151
|
Wang J, Liang B, Chen Y, Fuk-Woo Chan J, Yuan S, Ye H, Nie L, Zhou J, Wu Y, Wu M, Huang LS, An J, Warshel A, Yuen KY, Ciechanover A, Huang Z, Xu Y. A new class of α-ketoamide derivatives with potent anticancer and anti-SARS-CoV-2 activities. Eur J Med Chem 2021; 215:113267. [PMID: 33639344 PMCID: PMC7873610 DOI: 10.1016/j.ejmech.2021.113267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022]
Abstract
Inhibitors of the proteasome have been extensively studied for their applications in the treatment of human diseases such as hematologic malignancies, autoimmune disorders, and viral infections. Many of the proteasome inhibitors reported in the literature target the non-primed site of proteasome’s substrate binding pocket. In this study, we designed, synthesized and characterized a series of novel α-keto phenylamide derivatives aimed at both the primed and non-primed sites of the proteasome. In these derivatives, different substituted phenyl groups at the head group targeting the primed site were incorporated in order to investigate their structure-activity relationship and optimize the potency of α-keto phenylamides. In addition, the biological effects of modifications at the cap moiety, P1, P2 and P3 side chain positions were explored. Many derivatives displayed highly potent biological activities in proteasome inhibition and anticancer activity against a panel of six cancer cell lines, which were further rationalized by molecular modeling analyses. Furthermore, a representative α-ketoamide derivative was tested and found to be active in inhibiting the cellular infection of SARS-CoV-2 which causes the COVID-19 pandemic. These results demonstrate that this new class of α-ketoamide derivatives are potent anticancer agents and provide experimental evidence of the anti-SARS-CoV-2 effect by one of them, thus suggesting a possible new lead to develop antiviral therapeutics for COVID-19.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Boqiang Liang
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Yiling Chen
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hui Ye
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Linlin Nie
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Jiao Zhou
- Nobel Institute of Biomedicine, Zhuhai, 519000, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Yi Wu
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Meixian Wu
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Lina S Huang
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jing An
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aaron Ciechanover
- Nobel Institute of Biomedicine, Zhuhai, 519000, China; Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Yan Xu
- Nobel Institute of Biomedicine, Zhuhai, 519000, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
152
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
153
|
Fiolek TJ, Magyar CL, Wall TJ, Davies SB, Campbell MV, Savich CJ, Tepe JJ, Mosey RA. Dihydroquinazolines enhance 20S proteasome activity and induce degradation of α-synuclein, an intrinsically disordered protein associated with neurodegeneration. Bioorg Med Chem Lett 2021; 36:127821. [PMID: 33513387 DOI: 10.1016/j.bmcl.2021.127821] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
Aggregates or oligomeric forms of many intrinsically disordered proteins (IDPs), including α-synuclein, are hallmarks of neurodegenerative diseases, like Parkinson's and Alzheimer's disease, and key contributors to their pathogenesis. Due to their disordered nature and therefore lack of defined drug-binding pockets, IDPs are difficult targets for traditional small molecule drug design and are often referred to as "undruggable". The 20S proteasome is the main protease that targets IDPs for degradation and therefore small molecule 20S proteasome enhancement presents a novel therapeutic strategy by which these undruggable IDPs could be targeted. The concept of 20S activation is still relatively new, with few potent activators having been identified thus far. Herein, we synthesized and evaluated a library of dihydroquinazoline analogues and discovered several promising new 20S proteasome activators. Further testing of top hits revealed that they can enhance 20S mediated degradation of α-synuclein, the IDP associated with Parkinson's disease.
Collapse
Affiliation(s)
- Taylor J Fiolek
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Christina L Magyar
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Tyler J Wall
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Steven B Davies
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Molly V Campbell
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Christopher J Savich
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States.
| | - R Adam Mosey
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States.
