151
|
Xu J, Guo Y, Sui T, Wang Q, Zhang Y, Zhang R, Wang M, Guan S, Wang L. Molecular mechanisms of anti-oxidant and anti-aging effects induced by convallatoxin in Caenorhabditis elegans. Free Radic Res 2018; 51:529-544. [PMID: 28503972 DOI: 10.1080/10715762.2017.1331037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Convallatoxin is widely used as a cardiac glycoside in acute and chronic congestive heart-failure and paroxysmal tachycardia, with many effects and underlying protective mechanisms on inflammation and cellular proliferation. However, convallatoxin has not been investigated in its antioxidant effects and lifespan extension in Caenorhabditis elegans. In this study, we found that convallatoxin (20 μM) could significantly prolong the lifespan of wild-type C. elegans up to 16.3% through daf-16, but not sir-2.1 signalling and increased thermotolerance and resistance to paraquat-induced oxidative stress. Convallatoxin also improved pharyngeal pumping, locomotion, reduced lipofuscin accumulation and reactive oxygen species levels in C. elegans, which were attributed to hormesis, free radical-scavenging effects in vivo, and up-regulation of stress resistance-related proteins, such as SOD-3 and HSP-16.1. Furthermore, aging-associated genes daf-16, sod-3, and ctl-2 also appeared to contribute to the stress-resistance effect of convallatoxin. In summary, this study demonstrates that convallatoxin can protect against heat and oxidative stress and extend the lifespan of C. elegans, pointing it as a potential novel drug for retarding the aging process in humans.
Collapse
Affiliation(s)
- Jia Xu
- a School of Life Science , Jilin University , Changchun , PR China
| | - Youming Guo
- a School of Life Science , Jilin University , Changchun , PR China
| | - Tianzhuo Sui
- a School of Life Science , Jilin University , Changchun , PR China
| | - Qifei Wang
- b College of Chemistry , Jilin University , Changchun , PR China
| | - Yue Zhang
- a School of Life Science , Jilin University , Changchun , PR China
| | - Ruining Zhang
- a School of Life Science , Jilin University , Changchun , PR China
| | - Mingyang Wang
- a School of Life Science , Jilin University , Changchun , PR China
| | - Shuwen Guan
- a School of Life Science , Jilin University , Changchun , PR China
| | - Liping Wang
- a School of Life Science , Jilin University , Changchun , PR China
| |
Collapse
|
152
|
Shilovsky GA, Putyatina TS, Ashapkin VV, Luchkina OS, Markov AV. Coefficient of Variation of Lifespan Across the Tree of Life: Is It a Signature of Programmed Aging? BIOCHEMISTRY (MOSCOW) 2018; 82:1480-1492. [PMID: 29486698 DOI: 10.1134/s0006297917120070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Measurements of variation are of great importance for studying the stability of pathological phenomena and processes. For the biology of aging, it is very important not only to determine average mortality, but also to study its stability in time and the size of fluctuations that are indicated by the variation coefficient of lifespan (CVLS). It is believed that a relatively small (~20%) value of CVLS in humans, comparable to the coefficients of variation of other events programmed in ontogenesis (for example, menarche and menopause), indicates a relatively rigid determinism (N. S. Gavrilova et al. (2012) Biochemistry (Moscow), 77, 754-760). To assess the prevalence of this phenomenon, we studied the magnitude of CVLS, as well as the coefficients of skewness and kurtosis in diverse representatives of the animal kingdom using data provided by the Institute for Demographic Research (O. R. Jones et al. (2014) Nature, 505, 169-173). We found that, unlike humans and laboratory animals, in most examined species the values of CVLS are rather high, indicating heterogeneity of the lifespan in the cohorts studied. This is probably due to the large influence of background mortality, as well as the non-monotonicity of total mortality in the wild, especially at the earliest ages. One way to account for this influence is to "truncate" the data (removing the earliest and latest ages from consideration). To reveal the effect of this procedure, we proposed a new indicator, the stability coefficient of mortality dynamics, which indicates how quickly CVLS is reduced to values that characterize a relatively homogeneous population (33%) when the data are "truncated". Such indicators facilitate the use of the parameters of survival curves for analysis of the effects of geroprotectors, lifestyle, and other factors on lifespan, and for the quantification of relative contributions of genetic and environmental factors to the dynamics of aging in human and animal populations, including those living in the wild.
Collapse
Affiliation(s)
- G A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
153
|
Everman ER, Morgan TJ. Antagonistic pleiotropy and mutation accumulation contribute to age-related decline in stress response. Evolution 2018; 72:303-317. [PMID: 29214647 DOI: 10.1111/evo.13408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/17/2023]
Abstract
As organisms age, the effectiveness of natural selection weakens, leading to age-related decline in fitness-related traits. The evolution of age-related changes associated with senescence is likely influenced by mutation accumulation (MA) and antagonistic pleiotropy (AP). MA predicts that age-related decline in fitness components is driven by age-specific sets of alleles, nonnegative genetic correlations within trait across age, and an increase in the coefficient of genetic variance. AP predicts that age-related decline in a trait is driven by alleles with positive effects on fitness in young individuals and negative effects in old individuals, and is expected to lead to negative genetic correlations within traits across age. We build on these predictions using an association mapping approach to investigate the change in additive effects of SNPs across age and among traits for multiple stress-response fitness-related traits, including cold stress with and without acclimation and starvation resistance. We found support for both MA and AP theories of aging in the age-related decline in stress tolerance. Our study demonstrates that the evolution of age-related decline in stress tolerance is driven by a combination of alleles that have age-specific additive effects, consistent with MA, as well as nonindependent and antagonistic genetic architectures characteristic of AP.
Collapse
Affiliation(s)
- Elizabeth R Everman
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Theodore J Morgan
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
154
|
Nowak S, Neidhart J, Szendro IG, Rzezonka J, Marathe R, Krug J. Interaction Analysis of Longevity Interventions Using Survival Curves. BIOLOGY 2018; 7:biology7010006. [PMID: 29316622 PMCID: PMC5872032 DOI: 10.3390/biology7010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/30/2017] [Accepted: 01/03/2018] [Indexed: 01/05/2023]
Abstract
A long-standing problem in ageing research is to understand how different factors contributing to longevity should be expected to act in combination under the assumption that they are independent. Standard interaction analysis compares the extension of mean lifespan achieved by a combination of interventions to the prediction under an additive or multiplicative null model, but neither model is fundamentally justified. Moreover, the target of longevity interventions is not mean life span but the entire survival curve. Here we formulate a mathematical approach for predicting the survival curve resulting from a combination of two independent interventions based on the survival curves of the individual treatments, and quantify interaction between interventions as the deviation from this prediction. We test the method on a published data set comprising survival curves for all combinations of four different longevity interventions in Caenorhabditis elegans. We find that interactions are generally weak even when the standard analysis indicates otherwise.
Collapse
Affiliation(s)
- Stefan Nowak
- Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany.
| | - Johannes Neidhart
- Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany.
- MBR Optical Systems, 42279 Wuppertal, Germany.
| | - Ivan G Szendro
- Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany.
| | - Jonas Rzezonka
- Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany.
| | - Rahul Marathe
- Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany.
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India.
| | - Joachim Krug
- Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany.
| |
Collapse
|
155
|
|
156
|
Guillén C, Benito M. mTORC1 Overactivation as a Key Aging Factor in the Progression to Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2018; 9:621. [PMID: 30386301 PMCID: PMC6198057 DOI: 10.3389/fendo.2018.00621] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM), a worldwide epidemics, is a progressive disease initially developing an insulin resistant state, with manifest pancreatic beta islet overwork and hyperinsulinemia. As the disease progresses, pancreatic β cells are overwhelmed and fails in their capacity to compensate insulin resistance. In addition, it is usually associated with other metabolic diseases such as hyperlipidemia, obesity and the metabolic syndrome. During the progression to T2DM there is a chronic activation of mTORC1 signaling pathway, which induces aging and acts as an endogenous inhibitor of autophagy. The complex 1 of mTOR (mTORC1) controls cell proliferation, cell growth as well as metabolism in a variety of cell types through a complex signaling network. Autophagy is involved in the recycling of cellular components for energy generation under nutrient deprivation, and serves as a complementary degradation system to the ubiquitin-proteasome pathway. Autophagy represents a protective mechanism for different cell types, including pancreatic β cells, and potentiates β cell survival across the progression to T2DM. Here, we focus our attention on the chronic overactivation of mTORC1 signaling pathway in β islets from prediabetics patients, making these cells more prone to trigger apoptosis upon several cellular stressors and allowing the progression from prediabetes to type 2 diabetes status.
