151
|
Li Y, Furhang R, Ray A, Duncan T, Soucy J, Mahdi R, Chaitankar V, Gieser L, Poliakov E, Qian H, Liu P, Dong L, Rogozin IB, Redmond TM. Aberrant RNA splicing is the major pathogenic effect in a knock-in mouse model of the dominantly inherited c.1430A>G human RPE65 mutation. Hum Mutat 2019; 40:426-443. [PMID: 30628748 DOI: 10.1002/humu.23706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 01/03/2023]
Abstract
Human RPE65 mutations cause a spectrum of retinal dystrophies that result in blindness. While RPE65 mutations have been almost invariably recessively inherited, a c.1430A>G (p.(D477G)) mutation has been reported to cause autosomal dominant retinitis pigmentosa (adRP). To study the pathogenesis of this human mutation, we have replicated the mutation in a knock-in (KI) mouse model using CRISPR/Cas9-mediated genome editing. Significantly, in contrast to human patients, heterozygous KI mice do not exhibit any phenotypes in visual function tests. When raised in regular vivarium conditions, homozygous KI mice display relatively undisturbed visual functions with minimal retinal structural changes. However, KI/KI mouse retinae are more sensitive to light exposure and exhibit signs of degenerative features when subjected to light stress. We find that instead of merely producing a missense mutant protein, the A>G nucleotide substitution greatly affects appropriate splicing of Rpe65 mRNA by generating an ectopic splice site in comparable context to the canonical one, thereby disrupting RPE65 protein expression. Similar splicing defects were also confirmed for the human RPE65 c.1430G mutant in an in vitro Exontrap assay. Our data demonstrate that a splicing defect is associated with c.1430G pathogenesis, and therefore provide insights in the therapeutic strategy for human patients.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Rachel Furhang
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Amanda Ray
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Todd Duncan
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Joseph Soucy
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Rashid Mahdi
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Haohua Qian
- Visual Function Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland
| | - T Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| |
Collapse
|
152
|
Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW, Liu GS. Gene therapy for visual loss: Opportunities and concerns. Prog Retin Eye Res 2019; 68:31-53. [DOI: 10.1016/j.preteyeres.2018.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
|
153
|
Sundaramurthi H, Moran A, Perpetuini AC, Reynolds A, Kennedy B. Emerging Drug Therapies for Inherited Retinal Dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:263-267. [PMID: 31884622 DOI: 10.1007/978-3-030-27378-1_43] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Worldwide, 1 in 2000 people suffer from inherited retinal dystrophies (IRD). Individuals with IRD typically present with progressive vision loss that ultimately results in blindness. Unfortunately, effective treatment options are not widely available due to the genetic and clinical heterogeneity of these diseases. There are multiple gene, cell, and drug-based therapies in various phases of clinical trials for IRD. This mini-review documents current progress made in drug-based clinical trials for treating IRD.
Collapse
Affiliation(s)
- Husvinee Sundaramurthi
- UCD Conway Institute, University College Dublin,, Dublin, Ireland.
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland.
- UCD School of Medicine, University College Dublin, Dublin, Ireland.
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | - Ailís Moran
- UCD Conway Institute, University College Dublin,, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Andrea Cerquone Perpetuini
- UCD Conway Institute, University College Dublin,, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Alison Reynolds
- UCD Conway Institute, University College Dublin,, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán Kennedy
- UCD Conway Institute, University College Dublin,, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
154
|
Pennesi ME, Weleber RG, Yang P, Whitebirch C, Thean B, Flotte TR, Humphries M, Chegarnov E, Beasley KN, Stout JT, Chulay JD. Results at 5 Years After Gene Therapy for RPE65-Deficient Retinal Dystrophy. Hum Gene Ther 2018; 29:1428-1437. [DOI: 10.1089/hum.2018.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mark E. Pennesi
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Richard G. Weleber
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Chris Whitebirch
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Beverly Thean
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Terence R. Flotte
- Department of Pediatrics, University of Massachusetts Medical Center, Worcester, Massachusetts
| | - Margaret Humphries
- Department of Pediatrics, University of Massachusetts Medical Center, Worcester, Massachusetts
| | - Elvira Chegarnov
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon
| | | | - J. Timothy Stout
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
155
|
Apo-Opsin Exists in Equilibrium Between a Predominant Inactive and a Rare Highly Active State. J Neurosci 2018; 39:212-223. [PMID: 30459230 DOI: 10.1523/jneurosci.1980-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 12/17/2022] Open
Abstract
Bleaching adaptation in rod photoreceptors is mediated by apo-opsin, which activates phototransduction with effective activity 105- to 106-fold lower than that of photoactivated rhodopsin (meta II). However, the mechanism that produces such low opsin activity is unknown. To address this question, we sought to record single opsin responses in mouse rods. We used mutant mice lacking efficient calcium feedback to boosts rod responses and generated a small fraction of opsin by photobleaching ∼1% of rhodopsin. The bleach produced a dramatic increase in the frequency of discrete photoresponse-like events. This activity persisted for hours, was quenched by 11-cis-retinal, and was blocked by uncoupling opsin from phototransduction, all indicating opsin as its source. Opsin-driven discrete activity was also observed in rods containing non-activatable rhodopsin, ruling out transactivation of rhodopsin by opsin. We conclude that bleaching adaptation is mediated by opsin that exists in equilibrium between a predominant inactive and a rare meta II-like state.SIGNIFICANCE STATEMENT Electrophysiological analysis is used to show that the G-protein-coupled receptor opsin exists in equilibrium between a predominant inactive and a rare highly active state that mediates bleaching adaptation in photoreceptors.
Collapse
|
156
|
Validation and reproducibility of an LC-MS/MS method for emixustat and its three deaminated metabolites in human plasma. Bioanalysis 2018; 10:1803-1817. [PMID: 30325202 DOI: 10.4155/bio-2018-0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: A sensitive method to quantify emixustat and its rapidly formed three major deaminated metabolites in human plasma was necessary to determine exposure in clinical trials. Methods: An LC-MS/MS method was validated for accuracy and precision, linearity, carry over, selectivity, recovery, matrix effects, hematocrit effects and stability. Results: A quantitative procedure for the determination of emixustat, ACU-5116, ACU-5124 and ACU-5149 in human plasma over the concentration range of 0.0500/1.00/1.00/1.00-10.0/1000/1000/1000 ng/ml, was successfully validated and has been used to successfully analyze samples in three clinical trials. Incurred sample reanalysis was performed for all four analytes in each study with >92% of the repeat results and original results within 20% of the mean of the two values.
Collapse
|
157
|
Lee W, Zernant J, Nagasaki T, Tsang SH, Allikmets R. Deep Scleral Exposure: A Degenerative Outcome of End-Stage Stargardt Disease. Am J Ophthalmol 2018; 195:16-25. [PMID: 30055151 DOI: 10.1016/j.ajo.2018.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE To describe a distinct phenotypic outcome of outer retinal degeneration in a cohort of genetically confirmed patients with recessive Stargardt disease (STGD1). DESIGN Retrospective case series. METHODS Twelve patients, who were clinically diagnosed with STGD1 and exhibited a unique degenerative phenotype, were included in the study. Two disease-causing mutations were found in all patients by direct sequencing of the ABCA4 gene. Clinical characterization of patients were defined on fundus photographs, autofluorescence images (488-nm and 532-nm excitation), spectral-domain optical coherence tomography (SD-OCT), and full-field electroretinogram (ffERG) testing. RESULTS Mean age at initial presentation was 67.8 years and reported age of symptomatic onset was 14.1 years (mean disease duration = 53.8 years). Best-corrected visual acuity ranged from 20/400 to hand motion. All patients exhibited advanced degeneration across the posterior pole resulting in a reflectively pale, blonde fundus owing to unobstructed exposure of the underlying sclera. SD-OCT revealed complete loss of the outer retinal bands (external limiting membrane, ellipsoid zone, interdigitation zone, and retinal pigment epithelium) and choroidal layers. Scotopic and photopic waveforms on ffERG were nonrecordable or severely attenuated in 8 patients who were tested. CONCLUSIONS Widespread scleral exposure is a clinical outcome in a subset of STGD1 following a long duration of disease progression (∼50 years). The blonde fundus in such cases may exhibit phenotypic overlap and shared therapeutic implications with other aggressive chorioretinal dystrophies such as end-stage choroideremia, gyrate atrophy, or RPE65-Leber congenital amaurosis.
Collapse
Affiliation(s)
- Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, USA; Department of Pathology & Cell Biology, Columbia University, New York, New York, USA.
| |
Collapse
|
158
|
von Lintig J, Eggersdorfer M, Wyss A. News and views about carotenoids: Red-hot and true. Arch Biochem Biophys 2018; 657:74-77. [DOI: 10.1016/j.abb.2018.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
159
|
Structural biology of 11- cis-retinaldehyde production in the classical visual cycle. Biochem J 2018; 475:3171-3188. [PMID: 30352831 DOI: 10.1042/bcj20180193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
The vitamin A derivative 11-cis-retinaldehyde plays a pivotal role in vertebrate vision by serving as the chromophore of rod and cone visual pigments. In the initial step of vision, a photon is absorbed by this chromophore resulting in its isomerization to an all-trans state and consequent activation of the visual pigment and phototransduction cascade. Spent chromophore is released from the pigments through hydrolysis. Subsequent photon detection requires the delivery of regenerated 11-cis-retinaldehyde to the visual pigment. This trans-cis conversion is achieved through a process known as the visual cycle. In this review, we will discuss the enzymes, binding proteins and transporters that enable the visual pigment renewal process with a focus on advances made during the past decade in our understanding of their structural biology.
Collapse
|
160
|
Examining the Role of Cone-expressed RPE65 in Mouse Cone Function. Sci Rep 2018; 8:14201. [PMID: 30242264 PMCID: PMC6155087 DOI: 10.1038/s41598-018-32667-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/13/2018] [Indexed: 11/08/2022] Open
Abstract
Efficient chromophore supply is paramount for the continuous function of vertebrate cone photoreceptors. It is well established that isomerization of all-trans- to 11-cis- retinoid in the retinal pigmented epithelium by RPE65 is a key reaction in this process. Mutations in RPE65 result in a disrupted chromophore supply, retinal degeneration, and blindness. Interestingly, RPE65 has recently been found to also be expressed in cone photoreceptors in several species, including mouse and human. However, the functional role of cone-expressed RPE65 has remained unknown. Here, we used loss and gain of function approaches to investigate this issue. First, we compared the function of cones from control and RPE65-deficient mice. Although we found that deletion of RPE65 partially suppressed cone dark adaptation, the interpretation of this result was complicated by the abnormal cone structure and function caused by the chromophore deficiency in the absence of RPE65 in the pigmented epithelium. As an alternative approach, we generated transgenic mice to express human RPE65 in the cones of mice where RPE65 expression is normally restricted to the pigmented epithelium. Comparison of control (RPE65-deficient) and transgenic (RPE65-expressing) cones revealed no morphological or functional changes, with only a slight delay in dark adaptation, possibly caused by the buffering of retinoids by RPE65. Together, our results do not provide any evidence for a functional role of RPE65 in mouse cones. Future studies will have to determine whether cone-expressed RPE65 plays a role in maintaining the long-term homeostasis of retinoids in cones and their function and survival, particularly in humans.