| |
Collapse
|
154
|
Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Biomolecules 2021; 11:biom11020148. [PMID: 33498876 PMCID: PMC7910952 DOI: 10.3390/biom11020148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Four decades of proteasome research have yielded extensive information on ubiquitin-dependent proteolysis. The archetype of proteasomes is a 20S barrel-shaped complex that does not rely on ubiquitin as a degradation signal but can degrade substrates with a considerable unstructured stretch. Since roughly half of all proteasomes in most eukaryotic cells are free 20S complexes, ubiquitin-independent protein degradation may coexist with ubiquitin-dependent degradation by the highly regulated 26S proteasome. This article reviews recent advances in our understanding of the biochemical and structural features that underlie the proteolytic mechanism of 20S proteasomes. The two outer α-rings of 20S proteasomes provide a number of potential docking sites for loosely folded polypeptides. The binding of a substrate can induce asymmetric conformational changes, trigger gate opening, and initiate its own degradation through a protease-driven translocation mechanism. Consequently, the substrate translocates through two additional narrow apertures augmented by the β-catalytic active sites. The overall pulling force through the two annuli results in a protease-like unfolding of the substrate and subsequent proteolysis in the catalytic chamber. Although both proteasomes contain identical β-catalytic active sites, the differential translocation mechanisms yield distinct peptide products. Nonoverlapping substrate repertoires and product outcomes rationalize cohabitation of both proteasome complexes in cells.
Collapse
|
155
|
Schiffrer ES, Proj M, Gobec M, Rejc L, Šterman A, Mravljak J, Gobec S, Sosič I. Synthesis and Biochemical Evaluation of Warhead-Decorated Psoralens as (Immuno)Proteasome Inhibitors. Molecules 2021; 26:molecules26020356. [PMID: 33445542 PMCID: PMC7826781 DOI: 10.3390/molecules26020356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
The immunoproteasome is a multicatalytic protease that is predominantly expressed in cells of hematopoietic origin. Its elevated expression has been associated with autoimmune diseases, various types of cancer, and inflammatory diseases. Selective inhibition of its catalytic activities is therefore a viable approach for the treatment of these diseases. However, the development of immunoproteasome-selective inhibitors with non-peptidic scaffolds remains a challenging task. We previously reported 7H-furo[3,2-g]chromen-7-one (psoralen)-based compounds with an oxathiazolone warhead as selective inhibitors of the chymotrypsin-like (β5i) subunit of immunoproteasome. Here, we describe the influence of the electrophilic warhead variations at position 3 of the psoralen core on the inhibitory potencies. Despite mapping the chemical space with different warheads, all compounds showed decreased inhibition of the β5i subunit of immunoproteasome in comparison to the parent oxathiazolone-based compound. Although suboptimal, these results provide crucial information about structure–activity relationships that will serve as guidance for the further design of (immuno)proteasome inhibitors.
Collapse
Affiliation(s)
- Eva Shannon Schiffrer
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Luka Rejc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Andrej Šterman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Janez Mravljak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
- Correspondence: ; Tel.: +386-1-4769-569
| |
Collapse
|
156
|
Pachva MC, Kisselev AF, Matkarimov BT, Saparbaev M, Groisman R. DNA-Histone Cross-Links: Formation and Repair. Front Cell Dev Biol 2021; 8:607045. [PMID: 33409281 PMCID: PMC7779557 DOI: 10.3389/fcell.2020.607045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
The nucleosome is a stretch of DNA wrapped around a histone octamer. Electrostatic interactions and hydrogen bonds between histones and DNA are vital for the stable organization of nucleosome core particles, and for the folding of chromatin into more compact structures, which regulate gene expression via controlled access to DNA. As a drawback of tight association, under genotoxic stress, DNA can accidentally cross-link to histone in a covalent manner, generating a highly toxic DNA-histone cross-link (DHC). DHC is a bulky lesion that can impede DNA transcription, replication, and repair, often with lethal consequences. The chemotherapeutic agent cisplatin, as well as ionizing and ultraviolet irradiations and endogenously occurring reactive aldehydes, generate DHCs by forming either stable or transient covalent bonds between DNA and side-chain amino groups of histone lysine residues. The mechanisms of DHC repair start to unravel, and certain common principles of DNA-protein cross-link (DPC) repair mechanisms that participate in the removal of cross-linked histones from DNA have been described. In general, DPC is removed via a two-step repair mechanism. First, cross-linked proteins are degraded by specific DPC proteases or by the proteasome, relieving steric hindrance. Second, the remaining DNA-peptide cross-links are eliminated in various DNA repair pathways. Delineating the molecular mechanisms of DHC repair would help target specific DNA repair proteins for therapeutic intervention to combat tumor resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Manideep C Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Alexei F Kisselev
- Department Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | | | - Murat Saparbaev
- Groupe "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Regina Groisman
- Groupe "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
157
|
|
158
|
Molecular and cellular dynamics of the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140583. [PMID: 33321258 DOI: 10.1016/j.bbapap.2020.140583] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023]
Abstract
In eukaryotic cells, the ubiquitin-proteasome system serves to remove proteins that are either dysfunctional or no longer needed. The 26S proteasome is a 2.5 MDa multisubunit complex comprising the 20S core particle, where degradation is executed, and one or two regulatory particles which prepare substrates for degradation. Whereas the 20S core particles of several species had been studied extensively by X-ray crystallography, the 26S holocomplex structure had remained elusive for a long time. Recent advances in single-particle cryo-electron microscopy have changed the situation and provided atomic resolution models of this intriguing molecular machine and its dynamics. Besides, cryo-electron tomography enables structural studies in situ, providing molecular resolution images of macromolecules inside pristinely preserved cellular environments. This has greatly contributed to our understanding of proteasome dynamics in the context of cells.
