T3-E1. Additionally, we showed that expression of HOXC6 in U-2 OS and SK-N-SH was differentially regulated by rhBMP-2, TGF-beta and activin-A. This suggests that specific Hox genes may be target genes for TGF-beta superfamily members, and allows us to further understand the complex functions of these growth factors and how they relate to growth and development.
Collapse
Affiliation(s)
- P Kloen
- Department of Orthopaedic Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, USA
| | | | | | | | | |
Collapse
|
175
|
Knoepfler PS, Kamps MP. The Pbx family of proteins is strongly upregulated by a post-transcriptional mechanism during retinoic acid-induced differentiation of P19 embryonal carcinoma cells. Mech Dev 1997; 63:5-14. [PMID: 9178252 DOI: 10.1016/s0925-4773(97)00669-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Retinoic acid (RA) induces expression of genes encoding the Hox family of transcription factors, whose differential expression orchestrates developmental programs specifying anterior-posterior structures during embryogenesis. Hox proteins bind DNA as monomers and heterodimers with Pbx proteins. Here we show that RA upregulates Pbx protein abundance coincident with transcriptional activation of Hox genes in P19 embryonal carcinoma cells undergoing neuronal differentiation. However, in contrast to Hox induction, Pbx upregulation is predominantly a result of post-transcriptional mechanisms. Interestingly, Pbx1, Pbx2, and Pbx3 exhibit different profiles of upregulation, suggesting possible functional divergence. The parallel upregulation of Pbx and Hox proteins in this model suggests an important role for transcriptional control by Pbx-Hox heterodimers during neurogenesis, and argues for precise control by RA.
Collapse
Affiliation(s)
- P S Knoepfler
- Department of Pathology, University of California, School of Medicine, La Jalla 92093, USA
| | | |
Collapse
|
176
|
Woychik R, Hogan B, Bryant S, Eichele G, Kimelman D, Noden D, Schoenwolf G, Wright C. NIEHS/EPA Workshops. Pattern formation. Reprod Toxicol 1997; 11:339-44. [PMID: 9100309 DOI: 10.1016/s0890-6238(96)00217-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R Woychik
- Oak Ridge National Laboratory, Mammalian Genetics and Development Section, Tennessee 37831-8077, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Vieille-Grosjean I, Hunt P, Gulisano M, Boncinelli E, Thorogood P. Branchial HOX gene expression and human craniofacial development. Dev Biol 1997; 183:49-60. [PMID: 9119114 DOI: 10.1006/dbio.1996.8450] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Members of the Antennapedia class of homeobox genes, known as Hox genes, are believed to be pivotal in vertebrate craniofacial development. Here we show that eight members of paralogous groups 1, 2, 3, and 4 are expressed in the human embryonic hindbrain and branchial arches at 4 weeks of development. The combinatorial patterns of expression of genes representing the first three paralogous groups parallel the patterns described for their homologues in various animal models, demonstrating a high degree of conservation of the branchial Hox code. Arch expression of group 4 genes is defined for the first time in any vertebrate. Furthermore, as development proceeds, individual paralogues of a single paralogous group (group 3), which initially share a common expression domain, are differentially down-regulated in a tissue-, organ-, or site-specific fashion.
Collapse
Affiliation(s)
- I Vieille-Grosjean
- Developmental Biology Unit, Institute of Child Health (London University), Britain
| | | | | | | | | |
Collapse
|
178
|
Abstract
Evidence from Drosophila and also vertebrates predicts that two different sets of instructions may determine the development of the rostral and caudal parts of the body. This implies different cellular and inductive processes during gastrulation, whose genetic requirements remain to be understood. To date, four genes encoding transcription factors expressed in the presumptive vertebrate head during gastrulation have been studied at the functional level: Lim-1, Otx-2, HNF-3 beta and goosecoid. We discuss here the potential functions of these genes in the formation of rostral head as compared to posterior head and trunk, and in the light of recent fate map and expression analyses in mouse, chick, Xenopus and zebrafish. These data indicate that Lim-1, Otx-2 and HNF-3 beta may be involved in the same genetic pathway controlling the formation of the prechordal mesendoderm, which is subsequently required for rostral head development. goosecoid may act in a parallel pathway, possibly in conjunction with other, yet unidentified, factors.