Collapse
Affiliation(s)
- Carlos Guillén
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Carlos Guillén
| | - Manuel Benito
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
157
|
Chiu HF, Hsiao SC, Lu YY, Han YC, Shen YC, Venkatakrishnan K, Wang CK. Efficacy of protein rich pearl powder on antioxidant status in a randomized placebo-controlled trial. J Food Drug Anal 2018; 26:309-317. [PMID: 29389568 PMCID: PMC9332669 DOI: 10.1016/j.jfda.2017.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 11/17/2022] Open
Abstract
Pearl is one of the well-known traditional Chinese medicine (TCM) prescribed for treating various skin and bone related disorders due to its abundant proteins and mineral contents. The present investigation focused on antioxidation and life span prolonging effects from different extracts of pearl powder. During in vitro studies, various oxidative indices were evaluated, along with lifespan-prolonging effect were checked using wild-type Caenorhabditis elegans. For the clinical trial, 20 healthy middle-aged subjects were recruited and separated into 2 groups as experimental and placebo group, who received 3 g of pearl powder/d (n = 10) and 3 g of placebo/d (n = 10) for 8 weeks, respectively. During the initial, 2nd, 4th, 6th, 8th and 10th weeks the blood samples were collected for biochemical analysis. The protein extract of pearl powder recorded maximum (p < 0.05) antioxidant activity (20-68%) as well as efficiently prolonged the life span of C. elegans by 18.87%. Pearl powder supplemented subjects showed a substantial increase (p < 0.05) in total antioxidant capacity from 0.45 to 0.69 mM, total thiols from 0.23 to 0.29 mM, Glutathione content from 5.89 to 9.19 μM, enzymic antioxidant activity (SOD-1248 to 1308; Gpx-30 to 32; GR-2.4 to 2.9) as well as considerably suppressed the lipid peroxidation products from 4.95 to 3.27 μM. The outcome of both in-vitro and in-vivo antioxidant activity inferred that protein extract of pearl powder was a potent antioxidant and thereby prolonged the lifespan of C. elegans. Hence, pearl powder could be recommended for treating various age-related degenerative disorders.
Collapse
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital Ministry of Health and Well-being, Taichung,
Taiwan, ROC
| | - Su-Chun Hsiao
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City,
Taiwan, ROC
| | - Yan-Ying Lu
- Department of Neurology, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City,
Taiwan, ROC
| | - Yi-Chun Han
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City,
Taiwan, ROC
| | - You-Cheng Shen
- School of Health Diet and Industry Management, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City,
Taiwan, ROC
| | - Kamesh Venkatakrishnan
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City,
Taiwan, ROC
| | - Chin-Kun Wang
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City,
Taiwan, ROC
| |
Collapse
|
158
|
Ben-Hamo O, Rosner A, Rabinowitz C, Oren M, Rinkevich B. Coupling astogenic aging in the colonial tunicate Botryllus schlosseri with the stress protein mortalin. Dev Biol 2017; 433:33-46. [PMID: 29128264 DOI: 10.1016/j.ydbio.2017.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Botryllus schlosseri, a colonial marine invertebrate, exhibits three generations of short-lived astogenic modules that continuously grow and die throughout the colony's entire lifespan, within week-long repeating budding cycles (blastogenesis), each consisting of four stages (A-D). At stage D, aging is followed by the complete absorption of adult modules (zooids) via a massive apoptotic process. Here we studied in Botryllus the protein mortalin (HSP70s member), a molecule largely known for its association with aging and proliferation. In-situ hybridization and qPCR assays reveal that mortalin follows the cyclic pattern of blastogenesis. Colonies at blastogenic stage D display the highest mortalin levels, and young modules exhibit elevated mortalin levels compared to old modules. Manipulations of mortalin with the specific allosteric inhibitor MKT-077 has led to a decrease in the modules' growth rate and the development of abnormal somatic/germinal morphologies (primarily in vasculature and in organs such as the endostyle, the stomach and gonads). We therefore propose that mortalin plays a significant role in the astogeny and aging of colonial modules in B. schlosseri, by direct involvement in the regulation of blastogenesis.
Collapse
Affiliation(s)
- Oshrat Ben-Hamo
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel; Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 31905 Haifa, Israel.
| | - Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel
| | - Claudette Rabinowitz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel
| | - Matan Oren
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel; Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel.
| |
Collapse
|
159
|
Chen Z, Luo L, Chen R, Hu H, Pan Y, Jiang H, Wan X, Jin H, Gong Y. Acetylome Profiling Reveals Extensive Lysine Acetylation of the Fatty Acid Metabolism Pathway in the Diatom Phaeodactylum tricornutum. Mol Cell Proteomics 2017; 17:399-412. [PMID: 29093020 DOI: 10.1074/mcp.ra117.000339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 02/05/2023] Open
Abstract
Nε-lysine acetylation represents a highly dynamic and reversibly regulated post-translational modification widespread in almost all organisms, and plays important roles for regulation of protein function in diverse metabolic pathways. However, little is known about the role of lysine acetylation in photosynthetic eukaryotic microalgae. We integrated proteomic approaches to comprehensively characterize the lysine acetylome in the model diatom Phaeodactylum tricornutum In total, 2324 acetylation sites from 1220 acetylated proteins were identified, representing the largest data set of the lysine acetylome in plants to date. Almost all enzymes involved in fatty acid synthesis were found to be lysine acetylated. Six putative lysine acetylation sites were identified in a plastid-localized long-chain acyl-CoA synthetase. Site-directed mutagenesis and site-specific incorporation of N-acetyllysine in acyl-CoA synthetase show that acetylation at K407 and K425 increases its enzyme activity. Moreover, the nonenzymatically catalyzed overall hyperacetylation of acyl-CoA synthetase by acetyl-phosphate can be effectively deacetylated and reversed by a sirtuin-type NAD+-dependent deacetylase with subcellular localization of both the plastid and nucleus in Phaeodactylum This work indicates the regulation of acyl-CoA synthetase activity by site-specific lysine acetylation and highlights the potential regulation of fatty acid metabolism by lysine actetylation in the plastid of the diatom Phaeodactylum.
Collapse
Affiliation(s)
- Zhuo Chen
- From the ‡Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.,§Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Ling Luo
- From the ‡Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Runfa Chen
- From the ‡Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hanhua Hu
- ¶Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yufang Pan
- ¶Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haibo Jiang
- ‖School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Xia Wan
- From the ‡Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hu Jin
- ¶Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yangmin Gong
- From the ‡Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| |
Collapse
|
160
|
Wang B, Wang H, Xiong J, Zhou Q, Wu H, Xia L, Li L, Yu Z. A Proteomic Analysis Provides Novel Insights into the Stress Responses of Caenorhabditis elegans towards Nematicidal Cry6A Toxin from Bacillus thuringiensis. Sci Rep 2017; 7:14170. [PMID: 29074967 PMCID: PMC5658354 DOI: 10.1038/s41598-017-14428-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/10/2017] [Indexed: 01/16/2023] Open
Abstract
Cry6A represents a novel family of nematicidal crystal proteins from Bacillus thuringiensis. It has distinctive architecture as well as mechanism of action from Cry5B, a highly focused family of nematicidal crystal proteins, and even from other insecticidal crystal proteins containing the conserved three-domain. However, how nematode defends against Cry6A toxin remains obscure. In this study, the global defense pattern of Caenorhabditis elegans against Cry6Aa2 toxin was investigated by proteomic analysis. In response to Cry6Aa2, 12 proteins with significantly altered abundances were observed from worms, participating in innate immune defense, insulin-like receptor (ILR) signaling pathway, energy metabolism, and muscle assembly. The differentially expressed proteins (DEPs) functioning in diverse biological processes suggest that a variety of defense responses participate in the stress responses of C. elegans to Cry6Aa2. The functional verifications of DEPs suggest that ILR signaling pathway, DIM-1, galectin LEC-6 all are the factors of defense responses to Cry6Aa2. Moreover, Cry6Aa2 also involves in accelerating the metabolic energy production which fulfills the energy demand for the immune responses. In brief, our findings illustrate the global pattern of defense responses of nematode against Cry6A for the first time, and provide a novel insight into the mechanism through which worms respond to Cry6A.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Haiwen Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Jing Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Qiaoni Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Huan Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ziquan Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China.
| |
Collapse
|
161
|
Protective effects of short-term dietary restriction in surgical stress and chemotherapy. Ageing Res Rev 2017; 39:68-77. [PMID: 28216454 DOI: 10.1016/j.arr.2017.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 01/09/2023]
Abstract
Reduced caloric intake including fasting, as well as the dietary composition or the timing of food intake, impact longevity, likely through a modification in the onset or the severity of chronic aging-related diseases such as cancer. As with pre- and post-operative dietary recommendations, evidence-based nutritional advice from healthcare professionals during and after cancer treatment is often vague or conflicting. We hypothesize that preventive dietary recommendations can help in the context of both chronic cancer treatment efficacy and the avoidance of development of secondary malignancies, as well as in the context of protection from the acute stress of surgery. In this perspective review, we will discuss the latest findings on the potential role of short-term dietary restriction in cancer treatment and improvement of surgical outcome.
Collapse
|
162
|
Lehnhardt F, Liang D, Chen Q, Tocmo R, Rychlik M, Huang D. Effects of S-allyl glutathione disulphide and vinyl-dithiin isomers from garlic on the chronological lifespan of Saccharomyces cerevisiae. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
163
|
SIRT6 promotes osteogenic differentiation of mesenchymal stem cells through BMP signaling. Sci Rep 2017; 7:10229. [PMID: 28860594 PMCID: PMC5578964 DOI: 10.1038/s41598-017-10323-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
SIRT6 has been identified as an H3K9 deacetylase and a critical regulator of genome stability, telomere integrity, and metabolic homeostasis. Sirt6-deficient mice displayed dramatic phenotypes including profound lymphopenia, loss of subcutaneous fat, lordokyphosis and low bone marrow density. Here, we report that SIRT6 regulates osteogenic differentiation independent of its deacetylase activity in vitro. Further mechanistic studies showed that SIRT6 involves the cell fate determination by modulating bone morphogenetic protein (BMP) signaling. Unexpectedly, this modulation depends upon P300/CBP-associated factor (PCAF). In addition, we observed impaired SIRT6 expression in bone marrow mesenchymal stem cells and in bone sections of ovariectomized mice. Taken together, our present study provide new insights into mechanisms of SIRT6-regulated MSC function beyond its H3K9 deacetylase activity.