Collapse
|
161
|
Van Den Brink DM, Cubizolle A, Chatelain G, Davoust N, Girard V, Johansen S, Napoletano F, Dourlen P, Guillou L, Angebault-Prouteau C, Bernoud-Hubac N, Guichardant M, Brabet P, Mollereau B. Physiological and pathological roles of FATP-mediated lipid droplets in Drosophila and mice retina. PLoS Genet 2018; 14:e1007627. [PMID: 30199545 PMCID: PMC6147681 DOI: 10.1371/journal.pgen.1007627] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/20/2018] [Accepted: 08/13/2018] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence suggests that dysregulation of lipid metabolism is associated with neurodegeneration in retinal diseases such as age-related macular degeneration and in brain disorders such as Alzheimer’s and Parkinson’s diseases. Lipid storage organelles (lipid droplets, LDs), accumulate in many cell types in response to stress, and it is now clear that LDs function not only as lipid stores but also as dynamic regulators of the stress response. However, whether these LDs are always protective or can also be deleterious to the cell is unknown. Here, we investigated the consequences of LD accumulation on retinal cell homeostasis under physiological and stress conditions in Drosophila and in mice. In wild-type Drosophila, we show that dFatp is required and sufficient for expansion of LD size in retinal pigment cells (RPCs) and that LDs in RPCs are required for photoreceptor survival during aging. Similarly, in mice, LD accumulation induced by RPC-specific expression of human FATP1 was non-toxic and promoted mitochondrial energy metabolism in RPCs and non-autonomously in photoreceptor cells. In contrast, the inhibition of LD accumulation by dFatp knockdown suppressed neurodegeneration in Aats-metFBDrosophila mutants, which carry elevated levels of reactive oxygen species (ROS). This suggests that abnormal turnover of LD may be toxic for photoreceptors cells of the retina under oxidative stress. Collectively, these findings indicate that FATP-mediated LD formation in RPCs promotes RPC and neuronal homeostasis under physiological conditions but could be deleterious for the photoreceptors under pathological conditions. Lipids are major cell constituents and are present in the membranes, as free lipids in the cytoplasm, or stored in vesicles called lipid droplets (LDs). Under conditions of stress, lipids stored in LDs can be released to serve as substrates for energy metabolism by mitochondria. However, lipid storage is dysregulated in many degenerative disorders such as age-related macular degeneration, Parkinson’s and Alzheimer’s diseases. Thus, it is unclear whether accumulation of LDs is protective or toxic for neuronal cells. To address this question, we examined the consequences of removal or enforced LD accumulation on the health of retinal cells in flies and mice. Like humans, fly and mouse retinas contain retinal pigment cells (RPC) that support the functions of neighboring photoreceptor cells. We found that overexpression of the fatty acid transport protein (FATP) in RPCs induced accumulation of LDs in both transgenic flies and mice. Moreover, LD accumulation in RPCs was not harmful for juxtaposed photoreceptors during aging, but was toxic under stress conditions. We propose that lipid storage promotes cellular communication that affects photoreceptor health.
Collapse
Affiliation(s)
- Daan M. Van Den Brink
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Aurélie Cubizolle
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Gilles Chatelain
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Nathalie Davoust
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Victor Girard
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Simone Johansen
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Francesco Napoletano
- Molecular Oncology Unit, Department of Life Sciences, University of Trieste c/o Laboratorio Nazionale CIB, Area Science Park, Trieste, Italy
| | - Pierre Dourlen
- Institut Pasteur de Lille; Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases; University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Laurent Guillou
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Claire Angebault-Prouteau
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- INSERM U1046, UMR CNRS 9214, Université de Montpellier, CHRU de Montpellier, Montpellier, France
| | - Nathalie Bernoud-Hubac
- Univ Lyon, CarMeN laboratory, INSA Lyon, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69621, Villeurbanne, France
| | - Michel Guichardant
- Univ Lyon, CarMeN laboratory, INSA Lyon, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69621, Villeurbanne, France
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Bertrand Mollereau
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
- * E-mail:
| |
Collapse
|
162
|
Palczewska G, Stremplewski P, Suh S, Alexander N, Salom D, Dong Z, Ruminski D, Choi EH, Sears AE, Kern TS, Wojtkowski M, Palczewski K. Two-photon imaging of the mammalian retina with ultrafast pulsing laser. JCI Insight 2018; 3:121555. [PMID: 30185665 DOI: 10.1172/jci.insight.121555] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Noninvasive imaging of visual system components in vivo is critical for understanding the causal mechanisms of retinal diseases and for developing therapies for their treatment. However, ultraviolet light needed to excite endogenous fluorophores that participate in metabolic processes of the retina is highly attenuated by the anterior segment of the human eye. In contrast, 2-photon excitation fluorescence imaging with pulsed infrared light overcomes this obstacle. Reducing retinal exposure to laser radiation remains a major barrier in advancing this technology to studies in humans. To increase fluorescence intensity and reduce the requisite laser power, we modulated ultrashort laser pulses with high-order dispersion compensation and applied sensorless adaptive optics and custom image recovery software and observed an over 300% increase in fluorescence of endogenous retinal fluorophores when laser pulses were shortened from 75 fs to 20 fs. No functional or structural changes to the retina were detected after exposure to 2-photon excitation imaging light with 20-fs pulses. Moreover, wide bandwidth associated with short pulses enables excitation of multiple fluorophores with different absorption spectra and thus can provide information about their relative changes and intracellular distribution. These data constitute a substantial advancement for safe 2-photon fluorescence imaging of the human eye.
Collapse
Affiliation(s)
| | - Patrycjusz Stremplewski
- Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Susie Suh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nathan Alexander
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David Salom
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zhiqian Dong
- Polgenix, Inc., Department of Medical Devices, Cleveland, Ohio, USA
| | - Daniel Ruminski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elliot H Choi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Avery E Sears
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Timothy S Kern
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Maciej Wojtkowski
- Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
163
|
Tsin A, Betts-Obregon B, Grigsby J. Visual cycle proteins: Structure, function, and roles in human retinal disease. J Biol Chem 2018; 293:13016-13021. [PMID: 30002120 DOI: 10.1074/jbc.aw118.003228] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we seek to summarize the current understanding of the biochemical and molecular events mediated by visual cycle molecules in the eye. The structures and functions of selected visual cycle proteins and their roles in human retinal diseases are also highlighted. Genetic mutations and malfunctions of these proteins provide etiological evidence that many ocular diseases arise from anomalies of retinoid (vitamin A) metabolism and related visual processes. Genetic retinal disorders such as retinitis pigmentosa, Leber's congenital amaurosis, and Stargardt's disease are linked to structural changes in visual cycle proteins. Moreover, recent reports suggest that visual cycle proteins may also play a role in the development of diabetic retinopathy. Basic science has laid the groundwork for finding a cure for many of these blindness-causing afflictions, but much work remains. Some translational research projects have advanced to the clinical trial stage, while many others are still in progress, and more are at the ideas stage and remain yet to be tested. Some examples of these studies are discussed. Recent and future progress in our understanding of the visual cycle will inform intervention strategies to preserve human vision and prevent blindness.
Collapse
Affiliation(s)
- Andrew Tsin
- From the Department of Biomedical Sciences, University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas 78541,
| | - Brandi Betts-Obregon
- From the Department of Biomedical Sciences, University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas 78541
| | - Jeffery Grigsby
- Vision Health Specialties, Midland, Texas 79707.,the College of Optometry, University of Houston, Houston, Texas 77204, and.,the Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Science Center, Midland, Texas 79705
| |
Collapse
|
164
|
Song JY, Aravand P, Nikonov S, Leo L, Lyubarsky A, Bennicelli JL, Pan J, Wei Z, Shpylchak I, Herrera P, Bennett DJ, Commins N, Maguire AM, Pham J, den Hollander AI, Cremers FPM, Koenekoop RK, Roepman R, Nishina P, Zhou S, Pan W, Ying GS, Aleman TS, de Melo J, McNamara I, Sun J, Mills J, Bennett J. Amelioration of Neurosensory Structure and Function in Animal and Cellular Models of a Congenital Blindness. Mol Ther 2018; 26:1581-1593. [PMID: 29673930 PMCID: PMC5986734 DOI: 10.1016/j.ymthe.2018.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 02/08/2023] Open
Abstract
Most genetically distinct inherited retinal degenerations are primary photoreceptor degenerations. We selected a severe early onset form of Leber congenital amaurosis (LCA), caused by mutations in the gene LCA5, in order to test the efficacy of gene augmentation therapy for a ciliopathy. The LCA5-encoded protein, Lebercilin, is essential for the trafficking of proteins and vesicles to the photoreceptor outer segment. Using the AAV serotype AAV7m8 to deliver a human LCA5 cDNA into an Lca5 null mouse model of LCA5, we show partial rescue of retinal structure and visual function. Specifically, we observed restoration of rod-and-cone-driven electroretinograms in about 25% of injected eyes, restoration of pupillary light responses in the majority of treated eyes, an ∼20-fold decrease in target luminance necessary for visually guided behavior, and improved retinal architecture following gene transfer. Using LCA5 patient-derived iPSC-RPEs, we show that delivery of the LCA5 cDNA restores lebercilin protein and rescues cilia quantity. The results presented in this study support a path forward aiming to develop safety and efficacy trials for gene augmentation therapy in human subjects with LCA5 mutations. They also provide the framework for measuring the effects of intervention in ciliopathies and other severe, early-onset blinding conditions.