Collapse
Affiliation(s)
- L Bally-Cuif
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | |
Collapse
|
179
|
Langston AW, Thompson JR, Gudas LJ. Retinoic acid-responsive enhancers located 3' of the Hox A and Hox B homeobox gene clusters. Functional analysis. J Biol Chem 1997; 272:2167-75. [PMID: 8999919 DOI: 10.1074/jbc.272.4.2167] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Homeobox genes control the spatial identity and differentiation of tissues in the developing vertebrate embryo. Retinoids are signaling molecules involved in the regulation of Hox genes. We previously identified a 3' enhancer called the RAIDR5, which contained a DR5 retinoic acid response element (RARE) and was responsible for the retinoic acid (RA)-associated expression of the murine Hoxa-1 gene in teratocarcinoma cells. We demonstrate that a similar enhancer, which contains a DR5 RARE, is located at a DNase I-hypersensitive site 3' of the murine Hoxb-1 gene. This enhancer, the Hoxb-1 RAIDR5, regulates the RA responsiveness of the Hoxb-1 gene and is different in location and sequence from the RA-regulated 3' Hoxb-1 enhancers previously described. Several DNA elements within the murine Hoxa-1 RA-inducible RAIDR5 enhancer, including the DR5 RARE, conserved element (CE) 1, and CE2, are conserved in the murine Hoxb-1 RAIDR5 enhancer, the human homolog of Hoxa-1, and in the chicken Hoxb-1 gene. Gel shifts show that the CE2 sequence TATTTACTCA binds an RA-inducible factor, while UV cross-linking indicates that a 170-kDa protein binds to this sequence. Thus, the Hoxa-1 and Hoxb-1 genes possess 3' enhancers with similar sequences through which their expression and responsiveness to endogenous retinoids are controlled.
Collapse
Affiliation(s)
- A W Langston
- Department of Pharmacology, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
180
|
Dupé V, Davenne M, Brocard J, Dollé P, Mark M, Dierich A, Chambon P, Rijli FM. In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′RARE). Development 1997; 124:399-410. [PMID: 9053316 DOI: 10.1242/dev.124.2.399] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoids are essential for normal development and both deficiency and excess of retinoic acid (RA) are teratogenic. Retinoic acid response elements (RAREs) have been identified in Hox gene promoters suggesting that endogenous retinoids may be involved in the direct control of Hox gene patterning functions. In order to test this hypothesis, we have mutated the Hoxa-1 3′RARE using the Cre-loxP targeting strategy, and studied its functional role during mouse development. We find that this enhancer plays an important role in the early establishment of the Hoxa-1 anterior expression boundary in the neural plate. This early disturbance in Hoxa-1 activation results in rhombomere and cranial nerve abnormalities reminiscent of those obtained in the Hoxa-1 total knockout, although their severity and penetrance are lower, thus providing strong evidence for direct control of Hox gene function by retinoids during normal development. Interestingly, we also find that the Hoxa-1 expression response to RA treatment is not entirely controlled by the RARE, suggesting the existence of other retinoid-induced factors mediating the Hoxa-1 response to RA and/or the presence of additional RAREs. Interestingly, although the RARE is not required for the spatiotemporal control of colinear expression of the Hoxa genes, it is absolutely required for correct Hoxa-2 expression in rhombomere 5.
