151
|
Gu HJ, Zhou B. Focal adhesion kinase promotes progression and predicts poor clinical outcomes in patients with osteosarcoma. Oncol Lett 2018; 15:6225-6232. [PMID: 29849782 PMCID: PMC5962868 DOI: 10.3892/ol.2018.8152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/10/2018] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS) is a fatal form of musculoskeletal tumor that commonly leads to pulmonary metastatic disease. Traditional therapies such as surgery and chemotherapy are not effective treatment modalities in certain patients with OS; therefore, identifying the molecular mechanism of OS is imperative for the development of novel therapeutics. Previous studies have reported that focal adhesion kinase (FAK) is associated with numerous types of human malignancies. Therefore, in order to investigate the biological function of FAK in OS, the present study examined the expression levels of FAK in OS cell lines, OS tissues and paired normal tissue specimens by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). FAK expression in vitro was blocked using small interfering RNA (siRNA) to observe the invasion, proliferation and apoptosis trends of OS cells. Phosphoinositide-dependent kinase-1 (PDK1), AKT and BRAF protein levels were also evaluated by western blotting to analyze the effects of FAK depletion on the AKT and mitogen-activated protein kinase (MAPK) signaling pathways. A significantly reduced level of FAK mRNA was identified in paired normal tissues compared with OS tissues and cell lines. The invasive capability and proliferative potential of OS cells were suppressed due to the transient in vitro transfection of FAK siRNA. It was also demonstrated that decreased FAK expression facilitated the apoptosis of OS cells, as demonstrated by flow cytometric and western blotting analyses. Decreased FAK expression resulted in the downregulation of phosphorylated (p)-AKT, p-PDK1 and p-BRAF protein levels. Higher FAK expression levels are positively associated with clinicopathological characteristics of advanced Enneking stages (P<0.001) and recurrence (P=0.041) in patients with OS. Collectively, these data demonstrated that FAK is an important diagnostic biomarker for OS, and FAK siRNA therapy may be a potentially promising approach for the treatment of OS.
Collapse
Affiliation(s)
- Hua-Jie Gu
- Department of Orthopedics, People's Hospital of Yuyao, Yuyao, Zhejiang 315400, P.R. China
| | - Bin Zhou
- Department of Orthopedics, People's Hospital of Yuyao, Yuyao, Zhejiang 315400, P.R. China
| |
Collapse
|
152
|
Chen R, Zhao H, Wu D, Zhao C, Zhao W, Zhou X. The role of SH3GL3 in myeloma cell migration/invasion, stemness and chemo-resistance. Oncotarget 2018; 7:73101-73113. [PMID: 27683032 PMCID: PMC5341966 DOI: 10.18632/oncotarget.12231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 09/12/2016] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is an incurable cancer characterized by clonal expansion of malignant plasma cells in the bone marrow and their egress into peripheral blood. The mechanisms of myeloma cells migration/invasion have remained unclear. Herein, we found SH3GL3 was highly expressed in the CD138-negative (CD138−) myeloma cells. The migration/invasion capability of CD138− cells was significantly higher than that in the CD138-positive (CD138+) cells. Silencing SH3GL3 using shRNA reduced myeloma cells migration/invasion. Conversely, overexpression of SH3GL3 increased myeloma cells migration/invasion. Moreover, SH3GL3 is also associated with the stemness and chemo-resistance of CD138− myeloma cells. Elevated expression of stem cell and multi-drug resistant markers were seen in the myeloma cells with overexpressed SH3GL3; while knocking-down SH3GL3 reduced the expression of these markers. A marked increase in p-PI3K and p-FAK was observed in the cells with overexpressed SH3GL3. To test if FAK/PI3K signaling pathway was involved in the SH3GL3-mediated myeloma cells migration, the cells transfected w/wo SH3GL3 cDNA were treated with FAK inhibitor 14 and PI3K inhibitor LY294002. Inhibition of FAK and PI3K attenuated SH3GL3-mediated migration /invasion. Our findings indicate that SH3GL3 plays an important role in myeloma cell migration/invasion, stemness and chemo-resistance. The SH3GL3-mediated myeloma cell migration/invasion is mediated by FAK/PI3K signaling pathway.
Collapse
Affiliation(s)
- Ruoying Chen
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Hong Zhao
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Dan Wu
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Chen Zhao
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Weiling Zhao
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA.,College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
153
|
Kanteti R, Mirzapoiazova T, Riehm JJ, Dhanasingh I, Mambetsariev B, Wang J, Kulkarni P, Kaushik G, Seshacharyulu P, Ponnusamy MP, Kindler HL, Nasser MW, Batra SK, Salgia R. Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma. Cancer Biol Ther 2018; 19:316-327. [PMID: 29303405 PMCID: PMC5902231 DOI: 10.1080/15384047.2017.1416937] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The non-receptor cytoplasmic tyrosine kinase, Focal Adhesion Kinase (FAK) is known to play a key role in a variety of normal and cancer cellular functions such as survival, proliferation, migration and invasion. It is highly active and overexpressed in various cancers including Pancreatic Ductal Adenocarcinoma (PDAC) and Malignant Pleural Mesothelioma (MPM). Here, initially, we demonstrate that FAK is overexpressed in both PDAC and MPM cell lines. Then we analyze effects of two small molecule inhibitors PF-573228, and PF-431396, which are dual specificity inhibitors of FAK and proline rich tyrosine kinase 2 (PYK2), as well as VS-6063, another small molecule inhibitor that specifically inhibits FAK but not PYK2 for cell growth, motility and invasion of PDAC and MPM cell lines. Treatment with PF-573228, PF-431396 and VS-6063 cells resulted in a dose-dependent inhibition of growth and anchorage-independent colony formation in both cancer cell lines. Furthermore, these compounds suppressed the phosphorylation of FAK at its active site, Y397, and functionally induced significant apoptosis and cell cycle arrest in both cell lines. Using the ECIS (Electric cell-substrate impedance sensing) system, we found that treatment of both PF compounds suppressed adherence and migration of PDAC cells on fibronectin. Interestingly, 3D-tumor organoids derived from autochthonous KC (Kras;PdxCre) mice treated with PF-573228 revealed a significant decrease in tumor organoid size and increase in organoid cell death. Taken together, our results show that FAK is an important target for mesothelioma and pancreatic cancer therapy that merit further translational studies.
Collapse
Affiliation(s)
- Rajani Kanteti
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Tamara Mirzapoiazova
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| | - Jacob J Riehm
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Immanuel Dhanasingh
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Bolot Mambetsariev
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| | - Jiale Wang
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA.,d Oncology Center, Zhujiang Hospital, Southern Medical University , Guangzhou, Guangdong Province , China
| | - Prakash Kulkarni
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| | - Garima Kaushik
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Parthasarathy Seshacharyulu
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Moorthy P Ponnusamy
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Hedy L Kindler
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Mohd W Nasser
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Surinder K Batra
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Ravi Salgia
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA.,b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| |
Collapse
|
154
|
Mukherjee D, Lu H, Yu L, He C, Lahiri SK, Li T, Zhao J. Krüppel-like factor 8 activates the transcription of C-X-C cytokine receptor type 4 to promote breast cancer cell invasion, transendothelial migration and metastasis. Oncotarget 2018; 7:23552-68. [PMID: 26993780 PMCID: PMC5029647 DOI: 10.18632/oncotarget.8083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/25/2016] [Indexed: 02/04/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) has been strongly implicated in breast cancer metastasis. However, the underlying mechanisms remain largely unknown. Here we report a novel signaling from KLF8 to C-X-C cytokine receptor type 4 (CXCR4) in breast cancer. Overexpression of KLF8 in MCF-10A cells induced CXCR4 expression at both mRNA and protein levels, as determined by quantitative real-time PCR and immunoblotting. This induction was well correlated with increased Boyden chamber migration, matrigel invasion and transendothelial migration (TEM) of the cells towards the ligand CXCL12. On the other hand, knockdown of KLF8 in MDA-MB-231 cells reduced CXCR4 expression associated with decreased cell migration, invasion and TEM towards CXCL12. Histological and database mining analyses of independent cohorts of patient tissue microarrays revealed a correlation of aberrant co-elevation of KLF8 and CXCR4 with metastatic potential. Promoter analysis indicated that KLF8 directly binds and activates the human CXCR4 gene promoter. Interestingly, a CXCR4-dependent activation of focal adhesion kinase (FAK), a known upregulator of KLF8, was highly induced by CXCL12 treatment in KLF8-overexpressing, but not KLF8 deficient cells. This activation of FAK in turn induced a further increase in KLF8 expression. Xenograft studies showed that overexpression of CXCR4, but not a dominant-negative mutant of it, in the MDA-MB-231 cells prevented the invasive growth of primary tumor and lung metastasis from inhibition by knockdown of KLF8. These results collectively suggest a critical role for a previously unidentified feed-forward signaling wheel made of KLF8, CXCR4 and FAK in promoting breast cancer metastasis and shed new light on potentially more effective anti-cancer strategies.
Collapse
Affiliation(s)
- Debarati Mukherjee
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA
| | - Heng Lu
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA
| | - Chunjiang He
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Satadru K Lahiri
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA
| | - Tianshu Li
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA.,Current address: Cleveland Clinic, Cleveland, OH, USA
| | - Jihe Zhao
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
155
|
c-Src activity is differentially required by cancer cell motility modes. Oncogene 2018; 37:2104-2121. [PMID: 29379163 PMCID: PMC5906457 DOI: 10.1038/s41388-017-0071-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/29/2017] [Accepted: 11/19/2017] [Indexed: 11/16/2022]
Abstract
Cancer cell migration requires that cells respond and adapt to their surroundings. In the absence of extracellular matrix cues, cancer cells will undergo a mesenchymal to ameboid transition, whereas a highly confining space will trigger a switch to “leader bleb-based” migration. To identify oncogenic signaling pathways mediating these transitions, we undertook a targeted screen using clinically useful inhibitors. Elevated Src activity was found to change actin and focal adhesion dynamics, whereas inhibiting Src triggered focal adhesion disassembly and blebbing. On non-adherent substrates and in collagen matrices, amoeboid-like, blebbing cells having high Src activity formed protrusions of the plasma membrane. To evaluate the role of Src in confined cells, we use a novel approach that places cells under a slab of polydimethylsiloxane (PDMS), which is held at a defined height. Using this method, we find that leader bleb-based migration is resistant to Src inhibition. High Src activity was found to markedly change the architecture of cortical actomyosin, reduce cell mechanical properties, and the percentage of cells that undergo leader bleb-based migration. Thus, Src is a signal transducer that can potently influence transitions between migration modes with implications for the rational development of metastasis inhibitors.