Collapse
Affiliation(s)
- Ji Yun Song
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Puya Aravand
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sergei Nikonov
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Vision Research Center, University of Pennsylvania Perelman, Philadelphia, PA, USA
| | - Lanfranco Leo
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Arkady Lyubarsky
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Vision Research Center, University of Pennsylvania Perelman, Philadelphia, PA, USA
| | - Jeannette L Bennicelli
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jieyan Pan
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zhangyong Wei
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ivan Shpylchak
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pamela Herrera
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicoletta Commins
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Albert M Maguire
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jennifer Pham
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Robert K Koenekoop
- McGill Ocular Genetics Center, McGill University Health Center, Montreal, QC, Canada
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Shangzhen Zhou
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wei Pan
- Penn Vision Research Center, University of Pennsylvania Perelman, Philadelphia, PA, USA; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Gui-Shuang Ying
- Penn Vision Research Center, University of Pennsylvania Perelman, Philadelphia, PA, USA; Center for Preventive Ophthalmology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tomas S Aleman
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jimmy de Melo
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ilan McNamara
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Junwei Sun
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jason Mills
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Vision Research Center, University of Pennsylvania Perelman, Philadelphia, PA, USA.
| |
Collapse
|
165
|
Yang F, Ma H, Butler MR, Ding XQ. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice. FASEB J 2018; 32:fj201800484RR. [PMID: 29874126 PMCID: PMC6181634 DOI: 10.1096/fj.201800484rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Thyroid hormone (TH) signaling has been shown to regulate cone photoreceptor viability. Suppression of TH signaling with antithyroid drug treatment or by targeting iodothyronine deiodinases and TH receptors preserves cones in mouse models of retinal degeneration, including the Leber congenital amaurosis Rpe65-deficient mice. This work investigates the cellular mechanisms underlying how suppressing TH signaling preserves cones in Rpe65-deficient mice, using mice deficient in type 2 iodothyronine deiodinase (Dio2), the enzyme that converts the prohormone thyroxine to the active hormone triiodothyronine (T3). Deficiency of Dio2 improved cone survival and function in Rpe65-/- and Rpe65-deficiency on a cone dominant background ( Rpe65-/-/ Nrl-/-) mice. Analysis of cell death pathways revealed that receptor-interacting serine/threonine-protein kinase (RIPK)/necroptosis activity was increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency reversed the alterations. Cell-stress analysis showed that the cellular oxidative stress responses were increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency abolished the elevations. Similarly, antithyroid drug treatment resulted in reduced RIPK/necroptosis activity and oxidative stress responses in Rpe65-/-/ Nrl-/- retinas. Moreover, treatment with T3 significantly induced RIPK/necroptosis activity and oxidative stress responses in the retina. This work shows that suppression of TH signaling reduces cellular RIPK/necroptosis activity and oxidative stress responses in degenerating retinas, suggesting a mechanism underlying the observed cone preservation.-Yang, F., Ma, H., Butler, M. R., Ding, X.-Q. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R. Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
166
|
Fu X, Huu VAN, Duan Y, Kermany DS, Valentim CCS, Zhang R, Zhu J, Zhang CL, Sun X, Zhang K. Clinical applications of retinal gene therapies. PRECISION CLINICAL MEDICINE 2018; 1:5-20. [PMID: 35694125 PMCID: PMC8982485 DOI: 10.1093/pcmedi/pby004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Retinal degenerative diseases are a major cause of blindness. Retinal gene therapy is a
trail-blazer in the human gene therapy field, leading to the first FDA approved gene
therapy product for a human genetic disease. The application of Clustered Regularly
Interspaced Short Palindromic Repeat/Cas9 (CRISPR/Cas9)-mediated gene editing technology
is transforming the delivery of gene therapy. We review the history, present, and future
prospects of retinal gene therapy.
Collapse
Affiliation(s)
- Xin Fu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Viet Anh Nguyen Huu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Yaou Duan
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniel S Kermany
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Carolina C S Valentim
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Runze Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhu
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Charlotte L Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Xiaodong Sun
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiaodong University, Shanghai, China
| | - Kang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
167
|
DiCarlo JE, Mahajan VB, Tsang SH. Gene therapy and genome surgery in the retina. J Clin Invest 2018; 128:2177-2188. [PMID: 29856367 DOI: 10.1172/jci120429] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Precision medicine seeks to treat disease with molecular specificity. Advances in genome sequence analysis, gene delivery, and genome surgery have allowed clinician-scientists to treat genetic conditions at the level of their pathology. As a result, progress in treating retinal disease using genetic tools has advanced tremendously over the past several decades. Breakthroughs in gene delivery vectors, both viral and nonviral, have allowed the delivery of genetic payloads in preclinical models of retinal disorders and have paved the way for numerous successful clinical trials. Moreover, the adaptation of CRISPR-Cas systems for genome engineering have enabled the correction of both recessive and dominant pathogenic alleles, expanding the disease-modifying power of gene therapies. Here, we highlight the translational progress of gene therapy and genome editing of several retinal disorders, including RPE65-, CEP290-, and GUY2D-associated Leber congenital amaurosis, as well as choroideremia, achromatopsia, Mer tyrosine kinase- (MERTK-) and RPGR X-linked retinitis pigmentosa, Usher syndrome, neovascular age-related macular degeneration, X-linked retinoschisis, Stargardt disease, and Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- James E DiCarlo
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
168
|
Shin Y, Moiseyev G, Petrukhin K, Cioffi CL, Muthuraman P, Takahashi Y, Ma JX. A novel RPE65 inhibitor CU239 suppresses visual cycle and prevents retinal degeneration. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2420-2429. [PMID: 29684583 DOI: 10.1016/j.bbadis.2018.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/02/2018] [Accepted: 04/17/2018] [Indexed: 01/25/2023]
Abstract
The retinoid visual cycle is an ocular retinoid metabolism specifically dedicated to support vertebrate vision. The visual cycle serves not only to generate light-sensitive visual chromophore 11-cis-retinal, but also to clear toxic byproducts of normal visual cycle (i.e. all-trans-retinal and its condensation products) from the retina, ensuring both the visual function and the retinal health. Unfortunately, various conditions including genetic predisposition, environment and aging may attribute to a functional decline of the all-trans-retinal clearance. To combat all-trans-retinal mediated retinal degeneration, we sought to slow down the retinoid influx from the RPE by inhibiting the visual cycle with a small molecule. The present study describes identification of CU239, a novel non-retinoid inhibitor of RPE65, a key enzyme in the visual cycle. Our data demonstrated that CU239 selectively inhibited isomerase activity of RPE65, with IC50 of 6 μM. Further, our results indicated that CU239 inhibited RPE65 via competition with its substrate all-trans-retinyl ester. Mice with systemic injection of CU239 exhibited delayed chromophore regeneration after light bleach, and conferred a partial protection of the retina against injury from high intensity light. Taken together, CU239 is a potent visual cycle modulator and may have a therapeutic potential for retinal degeneration.
Collapse
Affiliation(s)
- Younghwa Shin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University, New York, NY 10032, United States
| | - Christopher L Cioffi
- Departments of Basic & Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States
| | - Parthasarathy Muthuraman
- Departments of Basic & Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States
| | - Yusuke Takahashi
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United states
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| |
Collapse
|
169
|
Hussain RM, Gregori NZ, Ciulla TA, Lam BL. Pharmacotherapy of retinal disease with visual cycle modulators. Expert Opin Pharmacother 2018. [DOI: 10.1080/14656566.2018.1448060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rehan M. Hussain
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ninel Z. Gregori
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Thomas A. Ciulla
- Department of Ophthalmology, Retina Service, Midwest Eye Institute, Indianapolis, IN, USA
- Retina Service, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
170
|
Kiser PD, Zhang J, Sharma A, Angueyra JM, Kolesnikov AV, Badiee M, Tochtrop GP, Kinoshita J, Peachey NS, Li W, Kefalov VJ, Palczewski K. Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function. J Gen Physiol 2018; 150:571-590. [PMID: 29500274 PMCID: PMC5881442 DOI: 10.1085/jgp.201711815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
RPE65 is a retinoid isomerase essential for rod function, but its contribution to cone vision is enigmatic. Using selective RPE65 inhibitors, Kiser et al. demonstrate that cone function depends only partially on continuous RPE65 activity, providing support for cone-specific regeneration mechanisms. Visual function in vertebrates critically depends on the continuous regeneration of visual pigments in rod and cone photoreceptors. RPE65 is a well-established retinoid isomerase in the pigment epithelium that regenerates rhodopsin during the rod visual cycle; however, its contribution to the regeneration of cone pigments remains obscure. In this study, we use potent and selective RPE65 inhibitors in rod- and cone-dominant animal models to discern the role of this enzyme in cone-mediated vision. We confirm that retinylamine and emixustat-family compounds selectively inhibit RPE65 over DES1, the putative retinoid isomerase of the intraretinal visual cycle. In vivo and ex vivo electroretinography experiments in Gnat1−/− mice demonstrate that acute administration of RPE65 inhibitors after a bleach suppresses the late, slow phase of cone dark adaptation without affecting the initial rapid portion, which reflects intraretinal visual cycle function. Acute administration of these compounds does not affect the light sensitivity of cone photoreceptors in mice during extended exposure to background light, but does slow all phases of subsequent dark recovery. We also show that cone function is only partially suppressed in cone-dominant ground squirrels and wild-type mice by multiday administration of an RPE65 inhibitor despite profound blockade of RPE65 activity. Complementary experiments in these animal models using the DES1 inhibitor fenretinide show more modest effects on cone recovery. Collectively, these studies demonstrate a role for continuous RPE65 activity in mammalian cone pigment regeneration and provide further evidence for RPE65-independent regeneration mechanisms.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH .,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Aditya Sharma
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Juan M Angueyra
- Retinal Neurophysiology Section, National Eye Institute, Bethesda, MD
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Mohsen Badiee
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH
| | - Gregory P Tochtrop
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH
| | | | - Neal S Peachey
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH.,Cole Eye Institute, Cleveland Clinic, Cleveland, OH.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, Bethesda, MD
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
171
|
Abstract
Retinal blindness is an important cause of pediatric visual loss. Leber's congenital amaurosis (LCA) is one of these causes, often wrongly included in the spectrum of retinitis pigmentosa. The disease has become the center of research after initial reports of success in management with gene therapy. This review discusses in brief the clinical presentation and investigative modalities used in LCA. Further, the road to gene discovery and details of currently applied gene therapy are presented. LCA is one of the first successfully managed human diseases and offers an entirely new dimension in ocular therapeutics.