Collapse
Affiliation(s)
- V Dupé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Illkirch, CU de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
181
|
|
182
|
Abstract
The Hox homeobox gene family plays a pivotal role in regulating patterning and axial morphogenesis in vertebrates. Molecular characterization of the four Hox clusters has shown that they are evolutionarily related with respect to sequence, organization, and expression, suggesting they arose by duplication and divergence. Transgenic analysis has clearly demonstrated the functional roles of individual genes in a broad range of embryonic tissues, and in compound mutants has addressed the issues of cooperativity and redundancy. There is an emerging picture of the cis-regulatory elements underlying Hox expression, and for the 3' members of the clusters there is a considerable degree of conservation between paralogous genes with respect to their functional roles and regulatory control.
Collapse
Affiliation(s)
- M Maconochie
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
| | | | | | | |
Collapse
|
183
|
Abstract
Temporal colinearity describes a correspondence between the spatial ordering of Hox genes within their clusters (in the direction 3' to 5') and the time of their first expression (earlier to later) during embryonic development (Izpisúa-Belmonte et al. [1991] EMBO J. 10:2279-2289). It suggests that activation of each Hox gene might be controlled in some way by its position within the cluster. So far, in situ hybridization experiments on vertebrate embryos have provided clear evidence of temporal colinearity only for "posterior" Hox genes (5' located, AbdB related). We now describe a search in the chick embryo for evidence of temporal colinearity in the expression of some anterior Hox genes (Hoxb-1, b-3, b-4, b-6, and a-9). Clear evidence for temporal colinearity was seen in neural tube tissue adjacent to the first few somites. Here, there were delays in the expression of Hoxb-3 following b-1, Hoxb-4 following b-3, and Hoxb-6 following b-4. Temporal colinearity was also detected in anterior primitive streak tissue. Hox gene expression reached both the neural tube and the anterior streak following forward spreading from posteriormost parts of the primitive streak. Overall, therefore, temporal colinearity was seen as sequential waves of Hox genes expression that proceeded forward (3' genes before 5' genes) along the developing chick embryo. Within posterior primitive streak tissue, there was only limited evidence for temporal colinearity. We discuss these results in terms of possible models for the establishment of Hox gene expression patterns.
Collapse
Affiliation(s)
- S J Gaunt
- Department of Development and Genetics, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
184
|
Abstract
The identification, in transgenic mice, of Hox gene DNA regulatory elements that can recapitulate certain aspects of the endogenous gene expression pattern has proceeded with great success. Perfect reproduction of the correct expression pattern, however, is uncommon, even when large genomic fragments spanning neighboring genes are analyzed, suggesting that important regulatory regions may be located at large distances from the genes they control or that their specific context may be important. Four classes of transcriptional regulators have been identified recently that have been shown to directly regulate Hox gene expression in the murine nervous system: retinoic acid receptors, Krox20, the Pbx/exd family, and the Hox genes themselves.
Collapse
Affiliation(s)
- T Lufkin
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
185
|
Sam M, Wurst W, Forrester L, Vauti F, Heng H, Bernstein A. A novel family of repeat sequences in the mouse genome responsive to retinoic acid. Mamm Genome 1996; 7:741-8. [PMID: 8854861 DOI: 10.1007/s003359900224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Repetitive DNA sequences form a substantial portion of eukaryotic genomes and exist as members of families that differ in copy number, length, and sequence. Various functions, including chromosomal integrity, gene regulation, and gene rearrangement have been ascribed to repetitive DNA. Although there is evidence that some repetitive sequences may participate in gene regulation, little is known about how their own expression may be regulated. During the course of gene trapping experiments with embryonic stem (ES) cells, we identified a novel class of expressed repetitive sequences in the mouse, using 5' rapid amplification of cDNA ends-polymerase chain reaction (5' RACE-PCR) to clone fusion transcripts from these lines. The expression of these repeats was induced by retinoic acid (RA) in cultured ES cells examined by Northern blot analyses. In vivo, their expression was spatially restricted in embryos and in the adult brain as determined by RNA in situ hybridization. We designated this family of sequences as Dr (developmentally regulated) repeats. The members of the Dr family, identified by cDNA cloning and through database search, are highly similar in sequence and show peculiar structural features. Our results suggest the expression of Dr-containing transcripts may be part of an ES cell differentiation program triggered by RA.