Collapse
|
159
|
Hubbell GE, Tepe JJ. Natural product scaffolds as inspiration for the design and synthesis of 20S human proteasome inhibitors. RSC Chem Biol 2020; 1:305-332. [PMID: 33791679 PMCID: PMC8009326 DOI: 10.1039/d0cb00111b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
The 20S proteasome is a valuable target for the treatment of a number of diseases including cancer, neurodegenerative disease, and parasitic infection. In an effort to discover novel inhibitors of the 20S proteasome, many reseaarchers have looked to natural products as potential leads for drug discovery. The following review discusses the efforts made in the field to isolate and identify natural products as inhibitors of the proteasome. In addition, we describe some of the modifications made to natural products in order to discover more potent and selective inhibitors for potential disease treatment.
Collapse
Affiliation(s)
- Grace E. Hubbell
- Department of Chemistry, Michigan State UniversityEast LansingMI 48823USA
| | - Jetze J. Tepe
- Department of Chemistry, Michigan State UniversityEast LansingMI 48823USA
| |
Collapse
|
160
|
Peck Justice SA, Barron MP, Qi GD, Wijeratne HRS, Victorino JF, Simpson ER, Vilseck JZ, Wijeratne AB, Mosley AL. Mutant thermal proteome profiling for characterization of missense protein variants and their associated phenotypes within the proteome. J Biol Chem 2020; 295:16219-16238. [PMID: 32878984 PMCID: PMC7705321 DOI: 10.1074/jbc.ra120.014576] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Temperature-sensitive (TS) missense mutants have been foundational for characterization of essential gene function. However, an unbiased approach for analysis of biochemical and biophysical changes in TS missense mutants within the context of their functional proteomes is lacking. We applied MS-based thermal proteome profiling (TPP) to investigate the proteome-wide effects of missense mutations in an application that we refer to as mutant thermal proteome profiling (mTPP). This study characterized global impacts of temperature sensitivity-inducing missense mutations in two different subunits of the 26S proteasome. The majority of alterations identified by RNA-Seq and global proteomics were similar between the mutants, which could suggest that a similar functional disruption is occurring in both missense variants. Results from mTPP, however, provide unique insights into the mechanisms that contribute to the TS phenotype in each mutant, revealing distinct changes that were not obtained using only steady-state transcriptome and proteome analyses. Computationally, multisite λ-dynamics simulations add clear support for mTPP experimental findings. This work shows that mTPP is a precise approach to measure changes in missense mutant-containing proteomes without the requirement for large amounts of starting material, specific antibodies against proteins of interest, and/or genetic manipulation of the biological system. Although experiments were performed under permissive conditions, mTPP provided insights into the underlying protein stability changes that cause dramatic cellular phenotypes observed at nonpermissive temperatures. Overall, mTPP provides unique mechanistic insights into missense mutation dysfunction and connection of genotype to phenotype in a rapid, nonbiased fashion.