Collapse
|
172
|
Rajala A, Wang Y, Abcouwer SF, Gardner TW, Rajala RV. Developmental and light regulation of tumor suppressor protein PP2A in the retina. Oncotarget 2018; 9:1505-1523. [PMID: 29416710 PMCID: PMC5788578 DOI: 10.18632/oncotarget.23351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Protein phosphatases are a group of universal enzymes that are responsible for the dephosphorylation of various proteins and enzymes in cells. Cellular signal transduction events are largely governed by the phosphorylation of key proteins. The length of cellular response depends on the activation of protein phosphatase that dephosphorylates the phosphate groups to halt a biological response, and fine-tune the defined cellular outcome. Dysregulation of these phosphatase(s) results in various disease phenotypes. The retina is a post-mitotic tissue, and oncogenic tyrosine and serine/ threonine kinase activities are important for retinal neuron survival. Aberrant activation of protein phosphatase(s) may have a negative effect on retinal neurons. In the current study, we characterized tumor suppressor protein phosphatase 2 (PP2A), a major serine/ threonine kinase with a broad substrate specificity. Our data suggest that PP2A is developmentally regulated in the retina, localized predominantly in the inner retina, and expressed in photoreceptor inner segments. Our findings indicate that PKCα and mTOR may serve as PP2A substrates. We found that light regulates PP2A activity. Our studies also suggest that rhodopsin regulates PP2A and its substrate(s) dephosphorylation. PP2A substrate phosphorylation is increased in mice lacking the A-subunit of PP2A. However, there is no accompanying effect on retina structure and function. Together, our findings suggest that controlling the activity of PP2A in the retina may be neuroprotective.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yuhong Wang
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- W.K. Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas W. Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- W.K. Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Raju V.S. Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
173
|
Activation of oncogenic tyrosine kinase signaling promotes insulin receptor-mediated cone photoreceptor survival. Oncotarget 2018; 7:46924-46942. [PMID: 27391439 PMCID: PMC5216914 DOI: 10.18632/oncotarget.10447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/26/2016] [Indexed: 01/18/2023] Open
Abstract
In humans, daylight vision is primarily mediated by cone photoreceptors. These cells die in age-related retinal degenerations. Prolonging the life of cones for even one decade would have an enormous beneficial effect on usable vision in an aging population. Photoreceptors are postmitotic, but shed 10% of their outer segments daily, and must synthesize the membrane and protein equivalent of a proliferating cell each day. Although activation of oncogenic tyrosine kinase and inhibition of tyrosine phosphatase signaling is known to be essential for tumor progression, the cellular regulation of this signaling in postmitotic photoreceptor cells has not been studied. In the present study, we report that a novel G-protein coupled receptor–mediated insulin receptor (IR) signaling pathway is regulated by non-receptor tyrosine kinase Src through the inhibition of protein tyrosine phosphatase IB (PTP1B). We demonstrated the functional significance of this pathway through conditional deletion of IR and PTP1B in cones, in addition to delaying the death of cones in a mouse model of cone degeneration by activating the Src. This is the first study demonstrating the molecular mechanism of a novel signaling pathway in photoreceptor cells, which provides a window of opportunity to save the dying cones in retinal degenerative diseases.
Collapse
|
174
|
Ward R, Sundaramurthi H, Di Giacomo V, Kennedy BN. Enhancing Understanding of the Visual Cycle by Applying CRISPR/Cas9 Gene Editing in Zebrafish. Front Cell Dev Biol 2018; 6:37. [PMID: 29696141 PMCID: PMC5904205 DOI: 10.3389/fcell.2018.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/19/2018] [Indexed: 01/23/2023] Open
Abstract
During the vertebrate visual cycle, all-trans-retinal is exported from photoreceptors to the adjacent RPE or Müller glia wherein 11-cis-retinal is regenerated. The 11-cis chromophore is returned to photoreceptors, forming light-sensitive visual pigments with opsin GPCRs. Dysfunction of this process perturbs phototransduction because functional visual pigment cannot be generated. Mutations in visual cycle genes can result in monogenic inherited forms of blindness. Though key enzymatic processes are well characterized, questions remain as to the physiological role of visual cycle proteins in different retinal cell types, functional domains of these proteins in retinoid biochemistry and in vivo pathogenesis of disease mutations. Significant progress is needed to develop effective and accessible treatments for inherited blindness arising from mutations in visual cycle genes. Here, we review opportunities to apply gene editing technology to two crucial visual cycle components, RPE65 and CRALBP. Expressed exclusively in the human RPE, RPE65 enzymatically converts retinyl esters into 11-cis retinal. CRALBP is an 11-cis-retinal binding protein expressed in human RPE and Muller glia. Loss-of-function mutations in either protein results in autosomal recessive forms of blindness. Modeling these human conditions using RPE65 or CRALBP murine knockout models have enhanced our understanding of their biochemical function, associated disease pathogenesis and development of therapeutics. However, rod-dominated murine retinae provide a challenge to assess cone function. The cone-rich zebrafish model is amenable to cost-effective maintenance of a variety of strains. Interestingly, gene duplication in zebrafish resulted in three Rpe65 and two Cralbp isoforms with differential temporal and spatial expression patterns. Functional investigations of zebrafish Rpe65 and Cralbp were restricted to gene knockdown with morpholino oligonucleotides. However, transient silencing, off-target effects and discrepancies between knockdown and knockout models, highlight a need for more comprehensive alternatives for functional genomics. CRISPR/Cas9 in zebrafish has emerged as a formidable technology enabling targeted gene knockout, knock-in, activation, or silencing to single base-pair resolution. Effective, targeted gene editing by CRISPR/Cas9 in zebrafish enables unprecedented opportunities to create genetic research models. This review will discuss existing knowledge gaps regarding RPE65 and CRALBP. We explore the benefits of CRISPR/Cas9 to establish innovative zebrafish models to enhance knowledge of the visual cycle.
Collapse
Affiliation(s)
- Rebecca Ward
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Husvinee Sundaramurthi
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Breandán N. Kennedy
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- *Correspondence: Breandán N. Kennedy
| |
Collapse
|
175
|
Thompson JA, De Roach JN, McLaren TL, Lamey TM. A Mini-Review: Leber Congenital Amaurosis: Identification of Disease-Causing Variants and Personalised Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:265-271. [DOI: 10.1007/978-3-319-75402-4_32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
176
|
Abstract
Genetic mouse models mimicking human diseases have been developed and utilized for retinal research in various topics, involving anatomy, physiology, biochemistry, and pathology. The main reasons why mouse models are important for retinal research include that rodents share a key retinal homology with humans and that genetic manipulation is relatively easily applicable for mice. Here, we describe genetic mouse models, which are categorized with functions in the retina and relationship with human diseases.
Collapse
Affiliation(s)
- Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Tadao Maeda
- Research Division, Kobe Research Institute, HEALIOS K.K., Kobe, Japan.
| |
Collapse
|
177
|
Scholl HPN, Strauss RW, Singh MS, Dalkara D, Roska B, Picaud S, Sahel JA. Emerging therapies for inherited retinal degeneration. Sci Transl Med 2017; 8:368rv6. [PMID: 27928030 DOI: 10.1126/scitranslmed.aaf2838] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022]
Abstract
Inherited retinal degenerative diseases, a genetically and phenotypically heterogeneous group of disorders, affect the function of photoreceptor cells and are among the leading causes of blindness. Recent advances in molecular genetics and cell biology are elucidating the pathophysiological mechanisms underlying these disorders and are helping to identify new therapeutic approaches, such as gene therapy, stem cell therapy, and optogenetics. Several of these approaches have entered the clinical phase of development. Artificial replacement of dying photoreceptor cells using retinal prostheses has received regulatory approval. Precise retinal imaging and testing of visual function are facilitating more efficient clinical trial design. In individual patients, disease stage will determine whether the therapeutic strategy should comprise photoreceptor cell rescue to delay or arrest vision loss or retinal replacement for vision restoration.
Collapse
Affiliation(s)
- Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland. .,Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rupert W Strauss
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA.,Moorfields Eye Hospital, London EC1V 2PD, U.K.,UCL Institute of Ophthalmology, University College London, London EC1V 9EL, U.K.,Department of Ophthalmology, Medical University Graz, Graz, Austria.,Department of Ophthalmology, Johannes Kepler University Linz, 4021 Linz, Austria
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Deniz Dalkara
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France
| | - Botond Roska
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland.,Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Serge Picaud
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France
| | - José-Alain Sahel
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France.,Centre d'Investigation Clinique 1423, INSERM-Center Hospitalier National d'Ophtalmologie des Quinze-Vingts, 75012 Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
178
|
Öner A. Recent Advancements in Gene Therapy for Hereditary Retinal Dystrophies. Turk J Ophthalmol 2017; 47:338-343. [PMID: 29326851 PMCID: PMC5758769 DOI: 10.4274/tjo.41017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/20/2017] [Indexed: 12/01/2022] Open
Abstract
Hereditary retinal dystrophies (HRDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision, and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles, with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family, highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been proposed as potentially efficacious therapies. Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Dozens of promising proofs of concept have been obtained in animal models of HRDs and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. This review summarizes the clinical development of retinal gene therapy.
Collapse
Affiliation(s)
- Ayşe Öner
- Erciyes University Faculty of Medicine, Department of Ophthalmology, Kayseri, Turkey
| |
Collapse
|
179
|
Loss of Extracellular Signal-Regulated Kinase 1/2 in the Retinal Pigment Epithelium Leads to RPE65 Decrease and Retinal Degeneration. Mol Cell Biol 2017; 37:MCB.00295-17. [PMID: 29038159 PMCID: PMC5705814 DOI: 10.1128/mcb.00295-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Recent work suggested that the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) is increased in the retinal pigment epithelium (RPE) of age-related macular degeneration (ARMD) patients and therefore could be an attractive therapeutic target. Notably, ERK1/2 pathway inhibitors are used in cancer therapy, with severe and noncharacterized ocular side effects. To decipher the role of ERK1/2 in RPE cells, we conditionally disrupted the Erk1 and Erk2 genes in mouse RPE. The loss of ERK1/2 activity resulted in a significant decrease in the level of RPE65 expression, a decrease in ocular retinoid levels concomitant with low visual function, and a rapid disorganization of RPE cells, ultimately leading to retinal degeneration. Our results identify the ERK1/2 pathway as a direct regulator of the visual cycle and a critical component of the viability of RPE and photoreceptor cells. Moreover, our results caution about the need for a very fine adjustment of kinase inhibition in cancer or ARMD treatment in order to avoid ocular side effects.