Collapse
Affiliation(s)
- M Sam
- The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 982, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
186
|
Nanda I, Weis S, Förnzler D, Altschmied J, Schartl M, Schmid M. Clustered organization and conservation of the Xiphophorus maculatus D locus, which includes two distinct gene sequences. Chromosoma 1996; 105:242-9. [PMID: 8854884 DOI: 10.1007/bf02528773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genomic organization and chromosomal localization of a previously uncharacterized D (Donor) locus in Xiphophorus and Poecilia species was investigated using fluorescence in situ hybridization (FISH) and Southern blot analysis. Part of this region is thought to be involved in the recombination event leading to formation of the Xmrk oncogene and it has recently been shown that this locus includes two different genes, one with high homology to a zinc finger protein of the Krüppel type, and the other an unknown gene with high similarity to a Caenorhabditis elegans gene. FISH to Xiphophorus chromosomes revealed that these two unrelated genes are closely linked and clustered at a unique chromosomal site. Southern blot hybridization patterns suggest that these genes exist in the genome as multiple copies. Furthermore, similar genomic organization profiles seem to prevail among other related fish. In particular, our FISH experiments reveal the existence of a conserved homologous chromosomal segment harboring the zinc finger protein sequence in several poeciliid fish.
Collapse
Affiliation(s)
- I Nanda
- Department of Human Genetics, University of Würzburg, Biocenter, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
187
|
Cardoso WV, Mitsialis SA, Brody JS, Williams MC. Retinoic acid alters the expression of pattern-related genes in the developing rat lung. Dev Dyn 1996; 207:47-59. [PMID: 8875075 DOI: 10.1002/(sici)1097-0177(199609)207:1<47::aid-aja6>3.0.co;2-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Exogenous retinoids alter pattern formation and differentiation in many developing systems, such as limb, vertebrae, and central nervous system. Many of these effects are mediated by changes in expression of patterning genes such as Hox genes and Sonic hedgehog. We have previously shown that exogenous retinoic acid, administered to the embryonic rat lung in culture alters the structural pattern of the developing lung, suppressing formation of distal lung and favoring growth of proximal tubules. To determine whether these retinoic acid-induced changes in lung development were linked to alterations in pattern-related genes, we characterized the expression of Hoxa-2, Hoxb-6, and Sonic hedgehog mRNAs in vivo and in vitro, with or without 10(-5)M retinoic acid, by in situ hybridization and quantitative polymerase chain reaction. Each of these genes demonstrated unique timing and distribution of expression that was similar in vivo and in control cultured embryonic lungs. Hoxb-6 and Sonic hedgehog mRNAs both decreased during lung development in vivo or in vitro. From the patterns of mRNA expression we propose that Hoxb-6 is involved in distal airway branching while Hoxa-2 is involved in differentiation of proximal mesenchymal derivatives and vasculogenesis in the lung. RA upregulated all three genes, changing their developmental pattern of distribution and preventing the developmental decrease in Sonic hedgehog expression. We propose that RA acts to maintain high levels of expression of these and likely other pattern-related genes in a fashion that is characteristic of the immature lung, promoting continued formation of proximal lung structures and preventing formation of typical distal lung structures of the mature lung.
Collapse
Affiliation(s)
- W V Cardoso
- Department of Medicine, Boston University School of Medicine, MA 02118, USA
| | | | | | | |
Collapse
|
188
|
Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 1996; 59:89-102. [PMID: 8892235 DOI: 10.1016/0925-4773(96)00572-2] [Citation(s) in RCA: 595] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To understand the mechanism of the sequential restriction of multipotency of stem cells during development, we have established culture conditions that allow the differentiation of neuroepithelial precursor cells from embryonic stem (ES) cells. A highly enriched population of neuroepithelial precursor cells derived from ES cells proliferates in the presence of basic fibroblast growth factor (bFGF). These cells differentiate into both neurons and glia following withdrawal of bFGF. By further differentiating the cells in serum-containing medium, the neurons express a wide variety of neuron-specific genes and generate both excitatory and inhibitory synaptic connections. The expression pattern of position-specific neural markers suggests the presence of a variety of central nervous system (CNS) neuronal cell types. These findings indicate that neuronal precursor cells can be isolated from ES cells and that these cells can efficiently differentiate into functional post-mitotic neurons of diverse CNS structures.