Collapse
|
156
|
Abstract
PURPOSE OF REVIEW Organ fibrosis is a lethal component of scleroderma. The hallmark of scleroderma fibrosis is extensive extracellular matrix (ECM) deposition by activated myofibroblasts, specialized hyper-contractile cells that promote ECM remodeling and matrix stiffening. The purpose of this review is to discuss novel mechanistic insight into myofibroblast activation in scleroderma. RECENT FINDINGS Matrix stiffness, traditionally viewed as an end point of organ fibrosis, is now recognized as a critical regulator of tissue fibrogenesis that hijacks the normal physiologic wound-healing program to promote organ fibrosis. Here, we discuss how matrix stiffness orchestrates fibrosis by controlling three fundamental pro-fibrotic mechanisms: (a) mechanoactivation of myofibroblasts, (b) integrin-mediated latent transforming growth factor beta 1 (TGF-β1) activation, and (c) activation of non-canonical TGF-β1 signaling pathways. We also summarize novel therapeutic targets for anti-fibrotic therapy based on the mechanobiology of scleroderma. Future research on mechanobiology of scleroderma may lead to important clinical applications such as improved diagnosis and treatment of patients with scleroderma and other fibrotic-related diseases.
Collapse
|
157
|
Focal adhesion signaling affects regeneration by human nucleus pulposus cells in collagen- but not carbohydrate-based hydrogels. Acta Biomater 2018; 66:238-247. [PMID: 29174589 DOI: 10.1016/j.actbio.2017.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Hydrogel-based 3D cell cultures are an emerging strategy for the regeneration of cartilage. In an attempt to regenerate dysfunctional intervertebral discs, nucleus pulposus (NP) cells can be cultured in hydrogels of various kinds and physical properties. Stiffness sensing through focal adhesions is believed to direct chondrogenesis, but the mechanisms by which this works are largely unknown. In this study we compared focal adhesion formation and glycosaminoglycan (GAG) deposition by NP cells in a range of hydrogels. Using a focal adhesion kinase (FAK) inhibitor, we demonstrated that focal adhesion signaling is involved in the response of NP cells in hydrogels that contain integrin binding sites (i.e. methacrylated gelatin (gelMA) and type II collagen), but not in hydrogels deplete from integrin binding sites such as alginate and agarose, or CD44-binding hydrogels based on hyaluronic acid. As a result of FAK inhibition we observedenhanced proteoglycan production in gelMA, but decreased production in type II collagen hydrogels, which could be explained by alteration in cell fate as supported by the increase in the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARy). Furthermore, GAG deposition was inversely proportional to polymer concentration in integrin-binding gelMA, while no direct relationship was found for the non-integrin binding gels alginate and agarose. This corroborates our finding that focal adhesion formation plays an important role in NP cell response to its surrounding matrix. STATEMENT OF SIGNIFICANCE Biomaterials are increasingly being investigated for regenerative medicine applications, including regeneration of the nucleus pulposus. Cells interact with their environment and are influenced by extracellular matrix or polymer properties. Insight in these interactions can improve regeneration and helps to understand degeneration processes. The role of focal adhesion formation in the regenerative response of nucleus pulposus cells is largely unknown. Therefore, the relation between materials, stiffness and focal adhesion formation is studied here.
Collapse
|
158
|
Abstract
The recombinant kringle domain of urokinase (UK1) has been shown to inhibit angiogenesis and brain tumor growth in vivo. To avoid limitations in application due to mass production of recombinant protein, we attempted to develop a novel peptide inhibitor from UK1 sequence consisting of 83 amino acids that contains α-helices, loops and β-sheets. We dissected UK1 sequence to seven peptides based on structure and amino acid characteristics, and examined the anti-angiogenic activities for the constructed peptides. Among the tested peptides, UP-7 most potently inhibited the proliferation and migration of endothelial cells (ECs) in vitro, and also potently inhibited in vivo angiogenesis in the mouse matrigel plug assay. Such anti-angiogenic activities were not exerted by the scrambled peptide. At molecular level, UP-7 inhibited growth factor-induced phosphorylation of FAK and ERK1/2. It also suppressed formation of stress fibers and focal adhesions and also inhibited the attachment and spreading of ECs onto immobilized fibronectin. In a lung cancer animal model xenografted with non-UP-7-sensitive NCI-H460 cells, systemic treatment of UP-7 effectively suppressed tumor growth through inhibition of angiogenesis. Interestingly, breast cancer cells such as LM-MDA-MB-231 cells were moderately sensitive to UP-7 in proliferation differently from other cancer cells. UP-7 also inhibited migration, invasion and FAK phosphorylation of LM-MDA-MB-231 cells. Accordingly, UP-7 potently inhibited lung metastatic growth of LM-MDA-MB-231 cells in an experimental metastasis model. Taken together, these results suggest that novel peptide UP-7 can be effectively used for treatment of breast cancer metastatic growth through inhibition of angiogenesis and invasion.
Collapse
|
159
|
MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling. Cell Tissue Res 2018; 372:99-114. [PMID: 29322249 DOI: 10.1007/s00441-017-2765-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 09/04/2017] [Indexed: 01/04/2023]
Abstract
The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3'phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.
Collapse
|
160
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
161
|
Li J, Zhang J, Zou L, Lee SMY, Yang C, Seto SW, Leung GPH. Pro-angiogenic effects of Ilexsaponin A1 on human umbilical vein endothelial cells in vitro and zebrafish in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:229-237. [PMID: 29157819 DOI: 10.1016/j.phymed.2017.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/29/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Ilexsaponin A1 is the major bioactive ingredient of Ilex pubescens Hook. et Arn. This plant has been conventionally used in Traditional Chinese Medicine for the treatment of cardiovascular diseases including stroke, coronary arterial disease, and peripheral vascular diseases. PURPOSE To investigate the pro-angiogenic effect of Ilexsaponin A1 and its mechanism of action. STUDY DESIGN Human umbilical vein endothelial cells (HUVECs) and transgenic zebrafish Tg(fli1:EGFP) were employed as an in vitro and in vivo model respectively. METHODS Pro-angiogenic effects of Ilexsaponin A1 were examined by assessing endothelial cell proliferation, migration, invasion and tube formation. The mechanism of pro-angiogenic effects was investigated by measuring the expression level of various signalling proteins. Furthermore, vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor II (VRI)-induced vascular insufficient transgenic zebrafish model was used to confirm the results of the HUVECs results in vivo. RESULTS Ilexsaponin A1 significantly promoted cell proliferation, migration, invasion and tube formation in HUVECs, and rescued blood vessel loss in VRI-induced vascular insufficient zebrafish. Ilexsaponin A1 upregulated p-Akt, p-mTOR, p-Src, p-FAK, p-MEK, and p-Erk1/2 in HUVECs. CONCLUSION This study showed that Ilexsaponin A1 exhibits pro-angiogenic activity in HUVECs and VRI-induced vascular insufficient zebrafish, probably by activating Akt/mTOR, MAPK/ERK and Src- and FAK-dependent signalling pathways. The findings suggest that Ilexsaponin A1 and probably I. pubescens, a major source of Ilexsaponin A1, could be developed as a potential therapeutic agent for preventing or treating cardiovascular diseases and/or other diseases related to vascular insufficiency.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Sai-Wang Seto
- National Institute of Complementary Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
162
|
Hernández AJA, Reyes VL, Albores-García D, Gómez R, Calderón-Aranda ES. MeHg affects the activation of FAK, Src, Rac1 and Cdc42, critical proteins for cell movement in PDGF-stimulated SH-SY5Y neuroblastoma cells. Toxicology 2017; 394:35-44. [PMID: 29197552 DOI: 10.1016/j.tox.2017.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023]
Abstract
Methylmercury (MeHg) is an environmental neurotoxicant that inhibits neuronal migration. This process requires several cyclic steps involving the formation of membrane protrusions (lamellipodia and filopodia) and focal adhesion turnover. FAK and Src are critical proteins that regulate both processes. The FAK-Src complex promotes the activation of Rac1 and Cdc42, two GTPases involved in the remodeling of the actin cytoskeletal network. Here, we studied the effect of MeHg (1, 10, 100, 500 and 1000nM) on cell migration, the formation of cell protrusions, focal adhesion location and the activation of FAK, Src, Rac1 and Cdc42 using the SH-SY5Y neuroblastoma cell line stimulated with PDGF-BB (PDGF). The data show that MeHg (1-500nM) inhibited PDGF-stimulated cell migration. In PDGF-stimulated cells, MeHg (100-1000nM) decreased protrusions and increased the size of the p-FAKY397 clusters. MeHg also inhibited PDGF-induced FAK and Src activation and, at 100nM, MeHg inhibited the activation of Rac1 and Cdc42. Altogether, the findings show that low concentrations of MeHg inhibit SH-SY5Y cell migration by disrupting the activation and disassembly of FAK. This negatively affects the activation of Src, Rac1 and Cdc42, all of which are critical proteins for the regulation of cell movement. These effects could be related to the MeHg-mediated inhibition of PDGF-induced formation of lamellipodia and filopodia, focal adhesion disassembly and PDGF-induced movement.