Collapse
|
180
|
Shi Y, Obert E, Rahman B, Rohrer B, Lobo GP. The Retinol Binding Protein Receptor 2 (Rbpr2) is required for Photoreceptor Outer Segment Morphogenesis and Visual Function in Zebrafish. Sci Rep 2017; 7:16207. [PMID: 29176573 PMCID: PMC5701214 DOI: 10.1038/s41598-017-16498-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/13/2017] [Indexed: 11/28/2022] Open
Abstract
Vitamin A (all-trans retinol) plays critical roles in mammalian development and vision. Since vitamin A is food-derived, tissue-specific uptake and storage mechanism are needed. In the eye, uptake of RBP4-retinol is mediated by the receptor Stra6, whereas the receptor mediating RBP4 binding and retinol transport into the liver has just recently been discovered. Here we examined the role of zebrafish retinol binding protein receptor 2 (Rbpr2) for RBP4-retinol uptake in developing embryos, using eye development and vision as sensitive readouts. In cultured cells, Rbpr2 localized to membranes and promoted RBP4-retinol uptake. In larvae, Rbpr2 expression was detected in developing intestinal enterocytes and liver hepatocytes. Two rbpr2 mutant zebrafish lines, each resulting in Rbpr2 deficiency, exhibit a small eye defect, and systemic malformations including hydrocephaly and cardiac edema, phenotypes associated with vitamin A deficiency. In the retina, Rbpr2 loss resulted in shorter photoreceptor outer segments, mislocalization and decrease in visual pigments, decreased expression of retinoic acid-responsive genes and photoreceptor cell loss, overall leading to a reduction of visual function. Together, these results demonstrate that Rbpr2-mediated RBP4-retinol uptake in developing liver and intestine is necessary to provide sufficient substrate for ocular retinoid production required for photoreceptor cell maintenance and visual function.
Collapse
Affiliation(s)
- Yi Shi
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.,Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bushra Rahman
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, 29425, USA.,Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, 2940, USA
| | - Glenn P Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
181
|
Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito SI, Sun J, Kaneko J, Sho J, Yamada C, Takahashi M. iPSC-Derived Retina Transplants Improve Vision in rd1 End-Stage Retinal-Degeneration Mice. Stem Cell Reports 2017; 8:69-83. [PMID: 28076757 PMCID: PMC5233464 DOI: 10.1016/j.stemcr.2016.12.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022] Open
Abstract
Recent success in functional recovery by photoreceptor precursor transplantation in dysfunctional retina has led to an increased interest in using embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal progenitors to treat retinal degeneration. However, cell-based therapies for end-stage degenerative retinas that have lost the outer nuclear layer (ONL) are still a big challenge. In the present study, by transplanting mouse iPSC-derived retinal tissue (miPSC retina) in the end-stage retinal-degeneration model (rd1), we visualized the direct contact between host bipolar cell terminals and the presynaptic terminal of graft photoreceptors by gene labeling, showed light-responsive behaviors in transplanted rd1 mice, and recorded responses from the host retina with transplants by ex vivo micro-electroretinography and ganglion cell recordings using a multiple-electrode array system. Our data provides a proof of concept for transplanting ESC/iPSC retinas to restore vision in end-stage retinal degeneration. iPSC retina reconstructs outer nuclear layer in the end-stage retina Contacts between the host bipolar cells and graft photoreceptors were visualized rd1 mice became responsive to light after iPSC-retina transplantation RGC responses to light were recorded from host rd1 retina after transplantation
Collapse
Affiliation(s)
- Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Momo Fujii
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tomoyo Hashiguchi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Genshiro A Sunagawa
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shin-ichiro Ito
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Jianan Sun
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Jun Kaneko
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Junki Sho
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Chikako Yamada
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
182
|
Cook JD, Ng SY, Lloyd M, Eddington S, Sun H, Nathans J, Bok D, Radu RA, Travis GH. Peropsin modulates transit of vitamin A from retina to retinal pigment epithelium. J Biol Chem 2017; 292:21407-21416. [PMID: 29109151 DOI: 10.1074/jbc.m117.812701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/31/2017] [Indexed: 11/06/2022] Open
Abstract
Peropsin is a non-visual opsin in both vertebrate and invertebrate species. In mammals, peropsin is present in the apical microvilli of retinal pigment epithelial (RPE) cells. These structures interdigitate with the outer segments of rod and cone photoreceptor cells. RPE cells play critical roles in the maintenance of photoreceptors, including the recycling of visual chromophore for the opsin visual pigments. Here, we sought to identify the function of peropsin in the mouse eye. To this end, we generated mice with a null mutation in the peropsin gene (Rrh). These mice exhibited normal retinal histology, normal morphology of outer segments and RPE cells, and no evidence of photoreceptor degeneration. Biochemically, Rrh-/- mice had ∼2-fold higher vitamin A (all-trans-retinol (all-trans-ROL)) in the neural retina following a photobleach and 5-fold lower retinyl esters in the RPE. This phenotype was similar to those reported in mice that lack interphotoreceptor retinoid-binding protein (IRBP) or cellular retinol-binding protein, suggesting that peropsin plays a role in the movement of all-trans-ROL from photoreceptors to the RPE. We compared the phenotypes in mice lacking both peropsin and IRBP with those of mice lacking peropsin or IRBP alone and found that the retinoid phenotype was similarly severe in each of these knock-out mice. We conclude that peropsin controls all-trans-ROL movement from the retina to the RPE or may regulate all-trans-ROL storage within the RPE. We propose that peropsin affects light-dependent regulation of all-trans-ROL uptake from photoreceptors into RPE cells through an as yet undefined mechanism.
Collapse
Affiliation(s)
- Jeremy D Cook
- From the Department of Ophthalmology, Stein Eye Institute
| | - Sze Yin Ng
- From the Department of Ophthalmology, Stein Eye Institute
| | - Marcia Lloyd
- From the Department of Ophthalmology, Stein Eye Institute
| | | | - Hui Sun
- From the Department of Ophthalmology, Stein Eye Institute.,Department of Physiology, and
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Neuroscience, and Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and.,Howard Hughes Medical Institute, Baltimore, Maryland 21205
| | - Dean Bok
- From the Department of Ophthalmology, Stein Eye Institute
| | - Roxana A Radu
- From the Department of Ophthalmology, Stein Eye Institute
| | - Gabriel H Travis
- From the Department of Ophthalmology, Stein Eye Institute, .,Department of Biological Chemistry, School of Medicine, UCLA, Los Angeles, California 90095
| |
Collapse
|
183
|
Moore NA, Morral N, Ciulla TA, Bracha P. Gene therapy for inherited retinal and optic nerve degenerations. Expert Opin Biol Ther 2017; 18:37-49. [DOI: 10.1080/14712598.2018.1389886] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nicholas A. Moore
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nuria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A. Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Retina Service, Midwest Eye Institute, Indianapolis, IN, USA
| | - Peter Bracha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
184
|
|
185
|
Malechka VV, Moiseyev G, Takahashi Y, Shin Y, Ma JX. Impaired Rhodopsin Generation in the Rat Model of Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2222-2231. [PMID: 28734946 PMCID: PMC5809515 DOI: 10.1016/j.ajpath.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy is a common complication of diabetes mellitus. Diabetic patients experience functional deficits in dark adaptation, contrast sensitivity, and color perception before microvascular pathologies become apparent. Herein, we evaluated early changes in neural retinal function and in retinoid metabolism in the eye in diabetes. Streptozotocin-induced diabetic rats showed decreased a- and b-wave amplitudes of scotopic and photopic electroretinography responses 4 months after diabetes induction compared to nondiabetic controls. Although Western blot analysis revealed no difference in opsin expression, rhodopsin content was decreased in diabetic retinas, as shown by a difference in absorbance. Consistently, levels of 11-cis-retinal, the chromophore for visual pigments, were significantly lower in diabetic retinas compared to those in controls, suggesting a retinoid deficiency. Among visual cycle proteins, interphotoreceptor retinoid-binding protein and stimulated by retinoic acid 6 protein showed significantly lower levels in diabetic rats than those in nondiabetic controls. Similarly, serum levels of retinol-binding protein 4 and retinoids were significantly lower in diabetic rats. Overall, these results suggest that retinoid metabolism in the eye is impaired in type 1 diabetes, which leads to deficient generation of visual pigments and neural retinal dysfunction in early diabetes.
Collapse
Affiliation(s)
- Volha V Malechka
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gennadiy Moiseyev
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Yusuke Takahashi
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Younghwa Shin
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jian-Xing Ma
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
186
|
Evaluation of tolerance to lentiviral LV-RPE65 gene therapy vector after subretinal delivery in non-human primates. Transl Res 2017; 188:40-57.e4. [PMID: 28754419 DOI: 10.1016/j.trsl.2017.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/30/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022]
Abstract
Several approaches have been developed for gene therapy in RPE65-related Leber congenital amaurosis. To date, strategies that have reached the clinical stages rely on adeno-associated viral vectors and two of them documented limited long-term effect. We have developed a lentiviral-based strategy of RPE65 gene transfer that efficiently restored protein expression and cone function in RPE65-deficient mice. In this study, we evaluated the ocular and systemic tolerances of this lentiviral-based therapy (LV-RPE65) on healthy nonhuman primates (NHPs), without adjuvant systemic anti-inflammatory prophylaxis. For the first time, we describe the early kinetics of retinal detachment at 2, 4, and 7 days after subretinal injection using multimodal imaging in 5 NHPs. We revealed prolonged reattachment times in LV-RPE65-injected eyes compared to vehicle-injected eyes. Low- (n = 2) and high-dose (n = 2) LV-RPE65-injected eyes presented a reduction of the outer nuclear and photoreceptor outer segment layer thickness in the macula, that was more pronounced than in vehicle-injected eyes (n = 4). All LV-RPE65-injected eyes showed an initial perivascular reaction that resolved spontaneously within 14 days. Despite foveal structural changes, full-field electroretinography indicated that the overall retinal function was preserved over time and immunohistochemistry identified no difference in glial, microglial, or leucocyte ocular activation between low-dose, high-dose, and vehicle-injected eyes. Moreover, LV-RPE65-injected animals did not show signs of vector shedding or extraocular targeting, confirming the safe ocular restriction of the vector. Our results evidence a limited ocular tolerance to LV-RPE65 after subretinal injection without adjuvant anti-inflammatory prophylaxis, with complications linked to this route of administration necessitating to block this transient inflammatory event.