Collapse
|
164
|
An automated compound screening for anti-aging effects on the function of C. elegans sensory neurons. Sci Rep 2017; 7:9403. [PMID: 28839194 PMCID: PMC5570957 DOI: 10.1038/s41598-017-09651-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
Discovery of molecular targets or compounds that alter neuronal function can lead to therapeutic advances that ameliorate age-related neurodegenerative pathologies. Currently, there is a lack of in vivo screening technologies for the discovery of compounds that affect the age-dependent neuronal physiology. Here, we present a high-throughput, microfluidic-based assay for automated manipulation and on-chip monitoring and analysis of stimulus-evoked calcium responses of intact C. elegans at various life stages. First, we successfully applied our technology to quantify the effects of aging and age-related genetic and chemical factors in the calcium transients of the ASH sensory neuron. We then performed a large-scale screen of a library of 107 FDA-approved compounds to identify hits that prevented the age-dependent functional deterioration of ASH. The robust performance of our assay makes it a valuable tool for future high-throughput applications based on in vivo functional imaging.
Collapse
|
165
|
Coherent Raman Imaging of Live Muscle Sarcomeres Assisted by SFG Microscopy. Sci Rep 2017; 7:9211. [PMID: 28835694 PMCID: PMC5569110 DOI: 10.1038/s41598-017-09571-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023] Open
Abstract
In this study, we used spectrally focused coherent anti-Stokes Raman scattering (spCARS) microscopy assisted by sum-frequency generation (SFG) to monitor the variations in the structural morphology and molecular vibrations of a live muscle of Caenorhabditis elegans. The subunits of the muscle sarcomeres, such as the M-line, myosin, dense body, and α-actinin, were alternatively observed using spCARS microscopy for different sample orientations, with the guidance of a myosin positional marker captured by SFG microscopy. Interestingly enough, the beam polarization dependence of the spCARS contrasts for two parallel subunits (dense body and myosin) showed a ~90° phase difference. The chemically sensitive spCARS spectra induced by the time-varying overlap of two pulses allowed (after a robust subtraction of the non-resonant background using a modified Kramers–Krönig transformation method) high-fidelity detection of various genetically modified muscle sarcomeres tuned to the C-H vibration (2800–3100 cm−1). Conversely, SFG image mapping assisted by phase-retrieved spCARS spectra also facilitated label-free monitoring of the changes in the muscle content of C. elegans that are associated with aging, based on the hypothesis that the C-H vibrational modes could serve as qualitative chemical markers sensitive to the amount and/or structural modulation of the muscle.
Collapse
|
166
|
Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res Rev 2017; 37:79-93. [PMID: 28552719 DOI: 10.1016/j.arr.2017.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process.
Collapse
|
167
|
De Matteis S, Granato AM, Napolitano R, Molinari C, Valgiusti M, Santini D, Foschi FG, Ercolani G, Vespasiani Gentilucci U, Faloppi L, Scartozzi M, Frassineti GL, Casadei Gardini A. Interplay Between SIRT-3, Metabolism and Its Tumor Suppressor Role in Hepatocellular Carcinoma. Dig Dis Sci 2017; 62:1872-1880. [PMID: 28527050 DOI: 10.1007/s10620-017-4615-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
Abstract
Sirtuins (SIRT), first described as nicotinamide adenine dinucleotide (NAD+)-dependent type III histone deacetylases, are produced by cells to support in the defense against chronic stress conditions such as metabolic syndromes, neurodegeneration, and cancer. SIRT-3 is one of the most studied members of the mitochondrial sirtuins family. In particular, its involvement in metabolic diseases and its dual role in cancer have been described. In the present review, based on the evidence of SIRT-3 involvement in metabolic dysfunctions, we aimed to provide an insight into the multifaceted role of SIRT-3 in many solid and hematological tumors with a particular focus on hepatocellular carcinoma (HCC). SIRT-3 regulatory effect and involvement in metabolism dysfunctions may have strong implications in HCC development and treatment. Research literature widely reports the relationship between metabolic disorders and HCC development. This evidence suggests a putative bridge role of SIRT-3 between metabolic diseases and HCC. However, further studies are necessary to demonstrate such interconnection.
Collapse
Affiliation(s)
- Serena De Matteis
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014, Meldola, Italy.
| | - Anna Maria Granato
- Immunotherapy and Cell Therapy Unit, IRST IRCCS, Via Maroncelli, 40, 47014, Meldola, Italy
| | - Roberta Napolitano
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014, Meldola, Italy
| | - Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014, Meldola, Italy
| | - Martina Valgiusti
- Department of Medical Oncology, IRST IRCCS, Via Maroncelli, 40, 47014, Meldola, Italy
| | - Daniele Santini
- Campus Bio-Medico, University of Rome, Via Àlvaro del Portillo, 21, 00128, Rome, Italy
| | | | - Giorgio Ercolani
- Department of General Surgery, Morgagni-Pierantoni Hospital, Via Carlo Forlanini, 34, 47121, Forlì, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138, Bologna, Italy
| | - Umberto Vespasiani Gentilucci
- Internal Medicine and Hepatology Unit, University Campus Bio-Medico, Via Àlvaro del Portillo, 21, 00128, Rome, Italy
| | - Luca Faloppi
- Medical Oncology, University Hospital, University of Cagliari, SS 554 km 4.500, Monserrato, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology, University Hospital, University of Cagliari, SS 554 km 4.500, Monserrato, Cagliari, Italy
| | | | | |
Collapse
|
168
|
Cohen AA. Aging across the tree of life: The importance of a comparative perspective for the use of animal models in aging. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2680-2689. [PMID: 28690188 DOI: 10.1016/j.bbadis.2017.05.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
Use of model organisms in aging research is problematic because our ability to extrapolate across the tree of life is not clear. On one hand, there are conserved pathways that regulate lifespan in organisms including yeast, nematodes, fruit flies, and mice. On the other, many intermediate taxa across the tree of life appear not to age at all, and there is substantial variation in aging mechanisms and patterns, sometimes even between closely related species. There are good evolutionary and mechanistic reasons to expect this complexity, but it means that model organisms must be used with caution and that results must always be interpreted through a broader comparative framework. Additionally, it is essential to include research on non-traditional and unusual species, and to integrate mechanistic and demographic research. There will be no simple answers regarding the biology of aging, and research approaches should reflect this. This article is part of a Special Issue entitled: Animal models of aging - edited by Houtkooper Riekelt.
Collapse
Affiliation(s)
- Alan A Cohen
- Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
169
|
Uric acid, an important antioxidant contributing to survival in termites. PLoS One 2017; 12:e0179426. [PMID: 28609463 PMCID: PMC5469489 DOI: 10.1371/journal.pone.0179426] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/29/2017] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) are generated spontaneously in all organisms and cause oxidative damage to biomolecules when present in excess. Accumulated oxidative damage accelerates aging; enhanced antioxidant capacity may be a positive factor for longevity. Recently, numerous studies of aging and longevity have been performed using short-lived animals, however, longevity mechanisms remain unknown. Here we show that a termite Reticulitermes speratus that is thought to be long-lived eusocial insect than other solitary insects uses large quantities of uric acid as an antioxidant against ROS. We demonstrated that the accumulation of uric acid considerably increases the free radical-scavenging activity and resistance against ultraviolet-induced oxidative stress in laboratory-maintained termites. In addition, we found that externally administered uric acid aided termite survival under highly oxidative conditions. The present data demonstrates that in addition to nutritional and metabolic roles, uric acid is an essential antioxidant for survival and contributes significantly to longevity. Uric acid also plays important roles in primates but causes gout when present in excess in humans. Further longevity studies of long-lived organisms may provide important breakthroughs with human health applications.
Collapse
|
170
|
Patil PD, Mahajan UB, Patil KR, Chaudhari S, Patil CR, Agrawal YO, Ojha S, Goyal SN. Past and current perspective on new therapeutic targets for Type-II diabetes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1567-1583. [PMID: 28579755 PMCID: PMC5446975 DOI: 10.2147/dddt.s133453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss of pancreatic β-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.
Collapse
Affiliation(s)
- Pradip D Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Umesh B Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Kalpesh R Patil
- Department of Pharmacology, H. R. Patel Institute of Pharmaceutical Education and Research
| | - Sandip Chaudhari
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Yogeeta O Agrawal
- Department of Pharmaceutics and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, UAE
| | - Sameer N Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| |
Collapse
|
171
|
Abstract
At present, no single indicator could be used as a golden index to estimate aging process. The biological age (BA), which combines several important biomarkers with mathematical modeling, has been proposed for >50 years as an aging estimation method to replace chronological age (CA). The common methods used for BA estimation include the multiple linear regression (MLR), the principal component analysis (PCA), the Hochschild's method, and the Klemera and Doubal's method (KDM). The fundamental differences in these four methods are the roles of CA and the selection criteria of aging biomarkers. In MLR and PCA, CA is treated as the selection criterion and an independent index. The Hochschild's method and KDM share a similar concept, making CA an independent variable. Previous studies have either simply constructed the BA model by one or compared the four methods together. However, reviews have yet to illustrate and compare the four methods systematically. Since the BA model is a potential estimation of aging for clinical use, such as predicting onset and prognosis of diseases, improving the elderly's living qualities, and realizing successful aging, here we summarize previous BA studies, illustrate the basic statistical steps, and thoroughly discuss the comparisons among the four common BA estimation methods.