Collapse
Affiliation(s)
- S Okabe
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
189
|
Zhao D, McCaffery P, Ivins KJ, Neve RL, Hogan P, Chin WW, Dräger UC. Molecular identification of a major retinoic-acid-synthesizing enzyme, a retinaldehyde-specific dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:15-22. [PMID: 8797830 DOI: 10.1111/j.1432-1033.1996.0015h.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retinoic acid, a developmental signal implicated in the formation of the neural axis, is present at high levels in the early embryonic trunk region, where it is synthesized by a novel dehydrogenase. Here we show that the same enzyme is inducible by retinoic acid in P19 teratocarcinoma cells, and we report the cloning from P19 cells of a cDNA encoding a novel dehydrogenase, named retinaldehyde dehydrogenase-2 (RALDH-2). Expression in COS cells shows RALDH-2 to be highly effective in oxidation of retinaldehyde, with no detectable activity on any other aldehyde tested. In situ hybridization histochemistry on the embryonic trunk reveals RALDH-2 mRNA both in mesoderm and neuroectoderm, with highest neuroectodermal expression in the ventral horn of the spinal cord at two restricted locations along the anteroposterior axis, presumably the subpopulation of motoneurons that innervate the limbs.
Collapse
Affiliation(s)
- D Zhao
- Program in Neuroscience, Harvard Medical School, Boston, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
|
191
|
Doerksen LF, Bhattacharya A, Kannan P, Pratt D, Tainsky MA. Functional interaction between a RARE and an AP-2 binding site in the regulation of the human HOX A4 gene promoter. Nucleic Acids Res 1996; 24:2849-56. [PMID: 8759021 PMCID: PMC146022 DOI: 10.1093/nar/24.14.2849] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HOX A genes are induced in a temporal fashion after retinoic acid (RA) treatment in non-N-ras-transformed PA-1 human teratcarcinoma cells. However, In N-ras-transformed PA-1 cells, RA-Induced expression of HOX A genes is delayed. The mRNA for the transcriptional activator AP-2 is overexpressed in these ras-transformed cells, but AP-2 transcriptional activity is inhibited relative to non ras-transformed PA-1 cells. Constitutive expression of AP-2 mimics the effect of ras by transforming cells and inhibiting differentiation in culture. We analyzed 4 kb of the human HOX A4 gene promoter and identified seven putative AP-2-binding sites in the DNA sequence. Transcription assays with variably sized HOX A4 promoter reporter constructs revealed that a 365 bp region of the promoter, -2950 to -3315 relative to the mRNA start, controls RA responsiveness and ras-mediated inhibition of HOX A4 activity. This region contains an AP-2 binding site and a RARE. Elimination of the AP-2 site by site-directed mutagenesis demonstrated that the AP-2 site is involved in RA-mediated transcriptional activation of the human HOX A4 promoter in combination with the RA receptor response element (RARE). In N-ras-transformed cells, low HOX A4 promoter activity results from ras inhibition of AP-2 transactivation.