Collapse
|
187
|
Chen C, Adler L, Goletz P, Gonzalez-Fernandez F, Thompson DA, Koutalos Y. Interphotoreceptor retinoid-binding protein removes all- trans-retinol and retinal from rod outer segments, preventing lipofuscin precursor formation. J Biol Chem 2017; 292:19356-19365. [PMID: 28972139 DOI: 10.1074/jbc.m117.795187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/22/2017] [Indexed: 11/06/2022] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is a specialized lipophilic carrier that binds the all-trans and 11-cis isomers of retinal and retinol, and this facilitates their transport between photoreceptors and cells in the retina. One of these retinoids, all-trans-retinal, is released in the rod outer segment by photoactivated rhodopsin after light excitation. Following its release, all-trans-retinal is reduced by the retinol dehydrogenase RDH8 to all-trans-retinol in an NADPH-dependent reaction. However, all-trans-retinal can also react with outer segment components, sometimes forming lipofuscin precursors, which after conversion to lipofuscin accumulate in the lysosomes of the retinal pigment epithelium and display cytotoxic effects. Here, we have imaged the fluorescence of all-trans-retinol, all-trans-retinal, and lipofuscin precursors in real time in single isolated mouse rod photoreceptors. We found that IRBP removes all-trans-retinol from individual rod photoreceptors in a concentration-dependent manner. The rate constant for retinol removal increased linearly with IRBP concentration with a slope of 0.012 min-1 μm-1 IRBP also removed all-trans-retinal, but with much less efficacy, indicating that the reduction of retinal to retinol promotes faster clearance of the photoisomerized rhodopsin chromophore. The presence of physiological IRBP concentrations in the extracellular medium resulted in lower levels of all-trans-retinal and retinol in rod outer segments following light exposure. It also prevented light-induced lipofuscin precursor formation, but it did not remove precursors that were already present. These findings reveal an important and previously unappreciated role of IRBP in protecting the photoreceptor cells against the cytotoxic effects of accumulated all-trans-retinal.
Collapse
Affiliation(s)
- Chunhe Chen
- From the Departments of Ophthalmology and Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Leopold Adler
- From the Departments of Ophthalmology and Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Patrice Goletz
- From the Departments of Ophthalmology and Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Federico Gonzalez-Fernandez
- the Departments of Ophthalmology and Pathology, University of Mississippi and G. V. (Sonny) Montgomery Veterans Affairs Medical Centers, Jackson, Mississippi 39216, and
| | - Debra A Thompson
- the Departments of Ophthalmology and Visual Sciences, and Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48105
| | - Yiannis Koutalos
- From the Departments of Ophthalmology and Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425,
| |
Collapse
|
188
|
Tang PH, Pierson MJ, Heuss ND, Gregerson DS. A subpopulation of activated retinal macrophages selectively migrated to regions of cone photoreceptor stress, but had limited effect on cone death in a mouse model for type 2 Leber congenital amaurosis. Mol Cell Neurosci 2017; 85:70-81. [PMID: 28889993 DOI: 10.1016/j.mcn.2017.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/15/2017] [Accepted: 09/06/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Studies of antigen presentation in retina using mice that expressed green fluorescent protein (GFP) from a transgenic CD11c promoter found that retinal GFPhi cells possessed antigen presentation function. Subsequent studies found that these high GFPhi cells preferentially localized to sites of retinal injury, consistent with their APC function. Interest in the roles of macrophages in degenerative CNS diseases led us to study the GFPhi cells in a retinal model of neurodegeneration. We asked if apoptotic cone photoreceptor cell death in Rpe65-/- knockout mice induced the GFPhi cells, explored their relationship to resident microglia (MG), and tested their role in cone survival. METHODS Rpe65-/- mice were bred to CD11cGFP mice on the B6/J background. CD11cGFPRpe65-/- mice were also backcrossed to CX3CR1YFP-creERROSADTA mice so that CX3CR1+ mononuclear cells could be depleted by Tamoxifen. Retinas were analyzed by immunohistochemistry, confocal microscopy, fluorescence fundoscopy and flow cytometry. RESULTS Elevated numbers of GFPhi cells were concentrated in photoreceptor cell layers of CD11cGFPRpe65-/- mice coinciding with the peak of cone death at 2 to 4weeks of age, and persisted for at least 14months. After the initial wave of cone loss, a slow progressive loss of cones was found that continued to retain GFPhi cells in the outer retina. Sustained, four-week Tamoxifen depletions of the GFPhi cells and MG in Rpe65-/- mice from day 13 to day 41, and from day 390 to day 420 promoted a small increase in cone survival. We found no evidence that the GFPhi cells were recruited from the circulation; all data pointed to a MG origin. MG and GFPhi cells were well segregated in the dystrophic retina; GFPhi cells were foremost in the photoreceptor cell layer, while MG were concentrated in the inner retina. CONCLUSIONS The expression of GFP on a subset of retinal mononuclear cells in CD11cGFP mice identified a distinct population of cells performing functions previously attributed to MG. Although GFPhi cells dominated the macrophage response to cone death in the photoreceptor cell layer, their ablation led to only an incremental increase in cone survival. The ability to identify, ablate, and isolate these cells will facilitate analysis of this activated, antigen-presenting subset of MG.
Collapse
Affiliation(s)
- Peter H Tang
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Mark J Pierson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Neal D Heuss
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Dale S Gregerson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
189
|
Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, Wittes J, Pappas J, Elci O, McCague S, Cross D, Marshall KA, Walshire J, Kehoe TL, Reichert H, Davis M, Raffini L, George LA, Hudson FP, Dingfield L, Zhu X, Haller JA, Sohn EH, Mahajan VB, Pfeifer W, Weckmann M, Johnson C, Gewaily D, Drack A, Stone E, Wachtel K, Simonelli F, Leroy BP, Wright JF, High KA, Maguire AM. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017; 390:849-860. [PMID: 28712537 PMCID: PMC5726391 DOI: 10.1016/s0140-6736(17)31868-8] [Citation(s) in RCA: 1140] [Impact Index Per Article: 162.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Phase 1 studies have shown potential benefit of gene replacement in RPE65-mediated inherited retinal dystrophy. This phase 3 study assessed the efficacy and safety of voretigene neparvovec in participants whose inherited retinal dystrophy would otherwise progress to complete blindness. METHODS In this open-label, randomised, controlled phase 3 trial done at two sites in the USA, individuals aged 3 years or older with, in each eye, best corrected visual acuity of 20/60 or worse, or visual field less than 20 degrees in any meridian, or both, with confirmed genetic diagnosis of biallelic RPE65 mutations, sufficient viable retina, and ability to perform standardised multi-luminance mobility testing (MLMT) within the luminance range evaluated, were eligible. Participants were randomly assigned (2:1) to intervention or control using a permuted block design, stratified by age (<10 years and ≥10 years) and baseline mobility testing passing level (pass at ≥125 lux vs <125 lux). Graders assessing primary outcome were masked to treatment group. Intervention was bilateral, subretinal injection of 1·5 × 1011 vector genomes of voretigene neparvovec in 0·3 mL total volume. The primary efficacy endpoint was 1-year change in MLMT performance, measuring functional vision at specified light levels. The intention-to-treat (ITT) and modified ITT populations were included in primary and safety analyses. This trial is registered with ClinicalTrials.gov, number NCT00999609, and enrolment is complete. FINDINGS Between Nov 15, 2012, and Nov 21, 2013, 31 individuals were enrolled and randomly assigned to intervention (n=21) or control (n=10). One participant from each group withdrew after consent, before intervention, leaving an mITT population of 20 intervention and nine control participants. At 1 year, mean bilateral MLMT change score was 1·8 (SD 1·1) light levels in the intervention group versus 0·2 (1·0) in the control group (difference of 1·6, 95% CI 0·72-2·41, p=0·0013). 13 (65%) of 20 intervention participants, but no control participants, passed MLMT at the lowest luminance level tested (1 lux), demonstrating maximum possible improvement. No product-related serious adverse events or deleterious immune responses occurred. Two intervention participants, one with a pre-existing complex seizure disorder and another who experienced oral surgery complications, had serious adverse events unrelated to study participation. Most ocular events were mild in severity. INTERPRETATION Voretigene neparvovec gene replacement improved functional vision in RPE65-mediated inherited retinal dystrophy previously medically untreatable. FUNDING Spark Therapeutics.
Collapse
Affiliation(s)
- Stephen Russell
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.
| | - Jean Bennett
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Zi-Fan Yu
- Statistics Collaborative, Washington, DC, USA
| | - Amy Tillman
- Statistics Collaborative, Washington, DC, USA
| | | | - Julie Pappas
- Westat Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Okan Elci
- Westat Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah McCague
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dominique Cross
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathleen A Marshall
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean Walshire
- University of Iowa Health Care, Iowa City, Iowa, USA
| | | | | | - Maria Davis
- University of Iowa Health Care, Iowa City, Iowa, USA
| | - Leslie Raffini
- Department of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lindsey A George
- Department of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - F Parker Hudson
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Dingfield
- Division of General Internal Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaosong Zhu
- Department of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julia A Haller
- Wills Eye Hospital and Department of Ophthalmology, Jefferson Medical College, Thomas Jefferson University and Thomas Jefferson University Hospitals, Philadelphia, PA, USA
| | - Elliott H Sohn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Vinit B Mahajan
- Department of Ophthalmology and Visual Sciences, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Wanda Pfeifer
- University of Iowa Health Care, Iowa City, Iowa, USA
| | - Michelle Weckmann
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Chris Johnson
- Department of Ophthalmology and Visual Sciences, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Dina Gewaily
- Philadelphia Retina Associates, Philadelphia, PA, USA
| | - Arlene Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Edwin Stone
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | | | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Bart P Leroy
- Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | | | | | - Albert M Maguire
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
190
|
Gupta PR, Huckfeldt RM. Gene therapy for inherited retinal degenerations: initial successes and future challenges. J Neural Eng 2017; 14:051002. [DOI: 10.1088/1741-2552/aa7a27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
191
|
Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech 2017; 7:251. [PMID: 28721681 DOI: 10.1007/s13205-017-0878-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.