Collapse
Affiliation(s)
- Linpei Jia
- Department of Nephrology, Second Hospital of Jilin University, Changchun, Jilin Province
- Department of Nephrology, Chinese People’s Liberation Army General Hospital, Beijing
- State Key Laboratory of Kidney Disease, Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Weiguang Zhang
- Department of Nephrology, Chinese People’s Liberation Army General Hospital, Beijing
- State Key Laboratory of Kidney Disease, Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Xiangmei Chen
- Department of Nephrology, Second Hospital of Jilin University, Changchun, Jilin Province
- Department of Nephrology, Chinese People’s Liberation Army General Hospital, Beijing
- State Key Laboratory of Kidney Disease, Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
172
|
Mercken EM, Capri M, Carboneau BA, Conte M, Heidler J, Santoro A, Martin-Montalvo A, Gonzalez-Freire M, Khraiwesh H, González-Reyes JA, Moaddel R, Zhang Y, Becker KG, Villalba JM, Mattison JA, Wittig I, Franceschi C, de Cabo R. Conserved and species-specific molecular denominators in mammalian skeletal muscle aging. NPJ Aging Mech Dis 2017. [PMID: 28649426 PMCID: PMC5460213 DOI: 10.1038/s41514-017-0009-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aging is a complex phenomenon involving functional decline in multiple physiological systems. We undertook a comparative analysis of skeletal muscle from four different species, i.e. mice, rats, rhesus monkeys, and humans, at three different representative stages during their lifespan (young, middle, and old) to identify pathways that modulate function and healthspan. Gene expression profiling and computational analysis revealed that pathway complexity increases from mice to humans, and as mammals age, there is predominantly an upregulation of pathways in all species. Two downregulated pathways, the electron transport chain and oxidative phosphorylation, were common among all four species in response to aging. Quantitative PCR, biochemical analysis, mitochondrial DNA measurements, and electron microscopy revealed a conserved age-dependent decrease in mitochondrial content, and a reduction in oxidative phosphorylation complexes in monkeys and humans. Western blot analysis of key proteins in mitochondrial biogenesis discovered that (i) an imbalance toward mitochondrial fusion occurs in aged skeletal muscle and (ii) mitophagy is not overtly affected, presumably leading to the observed accumulation of abnormally large, damaged mitochondria with age. Select transcript expression analysis uncovered that the skeletal inflammatory profile differentially increases with age, but is most pronounced in humans, while increased oxidative stress (as assessed by protein carbonyl adducts and 4-hydroxynonenal) is common among all species. Expression studies also found that there is unique dysregulation of the nutrient sensing pathways among the different species with age. The identification of conserved pathways indicates common molecular mechanisms intrinsic to health and lifespan, whereas the recognition of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process. Aging is a complex phenomenon involving functional declines in multiple physiological systems with the passage of time. Focusing on skeletal muscle, a group of international scientists identified pathways involved in healthspan and by determining global gene expression profiles across species they exposed common mechanisms fundamental to the aging process. Their experimental design involved comparative analysis of mice, rats, rhesus monkeys and humans, targeting three key time points during their respective lifespans. Pathways related to oxidative stress, inflammation and nutrient signaling, which function collectively to affect the quality and status of mitochondria, emerged across all species in an age-influenced manner. The identification of conserved pathways reveals molecular mechanisms intrinsic to health and survival, whereas the unveiling of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.
Collapse
Affiliation(s)
- Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, 40126 Bologna, Italy
| | - Bethany A Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, 40126 Bologna, Italy
| | - Juliana Heidler
- Functional Proteomics, SFB815 Core Unit, Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, 40126 Bologna, Italy
| | - Alejandro Martin-Montalvo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Marta Gonzalez-Freire
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Husam Khraiwesh
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Campus Rabanales Edificio Severo Ochoa, 3ª planta, 14014 Córdoba, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Campus Rabanales Edificio Severo Ochoa, 3ª planta, 14014 Córdoba, Spain
| | - Ruin Moaddel
- Bioanalytical and Drug Development Unit, National institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Campus Rabanales Edificio Severo Ochoa, 3ª planta, 14014 Córdoba, Spain
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Poolesville, MD 20837 USA
| | - Ilka Wittig
- Functional Proteomics, SFB815 Core Unit, Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| |
Collapse
|
173
|
Liao S, Broughton S, Nässel DR. Behavioral Senescence and Aging-Related Changes in Motor Neurons and Brain Neuromodulator Levels Are Ameliorated by Lifespan-Extending Reproductive Dormancy in Drosophila. Front Cell Neurosci 2017; 11:111. [PMID: 28503133 PMCID: PMC5408790 DOI: 10.3389/fncel.2017.00111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/03/2017] [Indexed: 01/04/2023] Open
Abstract
The lifespan of Drosophilamelanogaster can be extended substantially by inducing reproductive dormancy (also known as diapause) by lowered temperature and short days. This increase of longevity is accompanied by lowered metabolism and increased stress tolerance. We ask here whether behavioral senescence is ameliorated during adult dormancy. To study this we kept flies for seven or more weeks in normal rearing conditions or in diapause conditions and compared to 1-week-old flies in different behavioral assays of sleep, negative geotaxis and exploratory walking. We found that the senescence of geotaxis and locomotor behavior seen under normal rearing conditions was negligible in flies kept in dormancy. The normal senescence of rhythmic activity and sleep patterns during the daytime was also reduced by adult dormancy. Investigating the morphology of specific neuromuscular junctions (NMJs), we found that changes normally seen with aging do not take place in dormant flies. To monitor age-associated changes in neuronal circuits regulating activity rhythms, sleep and walking behavior we applied antisera to tyrosine hydroxylase (TH), serotonin and several neuropeptides to examine changes in expression levels and neuron morphology. In most neuron types the levels of stored neuromodulators decreased during normal aging, but not in diapause treated flies. No signs of neurodegeneration were seen in either condition. Our data suggest that age-related changes in motor neurons could be the cause of part of the behavioral senescence and that this is ameliorated by reproductive diapause. Earlier studies established a link between age-associated decreases in neuromodulator levels and behavioral decline that could be rescued by overexpression of neuromodulator. Thus, it is likely that the retained levels of neuromodulators in dormant flies alleviate behavioral senescence.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| | - Susan Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster UniversityLancaster, UK
| | - Dick R Nässel
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
174
|
Fang EF, Waltz TB, Kassahun H, Lu Q, Kerr JS, Morevati M, Fivenson EM, Wollman BN, Marosi K, Wilson MA, Iser WB, Eckley DM, Zhang Y, Lehrmann E, Goldberg IG, Scheibye-Knudsen M, Mattson MP, Nilsen H, Bohr VA, Becker KG. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci Rep 2017; 7:46208. [PMID: 28397803 PMCID: PMC5387417 DOI: 10.1038/srep46208] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/10/2017] [Indexed: 12/17/2022] Open
Abstract
Aging is a major international concern that brings formidable socioeconomic and healthcare challenges. Small molecules capable of improving the health of older individuals are being explored. Small molecules that enhance cellular stress resistance are a promising avenue to alleviate declines seen in human aging. Tomatidine, a natural compound abundant in unripe tomatoes, inhibits age-related skeletal muscle atrophy in mice. Here we show that tomatidine extends lifespan and healthspan in C. elegans, an animal model of aging which shares many major longevity pathways with mammals. Tomatidine improves many C. elegans behaviors related to healthspan and muscle health, including increased pharyngeal pumping, swimming movement, and reduced percentage of severely damaged muscle cells. Microarray, imaging, and behavioral analyses reveal that tomatidine maintains mitochondrial homeostasis by modulating mitochondrial biogenesis and PINK-1/DCT-1-dependent mitophagy. Mechanistically, tomatidine induces mitochondrial hormesis by mildly inducing ROS production, which in turn activates the SKN-1/Nrf2 pathway and possibly other cellular antioxidant response pathways, followed by increased mitophagy. This mechanism occurs in C. elegans, primary rat neurons, and human cells. Our data suggest that tomatidine may delay some physiological aspects of aging, and points to new approaches for pharmacological interventions for diseases of aging.
Collapse
Affiliation(s)
- Evandro F. Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tyler B. Waltz
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Henok Kassahun
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Qiping Lu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jesse S. Kerr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Marya Morevati
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Elayne M. Fivenson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Bradley N. Wollman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark A. Wilson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Wendy B. Iser
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - D. Mark Eckley
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ilya G. Goldberg
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hilde Nilsen
- Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
175
|
Atarashi H, Kawasaki S, Niimura Y, Tanaka N, Okada S, Shiwa Y, Endo A, Nakagawa J. Identification of sirtuin and its target as the ribosomal protein S4 in Lactobacillus paracasei. J GEN APPL MICROBIOL 2017; 62:98-105. [PMID: 27118078 DOI: 10.2323/jgam.62.98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sirtuin is a protein with an enzymatic activity of NAD(+)-dependent protein deacetylation. It was first identified in yeast and its homologous genes have been widely found in various organisms. In bacteria, sirtuin gene was first described as cobB, encoding a cobalamin processing enzyme; and later its potential involvement in regulating acetylation levels of metabolic enzymes, transcription factors, chemotactic proteins and others have been reported. In order to study its physiological relevance in probiotic lactic acid bacteria, we analyzed the whole genome of three L. paracasei strains. All strains tested had sirtuin homolog genes designated hereby as sirA, and one of them had an additional gene designated as sirB. Following confirmation of their coding sequences by individual gene cloning, corresponding recombinant proteins have been generated and purified. The enzymatic characterization revealed that the intrinsic NAD(+)-dependent deacetylation activity of LpSirA (protein encoded by sirA) is comparable to human SIRT1. Furthermore, by blocking sirtuin activity using nicotinamide in vivo, together with an in vitro deacetylation reaction using recombinant LpSirA, we identified one of the target proteins in the lactic acid bacteria as the 30S ribosomal protein S4 (rpsD product).