Collapse
Affiliation(s)
| | | | | | - Rocío Gómez
- Departamento de Toxicologia, Cinvestav, DF. Mexico, Mexico
| | | |
Collapse
|
163
|
Katoh K. Activation of Rho-kinase and focal adhesion kinase regulates the organization of stress fibers and focal adhesions in the central part of fibroblasts. PeerJ 2017; 5:e4063. [PMID: 29158989 PMCID: PMC5694213 DOI: 10.7717/peerj.4063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Abstract
Specific regulation and activation of focal adhesion kinase (FAK) are thought to be important for focal adhesion formation, and activation of Rho-kinase has been suggested to play a role in determining the effects of FAK on the formation of stress fibers and focal adhesions. To clarify the role of FAK in stress fiber formation and focal adhesion organization, the author examined the formation of new stress fibers and focal adhesions by activation of Rho-kinase in FAK knockout (FAK–/–) fibroblasts. FAK–/– cells were elliptical in shape, and showed reduced numbers of stress fibers and focal adhesions in the central part of the cells along with large focal adhesions in the peripheral regions. Activation of Rho-kinase in FAK–/– cells transiently increased the actin filaments in the cell center, but these did not form typical thick stress fibers. Moreover, only plaque-like structures as the origins of newly formed focal adhesions were observed in the center of the cell. Furthermore, introduction of an exogenous GFP-labeled FAK gene into FAK–/– cells resulted in increased numbers of stress fibers and focal adhesions in the center of the cells, which showed typical fibroblast morphology. These results indicated that FAK plays an important role in the formation of stress fibers and focal adhesions as well as in regulation of cell shape and morphology with the activation of Rho-kinase.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba-city, Ibaraki, Japan
| |
Collapse
|
164
|
Bernabé-García Á, Liarte S, Moraleda JM, Castellanos G, Nicolás FJ. Amniotic membrane promotes focal adhesion remodeling to stimulate cell migration. Sci Rep 2017; 7:15262. [PMID: 29127427 PMCID: PMC5681678 DOI: 10.1038/s41598-017-15509-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/26/2017] [Indexed: 02/04/2023] Open
Abstract
During wound healing, the migration of keratinocytes onto newly restored extracellular matrix aims to reestablish continuity of the epidermis. The application of amniotic membrane (AM) to chronic, deep traumatic, non-healing wounds has proven successful at stimulating re-epithelialization. When applied on epithelial cell cultures, AM activates extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal kinases 1/2 (JNK1/2), with the overexpression and phosphorylation of c-Jun along the wound edge. The effect of AM on the migration of cells was investigated by studying critical proteins involved in the focal adhesions turn-over: Focal Adhesion Kinase (FAK), Paxillin and Vinculin. In Mv1Lu and HaCaT cells, validated models for cell migration and wound healing, AM affected the expression and activation of Paxillin, but did not affect Vinculin expression, both factors which integrate into focal adhesions. Moreover, AM regulation also affected FAK activity through phosphorylation. Finally, we have determined that AM regulation of focal adhesions involves both JNK and MEK MAP kinase signaling pathways. This data provides a molecular background to understand how AM regulates critical cell and molecular aspects of cell migration, organizing and directing the movement of cells by the continuous formation, maturation, and turnover of focal adhesion structures at the migration leading edge.
Collapse
Affiliation(s)
- Ángel Bernabé-García
- Laboratorio de Oncología Molecular y TGF-ß, IMIB-Arrixaca, El Palmar, Murcia, Spain
| | - Sergio Liarte
- Laboratorio de Oncología Molecular y TGF-ß, IMIB-Arrixaca, El Palmar, Murcia, Spain
| | - Jose M Moraleda
- Unidad de Trasplante y Terapia Celular, Servicio Hematología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Gregorio Castellanos
- Servicio de Cirugía General y del Aparato Digestivo, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Francisco J Nicolás
- Laboratorio de Oncología Molecular y TGF-ß, IMIB-Arrixaca, El Palmar, Murcia, Spain.
| |
Collapse
|
165
|
Zak TJ, Koshman YE, Samarel AM, Robia SL. Regulation of Focal Adhesion Kinase through a Direct Interaction with an Endogenous Inhibitor. Biochemistry 2017; 56:4722-4731. [PMID: 28782937 DOI: 10.1021/acs.biochem.7b00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Focal adhesion kinase (FAK) plays a key role in integrin and growth factor signaling pathways. FAK-related non-kinase (FRNK) is an endogenous inhibitor of FAK that shares its primary structure with the C-terminal third of FAK. FAK S910 phosphorylation is known to regulate FAK protein-protein interactions, but the role of the equivalent site on FRNK (S217) is unknown. Here we determined that S217 is highly phosphorylated by ERK in cultured rat aortic smooth muscle cells. Blocking phosphorylation by mutation (S217A) greatly increased FRNK inhibitory potency, resulting in strong inhibition of FAK autophosphorylation at Y397 and induction of smooth muscle cell apoptosis. FRNK has been proposed to compete for FAK anchoring sites in focal adhesions, but we did not detect displacement of FAK by WT-FRNK or superinhibitory S217A-FRNK. Instead, we found FRNK interacted directly with FAK, and this interaction is markedly strengthened for the superinhibitory S217A-FRNK. The results suggest that FRNK limits growth and survival signaling pathways by binding directly to FAK in an inhibitory complex, and this inhibition is relieved by phosphorylation of FRNK at S217.
Collapse
Affiliation(s)
- Taylor J Zak
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | - Yevgenia E Koshman
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | - Allen M Samarel
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | - Seth L Robia
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| |
Collapse
|
166
|
He Y, Sun X, Wang L, Mishina Y, Guan JL, Liu F. Male germline recombination of a conditional allele by the widely used Dermo1-cre (Twist2-cre) transgene. Genesis 2017; 55. [PMID: 28722198 DOI: 10.1002/dvg.23048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Conditional gene knockout using the Cre/loxP system is instrumental in advancing our understanding of the function of genes in a wide range of disciplines. It is becoming increasingly apparent in the literature that recombination mediated by some Cre transgenes can occur in unexpected tissues. Dermo1-Cre (Twist2-Cre) has been widely used to target skeletal lineage cells as well as other mesoderm-derived cells. Here we report that Dermo1-Cre exhibits spontaneous male germline recombination activity leading to a Cre-mediated recombination of a floxed Ptk2 (Protein tyrosine kinase 2, also known as Fak [Focal adhesion kinase]) allele but not a floxed Rb1cc1 (RB1 inducible coiled-coil 1, also known as Fip200 [FAK-family Interacting Protein of 200 kDa]) allele at high frequency. This ectopic germline activity of Dermo1-Cre occurred in all or none manner in a given litter. We demonstrated that the occurrence of germline recombination activity of Dermo1-Cre transgene can be avoided by using female mice as parental Dermo1-Cre carriers.
Collapse
Affiliation(s)
- Yun He
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109.,Dental Department, College of Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Xiumei Sun
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109.,Department of Orthodontics, Jilin University School and Hospital of Stomatology, Changchun, Jilin, 130021, China
| | - Li Wang
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Fei Liu
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| |
Collapse
|
167
|
Trenti A, Zulato E, Pasqualini L, Indraccolo S, Bolego C, Trevisi L. Therapeutic concentrations of digitoxin inhibit endothelial focal adhesion kinase and angiogenesis induced by different growth factors. Br J Pharmacol 2017; 174:3094-3106. [PMID: 28688145 DOI: 10.1111/bph.13944] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Cardiac glycosides are Na+ /K+ -ATPases inhibitors used to treat congestive heart failure and cardiac arrhythmias. Epidemiological studies indicate that patients on digitalis therapy are more protected from cancer. Evidence of a selective cytotoxicity against cancer cells has suggested their potential use as anticancer drugs. The effect on angiogenesis of clinically used cardiac glycosides has not been extensively explored. EXPERIMENTAL APPROACH We studied the effect of digoxin, digitoxin and ouabain on early events of the angiogenic process in HUVECs. We determined HUVEC viability, proliferation, migration and differentiation into capillary tube-like structures. We also tested drug activity using an in vivo angiogenesis model. Activation of protein tyrosine kinase 2 (FAK) and signalling proteins associated with the Na+ /K+ -ATPase signalosome was determined by Western blotting. KEY RESULTS Digitoxin and ouabain (1-100 nM) inhibited HUVEC migration, concentration-dependently, without affecting cell viability, while digoxin induced apoptosis at the same concentrations. Digitoxin antagonized growth factor-induced migration and tubularization at concentrations (1-25 nM) within its plasma therapeutic range. The anti-angiogenic effect of digitoxin was confirmed also by in vivo studies. Digitoxin induced Src, Akt and ERK1/2 phosphorylation but did not affect FAK autophosphorylation at Tyr397 . However, it significantly inhibited growth factor-induced FAK phosphorylation at Tyr576/577 . CONCLUSIONS AND IMPLICATIONS Therapeutic concentrations of digitoxin inhibited angiogenesis and FAK activation by several pro-angiogenic stimuli. These novel findings suggest a potential repositioning of digitoxin as a broad-spectrum anti-angiogenic drug for diseases where pathological angiogenesis is involved.