Collapse
|
192
|
Ma H, Yang F, Butler MR, Belcher J, Redmond TM, Placzek AT, Scanlan TS, Ding XQ. Inhibition of thyroid hormone receptor locally in the retina is a therapeutic strategy for retinal degeneration. FASEB J 2017; 31:3425-3438. [PMID: 28428265 PMCID: PMC5503703 DOI: 10.1096/fj.201601166rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/11/2017] [Indexed: 12/22/2022]
Abstract
Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have implicated TH signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we demonstrated that antithyroid drug treatment and targeting iodothyronine deiodinases (DIOs) to suppress cellular tri-iodothyronine (T3) production or increase T3 degradation preserves cones. In this work, we investigated the effectiveness of inhibition of the TH receptor (TR). Two genes, THRA and THRB, encode TRs; THRB2 has been associated with cone viability. Using TR antagonists and Thrb2 deletion, we examined the effects of TR inhibition. Systemic and ocular treatment with the TR antagonists NH-3 and 1-850 increased cone density by 30-40% in the Rpe65-/- mouse model of Leber congenital amaurosis and reduced the number of TUNEL+ cells. Cone survival was significantly improved in Rpe65-/- and Cpfl1 (a model of achromatopsia with Pde6c defect) mice with Thrb2 deletion. Ventral cone density in Cpfl1/Thrb2-/- and Rpe65-/- /Thrb2-/- mice was increased by 1- to 4-fold, compared with age-matched controls. Moreover, the expression levels of TR were significantly higher in the cone-degeneration retinas, suggesting locally elevated TR signaling. This work shows that the effects of antithyroid treatment or targeting DIOs were likely mediated by TRs and that suppressing TR protects cones. Our findings support the view that inhibition of TR locally in the retina is a therapeutic strategy for retinal degeneration management.-Ma, H., Yang, F., Butler, M. R., Belcher, J., Redmond, T. M., Placzek, A. T., Scanlan, T. S., Ding, X.-Q. Inhibition of thyroid hormone receptor locally in the retina is a therapeutic strategy for retinal degeneration.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joshua Belcher
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew T Placzek
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| | - Thomas S Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA;
| |
Collapse
|
193
|
Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol 2017; 101:1147-1154. [PMID: 28689169 PMCID: PMC5574398 DOI: 10.1136/bjophthalmol-2016-309975] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 12/29/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset severe retinal dystrophy (EOSRD) are both genetically and phenotypically heterogeneous, and characterised clinically by severe congenital/early infancy visual loss, nystagmus, amaurotic pupils and markedly reduced/absent full-field electroretinograms. The vast genetic heterogeneity of inherited retinal disease has been established over the last 10 - 20 years, with disease-causing variants identified in 25 genes to date associated with LCA/EOSRD, accounting for 70–80% of cases, with thereby more genes yet to be identified. There is now far greater understanding of the structural and functional associations seen in the various LCA/EOSRD genotypes. Subsequent development/characterisation of LCA/EOSRD animal models has shed light on the underlying pathogenesis and allowed the demonstration of successful rescue with gene replacement therapy and pharmacological intervention in multiple models. These advancements have culminated in more than 12 completed, ongoing and anticipated phase I/II and phase III gene therapy and pharmacological human clinical trials. This review describes the clinical and genetic characteristics of LCA/EOSRD and the differential diagnoses to be considered. We discuss in further detail the diagnostic clinical features, pathophysiology, animal models and human treatment studies and trials, in the more common genetic subtypes and/or those closest to intervention.
Collapse
Affiliation(s)
- Neruban Kumaran
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University of California San Francisco, San Francisco CA, California, USA
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
194
|
Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis. J Neurosci 2017; 36:5808-19. [PMID: 27225770 DOI: 10.1523/jneurosci.3857-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED RPE65, an abundant membrane-associate protein in the retinal pigment epithelium (RPE), is a key retinoid isomerase of the visual cycle necessary for generating 11-cis-retinal that functions not only as a molecular switch for activating cone and rod visual pigments in response to light stimulation, but also as a chaperone for normal trafficking of cone opsins to the outer segments. Many mutations in RPE65 are associated with Leber congenital amaurosis (LCA). A R91W substitution, the most frequent LCA-associated mutation, results in a severe decrease in protein level and enzymatic activity of RPE65, causing cone opsin mislocalization and early cone degeneration in the mutation knock-in mouse model of LCA. Here we show that R91W RPE65 undergoes ubiquitination-dependent proteasomal degradation in the knock-in mouse RPE due to misfolding. The 26S proteasome non-ATPase regulatory subunit 13 mediated degradation specifically of misfolded R91W RPE65. The mutation disrupted membrane-association and colocalization of RPE65 with lecithin:retinol acyltransferase (LRAT) that provides the hydrophobic substrate for RPE65. Systemic administration of sodium 4-phenylbutyrate (PBA), a chemical chaperone, increased protein stability, enzymatic activity, membrane-association, and colocalization of R91W RPE65 with LRAT. This rescue effect increased synthesis of 11-cis-retinal and 9-cis-retinal, a functional iso-chromophore of the visual pigments, led to alleviation of S-opsin mislocalization and cone degeneration in the knock-in mice. Importantly, PBA-treatment also improved cone-mediated vision in the mutant mice. These results indicate that PBA, a U.S. Food and Drug Administration-approved safe oral medication, may provide a noninvasive therapeutic intervention that delays daylight vision loss in patients with RPE65 mutations. SIGNIFICANCE STATEMENT LCA is a severe early onset retinal dystrophy. Recent clinical trials of gene therapy have implicated the need of an alternative or combination therapy to improve cone survival and function in patients with LCA caused by RPE65 mutations. Using a mouse model carrying the most frequent LCA-associated mutation (R91W), we found that the mutant RPE65 underwent ubiquitination-dependent proteasomal degradation due to misfolding. Treatment of the mice with a chemical chaperone partially corrected stability, enzymatic activity, and subcellular localization of R91W RPE65, which was also accompanied by improvement of cone survival and vision. These findings identify an in vivo molecular pathogenic mechanism for R91W mutation and provide a feasible pharmacological approach that can delay vision loss in patients with RPE65 mutations.
Collapse
|
195
|
Cubizolle A, Guillou L, Mollereau B, Hamel CP, Brabet P. Fatty acid transport protein 1 regulates retinoid metabolism and photoreceptor development in mouse retina. PLoS One 2017; 12:e0180148. [PMID: 28672005 PMCID: PMC5495297 DOI: 10.1371/journal.pone.0180148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/09/2017] [Indexed: 01/22/2023] Open
Abstract
In retinal pigment epithelium (RPE), RPE65 catalyzes the isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol in the visual cycle and controls the rhodopsin regeneration rate. However, the mechanisms by which these processes are regulated are still unclear. Fatty Acid Transport Protein 1 (FATP1) is involved in fatty acid uptake and lipid metabolism in a variety of cell types. FATP1 co-localizes with RPE65 in RPE and inhibits its isomerase activity in vitro. Here, we further investigated the role of FATP1 in the visual cycle using transgenic mice that overexpress human FATP1 specifically in the RPE (hFATP1TG mice). The mice displayed no delay in the kinetics of regeneration of the visual chromophore 11-cis-retinal after photobleaching and had no defects in light sensitivity. However, the total retinoid content was higher in the hFATP1TG mice than in wild type mice, and the transgenic mice also displayed an age-related accumulation (up to 40%) of all-trans-retinal and retinyl esters that was not observed in control mice. Consistent with these results, hFATP1TG mice were more susceptible to light-induced photoreceptor degeneration. hFATP1 overexpression also induced an ~3.5-fold increase in retinosome autofluorescence, as measured by two-photon microscopy. Interestingly, hFATP1TG retina contained ~25% more photoreceptor cells and ~35% longer outer segments than wild type mice, revealing a non-cell-autonomous effect of hFATP1 expressed in the RPE. These data are the first to show that FATP1-mediated fatty acid uptake in the RPE controls both retinoid metabolism in the outer retina and photoreceptor development.
Collapse
Affiliation(s)
- Aurélie Cubizolle
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Laurent Guillou
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Bertrand Mollereau
- Laboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Christian P Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Philippe Brabet
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| |
Collapse
|
196
|
Laprell L, Tochitsky I, Kaur K, Manookin MB, Stein M, Barber DM, Schön C, Michalakis S, Biel M, Kramer RH, Sumser MP, Trauner D, Van Gelder RN. Photopharmacological control of bipolar cells restores visual function in blind mice. J Clin Invest 2017; 127:2598-2611. [PMID: 28581442 DOI: 10.1172/jci92156] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/18/2017] [Indexed: 11/17/2022] Open
Abstract
Photopharmacological control of neuronal activity using synthetic photochromic ligands, or photoswitches, is a promising approach for restoring visual function in patients suffering from degenerative retinal diseases. Azobenzene photoswitches, such as AAQ and DENAQ, have been shown to restore the responses of retinal ganglion cells to light in mouse models of retinal degeneration but do not recapitulate native retinal signal processing. Here, we describe diethylamino-azo-diethylamino (DAD), a third-generation photoswitch that is capable of restoring retinal ganglion cell light responses to blue or white light. In acute brain slices of murine layer 2/3 cortical neurons, we determined that the photoswitch quickly relaxes to its inactive form in the dark. DAD is not permanently charged, and the uncharged form enables the photoswitch to rapidly and effectively cross biological barriers and thereby access and photosensitize retinal neurons. Intravitreal injection of DAD restored retinal light responses and light-driven behavior to blind mice. Unlike DENAQ, DAD acts upstream of retinal ganglion cells, primarily conferring light sensitivity to bipolar cells. Moreover, DAD was capable of generating ON and OFF visual responses in the blind retina by utilizing intrinsic retinal circuitry, which may be advantageous for restoring visual function.
Collapse
Affiliation(s)
- Laura Laprell
- Center for Integrated Protein Science Munich and Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ivan Tochitsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kuldeep Kaur
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael B Manookin
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Marco Stein
- Center for Integrated Protein Science Munich and Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - David M Barber
- Center for Integrated Protein Science Munich and Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schön
- Center for Integrated Protein Science Munich and Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich and Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich and Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Martin P Sumser
- Center for Integrated Protein Science Munich and Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Trauner
- Center for Integrated Protein Science Munich and Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Biological Structure and Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
197
|
Sui X, Weitz AC, Farquhar ER, Badiee M, Banerjee S, von Lintig J, Tochtrop GP, Palczewski K, Hendrich MP, Kiser PD. Structure and Spectroscopy of Alkene-Cleaving Dioxygenases Containing an Atypically Coordinated Non-Heme Iron Center. Biochemistry 2017; 56:2836-2852. [PMID: 28493664 DOI: 10.1021/acs.biochem.7b00251] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carotenoid cleavage oxygenases (CCOs) are non-heme iron enzymes that catalyze scission of alkene groups in carotenoids and stilbenoids to form biologically important products. CCOs possess a rare four-His iron center whose resting-state structure and interaction with substrates are incompletely understood. Here, we address this knowledge gap through a comprehensive structural and spectroscopic study of three phyletically diverse CCOs. The crystal structure of a fungal stilbenoid-cleaving CCO, CAO1, reveals strong similarity between its iron center and those of carotenoid-cleaving CCOs, but with a markedly different substrate-binding cleft. These enzymes all possess a five-coordinate high-spin Fe(II) center with resting-state Fe-His bond lengths of ∼2.15 Å. This ligand set generates an iron environment more electropositive than those of other non-heme iron dioxygenases as observed by Mössbauer isomer shifts. Dioxygen (O2) does not coordinate iron in the absence of substrate. Substrates bind away (∼4.7 Å) from the iron and have little impact on its electronic structure, thus excluding coordination-triggered O2 binding. However, substrate binding does perturb the spectral properties of CCO Fe-NO derivatives, indicating proximate organic substrate and O2-binding sites, which might influence Fe-O2 interactions. Together, these data provide a robust description of the CCO iron center and its interactions with substrates and substrate mimetics that illuminates commonalities as well as subtle and profound structural differences within the CCO family.