Collapse
Affiliation(s)
- Hotaka Atarashi
- Department of Food and Cosmetic Science, Graduate School of Bioindustry, Tokyo University of Agriculture
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Darcy J, McFadden S, Bartke A. Altered structure and function of adipose tissue in long-lived mice with growth hormone-related mutations. Adipocyte 2017; 6:69-75. [PMID: 28425851 DOI: 10.1080/21623945.2017.1308990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A major focus of biogerontology is elucidating the role(s) of the endocrine system in aging and the accumulation of age-related diseases. Endocrine control of mammalian longevity was first reported in Ames dwarf (Prop1df) mice, which are long-lived due to a recessive Prop1 loss-of-function mutation resulting in deficiency of growth hormone (GH), thyroid-stimulating hormone, and prolactin. Following this report, several other GH-related mutants with altered longevity have been described including long-lived Snell dwarf and growth hormone receptor knockout mice, and short-lived GH overexpressing transgenic mice. One of the emerging areas of interest in these mutant mice is the role of adipose tissue in their altered healthspan and lifespan. Here, we provide an overview of the alterations in body composition of GH-related mutants, as well as the altered thermogenic potential of their brown adipose tissue and the altered cellular senescence and adipokine production of their white adipose tissue.
Collapse
Affiliation(s)
- Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Samuel McFadden
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
177
|
Werfel J, Ingber DE, Bar-Yam Y. Theory and associated phenomenology for intrinsic mortality arising from natural selection. PLoS One 2017; 12:e0173677. [PMID: 28355288 PMCID: PMC5371302 DOI: 10.1371/journal.pone.0173677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/25/2017] [Indexed: 11/30/2022] Open
Abstract
Standard evolutionary theories of aging and mortality, implicitly based on assumptions of spatial averaging, hold that natural selection cannot favor shorter lifespan without direct compensating benefit to individual reproductive success. However, a number of empirical observations appear as exceptions to or are difficult to reconcile with this view, suggesting explicit lifespan control or programmed death mechanisms inconsistent with the classic understanding. Moreover, evolutionary models that take into account the spatial distributions of populations have been shown to exhibit a variety of self-limiting behaviors, maintained through environmental feedback. Here we extend recent work on spatial modeling of lifespan evolution, showing that both theory and phenomenology are consistent with programmed death. Spatial models show that self-limited lifespan robustly results in long-term benefit to a lineage; longer-lived variants may have a reproductive advantage for many generations, but shorter lifespan ultimately confers long-term reproductive advantage through environmental feedback acting on much longer time scales. Numerous model variations produce the same qualitative result, demonstrating insensitivity to detailed assumptions; the key conditions under which self-limited lifespan is favored are spatial extent and locally exhaustible resources. Factors including lower resource availability, higher consumption, and lower dispersal range are associated with evolution of shorter lifespan. A variety of empirical observations can parsimoniously be explained in terms of long-term selective advantage for intrinsic mortality. Classically anomalous empirical data on natural lifespans and intrinsic mortality, including observations of longer lifespan associated with increased predation, and evidence of programmed death in both unicellular and multicellular organisms, are consistent with specific model predictions. The generic nature of the spatial model conditions under which intrinsic mortality is favored suggests a firm theoretical basis for the idea that evolution can quite generally select for shorter lifespan directly.
Collapse
Affiliation(s)
- Justin Werfel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
- New England Complex Systems Institute, Cambridge, Massachusetts, United States of America
- Harvard Medical School and Children’s Hospital, Boston, Massachusetts, United States of America
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Medical School and Children’s Hospital, Boston, Massachusetts, United States of America
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Yaneer Bar-Yam
- New England Complex Systems Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
178
|
Affiliation(s)
- Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
179
|
Schlissel G, Krzyzanowski MK, Caudron F, Barral Y, Rine J. Aggregation of the Whi3 protein, not loss of heterochromatin, causes sterility in old yeast cells. Science 2017; 355:1184-1187. [PMID: 28302853 DOI: 10.1126/science.aaj2103] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022]
Abstract
In yeast, heterochromatin silencing is reported to decline in aging mother cells, causing sterility in old cells. This process is thought to reflect a decrease in the activity of the NAD+ (oxidized nicotinamide adenine dinucleotide)-dependent deacetylase Sir2. We tested whether Sir2 becomes nonfunctional gradually or precipitously during aging. Unexpectedly, silencing of the heterochromatic HML and HMR loci was not lost during aging. Old cells could initiate a mating response; however, they were less sensitive to mating pheromone than were young cells because of age-dependent aggregation of Whi3, an RNA-binding protein controlling S-phase entry. Removing the polyglutamine domain of Whi3 restored the pheromone sensitivity of old cells. We propose that aging phenotypes previously attributed to loss of heterochromatin silencing are instead caused by aggregation of the Whi3 cell cycle regulator.
Collapse
Affiliation(s)
- Gavin Schlissel
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | - Fabrice Caudron
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland.,King's College London, London, UK
| | - Yves Barral
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland.
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
180
|
Lucas ER, Augustyniak M, Kędziorski A, Keller L. Lifespan differences between queens and workers are not explained by rates of molecular damage. Exp Gerontol 2017; 92:1-6. [PMID: 28285146 DOI: 10.1016/j.exger.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/15/2017] [Accepted: 03/07/2017] [Indexed: 12/22/2022]
Abstract
The biological processes that underlie senescence are of universal biological importance, yet they remain poorly understood. A popular theory proposes that senescence is the result of limited investment into mechanisms involved in the prevention and repair of molecular damage, leading to an accumulation of molecular damage with age. In ants, queen and worker lifespans differ by an order of magnitude, and this remarkable difference in lifespan has been shown to be associated with differences in the expression of genes involved in DNA and protein repair. Here we use the comet assay and Western Blotting for poly-ubiquitinated proteins to explore whether these differences in expression lead to differences in the accumulation of DNA damage (comet assay) or protein damage (protein ubiquitination) with age. Surprisingly, there was no difference between queens and workers in the rate of accumulation of DNA damage. We also found that levels of ubiquitinated proteins decreased with age, as previously reported in honeybees. This is in contrast to what has been found in model organisms such as worms and flies. Overall, these results reveal that the link between investment into macromolecular repair, age-related damage accumulation and lifespan is more complex than usually recognised.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Maria Augustyniak
- University of Silesia in Katowice, Faculty of Biology & Environmental Protection, Department of Animal Physiology & Ecotoxicology, Bankowa 9, PL 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- University of Silesia in Katowice, Faculty of Biology & Environmental Protection, Department of Animal Physiology & Ecotoxicology, Bankowa 9, PL 40-007 Katowice, Poland
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
181
|
Shilovsky GA, Putyatina TS, Lysenkov SN, Ashapkin VV, Luchkina OS, Markov AV, Skulachev VP. Is It Possible to Prove the Existence of an Aging Program by Quantitative Analysis of Mortality Dynamics? BIOCHEMISTRY (MOSCOW) 2017; 81:1461-1476. [PMID: 28259123 DOI: 10.1134/s0006297916120075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Accumulation of various types of lesions in the course of aging increases an organism's vulnerability and results in a monotonous elevation of mortality rate, irrespective of the position of a species on the evolutionary tree. Stroustrup et al. (Nature, 530, 103-107) [1] showed in 2016 that in the nematode Caenorhabditis elegans, longevity-altering factors (e.g. oxidative stress, temperature, or diet) do not change the shape of the survival curve, but either stretch or shrink it along the time axis, which the authors attributed to the existence of an "aging program". Modification of the accelerated failure time model by Stroustrup et al. uses temporal scaling as a basic approach for distinguishing between quantitative and qualitative changes in aging dynamics. Thus we analyzed data on the effects of various longevity-increasing genetic manipulations in flies, worms, and mice and used several models to choose a theory that would best fit the experimental results. The possibility to identify the moment of switch from a mortality-governing pathway to some other pathways might be useful for testing geroprotective drugs. In this work, we discuss this and other aspects of temporal scaling.
Collapse
Affiliation(s)
- G A Shilovsky
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
Cancer is the second leading cause of death in the USA and among the leading major diseases in the world. It is anticipated to continue to increase because of the growth of the aging population and prevalence of risk factors such as obesity, smoking, and/or poor dietary habits. Cancer treatment has remained relatively similar during the past 30 years with chemotherapy and/or radiotherapy in combination with surgery remaining the standard therapies although novel therapies are slowly replacing or complementing the standard ones. According to the American Cancer Society, the dietary recommendation for cancer patients receiving chemotherapy is to increase calorie and protein intake. In addition, there are no clear guidelines on the type of nutrition that could have a major impact on cancer incidence. Yet, various forms of reduced caloric intake such as calorie restriction (CR) or fasting demonstrate a wide range of beneficial effects able to help prevent malignancies and increase the efficacy of cancer therapies. Whereas chronic CR provides both beneficial and detrimental effects as well as major compliance challenges, periodic fasting (PF), fasting-mimicking diets (FMDs), and dietary restriction (DR) without a reduction in calories are emerging as interventions with the potential to be widely used to prevent and treat cancer. Here, we review preclinical and preliminary clinical studies on dietary restriction and fasting and their role in inducing cellular protection and chemotherapy resistance.