Collapse
Affiliation(s)
- Sarah A Peck Justice
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Monica P Barron
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guihong D Qi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - H R Sagara Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - José F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ed R Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
161
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
162
|
Wang G, Chaihu L, Tian M, Shao X, Dai R, de Jong RN, Ugurlar D, Gros P, Heck AJR. Releasing Nonperipheral Subunits from Protein Complexes in the Gas Phase. Anal Chem 2020; 92:15799-15805. [DOI: 10.1021/acs.analchem.0c02845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guanbo Wang
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | - Lingxiao Chaihu
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, 518132 Shenzhen, China
| | - Meng Tian
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xinyang Shao
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Rongrong Dai
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | | | - Deniz Ugurlar
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
163
|
Mishra S, Dunkerly-Eyring BL, Keceli G, Ranek MJ. Phosphorylation Modifications Regulating Cardiac Protein Quality Control Mechanisms. Front Physiol 2020; 11:593585. [PMID: 33281625 PMCID: PMC7689282 DOI: 10.3389/fphys.2020.593585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many forms of cardiac disease, including heart failure, present with inadequate protein quality control (PQC). Pathological conditions often involve impaired removal of terminally misfolded proteins. This results in the formation of large protein aggregates, which further reduce cellular viability and cardiac function. Cardiomyocytes have an intricately collaborative PQC system to minimize cellular proteotoxicity. Increased expression of chaperones or enhanced clearance of misfolded proteins either by the proteasome or lysosome has been demonstrated to attenuate disease pathogenesis, whereas reduced PQC exacerbates pathogenesis. Recent studies have revealed that phosphorylation of key proteins has a potent regulatory role, both promoting and hindering the PQC machinery. This review highlights the recent advances in phosphorylations regulating PQC, the impact in cardiac pathology, and the therapeutic opportunities presented by harnessing these modifications.
Collapse
Affiliation(s)
- Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
164
|
Hauser J, Kylberg G, Colomb-Delsuc M, Stemme G, Sintorn IM, Roxhed N. A microfluidic device for TEM sample preparation. LAB ON A CHIP 2020; 20:4186-4193. [PMID: 33033812 DOI: 10.1039/d0lc00724b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transmission electron microscopy (TEM) allows for visualizing and analyzing viral particles and has become a vital tool for the development of vaccines and biopharmaceuticals. However, appropriate TEM sample preparation is typically done manually which introduces operator-based dependencies and can lead to unreliable results. Here, we present a capillary-driven microfluidic single-use device that prepares a TEM grid with minimal and non-critical user interaction. The user only initiates the sample preparation process, waits for about one minute and then collects the TEM grid, ready for imaging. Using Adeno-associated virus (AAV) particles as the sample and NanoVan® as the stain, we demonstrate microfluidic consistency and show that the sample preparation quality is sufficient for automated image analysis. We further demonstrate the versatility of the microfluidic device by preparing two protein complexes for TEM investigations using two different stain types. The presented TEM sample preparation concept could alleviate the problems associated with human inconsistency in manual preparation protocols and allow for non-specialists to prepare TEM samples.
Collapse
Affiliation(s)
- Janosch Hauser
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | | | | - Göran Stemme
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | | - Niclas Roxhed
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| |
Collapse
|
165
|
Ubiquitin-proteasome system (UPS) as a target for anticancer treatment. Arch Pharm Res 2020; 43:1144-1161. [PMID: 33165832 PMCID: PMC7651821 DOI: 10.1007/s12272-020-01281-8] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome system (UPS) plays an important role in the cellular processes for protein quality control and homeostasis. Dysregulation of the UPS has been implicated in numerous diseases, including cancer. Indeed, components of UPS are frequently mutated or abnormally expressed in various cancers. Since Bortezomib, a proteasome inhibitor, received FDA approval for the treatment of multiple myeloma and mantle cell lymphoma, increasing numbers of researchers have been seeking drugs targeting the UPS as a cancer therapeutic strategy. Here, we introduce the essential component of UPS, including ubiquitinating enzymes, deubiquitinating enzymes and 26S proteasome, and we summarize their targets and mechanisms that are crucial for tumorigenesis. In addition, we briefly discuss some UPS inhibitors, which are currently in clinical trials as cancer therapeutics.
Collapse
|
166
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
167
|
Schneider SM, Lee BH, Nicola AV. Viral entry and the ubiquitin-proteasome system. Cell Microbiol 2020; 23:e13276. [PMID: 33037857 DOI: 10.1111/cmi.13276] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Viruses confiscate cellular components of the ubiquitin-proteasome system (UPS) to facilitate many aspects of the infectious cycle. The 26S proteasome is an ATP-dependent, multisubunit proteolytic machine present in all eukaryotic cells. The proteasome executes the controlled degradation of functional proteins, as well as the hydrolysis of aberrantly folded polypeptides. There is growing evidence for the role of the UPS in viral entry. The UPS assists in several steps of the initiation of infection, including endosomal escape of the entering virion, intracellular transport of incoming nucleocapsids and uncoating of the viral genome. Inhibitors of proteasome activity, including MG132, epoxomicin, lactacystin and bortezomib have been integral to developments in this area. Here, we review the mechanistic details of UPS involvement in the entry process of viruses from a multitude of families. The possibility of proteasome inhibitors as therapeutic antiviral agents is highlighted.