Collapse
Affiliation(s)
- L F Doerksen
- Department of Tumor Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | |
Collapse
|
192
|
Bertwistle D, Walmsley ME, Read EM, Pizzey JA, Patient RK. GATA factors and the origins of adult and embryonic blood in Xenopus: responses to retinoic acid. Mech Dev 1996; 57:199-214. [PMID: 8843397 DOI: 10.1016/0925-4773(96)00547-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transcription factors, GATA-1, -2 and -3 play essential roles in the differentiation of haematopoietic cells. To study the process of blood formation during vertebrate development we have used the expression of these GATA factors to locate haematopoietic cells in Xenopus embryos and to act as sensors for the effects of all-trans retinoic acid (RA), a signalling molecule which influences both anteroposterior patterning and haematopoietic differentiation. GATA factor expression was detected in the leading edge of the gastrulating mesoderm, in the ventral blood island (VBI) and dorsolateral plate (DLP) mesoderms and in a population of cells between the VBI and DLP. The VBI contributes to both embryonic and adult blood, whereas the DLP contains precursors of adult blood only, which have not been identified previously with molecular markers. The possibility that the GATA-2-expressing cells between the VBI and DLP were haematopoietic progenitors migrating from the VBI to the DLP was ruled out by transplantation analysis. Differential effects of RA on the expression of GATA-1 and GATA-2 suggest that RA has a direct action on haematopoietic differentiation, rather than on the formation of haematopoietic mesoderm.
Collapse
Affiliation(s)
- D Bertwistle
- Developmental Biology Research Centre, Randall Institute, King's College London, UK
| | | | | | | | | |
Collapse
|
193
|
van der Hoeven F, Zákány J, Duboule D. Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls. Cell 1996; 85:1025-35. [PMID: 8674109 DOI: 10.1016/s0092-8674(00)81303-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vertebrate Hox genes are activated following a temporal sequence that reflects their linear order in the clusters. We introduced two Hoxd transcription units, labeled with lacZ, to an ectopic 5' position in the HoxD complex. Early expression of the relocated genes was delayed and resembled that of the neighboring Hoxd-13. At later stages, locus-dependent expression in distal limbs and the genital eminence was observed, indicating that common regulatory mechanisms are used for several genes. These experiments also illustrated that neighboring genes can share the same cis-acting sequence and that moving genes around in the complex induces novel regulatory interferences. These results suggest that high order regulation controls the activation of Hox genes and highlight three important constraints responsible for the conservation of Hox gene clustering.
Collapse
Affiliation(s)
- F van der Hoeven
- Department of Zoology and Animal Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
194
|
Chen AC, Gudas LJ. An analysis of retinoic acid-induced gene expression and metabolism in AB1 embryonic stem cells. J Biol Chem 1996; 271:14971-80. [PMID: 8663043 DOI: 10.1074/jbc.271.25.14971] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Murine embryonic stem cells such as the AB1 cell line undergo differentiation in the presence of retinoic acid (RA) into an extraembryonic epithelial cell type. This results in the activation of genes such as Hoxa-1, Hoxb-1, laminin, collagen IV(alpha1), tissue plasminogen activator, RARbeta, and CRABPII. The CRABPI gene is regulated in an unusual fashion; CRABPI message and protein levels are induced at low concentrations of RA, but induction is diminished at higher concentrations. AB1 cells take up RA rapidly from the medium, and the addition of low, exogenous concentrations of RA to the culture medium results in very high intracellular RA concentrations. For example, AB1 stem cells cultured in 5 nM [3H]RA have an internal [3H]RA concentration of 1-2 microM within the first hour. AB1 cells also metabolize [3H]RA to more polar RA derivatives. The half-life of RA in AB1 cells not previously exposed to RA is about 2-2.5 h versus 40-45 min in cells cultured for 2-3 days in 1 microM exogenous RA. Thus, the enzyme(s) which metabolize RA are induced or activated by RA. Furthermore, the local concentration of RA required to elicit some biological responses may be higher than previously thought.