Collapse
|
183
|
Zhang Z, Guo R, Li M. Identification, characterization and expression analysis of superoxide dismutase genes in Dastarcus helophoroides (Coleoptera: Bothrideridae). Gene 2017; 606:25-34. [DOI: 10.1016/j.gene.2017.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/01/2017] [Accepted: 01/05/2017] [Indexed: 02/05/2023]
|
184
|
Gribble KE, Mark Welch DB. Genome-wide transcriptomics of aging in the rotifer Brachionus manjavacas, an emerging model system. BMC Genomics 2017; 18:217. [PMID: 28249563 PMCID: PMC5333405 DOI: 10.1186/s12864-017-3540-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Background Understanding gene expression changes over lifespan in diverse animal species will lead to insights to conserved processes in the biology of aging and allow development of interventions to improve health. Rotifers are small aquatic invertebrates that have been used in aging studies for nearly 100 years and are now re-emerging as a modern model system. To provide a baseline to evaluate genetic responses to interventions that change health throughout lifespan and a framework for new hypotheses about the molecular genetic mechanisms of aging, we examined the transcriptome of an asexual female lineage of the rotifer Brachionus manjavacas at five life stages: eggs, neonates, and early-, late-, and post-reproductive adults. Results There are widespread shifts in gene expression over the lifespan of B. manjavacas; the largest change occurs between neonates and early reproductive adults and is characterized by down-regulation of developmental genes and up-regulation of genes involved in reproduction. The expression profile of post-reproductive adults was distinct from that of other life stages. While few genes were significantly differentially expressed in the late- to post-reproductive transition, gene set enrichment analysis revealed multiple down-regulated pathways in metabolism, maintenance and repair, and proteostasis, united by genes involved in mitochondrial function and oxidative phosphorylation. Conclusions This study provides the first examination of changes in gene expression over lifespan in rotifers. We detected differential expression of many genes with human orthologs that are absent in Drosophila and C. elegans, highlighting the potential of the rotifer model in aging studies. Our findings suggest that small but coordinated changes in expression of many genes in pathways that integrate diverse functions drive the aging process. The observation of simultaneous declines in expression of genes in multiple pathways may have consequences for health and longevity not detected by single- or multi-gene knockdown in otherwise healthy animals. Investigation of subtle but genome-wide change in these pathways during aging is an important area for future study. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3540-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin E Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
185
|
Aiello A, Accardi G, Candore G, Gambino CM, Mirisola M, Taormina G, Virruso C, Caruso C. Nutrient sensing pathways as therapeutic targets for healthy ageing. Expert Opin Ther Targets 2017; 21:371-380. [PMID: 28281903 DOI: 10.1080/14728222.2017.1294684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In the present paper, the authors have discussed anti-aging strategies which aim to slow the aging process and to delay the onset of age-related diseases, focusing on nutrient sensing pathways (NSPs) as therapeutic targets. Indeed, several studies have already demonstrated that both in animal models and humans, dietary interventions might have a positive impact on the aging process through the modulation of these pathways. Areas covered: Achieving healthy aging is the main challenge of the twenty-first century because lifespan is increasing, but not in tandem with good health. The authors have illustrated different approaches that can act on NSPs, modulating the rate of the aging process. Expert opinion: Humanity's lasting dream is to reverse or, at least, postpone aging. In recent years, increasing attention has been devoted to anti-aging therapies. The subject is very popular among the general public, whose imagination runs wild with all the possible tools to delay aging and to gain immortality. Some approaches discussed in the present review should be able to substantially slow down the aging process, extending our productive, youthful lives, without frailty.
Collapse
Affiliation(s)
- Anna Aiello
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Giulia Accardi
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Giuseppina Candore
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Caterina Maria Gambino
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Mario Mirisola
- b Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology , University of Palermo , Palermo , Italy
| | - Giusi Taormina
- b Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology , University of Palermo , Palermo , Italy
| | - Claudia Virruso
- b Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology , University of Palermo , Palermo , Italy
| | - Calogero Caruso
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| |
Collapse
|
186
|
Uno Y, Takata R, Kito G, Yamazaki H, Nakagawa K, Nakamura Y, Kamataki T, Katagiri T. Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. Drug Metab Pharmacokinet 2017; 32:100-107. [DOI: 10.1016/j.dmpk.2016.10.409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 01/08/2023]
|
187
|
Filippopoulou K, Papaevgeniou N, Lefaki M, Paraskevopoulou A, Biedermann D, Křen V, Chondrogianni N. 2,3-Dehydrosilybin A/B as a pro-longevity and anti-aggregation compound. Free Radic Biol Med 2017; 103:256-267. [PMID: 28039083 DOI: 10.1016/j.freeradbiomed.2016.12.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/12/2016] [Accepted: 12/27/2016] [Indexed: 02/08/2023]
Abstract
Aging is an unavoidable process characterized by gradual failure of homeostasis that constitutes a critical risk factor for several age-related disorders. It has been unveiled that manipulation of various key pathways may decelerate the aging progression and the triggering of age-related diseases. As a consequence, the identification of compounds, preferably natural-occurring, administered through diet, with lifespan-extending, anti-aggregation and anti-oxidation properties that in parallel exhibit negligible side-effects is the main goal in the battle against aging. Here we analyze the role of 2,3-dehydrosilybin A/B (DHS A/B), a minor component of silymarin used in a plethora of dietary supplements. This flavonolignan is well-known for its anti-oxidative and neuroprotective properties, among others. We demonstrate that DHS A/B confers oxidative stress resistance not only in human primary cells but also in the context of a multi-cellular aging model, namely Caenorhabditis elegans (C. elegans) where it also promotes lifespan extension. We reveal that these DHS A/B outcomes are FGT-1 and DAF-16 dependent. We additionally demonstrate the anti-aggregation properties of DHS A/B in human cells of nervous origin but also in nematode models of Alzheimer's disease (AD), eventually leading to decelerated progression of AD phenotype. Our results identify DHS A/B as the active component of silymarin extract and propose DHS A/B as a candidate anti-aging and anti-aggregation compound.
Collapse
Affiliation(s)
- Konstantina Filippopoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 11635, Greece
| | - Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 11635, Greece; Institute of Nutrition, Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, 25 Dornburger Str., 07743 Jena , Germany
| | - Maria Lefaki
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 11635, Greece
| | - Anna Paraskevopoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 11635, Greece
| | - David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 11635, Greece.
| |
Collapse
|
188
|
Wrigley S, Arafa D, Tropea D. Insulin-Like Growth Factor 1: At the Crossroads of Brain Development and Aging. Front Cell Neurosci 2017; 11:14. [PMID: 28203146 PMCID: PMC5285390 DOI: 10.3389/fncel.2017.00014] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/16/2017] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor 1 (IGF1) is a polypeptide hormone structurally similar to insulin. It is central to the somatotropic axis, acting downstream of growth hormone (GH). It activates both the mitogen-activated protein (MAP) kinase and PI3K signaling pathways, acting in almost every tissue in the body to promote tissue growth and maturation through upregulation of anabolic processes. Overall GH and IGF1 signaling falls with age, suggesting that it is this reduced IGF1 activity that leads to age-related changes in organisms. However, mutations that reduce IGF1-signaling activity can dramatically extend the lifespan of organisms. Therefore, the role of IGF1 in the overall aging process is unclear. This review article will focus on the role of IGF1 in brain development and aging. The evidence points towards a role for IGF1 in neurodevelopment both prenatally and in the early post-natal period, and in plasticity and remodeling throughout life. This review article will then discuss the hallmarks of aging and cognitive decline associated with falls in IGF1 levels towards the end of life. Finally, the role of IGF1 will be discussed within the context of both neuropsychiatric disorders caused by impaired development of the nervous system, and neurodegenerative disorders associated with aging. IGF1 and its derivatives are shown to improve the symptoms of certain neuropsychiatric disorders caused by deranged neurodevelopment and these effects have been correlated with changes in the underlying biology in both in vitro and in vivo studies. On the other hand, studies looking at IGF1 in neurodegenerative diseases have been conflicting, supporting both a role for increased and decreased IGF1 signaling in the underlying pathogenesis of these diseases.