Collapse
Affiliation(s)
- Seth M Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Becky H Lee
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
168
|
Waite KA, Burris A, Roelofs J. Tagging the proteasome active site β5 causes tag specific phenotypes in yeast. Sci Rep 2020; 10:18133. [PMID: 33093623 PMCID: PMC7582879 DOI: 10.1038/s41598-020-75126-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
The efficient and timely degradation of proteins is crucial for many cellular processes and to maintain general proteostasis. The proteasome, a complex multisubunit protease, plays a critical role in protein degradation. Therefore, it is important to understand the assembly, regulation, and localization of proteasome complexes in the cell under different conditions. Fluorescent tags are often utilized to study proteasomes. A GFP-tag on the β5 subunit, one of the core particle (CP) subunits with catalytic activity, has been shown to be incorporated into proteasomes and commonly used by the field. We report here that a tag on this subunit results in aberrant phenotypes that are not observed when several other CP subunits are tagged. These phenotypes appear in combination with other proteasome mutations and include poor growth, and, more significantly, altered 26S proteasome localization. In strains defective for autophagy, β5-GFP tagged proteasomes, unlike other CP tags, localize to granules upon nitrogen starvation. These granules are reflective of previously described proteasome storage granules but display unique properties. This suggests proteasomes with a β5-GFP tag are specifically recognized and sequestered depending on physiological conditions. In all, our data indicate the intricacy of tagging proteasomes, and possibly, large complexes in general.
Collapse
Affiliation(s)
- Kenrick A Waite
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA
| | - Alicia Burris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA.,Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS, 66506, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA.
| |
Collapse
|
169
|
Suresh HG, Pascoe N, Andrews B. The structure and function of deubiquitinases: lessons from budding yeast. Open Biol 2020; 10:200279. [PMID: 33081638 PMCID: PMC7653365 DOI: 10.1098/rsob.200279] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination is a key post-translational modification that regulates diverse cellular processes in eukaryotic cells. The specificity of ubiquitin (Ub) signalling for different bioprocesses and pathways is dictated by the large variety of mono-ubiquitination and polyubiquitination events, including many possible chain architectures. Deubiquitinases (DUBs) reverse or edit Ub signals with high sophistication and specificity, forming an integral arm of the Ub signalling machinery, thus impinging on fundamental cellular processes including DNA damage repair, gene expression, protein quality control and organellar integrity. In this review, we discuss the many layers of DUB function and regulation, with a focus on insights gained from budding yeast. Our review provides a framework to understand key aspects of DUB biology.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Natasha Pascoe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Brenda Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
170
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
171
|
Santoro AM, D’Urso A, Cunsolo A, Milardi D, Purrello R, Sbardella D, Tundo GR, Diana D, Fattorusso R, Dato AD, Paladino A, Persico M, Coletta M, Fattorusso C. Cooperative Binding of the Cationic Porphyrin Tris-T4 Enhances Catalytic Activity of 20S Proteasome Unveiling a Complex Distribution of Functional States. Int J Mol Sci 2020; 21:ijms21197190. [PMID: 33003385 PMCID: PMC7582714 DOI: 10.3390/ijms21197190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The present study provides new evidence that cationic porphyrins may be considered as tunable platforms to interfere with the structural “key code” present on the 20S proteasome α-rings and, by consequence, with its catalytic activity. Here, we describe the functional and conformational effects on the 20S proteasome induced by the cooperative binding of the tri-cationic 5-(phenyl)-10,15,20-(tri N-methyl-4-pyridyl) porphyrin (Tris-T4). Our integrated kinetic, NMR, and in silico analysis allowed us to disclose a complex effect on the 20S catalytic activity depending on substrate/porphyrin concentration. The analysis of the kinetic data shows that Tris-T4 shifts the relative populations of the multiple interconverting 20S proteasome conformations leading to an increase in substrate hydrolysis by an allosteric pathway. Based on our Tris-T4/h20S interaction model, Tris-T4 is able to affect gating dynamics and substrate hydrolysis by binding to an array of negatively charged and hydrophobic residues present on the protein surface involved in the 20S molecular activation by the regulatory proteins (RPs). Accordingly, despite the fact that Tris-T4 also binds to the α3ΔN mutant, allosteric modulation is not observed since the molecular mechanism connecting gate dynamics with substrate hydrolysis is impaired. We envisage that the dynamic view of the 20S conformational equilibria, activated through cooperative Tris-T4 binding, may work as a simplified model for a better understanding of the intricate network of 20S conformational/functional states that may be mobilized by exogenous ligands, paving the way for the development of a new generation of proteasome allosteric modulators.