Collapse
Affiliation(s)
- Xuewu Sui
- Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Erik R Farquhar
- National Synchrotron Light Source-II, Brookhaven National Laboratory , Upton, New York 11973, United States.,Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106-4988, United States
| | - Mohsen Badiee
- Department of Chemistry, Case Western Reserve University , 2080 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14850, United States.,Northeastern Collaborative Access Team, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University , 2080 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University , 1819 East 101st Street, Cleveland, Ohio 44106, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Philip D Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.,Research Service, Louis Stokes Cleveland VA Medical Center , 10701 East Boulevard, Cleveland, Ohio 44106, United States
| |
Collapse
|
198
|
Murase H, Tsuruma K, Kuse Y, Shimazawa M, Hara H. Progranulin increases phagocytosis by retinal pigment epithelial cells in culture. J Neurosci Res 2017; 95:2500-2510. [PMID: 28509387 DOI: 10.1002/jnr.24081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 11/07/2022]
Abstract
Retinal pigment epithelium (RPE) cells take part in retinal preservation, such as phagocytizing the shed photoreceptor outer segments (POS), every day. The incomplete phagocytic function accelerates RPE degeneration and formation of the toxic by-product lipofuscin. Excessive lipofuscin accumulation is characteristic of various blinding diseases in the human eye. Progranulin is a cysteine-rich protein that has multiple biological activities, and it has a high presence in the retina. Progranulin has been recognized to be involved in macrophage phagocytosis in the brain. The purpose of this study is to determine whether progranulin influences phagocytosis by RPE cells. All experiments were performed on primary human RPE (hRPE) cells in culture. pHrodo was used to label the isolated porcine POS, and quantification of pHrodo fluorescence was used to determine the degree of phagocytosis. Western blotting and immunohistochemistry of key proteins involved in phagocytosis were used to clarify the mechanism of progranulin. Progranulin increased RPE phagocytosis in hydrogen peroxide-treated and nontreated RPE cells. The phosphorylated form of Mer tyrosine kinase, which is important for POS internalization, was significantly increased in the progranulin-exposed cells. This increase was attenuated by SU11274, an inhibitor of hepatic growth factor receptor. Under the oxidative stress condition, exposure to progranulin led to an approximately twofold increase in integrin alpha-v, which is associated with the first step in recognition of POS by RPE cells. These results suggest that progranulin could be an effective stimulator for RPE phagocytosis and could repair RPE function. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hiromi Murase
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yoshiki Kuse
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| |
Collapse
|
199
|
Kiser PD, Zhang J, Badiee M, Kinoshita J, Peachey NS, Tochtrop GP, Palczewski K. Rational Tuning of Visual Cycle Modulator Pharmacodynamics. J Pharmacol Exp Ther 2017; 362:131-145. [PMID: 28476927 DOI: 10.1124/jpet.117.240721] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/01/2017] [Indexed: 11/22/2022] Open
Abstract
Modulators of the visual cycle have been developed for treatment of various retinal disorders. These agents were designed to inhibit retinoid isomerase [retinal pigment epithelium-specific 65 kDa protein (RPE65)], the rate-limiting enzyme of the visual cycle, based on the idea that attenuation of visual pigment regeneration could reduce formation of toxic retinal conjugates. Of these agents, certain ones that contain primary amine groups can also reversibly form retinaldehyde Schiff base adducts, which contributes to their retinal protective activity. Direct inhibition of RPE65 as a therapeutic strategy is complicated by adverse effects resulting from slowed chromophore regeneration, whereas effective retinal sequestration can require high drug doses with potential off-target effects. We hypothesized that the RPE65-emixustat crystal structure could help guide the design of retinaldehyde-sequestering agents with varying degrees of RPE65 inhibitory activity. We found that addition of an isopropyl group to the central phenyl ring of emixustat and related compounds resulted in agents effectively lacking in vitro retinoid isomerase inhibitory activity, whereas substitution of the terminal 6-membered ring with branched moieties capable of stronger RPE65 interaction potentiated inhibition. The isopropyl derivative series produced discernible visual cycle suppression in vivo, albeit much less potently than compounds with a high affinity for the RPE65 active site. These agents were distributed into the retina and formed Schiff base adducts with retinaldehyde. Except for one compound [3-amino-1-(3-isopropyl-5-((2,6,6-trimethylcyclohex-1-en-1-yl)methoxy)phenyl)propan-1-ol (MB-007)], these agents conferred protection against retinal phototoxicity, suggesting that both direct RPE65 inhibition and retinal sequestration are mechanisms of potential therapeutic relevance.
Collapse
Affiliation(s)
- Philip D Kiser
- Department of Pharmacology, School of Medicine (P.D.K., J.Z., K.P.), Department of Chemistry (M.B., G.P.T.), Case Western Reserve University, Cleveland, Ohio; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (P.D.K., N.S.P.); Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio (J.K., N.S.P.); and Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (N.S.P.)
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine (P.D.K., J.Z., K.P.), Department of Chemistry (M.B., G.P.T.), Case Western Reserve University, Cleveland, Ohio; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (P.D.K., N.S.P.); Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio (J.K., N.S.P.); and Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (N.S.P.)
| | - Mohsen Badiee
- Department of Pharmacology, School of Medicine (P.D.K., J.Z., K.P.), Department of Chemistry (M.B., G.P.T.), Case Western Reserve University, Cleveland, Ohio; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (P.D.K., N.S.P.); Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio (J.K., N.S.P.); and Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (N.S.P.)
| | - Junzo Kinoshita
- Department of Pharmacology, School of Medicine (P.D.K., J.Z., K.P.), Department of Chemistry (M.B., G.P.T.), Case Western Reserve University, Cleveland, Ohio; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (P.D.K., N.S.P.); Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio (J.K., N.S.P.); and Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (N.S.P.)
| | - Neal S Peachey
- Department of Pharmacology, School of Medicine (P.D.K., J.Z., K.P.), Department of Chemistry (M.B., G.P.T.), Case Western Reserve University, Cleveland, Ohio; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (P.D.K., N.S.P.); Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio (J.K., N.S.P.); and Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (N.S.P.)
| | - Gregory P Tochtrop
- Department of Pharmacology, School of Medicine (P.D.K., J.Z., K.P.), Department of Chemistry (M.B., G.P.T.), Case Western Reserve University, Cleveland, Ohio; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (P.D.K., N.S.P.); Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio (J.K., N.S.P.); and Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (N.S.P.)
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine (P.D.K., J.Z., K.P.), Department of Chemistry (M.B., G.P.T.), Case Western Reserve University, Cleveland, Ohio; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (P.D.K., N.S.P.); Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio (J.K., N.S.P.); and Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (N.S.P.)
| |
Collapse
|
200
|
Calejo MT, Ilmarinen T, Vuorimaa-Laukkanen E, Talvitie E, Hakola HM, Skottman H, Kellomäki M. Langmuir-Schaefer film deposition onto honeycomb porous films for retinal tissue engineering. Acta Biomater 2017; 54:138-149. [PMID: 28223209 DOI: 10.1016/j.actbio.2017.02.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in senior citizens in the developed world. The disease is characterised by the degeneration of a specific cell layer at the back of the eye - the retinal pigment epithelium (RPE), which is essential in retinal function. The most promising therapeutic option to restore the lost vision is considered to be RPE cell transplantation. This work focuses on the development of biodegradable biomaterials with similar properties to the native Bruch's membrane as carriers for RPE cells. In particular, the breath figure (BF) method was used to create semi-permeable microporous films, which were thereafter used as the substrate for the consecutive Langmuir-Schaefer (LS) deposition of highly organised layers of collagen type I and collagen type IV. The newly developed biomaterials were further characterised in terms of surface porosity, roughness, hydrophilicity, collagen distribution, diffusion properties and hydrolytic stability. Human embryonic stem cell-derived RPE cells (hESC-RPE) cultured on the biomaterials showed good adhesion, spreading and morphology, as well as the expression of specific protein markers. Cell function was additionally confirmed by the assessment of the phagocytic capacity of hESC-RPE. Throughout the study, microporous films consistently showed better results as cell culture materials for hESC-RPE than dip-coated controls. This work demonstrates the potential of the BF-LS combined technologies to create biomimetic prosthetic Bruch's membranes for hESC-RPE transplantation. STATEMENT OF SIGNIFICANCE Age-related macular degeneration (AMD) is a leading cause of central blindness in developed countries, associated with the degeneration of the retinal pigment epithelium (RPE), a specific cell layer at the back of the eye. Transplantation of RPE cells derived from stem cells is considered the best option to treat these patients. In this work, we developed a cell carrier for human embryonic stem cell-derived RPE that resembled the upper layers of the membrane that naturally supports the RPE cells in the retina. The new combination of technologies employed in this study resulted in very promising materials as confirmed by our studies on cell proliferation, morphology and function.
Collapse
Affiliation(s)
- Maria Teresa Calejo
- Faculty of Biomedical Sciences and Engineering, and BioMediTech Institute, Tampere University of Technology, Tampere, Finland.
| | - Tanja Ilmarinen
- Faculty of Medicine and Life Sciences, and BioMediTech Institute, University of Tampere, Tampere, Finland
| | | | - Elina Talvitie
- Faculty of Biomedical Sciences and Engineering, and BioMediTech Institute, Tampere University of Technology, Tampere, Finland
| | - Hanna M Hakola
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Heli Skottman
- Faculty of Medicine and Life Sciences, and BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Minna Kellomäki
- Faculty of Biomedical Sciences and Engineering, and BioMediTech Institute, Tampere University of Technology, Tampere, Finland
| |
Collapse
|