Collapse
Affiliation(s)
- Sarah Wrigley
- School of Medicine, Trinity College Dublin Dublin, Ireland
| | - Donia Arafa
- School of Medicine, Trinity College Dublin Dublin, Ireland
| | - Daniela Tropea
- Neuropsychiatric Genetics, Trinity Translational Medicine Institute St. James HospitalDublin, Ireland; Institute of Neuroscience, Trinity College DublinDublin, Ireland
| |
Collapse
|
189
|
Bouklas T, Jain N, Fries BC. Modulation of Replicative Lifespan in Cryptococcus neoformans: Implications for Virulence. Front Microbiol 2017; 8:98. [PMID: 28194146 PMCID: PMC5276861 DOI: 10.3389/fmicb.2017.00098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022] Open
Abstract
The fungal pathogen, Cryptococcus neoformans, has been shown to undergo replicative aging. Old cells are characterized by advanced generational age and phenotypic changes that appear to mediate enhanced resistance to host and antifungal-based killing. As a consequence of this age-associated resilience, old cells accumulate during chronic infection. Based on these findings, we hypothesized that shifting the generational age of a pathogenic yeast population would alter its vulnerability to the host and affect its virulence. SIR2 is a well-conserved histone deacetylase, and a pivotal target for the development of anti-aging drugs. We tested its effect on C. neoformans’ replicative lifespan (RLS). First, a mutant C. neoformans strain (sir2Δ) was generated, and confirmed a predicted shortened RLS in sir2Δ cells consistent with its known role in aging. Next, RLS analysis showed that treatment of C. neoformans with Sir2p-agonists resulted in a significantly prolonged RLS, whereas treatment with a Sir2p-antagonist shortened RLS. RLS modulating effects were dependent on SIR2 and not observed in sir2Δ cells. Because SIR2 loss resulted in a slightly impaired fitness, effects of genetic RLS modulation on virulence could not be compared with wild type cells. Instead we chose to chemically modulate RLS, and investigated the effect of Sir2p modulating drugs on C. neoformans cells in a Galleria mellonella infection model. Consistent with our hypothesis that shifts in the generational age of the infecting yeast population alters its vulnerability to host cells, we observed decreased virulence of C. neoformans in the Galleria host when RLS was prolonged by treatment with Sir2p agonists. In contrast, treatment with a Sir2p antagonist, which shortens RLS enhanced virulence in Galleria. In addition, combination of Sir2p agonists with antifungal therapy enhanced the antifungal’s effect. Importantly, no difference in virulence was observed with drug treatment when sir2Δ cells were used for infection, which confirmed target specificity and ruled out non-specific effects of the drugs on the Galleria host. Thus, this study suggests that RLS modulating drugs, such as Sir2p agonists, shift lifespan and vulnerability of the fungal population, and should be further investigated as a potential class of novel antifungal drug targets that can enhance antifungal efficacy.
Collapse
Affiliation(s)
- Tejas Bouklas
- Department of Medicine (Division of Infectious Diseases), Stony Brook University, Stony BrookNY, USA; Department of Biomedical Sciences, Long Island University-Post, BrookvilleNY, USA
| | - Neena Jain
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine of Yeshiva University, Bronx NY, USA
| | - Bettina C Fries
- Department of Medicine (Division of Infectious Diseases), Stony Brook University, Stony BrookNY, USA; Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine of Yeshiva University, BronxNY, USA; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony BrookNY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, BronxNY, USA
| |
Collapse
|
190
|
Ginés C, Cuesta S, Kireev R, García C, Rancan L, Paredes SD, Vara E, Tresguerres JAF. Protective effect of resveratrol against inflammation, oxidative stress and apoptosis in pancreas of aged SAMP8 mice. Exp Gerontol 2017; 90:61-70. [PMID: 28130161 DOI: 10.1016/j.exger.2017.01.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/30/2016] [Accepted: 01/22/2017] [Indexed: 11/15/2022]
Abstract
Aging is a physiological state in which a progressive decline in organ functions is accompanied by the development of age-related diseases. Resveratrol supplementation has been shown to exert anti-inflammatory and antioxidant effects in various mammalian models of aging. Senescence-accelerated mice (SAM) are commonly used as animal models to investigate the aging process. In the present study, the effects of inflammation, oxidative stress and apoptosis in pancreas of two different types of SAM (SAMR1 or resistant to aging, and SAMP8 or prone to aging) have been analysed, as well as the effect of resveratrol administration (5mg/kg/day) on these parameters in the SAMP8 strain. mRNA expressions of sirtuin 1 and FoxO factors were found to be decreased with aging in SAMP8 mice. An increase in inflammatory status and nuclear-factor kappa B (NFκB) protein expression was also observed in old mice, together with a decrease of anti-apoptotic markers and antioxidant-enzyme activity. Resveratrol administration was able to increase sirtuin 1 mRNA expression, as well as decreasing NFκB expression and reducing the proinflammatory and prooxidant status associated with age. In conclusion, resveratrol was able to modulate the inflammatory, oxidative and apoptotic status related to aging, thereby exerting a protective effect on pancreas age-induced damage.
Collapse
Affiliation(s)
- Cristina Ginés
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Sara Cuesta
- Department of Physiology, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Roman Kireev
- Instituto de Investigación Biomédica de Vigo (IBIV), Xerencia de Xestión Integrada de Vigo, SERGAS, Biomedical Research Unit, Hospital Rebullón (CHUVI), Vigo, Spain.
| | - Cruz García
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Lisa Rancan
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Sergio D Paredes
- Department of Physiology, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Elena Vara
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Jesús A F Tresguerres
- Department of Physiology, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| |
Collapse
|
191
|
Mathew R, Pal Bhadra M, Bhadra U. Insulin/insulin-like growth factor-1 signalling (IIS) based regulation of lifespan across species. Biogerontology 2017; 18:35-53. [DOI: 10.1007/s10522-016-9670-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
|
192
|
Tasaki E, Kobayashi K, Matsuura K, Iuchi Y. An Efficient Antioxidant System in a Long-Lived Termite Queen. PLoS One 2017; 12:e0167412. [PMID: 28076409 PMCID: PMC5226355 DOI: 10.1371/journal.pone.0167412] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
The trade-off between reproduction and longevity is known in wide variety of animals. Social insect queens are rare organisms that can achieve a long lifespan without sacrificing fecundity. The extended longevity of social insect queens, which contradicts the trade-off, has attracted much attention because it implies the existence of an extraordinary anti-aging mechanism. Here, we show that queens of the termite Reticulitermes speratus incur significantly lower oxidative damage to DNA, protein and lipid and have higher activity of antioxidant enzymes than non-reproductive individuals (workers and soldiers). The levels of 8-hydroxy-2'-deoxyguanosine (oxidative damage marker of DNA) were lower in queens than in workers after UV irradiation. Queens also showed lower levels of protein carbonyls and malondialdehyde (oxidative damage markers of protein and lipid, respectively). The antioxidant enzymes of insects are generally composed of catalase (CAT) and peroxiredoxin (Prx). Queens showed more than two times higher CAT activity and more than seven times higher expression levels of the CAT gene RsCAT1 than workers. The CAT activity of termite queens was also markedly higher in comparison with other solitary insects and the queens of eusocial Hymenoptera. In addition, queens showed higher expression levels of the Prx gene RsPRX6. These results suggested that this efficient antioxidant system can partly explain why termite queens achieve long life. This study provides important insights into the evolutionary linkage of reproductive division of labor and the development of queens' oxidative stress resistance in social insects.
Collapse
Affiliation(s)
- Eisuke Tasaki
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, Tottori, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Kazuya Kobayashi
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenji Matsuura
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihito Iuchi
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, Tottori, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
193
|
Abstract
Reduced insulin-like growth factor 1/insulin signaling (IIS) has been linked to extended longevity in species ranging from yeast to mammals. In mammals, this is exemplified in Ames dwarf (Prop1df/df) mice, which have a 40%-60% increase in longevity (males and females, respectively) due to their recessive Prop1 loss-of-function mutation that results in lack of growth hormone (GH), thyroid-stimulating hormone and prolactin. Our laboratory has previously shown that Ames dwarf mice have functionally unique white adipose tissue (WAT) that improves, rather than impairs, insulin sensitivity. Because GH and thyroid hormone are integral to adipose tissue development and function, we hypothesized that brown adipose tissue (BAT) in Ames dwarf mice may also be functionally unique and/or enhanced. Here, we elaborate on our recent findings, which demonstrate that BAT is functionally enhanced in Ames dwarf mice, and suggest that BAT removal in these mice results in utilization of WAT depots as an energy source. We also discuss how our findings compare to those in other long-lived dwarf mice with altered IIS, which unlike Ames dwarf mice, are essentially euthyroid. Lastly, we provide some insights into the implications of these findings and discuss some of the necessary future work in this area.
Collapse
Affiliation(s)
- Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
194
|
Moskalev A, Shaposhnikov M, Proshkina E, Belyi A, Fedintsev A, Zhikrivetskaya S, Guvatova Z, Sadritdinova A, Snezhkina A, Krasnov G, Kudryavtseva A. The influence of pro-longevity gene Gclc overexpression on the age-dependent changes in Drosophila transcriptome and biological functions. BMC Genomics 2016; 17:1046. [PMID: 28105938 PMCID: PMC5249042 DOI: 10.1186/s12864-016-3356-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Transcriptional changes that contribute to the organism’s longevity and prevent the age-dependent decline of biological functions are not well understood. Here, we overexpressed pro-longevity gene encoding glutamate-cysteine ligase catalytic subunit (Gclc) and analyzed age-dependent changes in transcriptome that associated with the longevity, stress resistance, locomotor activity, circadian rhythmicity, and fertility. Results Here we reproduced the life extension effect of neuronal overexpression of the Gclc gene and investigated its influence on the age-depended dynamics of transcriptome and biological functions such as fecundity, spontaneous locomotor activity and circadian rhythmicity, as well as on the resistance to oxidative, proteotoxic and osmotic stresses. It was shown that Gclc overexpression reduces locomotor activity in the young and middle ages compared to control flies. Gclc overexpression slowed down the age-dependent decline of locomotor activity and circadian rhythmicity, and resistance to stress treatments. Gclc level demonstrated associations with the expression of genes involved in a variety of cellular processes including Jak-STAT, MAPK, FOXO, Notch, mTOR, TGF-beta signaling pathways, translation, protein processing in endoplasmic reticulum, proteasomal degradation, glycolysis, oxidative phosphorylation, apoptosis, regulation of circadian rhythms, differentiation of neurons, synaptic plasticity and transmission. Conclusions Our study revealed that Gclc overexpression induces transcriptional changes associated with the lifespan extension and uncovered pathways that may be associated with the age-dependent decline of biological functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3356-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Syktyvkar State University, Syktyvkar, Russia.