Collapse
Affiliation(s)
- Anna Maria Santoro
- Istituto di Cristallografia—CNR Sede Secondaria di Catania, Via P. Gaifami 9/18, 95126 Catania, Italy; (A.M.S.); (D.M.)
| | - Alessandro D’Urso
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.); (A.C.); (R.P.)
| | - Alessandra Cunsolo
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.); (A.C.); (R.P.)
- Department of Molecular Medicine, The University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78245, USA
| | - Danilo Milardi
- Istituto di Cristallografia—CNR Sede Secondaria di Catania, Via P. Gaifami 9/18, 95126 Catania, Italy; (A.M.S.); (D.M.)
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.); (A.C.); (R.P.)
| | - Diego Sbardella
- IRCCS-Fondazione Bietti, 00198 Rome, Italy; (D.S.); (G.R.T.)
| | - Grazia R. Tundo
- IRCCS-Fondazione Bietti, 00198 Rome, Italy; (D.S.); (G.R.T.)
| | - Donatella Diana
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy;
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli” Via Vivaldi 43, 81100 Caserta, Italy;
| | - Antonio Di Dato
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (A.D.D.); (M.P.)
| | - Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via M. Bianco 9, 20131 Milano, Italy;
| | - Marco Persico
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (A.D.D.); (M.P.)
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 80131 Napoli, Italy
| | - Massimo Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier 1, 00133 Roma, Italy
- Correspondence: (M.C.); (C.F.); Tel.: +39-06-72596365 (M.C.); +39-081-678544 (C.F.)
| | - Caterina Fattorusso
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (A.D.D.); (M.P.)
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 80131 Napoli, Italy
- Correspondence: (M.C.); (C.F.); Tel.: +39-06-72596365 (M.C.); +39-081-678544 (C.F.)
| |
Collapse
|
172
|
Efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins. Sci Rep 2020; 10:15765. [PMID: 32978409 PMCID: PMC7519072 DOI: 10.1038/s41598-020-71550-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
The proteasome is responsible for selective degradation of proteins. It exists in mammalian cells under four main subtypes, which differ by the combination of their catalytic subunits: the standard proteasome (β1–β2–β5), the immunoproteasome (β1i–β2i–β5i) and the two intermediate proteasomes (β1–β2–β5i and β1i–β2–β5i). The efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins remains unclear. Using cells expressing exclusively one proteasome subtype, we observed that ubiquitinated p21 and c-myc were degraded at similar rates, indicating that the four 26S proteasomes degrade ubiquitinated proteins equally well. Under oxidative stress, we observed a partial dissociation of 26S into 20S proteasomes, which can degrade non-ubiquitinated oxidized proteins. Oxidized calmodulin and hemoglobin were best degraded in vitro by the three β5i-containing 20S proteasomes, while their native forms were not degraded. Circular dichroism analyses indicated that ubiquitin-independent recognition of oxidized proteins by 20S proteasomes was triggered by the disruption of their structure. Accordingly, β5i-containing 20S proteasomes degraded unoxidized naturally disordered protein tau, while 26S proteasomes did not. Our results suggest that the three β5i-containing 20S proteasomes, namely the immunoproteasome and the two intermediate proteasomes, might help cells to eliminate proteins containing disordered domains, including those induced by oxidative stress.