Collapse
Affiliation(s)
- Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
168
|
Deficiency in VHR/DUSP3, a suppressor of focal adhesion kinase, reveals its role in regulating cell adhesion and migration. Oncogene 2017; 36:6509-6517. [DOI: 10.1038/onc.2017.255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
|
169
|
Zhu M, Wang H, Cui J, Li W, An G, Pan Y, Zhang Q, Xing R, Lu Y. Calcium-binding protein S100A14 induces differentiation and suppresses metastasis in gastric cancer. Cell Death Dis 2017; 8:e2938. [PMID: 28726786 PMCID: PMC5550849 DOI: 10.1038/cddis.2017.297] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/05/2023]
Abstract
S100A14 is a calcium-binding protein involved in cell proliferation and differentiation as well as the metastasis of human tumors. In this study, we characterized the regulation of S100A14 expression between biological signatures and clinical pathological features in gastric cancer (GC). Our data demonstrated that S100A14 induced the differentiation of GC by upregulating the expression of E-cadherin and PGII. Moreover, S100A14 expression negatively correlated with cell migration and invasion in in vitro and in vivo experimental models. Interestingly, S100A14 blocked the store-operated Ca2+ influx by suppressing Orai1 and STIM1 expression, leading to FAK expression activation, focal adhesion assembly and MMP downregulation. Taken together, our results indicate that S100A14 may have a role in the induction of differentiation and inhibition of cell metastasis in GC.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hongyi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jiantao Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wenmei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yuanming Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Qingying Zhang
- Department of Preventive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- Department of Preventive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Jinping District, Guangdong 515041, China. Tel: +86 754 88900445; Fax: +86 754 88557562; E-mail:
| | - Rui Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China. Tel: +86 10 88196731; Fax: +86 10 88122437; E-mail: or
| | - Youyong Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China. Tel: +86 10 88196731; Fax: +86 10 88122437; E-mail: or
| |
Collapse
|
170
|
Jaraíz-Rodríguez M, Tabernero MD, González-Tablas M, Otero A, Orfao A, Medina JM, Tabernero A. A Short Region of Connexin43 Reduces Human Glioma Stem Cell Migration, Invasion, and Survival through Src, PTEN, and FAK. Stem Cell Reports 2017; 9:451-463. [PMID: 28712848 PMCID: PMC5549880 DOI: 10.1016/j.stemcr.2017.06.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022] Open
Abstract
Connexin43 (CX43), a protein that forms gap junction channels and hemichannels in astrocytes, is downregulated in high-grade gliomas. Its relevance for glioma therapy has been thoroughly explored; however, its positive effects on proliferation are counterbalanced by its effects on migration and invasion. Here, we show that a cell-penetrating peptide based on CX43 (TAT-Cx43266-283) inhibited c-Src and focal adhesion kinase (FAK) and upregulated phosphatase and tensin homolog in glioma stem cells (GSCs) derived from patients. Consequently, TAT-Cx43266-283 reduced GSC motility, as analyzed by time-lapse microscopy, and strongly reduced their invasive ability. Interestingly, we investigated the effects of TAT-Cx43266-283 on freshly removed surgical specimens as undissociated glioblastoma blocks, which revealed a dramatic reduction in the growth, migration, and survival of these cells. In conclusion, a region of CX43 (amino acids 266–283) exerts an important anti-tumor effect in patient-derived glioblastoma models that includes impairment of GSC migration and invasion. TAT-Cx43266-283 exerts anti-tumor effects in patient-derived glioblastoma models TAT-Cx43266-283 targets Src, PTEN, and FAK TAT-Cx43266-283 inhibits glioma stem cell migration and invasion
Collapse
Affiliation(s)
- Myriam Jaraíz-Rodríguez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Ma Dolores Tabernero
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - María González-Tablas
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alvaro Otero
- Neurosurgery Service, Hospital Universitario de Salamanca and IBSAL, 37007 Salamanca, Spain
| | - Alberto Orfao
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jose M Medina
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain.
| |
Collapse
|
171
|
LFA-1 activates focal adhesion kinases FAK1/PYK2 to generate LAT-GRB2-SKAP1 complexes that terminate T-cell conjugate formation. Nat Commun 2017; 8:16001. [PMID: 28699640 PMCID: PMC5510181 DOI: 10.1038/ncomms16001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/23/2017] [Indexed: 01/27/2023] Open
Abstract
Lymphocyte function-associated antigen 1 (LFA-1) affinity and avidity changes have been assumed to mediate adhesion to intercellular adhesion molecule-1 for T-cell conjugation to dendritic cells (DC). Although the T-cell receptor (TCR) and LFA-1 can generate intracellular signals, the immune cell adaptor protein linker for the activation of T cells (LAT) couples the TCR to downstream events. Here, we show that LFA-1 can mediate both adhesion and de-adhesion, dependent on receptor clustering. Although increased affinity mediates adhesion, LFA-1 cross-linking induced the association and activation of the protein-tyrosine kinases FAK1/PYK1 that phosphorylated LAT selectively on a single Y-171 site for the binding to adaptor complex GRB-2-SKAP1. LAT-GRB2-SKAP1 complexes were distinct from canonical LAT-GADs-SLP-76 complexes. LFA-1 cross-linking increased the presence of LAT-GRB2-SKAP1 complexes relative to LAT-GADs-SLP-76 complexes. LFA-1-FAK1 decreased T-cell-dendritic cell (DC) dwell times dependent on LAT-Y171, leading to reduced DO11.10 T cell binding to DCs and proliferation to OVA peptide. Overall, our findings outline a new model for LFA-1 in which the integrin can mediate both adhesion and de-adhesion events dependent on receptor cross-linking. The T-cell integrin LFA-1 binds ICAM-1 on antigen presenting cells to affect TCR-MHC interactions. Here the authors show detailed mechanics of how LFA-1 ligation affects T-cell conjugation to dendritic cells to regulate adhesion and de-adhesion of these cells in the context of antigen presentation.
Collapse
|
172
|
Cryptotanshinone inhibits VEGF-induced angiogenesis by targeting the VEGFR2 signaling pathway. Microvasc Res 2017; 111:25-31. [DOI: 10.1016/j.mvr.2016.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
|
173
|
Kemmerling N, Wunderlich P, Theil S, Linnartz-Gerlach B, Hersch N, Hoffmann B, Heneka MT, de Strooper B, Neumann H, Walter J. Intramembranous processing by γ-secretase regulates reverse signaling of ephrin-B2 in migration of microglia. Glia 2017; 65:1103-1118. [PMID: 28370426 DOI: 10.1002/glia.23147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
Abstract
The Eph-ephrin system plays pivotal roles in cell adhesion and migration. The receptor-like functions of the ephrin ligands allow the regulation of intracellular processes via reverse signaling. γ-Secretase mediated processing of ephrin-B has previously been linked to activation of Src, a kinase crucial for focal adhesion and podosome phosphorylation. Here, we analyzed the role of γ-secretase in the stimulation of reverse ephrin-B2 signaling in the migration of mouse embryonic stem cell derived microglia. The proteolytic generation of the ephrin-B2 intracellular domain (ICD) by γ-secretase stimulates Src and focal adhesion kinase (FAK). Inhibition of γ-secretase decreased the phosphorylation of Src and FAK, and reduced cell motility. These effects were associated with enlargement of the podosomal surface. Interestingly, expression of ephrin-B2 ICD could rescue these effects, indicating that this proteolytic fragment mediates the activation of Src and FAK, and thereby regulates podosomal dynamics in microglial cells. Together, these results identify γ-secretase as well as ephrin-B2 as regulators of microglial migration.
Collapse
Affiliation(s)
- Nadja Kemmerling
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | | | - Sandra Theil
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | | | - Nils Hersch
- Institute of Complex Systems, ICS-7 Biomechanics, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7 Biomechanics, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Michael T Heneka
- Department of Neurology, University of Bonn, Bonn, 53127, Germany.,German Center for Neurodegenerative Diseases, Bonn, 53127, Germany
| | - Bart de Strooper
- KULeuven Centre for Human Genetics, Leuven, 3000, Belgium.,Centre for Brain and Disease, VIB (Flanders Institute for Biotechnology), Leuven, 3000, Belgium
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, 53127, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| |
Collapse
|
174
|
To C, Roy A, Chan E, Prado MAM, Di Guglielmo GM. Synthetic triterpenoids inhibit GSK3β activity and localization and affect focal adhesions and cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1274-1284. [PMID: 28366661 DOI: 10.1016/j.bbamcr.2017.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/26/2017] [Accepted: 03/24/2017] [Indexed: 01/11/2023]
Abstract
Synthetic triterpenoids are a class of anti-cancer compounds that target many cellular functions, including apoptosis and cell growth in both cell culture and animal models. We have shown that triterpenoids inhibit cell migration in part by interfering with Arp2/3-dependent branched actin polymerization in lamellipodia (To et al., 2010). Our current studies reveal that Glycogen Synthase Kinase 3 beta (GSK3β), a kinase that regulates many cellular processes, including cell adhesion dynamics, is a triterpenoid-binding protein. Furthermore, triterpenoids were observed to inhibit GSK3β activity and increase cellular focal adhesion size. To further examine whether these effects on focal adhesions in triterpenoid-treated cells were GSK3β-dependent, GSK3β inhibitors (lithium chloride and SB216763) were used to examine cell adhesion and morphology as well as cell migration. Our results showed that GSK3β inhibitors also altered cell adhesion sizes. Moreover, these inhibitors blocked cell migration and displaced proteins at the leading edge of migrating cells, consistent with what was observed in triterpenoid-treated cells. Therefore, the triterpenoids may affect cell migration via a mechanism that targets and alters the activity and localization of GSK3β.
Collapse
Affiliation(s)
- Ciric To
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Ashbeel Roy
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, ON, Canada
| | - Eddie Chan
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Marco A M Prado
- Department of Physiology and Pharmacology, Western University, London, ON, Canada; Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, ON, Canada
| | | |
Collapse
|
175
|
Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix. Proc Natl Acad Sci U S A 2017; 114:3933-3938. [PMID: 28348210 DOI: 10.1073/pnas.1614894114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase involved in development and human disease, including cancer. It is currently thought that the four-point one, ezrin, radixin, moesin (FERM)-kinase domain linker, which contains autophosphorylation site tyrosine (Y) 397, is not required for in vivo FAK function until late midgestation. Here, we directly tested this hypothesis by generating mice with FAK Y397-to-phenylalanine (F) mutations in the germline. We found that Y397F embryos exhibited reduced mesodermal fibronectin (FN) and osteopontin expression and died during mesoderm development akin to FAK kinase-dead mice. We identified myosin-1E (MYO1E), an actin-dependent molecular motor, to interact directly with the FAK FERM-kinase linker and induce FAK kinase activity and Y397 phosphorylation. Active FAK in turn accumulated in the nucleus where it led to the expression of osteopontin and other FN-type matrix in both mouse embryonic fibroblasts and human melanoma. Our data support a model in which FAK Y397 autophosphorylation is required for FAK function in vivo and is positively regulated by MYO1E.
Collapse
|
176
|
Li W, Chen L, Chen Z, Wu L, Feng J, Wang F, Shoff L, Li X, Donly KJ, MacDougall M, Chen S. Dentin sialoprotein facilitates dental mesenchymal cell differentiation and dentin formation. Sci Rep 2017; 7:300. [PMID: 28331230 PMCID: PMC5428264 DOI: 10.1038/s41598-017-00339-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/22/2017] [Indexed: 01/09/2023] Open
Abstract
Dentin sialoprotein (DSP) is a dentin extracellular matrix protein. It is involved in dental mesenchymal cell lineages and dentin formation through regulation of its target gene expression. DSP mutations cause dentin genetic diseases. However, mechanisms of DSP in controlling dental mesenchymal cell differentiation are unknown. Using DSP as bait, we screened a protein library from mouse odontoblastic cells and found that DSP is a ligand and binds to cell surface receptor, occludin. Further study identified that the C-terminal DSP domainaa 363–458 interacts with the occludin extracellular loop 2aa 194–241. The C-terminal DSP domain induced phosphorylation of occludin Ser490 and focal adhesion kinase (FAK) Ser722 and Tyr576. Coexpression of DSP, occludin and FAK was detected in dental mesenchymal cells during tooth development. Occludin physically interacts with FAK, and occludin and FAK phosphorylation can be blocked by DSP and occludin antibodies. This DSP domain facilitates dental mesenchymal cell differentiation and mineralization. Furthermore, transplantation and pulp-capping procedures revealed that this DSP domain induces endogenous dental pulp mesenchymal cell proliferation, differentiation and migration, while stimulating blood vessel proliferation. This study elucidates the mechanism of DSP in dental mesenchymal lineages and implies that DSP may serve as a therapeutic agent for dentin-pulp complex regeneration in dental caries.