Collapse
Affiliation(s)
- A C Chen
- Department of Pharmacology, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
195
|
Morrison A, Moroni MC, Ariza-McNaughton L, Krumlauf R, Mavilio F. In vitro and transgenic analysis of a human HOXD4 retinoid-responsive enhancer. Development 1996; 122:1895-907. [PMID: 8674428 DOI: 10.1242/dev.122.6.1895] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of vertebrate Hox genes is regulated by retinoids in cell culture and in early embryonic development. We have identified a 185-bp retinoid-responsive transcriptional enhancer 5′ of the human HOXD4 gene, which regulates inducibility of the gene in embryonal carcinoma cells through a pattern of DNA-protein interaction on at least two distinct elements. One of these elements contains a direct repeat mediating ligand-dependent interaction with retinoic acid receptors, and is necessary though not sufficient for the enhancer function. The HOXD4 enhancer directs expression of a lacZ reporter gene in the neural tube of transgenic mouse embryos in a time-regulated and regionally restricted fashion, reproducing part of the anterior neuroectodermal expression pattern of the endogenous Hoxd-4 gene. Administration of retinoic acid to developing embryos causes alterations in the spatial restriction of the transgene expression domain, indicating that the HOXD4 enhancer is also a retinoid-responsive element in vivo. The timing of the retinoic acid response differs from that seen with more 3′ Hox genes, in that it occurs much later. This shows that the temporal window of competence in the ability to respond to retinoic acid differs between Hox genes and can be linked to specific enhancers. Mutations in the direct repeat or in a second element in the enhancer affect both retinoid response in culture and developmental regulation in embryos, suggesting that co-operative interactions between different factors mediate the enhancer activity. These data provide further support for a role of endogenous retinoids in regulation and spatial restriction of Hox gene expression in the central nervous system.
Collapse
Affiliation(s)
- A Morrison
- Laboratory of Developmental Neurobiology, National Institute of Medical Research, London, UK
| | | | | | | | | |
Collapse
|
196
|
Lawrence HJ, Sauvageau G, Humphries RK, Largman C. The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 1996; 14:281-91. [PMID: 8724694 DOI: 10.1002/stem.140281] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A sizable amount of new data points to a role for the HOX family of homeobox genes in hematopoiesis. Recent studies have demonstrated that HOXA and HOXB genes are expressed in human CD34+ cells, and are downregulated as cells leave the CD34+ compartment. In addition, expression of certain genes, including HOXB3 and HOXB4, is largely restricted to the long-term culture-initiating cell enriched pool, containing the putative stem cell population. Studies have also shown that HOX genes appear to be important for normal T lymphocyte and activated natural killer cell function. Overexpression of Hox-b4 in transplanted murine marrow cell results in a dramatic expansion of stem cells, while maintaining normal peripheral blood counts. In contrast, overexpression of Hox-a10 resulted in expansion of progenitor pools, accompanied by unique changes in the differentiation patterns of committed progenitors. Overexpression of Hox-a10 or Hox-b8 led to the development of myeloid leukemias, while animals transfected with marrow cells overexpressing Hox-b4 do not appear to develop malignancies. Blockade of HOX gene function using antisense oligonucleotides has revealed that several HOX genes appear to influence either myeloid or erythroid colony formation. Mice homozygous for a targeted disruption of the HOX-a9 gene show reduced numbers of granulocytes and lymphocytes, smaller spleens and thymuses, and reduced numbers of committed progenitors. These studies demonstrate that HOX homeobox genes play a role in both the early stem cell function as well as in later stages of hematopoietic differentiation, and that perturbations of HOX gene expression can be leukemogenic.