| | - Mikhail Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia.,Syktyvkar State University, Syktyvkar, Russia
| | - Ekaterina Proshkina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia.,Syktyvkar State University, Syktyvkar, Russia
| | - Alexey Belyi
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia.,Syktyvkar State University, Syktyvkar, Russia
| | | | | | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
195
|
Kocher C, Christiansen M, Martin S, Adams C, Wehner P, Gress T, Santanam N. Sexual dimorphism in obesity-related genes in the epicardial fat during aging. J Physiol Biochem 2016; 73:215-224. [PMID: 28012156 DOI: 10.1007/s13105-016-0542-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/06/2016] [Indexed: 01/07/2023]
Abstract
Aging increases the risk of cardiovascular disease and metabolic syndrome. Alterations in epicardial fat play an important pathophysiological role in coronary artery disease and hypertension. We investigated the impact of normal aging on obesity-related genes in epicardial fat. Sex-specific changes in obesity-related genes with aging in epicardial fat (EF) were determined in young (6 months) and old (30/36 months) female and male, Fischer 344 × Brown Norway hybrid (FBN) rats, using a rat obesity RT2 PCR Array. Circulating sex hormone levels, body and heart weights were determined. Statistical significance was determined using two-tailed Student's t test and Pearson's correlation. Our results revealed sex-specific differences in obesity-related genes with aging. Dramatic changes in the expression profile of obesity-related genes in EF with aging in female, but not in male, FBN rats were observed. The older (30 months) female rats had more significant variations in the abundance of obesity-related genes in the EF compared to that seen in younger female rats or both age groups in male rats. A correlation of changes in obesity-related genes in EF to heart weights was observed in female rats, but not in male rats with aging. No correlation was observed to circulating sex hormone levels. Our findings indicate a dysfunctional EF in female rats with aging compared to male rats. These findings, with further functional validation, might help explain the sex differences in cardiovascular risk and mortality associated with aging observed in humans.
Collapse
Affiliation(s)
- Caitlin Kocher
- Department of Pharmacology, Physiology, & Toxicology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV, 25755, USA
| | - Matthew Christiansen
- Department of Pharmacology, Physiology, & Toxicology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV, 25755, USA
| | - Sarah Martin
- Department of Pharmacology, Physiology, & Toxicology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV, 25755, USA
| | - Christopher Adams
- Department of Medicine and Cardiology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV, 25755, USA
| | - Paulette Wehner
- Department of Medicine and Cardiology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV, 25755, USA
| | - Todd Gress
- Department of Medicine and Cardiology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV, 25755, USA
| | - Nalini Santanam
- Department of Pharmacology, Physiology, & Toxicology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV, 25755, USA.
- Department of Medicine and Cardiology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV, 25755, USA.
| |
Collapse
|
196
|
Lenart P, Bienertová-Vašků J. Keeping up with the Red Queen: the pace of aging as an adaptation. Biogerontology 2016; 18:693-709. [PMID: 28013399 DOI: 10.1007/s10522-016-9674-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
For decades, a vast majority of biogerontologists assumed that aging is not and cannot be an adaptation. In recent years, however, several authors opposed this predominant view and repeatedly suggested that not only is aging an adaptation but that it is the result of a specific aging program. This issue almost instantaneously became somewhat controversial and many important authors produced substantial works refuting the notion of the aging program. In this article we review the current state of the debate and list the most important arguments proposed by both sides. Furthermore, although classical interpretations of the evolution of aging are in sharp contrast with the idea of programmed aging, we suggest that the truth might in fact very well lie somewhere in between. We also propose our own interpretation which states that although aging is in essence inevitable and results from damage accumulation rather than from a specific program, the actual rate of aging in nature may still be adaptive to some extent.
Collapse
Affiliation(s)
- Peter Lenart
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic.
| | - Julie Bienertová-Vašků
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic
| |
Collapse
|
197
|
In vivo and in vitro studies of the role of lyophilised blond Lager beer and some bioactive components in the modulation of degenerative processes. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
198
|
Ma S, Upneja A, Galecki A, Tsai YM, Burant CF, Raskind S, Zhang Q, Zhang ZD, Seluanov A, Gorbunova V, Clish CB, Miller RA, Gladyshev VN. Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. eLife 2016; 5:e19130. [PMID: 27874830 PMCID: PMC5148604 DOI: 10.7554/elife.19130] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
Mammalian lifespan differs by >100 fold, but the mechanisms associated with such longevity differences are not understood. Here, we conducted a study on primary skin fibroblasts isolated from 16 species of mammals and maintained under identical cell culture conditions. We developed a pipeline for obtaining species-specific ortholog sequences, profiled gene expression by RNA-seq and small molecules by metabolite profiling, and identified genes and metabolites correlating with species longevity. Cells from longer lived species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated proteolysis and protein transport, and showed high levels of amino acids but low levels of lysophosphatidylcholine and lysophosphatidylethanolamine. The amino acid patterns were recapitulated by further analyses of primate and bird fibroblasts. The study suggests that fibroblast profiling captures differences in longevity across mammals at the level of global gene expression and metabolite levels and reveals pathways that define these differences.
Collapse
Affiliation(s)
- Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Akhil Upneja
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Andrzej Galecki
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
- Geriatrics Center, University of Michigan Medical School, Ann Arbor, United States
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, United States
| | - Yi-Miau Tsai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
- Geriatrics Center, University of Michigan Medical School, Ann Arbor, United States
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Sasha Raskind
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, United States
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, United States
| | | | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
- Geriatrics Center, University of Michigan Medical School, Ann Arbor, United States
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
199
|
An antidiabetic polyherbal phytomedicine confers stress resistance and extends lifespan in Caenorhabditis elegans. Biogerontology 2016; 18:131-147. [PMID: 27853905 DOI: 10.1007/s10522-016-9668-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/06/2016] [Indexed: 01/15/2023]
Abstract
An Ayurvedic polyherbal extract (PHE) comprising six herbs viz. Berberis aristata, Cyperus rotundus, Cedrus deodara, Emblica officinalis, Terminalia chebula and Terminalia bellirica is mentioned as an effective anti-hyperglycemic agent in 'Charaka Samhita', the classical text of Ayurveda. Previously, antidiabetic drug metformin was found to elicit antiaging effects and PHE was also found to exhibit antidiabetic effects in humans. Therefore, we screened it for its in vivo antioxidant antiaging effect on stress and lifespan using human homologous Caenorhabditis elegans model system. The effect on aging is evaluated by studying effect of PHE on mean survival in worms. The stress modulatory potential was assessed by quantification of intracellular ROS level, autofluorescent age pigment lipofuscin, oxidative and thermal stress assays. Additionally, stress response was quantified using gene reporter assays. The 0.01 µg/ml dose of PHE was able to enhance mean lifespan by 16.09% (P < 0.0001) in C. elegans. Furthermore, PHE treated worms demonstrated oxidative stress resistance in both wild type and stress hypersensitive mev-1 mutant along with upregulation of stress response genes sod-3 and gst-4. The delayed aging under stress can be attributed to its direct reactive oxygen species-scavenging activity and regulation of some age associated genes like daf-2, daf-16, skn-1, sod-3 and gst-4 in wild-type worms. Additonally, PHE delayed age related paralysis phenotype in CL4176 transgenic worms. Altogether, our results suggest PHE significantly improves the oxidative stress and life span in C. elegans. Overall the present study suggests this polyherbal formulation might play important role in regultaing aging and related complications like diabetes.
Collapse
|
200
|
Zhang WB, Sinha DB, Pittman WE, Hvatum E, Stroustrup N, Pincus Z. Extended Twilight among Isogenic C. elegans Causes a Disproportionate Scaling between Lifespan and Health. Cell Syst 2016; 3:333-345.e4. [PMID: 27720632 PMCID: PMC5111811 DOI: 10.1016/j.cels.2016.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/30/2016] [Accepted: 09/08/2016] [Indexed: 12/21/2022]
Abstract
Although many genetic factors and lifestyle interventions are known to affect the mean lifespan of animal populations, the physiological variation displayed by individuals across their lifespans remains largely uncharacterized. Here, we use a custom culture apparatus to continuously monitor five aspects of aging physiology across hundreds of isolated Caenorhabditis elegans individuals kept in a constant environment from hatching until death. Aggregating these measurements into an overall estimate of senescence, we find two chief differences between longer- and shorter-lived individuals. First, though long- and short-lived individuals are physiologically equivalent in early adulthood, longer-lived individuals experience a lower rate of physiological decline throughout life. Second, and counter-intuitively, long-lived individuals have a disproportionately extended "twilight" period of low physiological function. While longer-lived individuals experience more overall days of good health, their proportion of good to bad health, and thus their average quality of life, is systematically lower than that of shorter-lived individuals. We conclude that, within a homogeneous population reared under constant conditions, the period of early-life good health is comparatively uniform, and the most plastic period in the aging process is end-of-life senescence.
Collapse
Affiliation(s)
- William B Zhang
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Drew B Sinha
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - William E Pittman
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Erik Hvatum
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nicholas Stroustrup
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Pincus
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|