Collapse
Affiliation(s)
- Wentong Li
- Department of Developmental Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3700, United States.,Department of Pathology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Lei Chen
- Department of Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zhuo Chen
- Department of Developmental Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3700, United States
| | - Lian Wu
- Department of Developmental Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3700, United States
| | - Junsheng Feng
- Department of Developmental Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3700, United States
| | - Feng Wang
- Department of Developmental Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3700, United States
| | - Lisa Shoff
- Department of Developmental Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3700, United States
| | - Xin Li
- Department of Developmental Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3700, United States
| | - Kevin J Donly
- Department of Developmental Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3700, United States
| | - Mary MacDougall
- Department of Oral/Maxillofacial Surgery, University of Alabama at Birmingham School of Dentistry, Birmingham, Alabama, 35294-0007, United States
| | - Shuo Chen
- Department of Developmental Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3700, United States.
| |
Collapse
|
177
|
Stutchbury B, Atherton P, Tsang R, Wang DY, Ballestrem C. Distinct focal adhesion protein modules control different aspects of mechanotransduction. J Cell Sci 2017; 130:1612-1624. [PMID: 28302906 DOI: 10.1242/jcs.195362] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/08/2017] [Indexed: 12/28/2022] Open
Abstract
Focal adhesions (FAs) are macromolecular complexes that regulate cell adhesion and mechanotransduction. By performing fluorescence recovery after photobleaching (FRAP) and fluorescence loss after photoactivation (FLAP) experiments, we found that the mobility of core FA proteins correlates with their function. Structural proteins such as tensin, talin and vinculin are significantly less mobile in FAs than signaling proteins such as FAK (also known as PTK2) and paxillin. The mobilities of the structural proteins are directly influenced by substrate stiffness, suggesting that they are involved in sensing the rigidity of the extracellular environment. The turnover rates of FAK and paxillin, as well as kindlin2 (also known as FERMT2), are not influenced by substrate stiffness. By using specific Src and FAK inhibitors, we reveal that force-sensing by vinculin occurs independently of FAK and paxillin phosphorylation. However, their phosphorylation is required for downstream Rac1-driven cellular processes, such as protrusion and cell migration. Overall, we show that the FA is composed of different functional modules that separately control mechanosensing and the cellular mechano-response.
Collapse
Affiliation(s)
- Ben Stutchbury
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, England, UK
| | - Paul Atherton
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, England, UK
| | - Ricky Tsang
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, England, UK
| | - De-Yao Wang
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, England, UK
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
178
|
Stebbings GK, Williams AG, Morse CI, Day SH. Polymorphisms in PTK2 are associated with skeletal muscle specific force: an independent replication study. Eur J Appl Physiol 2017; 117:713-720. [PMID: 28251396 DOI: 10.1007/s00421-017-3567-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the study was to investigate two single nucleotide polymorphisms (SNP) in PTK2 for associations with human muscle strength phenotypes in healthy men. METHODS Measurement of maximal isometric voluntary knee extension (MVCKE) torque, net MVCKE torque and vastus lateralis (VL) specific force, using established techniques, was completed on 120 Caucasian men (age = 20.6 ± 2.3 year; height = 1.79 ± 0.06 m; mass = 75.0 ± 10.0 kg; mean ± SD). All participants provided either a blood (n = 96) or buccal cell sample, from which DNA was isolated and genotyped for the PTK2 rs7843014 A/C and rs7460 A/T SNPs using real-time polymerase chain reaction. RESULTS Genotype frequencies for both SNPs were in Hardy-Weinberg equilibrium (X 2 ≤ 1.661, P ≥ 0.436). VL specific force was 8.3% higher in rs7843014 AA homozygotes than C-allele carriers (P = 0.017) and 5.4% higher in rs7460 AA homozygotes than T-allele carriers (P = 0.029). No associations between either SNP and net MVCKE torque (P ≥ 0.094) or peak MVCKE torque (P ≥ 0.107) were observed. CONCLUSIONS These findings identify a genetic contribution to the inter-individual variability within muscle specific force and provides the first independent replication, in a larger Caucasian cohort, of an association between these PTK2 SNPs and muscle specific force, thus extending our understanding of the influence of genetic variation on the intrinsic strength of muscle.
Collapse
Affiliation(s)
- Georgina K Stebbings
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK.
| | - A G Williams
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - C I Morse
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK
| | - S H Day
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK
| |
Collapse
|
179
|
Setyawati MI, Leong DT. Mesoporous Silica Nanoparticles as an Antitumoral-Angiogenesis Strategy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6690-6703. [PMID: 28150492 DOI: 10.1021/acsami.6b12524] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tumors depend heavily on angiogenesis for nutrient derivation and their subsequent metastasis. Targeting tumor induced angiogenesis per se can address both tumor growth and progression simultaneously. Here, we show that we could elegantly restrict the endothelial cells angiogenic behavior through digital size control of mesoporous silica nanoparticle (MSN). This antiangiogenesis effect was derived from the particle size dependent uptake and production of intracellular reactive oxygen species (ROS) that directly interfered with p53 tumor suppressor pathway. The resulting signaling cascade wrestled back the tumoral control of endothelial cells' migration, invasion, and proliferation. Overall, a mere control over the size of a highly oxidative reactive surfaced nanoparticle could provide an alternative strategy to curb the tumor induced angiogenesis process in a conventional drug-free manner.
Collapse
Affiliation(s)
- Magdiel I Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - David T Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
180
|
Lycorine inhibits breast cancer growth and metastasis via inducing apoptosis and blocking Src/FAK-involved pathway. SCIENCE CHINA-LIFE SCIENCES 2017; 60:417-428. [PMID: 28251459 DOI: 10.1007/s11427-016-0368-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 01/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer type worldwide among women and more than 90% of patients die from tumor metastasis. Lycorine, a natural alkaloid, has been widely reported possessing potential efficacy against cancer proliferation and metastasis. In our study, the anti-tumor potency on breast cancer was evaluated in vitro and in vivo for the first time. Our results indicated that lycorine inhibited breast cancer cells growth, migration and invasion as well as induced their apoptosis. In in vivo study, lycorine not only suppressed breast tumor growth in xenograft models and inhibited breast tumor metastasis in MDA-MB-231 tail vein model. More importantly, we found lycorine had less toxicity than first-line chemotherapy drug paclitaxel at the same effective dose in vivo. Furthermore, on mechanism, lycorine inhibited tumor cell migration and invasion via blocking the Src/FAK (focal adhesion kinase)-involved pathway. In conclusion, our study implied lycorine was a potential candidate for the treatment of breast cancer by inhibition of tumor growth and metastasis.
Collapse
|
181
|
Berndsen RH, Weiss A, Abdul UK, Wong TJ, Meraldi P, Griffioen AW, Dyson PJ, Nowak-Sliwinska P. Combination of ruthenium(II)-arene complex [Ru(η 6-p-cymene)Cl 2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity. Sci Rep 2017; 7:43005. [PMID: 28223694 PMCID: PMC5320450 DOI: 10.1038/srep43005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/17/2017] [Indexed: 12/28/2022] Open
Abstract
Ruthenium-based compounds show strong potential as anti-cancer drugs and are being investigated as alternatives to other well-established metal-based chemotherapeutics. The organometallic compound [Ru(η6-p-cymene)Cl2(pta)], where pta = 1,3,5-triaza-7-phosphaadamantane (RAPTA-C) exhibits broad acting anti-tumor efficacy with intrinsic angiostatic activity. In the search for an optimal anti-angiogenesis drug combination, we identified synergistic potential between RAPTA-C and the epidermal growth factor receptor (EGFR) inhibitor, erlotinib. This drug combination results in strong synergistic inhibition of cell viability in human endothelial (ECRF24 and HUVEC) and human ovarian carcinoma (A2780 and A2780cisR) cells. Additionally, erlotinib significantly enhances the cellular uptake of RAPTA-C relative to treatment with RAPTA-C alone in human ovarian carcinoma cells, but not endothelial cells. Drug combinations induce the formation of chromosome bridges that persist after mitotic exit and delay abscission in A2780 and A2780cisR, therefore suggesting initiation of cellular senescence. The therapeutic potential of these compounds and their combination is further validated in vivo on A2780 tumors grown on the chicken chorioallantoic membrane (CAM) model, and in a preclinical model in nude mice. Immunohistochemical analysis confirms effective anti-angiogenic and anti-proliferative activity in vivo, based on a significant reduction of microvascular density and a decrease in proliferating cells.
Collapse
Affiliation(s)
- Robert H. Berndsen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Andrea Weiss
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - U. Kulsoom Abdul
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tse J. Wong
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, University of Geneva (UNIGE), Geneva, Switzerland
| | - Arjan W. Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul J. Dyson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
182
|
Hall JE, Schaller MD. Phospholipid binding to the FAK catalytic domain impacts function. PLoS One 2017; 12:e0172136. [PMID: 28222177 PMCID: PMC5319746 DOI: 10.1371/journal.pone.0172136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/31/2017] [Indexed: 12/26/2022] Open
Abstract
Focal adhesion kinase is an essential nonreceptor tyrosine kinase that plays an important role in development, in homeostasis and in the progression of human disease. Multiple stimuli activate FAK, which requires a change in structure from an autoinhibited to activated conformation. In the autoinhibited conformation the FERM domain associates with the catalytic domain of FAK and PI(4,5)P2 binding to the FERM domain plays a role in the release of autoinhibition, activating the enzyme. An in silico model of FAK/PI(4,5)P2 interaction suggests that residues on the catalytic domain interact with PI(4,5)P2, in addition to the known FERM domain PI(4,5)P2 binding site. This study was undertaken to test the significance of this in silico observation. Mutations designed to disrupt the putative PI(4,5)P2 binding site were engineered into FAK. These mutants exhibited defects in phosphorylation and failed to completely rescue the phenotype associated with fak-/- phenotype fibroblasts demonstrating the importance of these residues in FAK function. The catalytic domain of FAK exhibited PI(4,5)P2 binding in vitro and binding activity was lost upon mutation of putative PI(4,5)P2 binding site basic residues. However, binding was not selective for PI(4,5)P2, and the catalytic domain bound to several phosphatidylinositol phosphorylation variants. The mutant exhibiting the most severe biological defect was defective for phosphatidylinositol phosphate binding, supporting the model that catalytic domain phospholipid binding is important for biochemical and biological function.