Collapse
Affiliation(s)
- H J Lawrence
- Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
197
|
|
198
|
Ang HL, Deltour L, Hayamizu TF, Zgombić-Knight M, Duester G. Retinoic acid synthesis in mouse embryos during gastrulation and craniofacial development linked to class IV alcohol dehydrogenase gene expression. J Biol Chem 1996; 271:9526-34. [PMID: 8621625 DOI: 10.1074/jbc.271.16.9526] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Endogenous retinoic acid (RA) has been observed in vertebrate embryos as early as gastrulation, but the mechanism controlling spatiotemporal synthesis of this important regulatory molecule remains unknown. Some members of the alcohol dehydrogenase (ADH) family catalyze retinol oxidation, the rate-limiting step in RA synthesis. Here we have examined mouse embryos for the presence of endogenous RA and expression of ADH genes. RA was not detected in egg cylinder stage embryos but was detected in late primitive streak stage embryos. Detection of class IV ADH mRNA, but not class I or class III, coincided with the onset of RA synthesis, being absent in egg cylinder embryos but present in the posterior mesoderm of late primitive streak embryos. During neurulation, RA and class IV ADH mRNA were colocalized in the craniofacial region, trunk, and forelimb bud. Class IV ADH mRNA was detected in cranial neural crest cells and craniofacial mesenchyme as well as trunk and forelimb bud mesenchyme. The spatiotemporal expression pattern and enzymatic properties of class IV ADH are thus consistent with a crucial function in RA synthesis during embryogenesis. In addition, the finding of endogenous RA and class IV ADH mRNA in the craniofacial region has implications for the mechanism of fetal alcohol syndrome.
Collapse
Affiliation(s)
- H L Ang
- La Jolla Cancer Research Foundation, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
199
|
Hagen JJ, Washco KA, Monnig CA. Determination of retinoids by reversed-phase capillary liquid chromatography with amperometric electrochemical detection. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 677:225-31. [PMID: 8704925 DOI: 10.1016/0378-4347(95)00465-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A method for separating and detecting retinoids by reversed-phase capillary liquid chromatography with amperometric electrochemical detection is described. Packed columns with an inner diameter of 180 microns were employed for the separation using C18 stationary phase and a mobile phase containing acetonitrile-water methanol (65:32.5:2.5, v/v/v) with 1% tetrabutylammonium perchlorate and 0.174 M acetate buffered at pH 5. The detection cell consisted of a carbon fiber barrel electrode held at 0.9 V versus an Ag/AgCl reference. Injection volumes of 2 microliters produced detection limits of 2.73, 0.472, 0.428, and 0.267 fmol (or 410, 64.1, 60.9, and 38.2 pg ml-1) for 13-cis-retinoic acid, all-trans-retinoic acid, retinaldehyde, and retinol, respectively. This represents an improvement in detection limits of at least three orders of magnitude for similar analyses using liquid chromatography and UV absorbance detection. The detector signal was linear over two orders of magnitude of analyte concentration. Retinoid concentrations in bovine serum were determined and found to be in good agreement with previously reported values.
Collapse
Affiliation(s)
- J J Hagen
- Department of Chemistry, University of California, Riverside 92521-0403, USA
| | | | | |
Collapse
|
200
|
Alexandre D, Clarke JD, Oxtoby E, Yan YL, Jowett T, Holder N. Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 1996; 122:735-46. [PMID: 8631251 DOI: 10.1242/dev.122.3.735] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Considerable evidence has demonstrated that retinoic acid influences the formation of the primary body axis in vertebrates and that this may occur through the regulation of Hox gene expression. In this study, we show that the phenotype induced by exogenous retinoic acid in the zebrafish can also be generated by the overexpression of Hoxa-1 following injection of synthetic RNA into the fertilised egg. The isolation, sequence and expression pattern of the zebrafish Hoxa-1 gene is described. We show that exogenously applied retinoic acid causes the ectopic accumulation of Hoxa-1 message during gastrulation in the hypoblast in the head region. Overexpression of Hoxa-1 following injection of RNA causes abnormal growth of the anterior hindbrain, duplication of Mauthner neurons in rhombomere (r) 2 and fate changes of r2 mesenchymal and neurogenic neural crest. These results are discussed in terms of the role of Hoxa-1 in controlling anterior hindbrain patterning and the relationship between expression of Hoxa-1 and retinoic acid.
Collapse
Affiliation(s)
- D Alexandre
- Developmental Biology Research Centre, Randall Institute, King's College, London, UK
| | | | | | | | | | | |
Collapse
|