Collapse
Affiliation(s)
- Jessica E. Hall
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Michael D. Schaller
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
183
|
Mierke CT, Fischer T, Puder S, Kunschmann T, Soetje B, Ziegler WH. Focal adhesion kinase activity is required for actomyosin contractility-based invasion of cells into dense 3D matrices. Sci Rep 2017; 7:42780. [PMID: 28202937 PMCID: PMC5311912 DOI: 10.1038/srep42780] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
The focal adhesion kinase (FAK) regulates the dynamics of integrin-based cell adhesions important for motility. FAK's activity regulation is involved in stress-sensing and focal-adhesion turnover. The effect of FAK on 3D migration and cellular mechanics is unclear. We analyzed FAK knock-out mouse embryonic fibroblasts and cells expressing a kinase-dead FAK mutant, R454-FAK, in comparison to FAK wild-type cells. FAK knock-out and FAKR454/R454 cells invade dense 3D matrices less efficiently. These results are supported by FAK knock-down in wild-type fibroblasts and MDA-MB-231 human breast cancer cells showing reduced invasiveness. Pharmacological interventions indicate that in 3D matrices, cells deficient in FAK or kinase-activity behave similarly to wild-type cells treated with inhibitors of Src-activity or actomyosin-contractility. Using magnetic tweezers experiments, FAKR454/R454 cells are shown to be softer and exhibit impaired adhesion to fibronectin and collagen, which is consistent with their reduced 3D invasiveness. In line with this, FAKR454/R454 cells cannot contract the matrix in contrast to FAK wild-type cells. Finally, our findings demonstrate that active FAK facilitates 3D matrix invasion through increased cellular stiffness and transmission of actomyosin-dependent contractile force in dense 3D extracellular matrices.
Collapse
Affiliation(s)
- Claudia T. Mierke
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Tony Fischer
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Stefanie Puder
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Tom Kunschmann
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Birga Soetje
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Wolfgang H. Ziegler
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
184
|
FAK signalling controls insulin sensitivity through regulation of adipocyte survival. Nat Commun 2017; 8:14360. [PMID: 28165007 PMCID: PMC5303880 DOI: 10.1038/ncomms14360] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these mice with a PPARγ agonist does not restore adiposity or improve insulin sensitivity. In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these results demonstrate that FAK is required for adipocyte survival and maintenance of insulin sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess. The kinase FAK is important for integrin signalling and promotes cell survival. Here, the authors demonstrate FAK regulates adipocyte survival, and is particularly important for maintaining insulin sensitivity during adipose tissue expansion in the context of a calorie-rich diet.
Collapse
|
185
|
Franco-Barraza J, Francescone R, Luong T, Shah N, Madhani R, Cukierman G, Dulaimi E, Devarajan K, Egleston BL, Nicolas E, Katherine Alpaugh R, Malik R, Uzzo RG, Hoffman JP, Golemis EA, Cukierman E. Matrix-regulated integrin α vβ 5 maintains α 5β 1-dependent desmoplastic traits prognostic of neoplastic recurrence. eLife 2017; 6. [PMID: 28139197 PMCID: PMC5283834 DOI: 10.7554/elife.20600] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022] Open
Abstract
Desmoplasia, a fibrotic mass including cancer-associated fibroblasts (CAFs) and self-sustaining extracellular matrix (D-ECM), is a puzzling feature of pancreatic ductal adenocarcinoma (PDACs). Conflicting studies have identified tumor-restricting and tumor-promoting roles of PDAC-associated desmoplasia, suggesting that individual CAF/D-ECM protein constituents have distinguishable tumorigenic and tumor-repressive functions. Using 3D culture of normal pancreatic versus PDAC-associated human fibroblasts, we identified a CAF/D-ECM phenotype that correlates with improved patient outcomes, and that includes CAFs enriched in plasma membrane-localized, active α5β1-integrin. Mechanistically, we established that TGFβ is required for D-ECM production but dispensable for D-ECM-induced naïve fibroblast-to-CAF activation, which depends on αvβ5-integrin redistribution of pFAK-independent active α5β1-integrin to assorted endosomes. Importantly, the development of a simultaneous multi-channel immunofluorescence approach and new algorithms for computational batch-analysis and their application to a human PDAC panel, indicated that stromal localization and levels of active SMAD2/3 and α5β1-integrin distinguish patient-protective from patient-detrimental desmoplasia and foretell tumor recurrences, suggesting a useful new prognostic tool. DOI:http://dx.doi.org/10.7554/eLife.20600.001 Tumors are not entirely made out of cancerous cells. They contain many other components – referred to as tumor stroma – that may either encourage or hinder the tumor’s growth. Tumor stroma includes non-cancerous cells and a framework of fibrous sugary proteins, called the extracellular matrix, which surround and signal to cells while providing physical support. In the most common and aggressive form of pancreatic cancer, the stroma often makes up the majority of the tumor’s mass. Sometimes the stroma of these pancreatic tumors can protect the cancer cells from anti-cancer drugs. Researchers have therefore been interested in finding out exactly which aspects of the tumor stroma shield and support cancer cells, and which impede their growth and progression. Answering these questions could make it possible to develop new drugs that will change a tumor-supporting stroma into one that hinders the tumor’s growth and spread. The most abundant cells in the stroma of pancreatic tumors are called cancer-associated fibroblasts. Healthy specialized fibroblasts – known as pancreatic stellate cells – help to build and maintain the ‘normal’ extracellular matrix and so these cells normally restrict a tumor’s development. However, cancer cells can adapt healthy fibroblasts into cancer-associated fibroblasts, which produce an altered extracellular matrix that could allow the tumor to grow. Franco-Barraza et al. have now compared healthy and cancer-associated fibroblasts from patients’ pancreatic tumors. One of the main differences between these two cell types was the location of the activated form of a molecule called α5β1-integrin. Healthy fibroblasts, in a normal extracellular matrix, have active α5β1-integrin on the surface of the cell. However, a number of tumor-promoting signals, including some from the altered extracellular matrix, could force the active α5β1-integrins to relocate inside the fibroblasts instead. In further experiments, where the activated integrin was retained at the cell surface, the fibroblasts were able to resist the influence of the cancer-associated extracellular matrix. Then again, if the active α5β1-integrins were directed inside the cells, healthy cells turned into cancer-associated fibroblasts. With this information in hand, Franco-Barraza et al. examined tumor samples from over a hundred pancreatic cancer patients using a new microscopy-based technique that distinguishes cancer cells from stroma cells. The analysis confirmed the pattern observed in the laboratory: those patients who appeared to produce more normal extracellular matrix and have active α5β1-integrin localized mostly to the surface of the cells survived longer without the cancer returning than those patients who lacked these stroma traits. Samples from patients with kidney cancer also showed similar results and, as before, an altered extracellular matrix was linked to a worse outcome of the disease. Together these findings suggest that if future studies uncover ways to relocate or maintain active α5β1-integrin to the cell surface of fibroblasts they could lead to new treatments to restrict the growth of tumors in cancer patients. DOI:http://dx.doi.org/10.7554/eLife.20600.002
Collapse
Affiliation(s)
| | - Ralph Francescone
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Tiffany Luong
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Neelima Shah
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Raj Madhani
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Gil Cukierman
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Essel Dulaimi
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, United States
| | - Karthik Devarajan
- Department of Cancer Epigenetics, Fox Chase Cancer Center, Philadelphia, United States
| | - Brian L Egleston
- Department of Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, United States
| | - Emmanuelle Nicolas
- Programs in Genomics, Fox Chase Cancer Center, Philadelphia, United States
| | | | - Ruchi Malik
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Robert G Uzzo
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States.,Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, United States
| | - John P Hoffman
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, United States
| | - Erica A Golemis
- Department of Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, United States
| | - Edna Cukierman
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| |
Collapse
|
186
|
Sero JE, Bakal C. Multiparametric Analysis of Cell Shape Demonstrates that β-PIX Directly Couples YAP Activation to Extracellular Matrix Adhesion. Cell Syst 2017; 4:84-96.e6. [PMID: 28065575 PMCID: PMC5289939 DOI: 10.1016/j.cels.2016.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023]
Abstract
Mechanical signals from the extracellular matrix (ECM) and cellular geometry regulate the nuclear translocation of transcriptional regulators such as Yes-associated protein (YAP). Elucidating how physical signals control the activity of mechanosensitive proteins poses a technical challenge, because perturbations that affect cell shape may also affect protein localization indirectly. Here, we present an approach that mitigates confounding effects of cell-shape changes, allowing us to identify direct regulators of YAP localization. This method uses single-cell image analysis and statistical models that exploit the naturally occurring heterogeneity of cellular populations. Through systematic depletion of all human kinases, Rho family GTPases, GEFs, and GTPase activating proteins (GAPs), together with targeted chemical perturbations, we found that β-PIX, a Rac1/Ccd42 GEF, and PAK2, a Rac1/Cdc42 effector, drive both YAP activation and cell-ECM adhesion turnover during cell spreading. Our observations suggest that coupling YAP to adhesion dynamics acts as a mechano-timer, allowing cells to rapidly tune gene expression in response to physical signals.
Collapse
Affiliation(s)
- Julia E Sero
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
187
|
Mon NN, Senga T, Ito S. Interleukin-1β activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett 2016; 13:955-960. [PMID: 28356984 DOI: 10.3892/ol.2016.5521] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/14/2016] [Indexed: 11/06/2022] Open
Abstract
Interleukin-1β (IL-1b) is a pleiotropic cytokine that is important in tumor progression and invasion. Matrix metalloproteinase-9 (MMP-9), which is a secreted matrix-degrading enzyme, is one of the key regulators of tumor invasion and metastasis. The current report indicated that IL-1b promotes MMP-9 production and cell invasion in non-metastatic MCF-7 breast cancer cells. IL-1b activated focal adhesion kinase (FAK) and proto-oncogene tyrosine-protein kinase Src (Src). Moreover, inhibiting the Src/FAK pathway reduced the IL-1b-induced production of MMP-9 and cell invasion. To investigate the functional role of FAK in MMP-9 production cell lines expressing mutant FAK in FAK knock-out mouse fibroblasts were generated. In wild-type FAK-expressing cells, MMP-9 production was induced by IL-1b stimulation. By contrast, IL-1b-induced MMP-9 production was abrogated in FAK knock-out, FAK Y397F, FAK Y925F, and kinase dead mutant-expressing cells. Therefore the results of the current study indicate that FAK and Src kinases are activated by IL-1b and play a critical role in MMP-9 production and tumor cell invasion.
Collapse
Affiliation(s)
- Naing Naing Mon
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Satoko Ito
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
188
|
Mishra S, Tripathi R, Singh S. Crosstalk of proteins, miRNAs involved in metastatic and epithelial–mesenchymal transition pathways. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1256843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
189
|
Lu HY, Huang CY, Shih CM, Lin YW, Tsai CS, Lin FY, Shih CC. A potential contribution of dipeptidyl peptidase-4 by the mediation of monocyte differentiation in the development and progression of abdominal aortic aneurysms. J Vasc Surg 2016; 66:1217-1226.e1. [PMID: 27887857 DOI: 10.1016/j.jvs.2016.05.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysms (AAAs) are characterized by the destruction of elastin and collagen in the media and adventitia. Dipeptidyl peptidase-4 (DPP-4, an adipokine known as CD26) influences cell signaling, cell-matrix interactions, and the regulation of the functional activity of incretins in metabolic and inflammatory disorders. Although the role of DPP-4 in AAA evolution has been demonstrated, the underlying mechanisms of DPP-4-regulated AAA development remains unknown. METHODS Patients with AAA (n = 93) and healthy controls (CTL, n = 20) were recruited. Based on computed tomography image analyses, 93 patients were divided into two groups: those with a small AAA (SAA, aortic diameter <5 cm, n = 16) and those with a large AAA (LAA, aortic diameter ≥5 cm, n = 77). Plasma DPP-4, glucagon-like peptide-1 levels, and expression of CD26 on mononuclear cells were analyzed. In addition, phorbol 12-myristate 13-acetate (PMA)-induced THP-1 cells and angiotensin II-infused apolipoprotein EtmlUnc mice were used to explore the underlying mechanisms. RESULTS The levels of DPP-4 (μU/μg) increased while active glucagon-like peptide-1 (pM) decreased in patients with AAA in a diameter-dependent manner [CTL: 2.3 ± 1.5 and 3.7 ± 2.4, respectively; SAA: 10.0 ± 10.9 and 2.1 ± 0.9, respectively; LAA: 32.2 ± 15.0 and 1.8 ± 1.1, respectively]. A significant decline in monocyte CD26 expression in patients with AAAs was observed relative to the CTL group. In vitro studies demonstrated that the inhibition of DPP-4 promoted PMA-induced monocytic cells differentiation, with increased CD68 and p21 expression, regulated by extracellular signal-regulated protein kinase 1/2 activation. Furthermore, inhibition of DPP-4 significantly increased the phosphorylation of PYK2 and paxillin in PMA-induced THP-1 cell differentiation. Finally, the animal study was used to confirm the in vitro results that LAA mice showed marked macrophage infiltration in the adventitia with a decreased expression of DPP-4 as compared with SAA mice. CONCLUSIONS Increased plasma DPP-4 activity may correlate with aneurysmal development. CD26 on monocytes plays a critical role in cell differentiation, possibly mediated by extracellular signal-regulated protein kinase 1/2-p21 axis signaling pathways and cytoskeletal proteins reassembly. Exploring the role of DPP-4 further may yield potential therapeutic insights.
Collapse
Affiliation(s)
- Hsin-Ying Lu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Yao Huang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Ming Shih
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Chein-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Che Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
190
|
Rajshankar D, Wang Y, McCulloch CA. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts. FASEB J 2016; 31:937-953. [PMID: 27881487 DOI: 10.1096/fj.201600645r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/14/2016] [Indexed: 11/11/2022]
Abstract
Focal adhesion kinase (FAK) is critical in adhesion-dependent signaling, but its role in osteogenesis in vivo is ill defined. We deleted Fak in fibroblasts and osteoblasts in Floxed-Fak mice bred with those expressing Cre-recombinase driven by 3.6-kb α1(I)-collagen promoter. Compared with wild-type (WT), conditional FAK-knockout (CFKO) mice were shorter (2-fold; P < 0.0001) and had crooked, shorter tails (50%; P < 0.0001). Microcomputed tomography analysis showed reduced bone volume (4-fold in tails; P < 0.0001; 2-fold in mandibles; P < 0.0001), whereas bone surface area/bone volume increased (3-fold in tails; P < 0.0001; 2.5-fold in mandibles; P < 0.001). Collagen density and fiber alignment in periodontal ligament were reduced by 4-fold (P < 0.0001) and 30% (P < 0.05), respectively, in CFKO mice. In cultured CFKO osteoblasts, mineralization at d 7 and mineralizing colony-forming units at d 21 were 30% (P < 0.0001) and >3-fold less than WT, respectively. Disruptions of FAK function in osteoblasts by conditional knockout, siRNA-knockdown, or FAK inhibitor reduced mRNA and protein expression of Runx2 (>30%), Osterix (>25%), and collagen-1 (2-fold). Collagen synthesis was abrogated in WT osteoblasts with Runx2 knockdown and in Fak-null fibroblasts transfected with an FAK kinase domain mutant or a kinase-impaired mutant (Y397F). These data indicate that FAK regulates osteogenesis through transcription factors that regulate collagen synthesis.-Rajshankar, D., Wang, Y., McCulloch, C. A. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts.
Collapse
Affiliation(s)
- Dhaarmini Rajshankar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
191
|
Murine Polyomavirus Cell Surface Receptors Activate Distinct Signaling Pathways Required for Infection. mBio 2016; 7:mBio.01836-16. [PMID: 27803182 PMCID: PMC5090042 DOI: 10.1128/mbio.01836-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus binding to the cell surface triggers an array of host responses, including activation of specific signaling pathways that facilitate steps in virus entry. Using mouse polyomavirus (MuPyV), we identified host signaling pathways activated upon virus binding to mouse embryonic fibroblasts (MEFs). Pathways activated by MuPyV included the phosphatidylinositol 3-kinase (PI3K), FAK/SRC, and mitogen-activated protein kinase (MAPK) pathways. Gangliosides and α4-integrin are required receptors for MuPyV infection. MuPyV binding to both gangliosides and the α4-integrin receptors was required for activation of the PI3K pathway; however, either receptor interaction alone was sufficient for activation of the MAPK pathway. Using small-molecule inhibitors, we confirmed that the PI3K and FAK/SRC pathways were required for MuPyV infection, while the MAPK pathway was dispensable. Mechanistically, the PI3K pathway was required for MuPyV endocytosis, while the FAK/SRC pathway enabled trafficking of MuPyV along microtubules. Thus, MuPyV interactions with specific cell surface receptors facilitate activation of signaling pathways required for virus entry and trafficking. Understanding how different viruses manipulate cell signaling pathways through interactions with host receptors could lead to the identification of new therapeutic targets for viral infection. Virus binding to cell surface receptors initiates outside-in signaling that leads to virus endocytosis and subsequent virus trafficking. How different viruses manipulate cell signaling through interactions with host receptors remains unclear, and elucidation of the specific receptors and signaling pathways required for virus infection may lead to new therapeutic targets. In this study, we determined that gangliosides and α4-integrin mediate mouse polyomavirus (MuPyV) activation of host signaling pathways. Of these pathways, the PI3K and FAK/SRC pathways were required for MuPyV infection. Both the PI3K and FAK/SRC pathways have been implicated in human diseases, such as heart disease and cancer, and inhibitors directed against these pathways are currently being investigated as therapies. It is possible that these pathways play a role in human PyV infections and could be targeted to inhibit PyV infection in immunosuppressed patients.
Collapse
|
192
|
Teckchandani A, Cooper JA. The ubiquitin-proteasome system regulates focal adhesions at the leading edge of migrating cells. eLife 2016; 5. [PMID: 27656905 PMCID: PMC5092051 DOI: 10.7554/elife.17440] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Cell migration requires the cyclical assembly and disassembly of focal adhesions. Adhesion induces phosphorylation of focal adhesion proteins, including Cas (Crk-associated substrate/p130Cas/BCAR1). However, Cas phosphorylation stimulates adhesion turnover. This raises the question of how adhesion assembly occurs against opposition from phospho-Cas. Here we show that suppressor of cytokine signaling 6 (SOCS6) and Cullin 5, two components of the CRL5SOCS6 ubiquitin ligase, inhibit Cas-dependent focal adhesion turnover at the front but not rear of migrating epithelial cells. The front focal adhesions contain phospho-Cas which recruits SOCS6. If SOCS6 cannot access focal adhesions, or if cullins or the proteasome are inhibited, adhesion disassembly is stimulated. This suggests that the localized targeting of phospho-Cas within adhesions by CRL5SOCS6 and concurrent cullin and proteasome activity provide a negative feedback loop, ensuring that adhesion assembly predominates over disassembly at the leading edge. By this mechanism, ubiquitination provides a new level of spatio-temporal control over cell migration. DOI:http://dx.doi.org/10.7554/eLife.17440.001 Animal cells can move in the body, for example to heal a wound, by protruding a leading edge forwards, attaching it to the surroundings and then pulling against these new attachments while disassembling the older ones. Mechanical forces regulate the assembly and disassembly of these attachments, known as focal adhesions, and so do signals from outside the cell that are transmitted to the adhesions via specialized proteins. However, it was not clear how the assembly and disassembly of adhesions is coordinated. CRL5 is a ubiquitin ligase, an enzyme that can mark other proteins for destruction. Cells migrate more quickly if CRL5 is inhibited, and so Teckchandani and Cooper set out to uncover whether CRL5 affects the assembly and disassembly of focal adhesions. The experiments showed that human cells lacking a crucial component of the CRL5 complex, SOCS6, disassemble adhesions faster than normal cells, but only at their leading edge and not at the rear. Teckchandani and Cooper also found that SOCS6 localizes to the leading edge by binding to a focal adhesion protein called Cas. Shortly after the attachments assemble, the Cas protein becomes tagged with a phosphate group and then acts to promote the adhesion to disassemble. Further experiments indicated that Cas was marked by the CRL5 complex and possibly destroyed while in or very close to the leading edge adhesions, slowing their disassembly. Together, these findings suggest that by binding Cas, SOCS6 regulates the turnover of adhesions, specifically by inhibiting disassembly and allowing adhesions to grow at the leading edge. Since SOCS6 is not present in adhesions outside of the leading edge, this may help explain how the older adhesions are disassembled. Future studies could next focus on the exact sequence of events that occur in focal adhesions after the CRL5 complex binds to Cas as the cell migrates. DOI:http://dx.doi.org/10.7554/eLife.17440.002
Collapse
Affiliation(s)
- Anjali Teckchandani
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
193
|
Abstract
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.
Collapse
Affiliation(s)
- Tiago Ramos
- a Faculty of Engineering; University of Oporto ; Porto , Portugal.,b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands
| | - Maqsood Ahmed
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands
| | - Paul Wieringa
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands.,c Maastricht University ; Department of Complex Tissue Regeneration ; Maastricht , The Netherlands
| | - Lorenzo Moroni
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands.,c Maastricht University ; Department of Complex Tissue Regeneration ; Maastricht , The Netherlands
| |
Collapse
|
194
|
Nallar SC, Kalvakolanu DV. GRIM-19: A master regulator of cytokine induced tumor suppression, metastasis and energy metabolism. Cytokine Growth Factor Rev 2016; 33:1-18. [PMID: 27659873 DOI: 10.1016/j.cytogfr.2016.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
Cytokines induce cell proliferation or growth suppression depending on the context. It is increasingly becoming clear that success of standard radiotherapy and/or chemotherapeutics to eradicate solid tumors is dependent on IFN signaling. In this review we discuss the molecular mechanisms of tumor growth suppression by a gene product isolated in our laboratory using a genome-wide expression knock-down strategy. Gene associated with retinoid-IFN-induced mortality -19 (GRIM-19) functions as non-canonical tumor suppressor by antagonizing oncoproteins. As a component of mitochondrial respiratory chain, GRIM-19 influences the degree of "Warburg effect" in cancer cells as many advanced and/or aggressive tumors show severely down-regulated GRIM-19 levels. In addition, GRIM-19 appears to regulate innate and acquired immune responses in mouse models. Thus, GRIM-19 is positioned at nodes that favor cell protection and/or prevent aberrant cell growth.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dhan V Kalvakolanu
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
195
|
Huang H, Svoboda RA, Lazenby AJ, Saowapa J, Chaika N, Ding K, Wheelock MJ, Johnson KR. Up-regulation of N-cadherin by Collagen I-activated Discoidin Domain Receptor 1 in Pancreatic Cancer Requires the Adaptor Molecule Shc1. J Biol Chem 2016; 291:23208-23223. [PMID: 27605668 DOI: 10.1074/jbc.m116.740605] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinomas are highly malignant cancers characterized by extensive invasion into surrounding tissues, metastasis to distant organs, and a limited response to therapy. A main feature of pancreatic ductal adenocarcinomas is desmoplasia, which leads to extensive deposition of collagen I. We have demonstrated that collagen I can induce epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. A hallmark of EMT is an increase in the expression of the mesenchymal cadherin N-cadherin. Previously we showed up-regulation of N-cadherin promotes tumor cell invasion and that collagen I-induced EMT is mediated by two collagen receptors, α2β1-integrin and discoidin domain receptor 1 (DDR1). DDR1 is a receptor-tyrosine kinase widely expressed during embryonic development and in many adult tissues and is also highly expressed in many different cancers. In the signaling pathway initiated by collagen, we have shown proline-rich tyrosine kinase 2 (Pyk2) is downstream of DDR1. In this study we found isoform b of DDR1 is responsible for collagen I-induced up-regulation of N-cadherin and tyrosine 513 of DDR1b is necessary. Knocking down Shc1, which binds to tyrosine 513 of DDR1b via its PTB (phosphotyrosine binding) domain, eliminates the up-regulation of N-cadherin. The signaling does not require a functional SH2 domain or the tyrosine residues commonly phosphorylated in Shc1 but is mediated by the interaction between a short segment of the central domain of Shc1 and the proline-rich region of Pyk2. Taken together, these data illustrate DDR1b, but not DDR1a, mediates collagen I-induced N-cadherin up-regulation, and Shc1 is involved in this process by coupling to both DDR1 and Pyk2.
Collapse
Affiliation(s)
- Huocong Huang
- From the Department of Biochemistry and Molecular Biology, College of Medicine
| | | | - Audrey J Lazenby
- Department of Pathology and Microbiology, College of Medicine, and
| | | | - Nina Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198
| | - Ke Ding
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China, and
| | - Margaret J Wheelock
- From the Department of Biochemistry and Molecular Biology, College of Medicine.,Department of Oral Biology, College of Dentistry.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198
| | - Keith R Johnson
- From the Department of Biochemistry and Molecular Biology, College of Medicine, .,Department of Oral Biology, College of Dentistry.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
196
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
197
|
Cheng F, Miao L, Wu Q, Gong X, Xiong J, Zhang J. Vinculin b deficiency causes epicardial hyperplasia and coronary vessel disorganization in zebrafish. Development 2016; 143:3522-3531. [PMID: 27578788 DOI: 10.1242/dev.132936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 07/26/2016] [Indexed: 12/29/2022]
Abstract
Coronary vessel development is a highly coordinated process during heart formation. Abnormal development and dysfunction of the coronary network are contributory factors in the majority of heart disease. Understanding the molecular mechanisms that regulate coronary vessel formation is crucial for preventing and treating the disease. We report a zebrafish gene-trap vinculin b (vclb) mutant that displays abnormal coronary vessel development among multiple cardiac defects. The mutant shows overproliferation of epicardium-derived cells and disorganization of coronary vessels, and they eventually die off at juvenile stages. Mechanistically, Vclb deficiency results in the release of another cytoskeletal protein, paxillin, from the Vclb complex and the upregulation of ERK and FAK phosphorylation in epicardium and endocardium, causing disorganization of endothelial cells and pericytes during coronary vessel development. By contrast, cardiac muscle development is relatively normal, probably owing to redundancy with Vcla, a vinculin paralog that is expressed in the myocardium but not epicardium. Together, our results reveal a previously unappreciated function of vinculin in epicardium and endocardium and reinforce the notion that well-balanced FAK activity is essential for coronary vessel development.
Collapse
Affiliation(s)
- Feng Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyun Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Xia Gong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingwei Xiong
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
198
|
Roy-Luzarraga M, Hodivala-Dilke K. Molecular Pathways: Endothelial Cell FAK-A Target for Cancer Treatment. Clin Cancer Res 2016; 22:3718-24. [PMID: 27262114 PMCID: PMC5386133 DOI: 10.1158/1078-0432.ccr-14-2021] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/13/2016] [Indexed: 01/28/2023]
Abstract
The nonreceptor protein tyrosine kinase, focal adhesion kinase (FAK, also known as PTK2), is a key mediator of signal transduction downstream of integrins and growth factor receptors in a variety of cells, including endothelial cells. FAK is upregulated in several advanced-stage solid tumors and has been described to promote tumor progression and metastasis through effects on both tumor cells and stromal cells. This observation has led to the development of several FAK inhibitors, some of which have entered clinical trials (GSK2256098, VS-4718, VS-6062, VS-6063, and BI853520). Resistance to chemotherapy is a serious limitation of cancer treatment and, until recently, most studies were restricted to tumor cells, excluding the possible roles performed by the tumor microenvironment. A recent report identified endothelial cell FAK (EC-FAK) as a major regulator of chemosensitivity. By dysregulating endothelial cell-derived paracrine (also known as angiocrine) signals, loss of FAK solely in the endothelial cell compartment is able to induce chemosensitization to DNA-damaging therapies in the malignant cell compartment and thereby reduce tumor growth. Herein, we summarize the roles of EC-FAK in cancer and development and review the status of FAK-targeting anticancer strategies. Clin Cancer Res; 22(15); 3718-24. ©2016 AACR.
Collapse
Affiliation(s)
- Marina Roy-Luzarraga
- Adhesion and Angiogenesis Laboratory, Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
199
|
Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions. Molecules 2016; 21:molecules21070899. [PMID: 27399667 PMCID: PMC6274221 DOI: 10.3390/molecules21070899] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/25/2023] Open
Abstract
Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.
Collapse
|
200
|
Celik S, Logsdon BA, Battle S, Drescher CW, Rendi M, Hawkins RD, Lee SI. Extracting a low-dimensional description of multiple gene expression datasets reveals a potential driver for tumor-associated stroma in ovarian cancer. Genome Med 2016; 8:66. [PMID: 27287041 PMCID: PMC4902951 DOI: 10.1186/s13073-016-0319-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Patterns in expression data conserved across multiple independent disease studies are likely to represent important molecular events underlying the disease. We present the INSPIRE method to infer modules of co-expressed genes and the dependencies among the modules from multiple expression datasets that may contain different sets of genes. We show that INSPIRE infers more accurate models than existing methods to extract low-dimensional representation of expression data. We demonstrate that applying INSPIRE to nine ovarian cancer datasets leads to a new marker and potential driver of tumor-associated stroma, HOPX, followed by experimental validation. The implementation of INSPIRE is available at http://inspire.cs.washington.edu .
Collapse
Affiliation(s)
- Safiye Celik
- Department of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | | | - Stephanie Battle
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Charles W Drescher
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mara Rendi
- Department of Anatomic Pathology, University of Washington, Seattle, WA, USA
| | - R David Hawkins
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Su-In Lee
- Department of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|