Collapse
|
173
|
Montefusco V, Mussetti A, Salas MQ, Martinelli G, Cerchione C. Old and new generation proteasome inhibitors in multiple myeloma. Panminerva Med 2020; 62:193-206. [PMID: 32957744 DOI: 10.23736/s0031-0808.20.04148-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteasome inhibitors (PIs) represent a recently developed drug class that inhibit the ubiquitin-proteasome system, thus interfering with the intracellular machinery who has the duty of misfolded proteins disposal. Myeloma plasma cells are structurally aimed at the production of large quantities of immunoglobulins. This explains their vulnerability to any perturbation of intracellular protein homeostasis. Bortezomib is the first-in-class PI and nowadays, in combination with other compounds, is the cornerstone of multiple myeloma (MM) treatment in several settings. Bortezomib has several attractive features for its inclusion in the induction phase of therapy: high efficacy, rapid cytoreduction, absence of nephrotoxicity, fast reduction of plasmacytomas, and fast pain control. However, the safety profile of bortezomib is characterized by a not negligible peripheral neuropathy. Newer PIs, such as carfilzomib and ixazomib, have been developed and each offers specific advantages. Carfilzomib is extremely efficient in proteasome inhibition. This results in high efficacy but suffers from a significant cardiotoxicity. Ixazomib is the first oral PI with a proteasome inhibition profile similar to bortezomib, with lower neurotoxicity. PIs mechanism of action is complementary with other drug classes, and this explains the synergism between PIs and other drugs, in particular steroids and immunomodulators. PIs are frequently used in doublets and triplets. Also, they can be associated with anti-CD38 monoclonal antibodies. This review summarizes the principal biological and clinical features of PIs in the MM treatment.
Collapse
Affiliation(s)
| | - Alberto Mussetti
- Department Clinical Hematology, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Maria Q Salas
- Department Clinical Hematology, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Giovanni Martinelli
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Claudio Cerchione
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| |
Collapse
|
174
|
Heitmeier T, Sydykov A, Lukas C, Vroom C, Korfei M, Petrovic A, Klingel K, Günther A, Eickelberg O, Weissmann N, Ghofrani HA, Seeger W, Grimminger F, Schermuly RT, Meiners S, Kosanovic D. Altered proteasome function in right ventricular hypertrophy. Cardiovasc Res 2020; 116:406-415. [PMID: 31020333 DOI: 10.1093/cvr/cvz103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/01/2019] [Accepted: 04/16/2019] [Indexed: 01/29/2023] Open
Abstract
AIMS In patients with pulmonary hypertension, right ventricular hypertrophy (RVH) is a detrimental condition that ultimately results in right heart failure and death. The ubiquitin proteasome system has been identified as a major protein degradation system to regulate cardiac remodelling in the left heart. Its role in right heart hypertrophy, however, is still ambiguous. METHODS AND RESULTS RVH was induced in mice by pulmonary artery banding (PAB). Both, expression and activity of the proteasome was found to be up-regulated in the hypertrophied right ventricle (RV) compared to healthy controls. Catalytic inhibition of the proteasome by the two proteasome inhibitors Bortezomib (BTZ) and ONX-0912 partially improved RVH both in preventive and therapeutic applications. Native gel analysis revealed that specifically the 26S proteasome complexes were activated in experimental RVH. Increased assembly of 26S proteasomes was accompanied by elevated expression of Rpn6, a rate-limiting subunit of 26S proteasome assembly, in hypertrophied cardiomyocytes of the right heart. Intriguingly, patients with RVH also showed increased expression of Rpn6 in hypertrophied cardiomyocytes of the RV as identified by immunohistochemical staining. CONCLUSION Our data demonstrate that alterations in expression and activity of proteasomal subunits play a critical role in the development of RVH. Moreover, this study provides an improved understanding on the selective activation of the 26S proteasome in RVH that might be driven by the rate-limiting subunit Rpn6. In RVH, Rpn6 therefore represents a more specific target to interfere with proteasome function than the commonly used catalytic proteasome inhibitors.
Collapse
Affiliation(s)
- Tanja Heitmeier
- Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany
| | - Christina Lukas
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Christina Vroom
- Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany
| | - Martina Korfei
- Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany
| | - Aleksandar Petrovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany
| | - Karin Klingel
- Institute for Pathology and Neuropathology, University of Tübingen, Germany
| | - Andreas Günther
- Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany.,Agaplesion Lung Clinic Waldhof Elgershausen, Greifenstein, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany.,University of Colorado at Denver - Anschutz Medical Campus, 129263, Pulmonary and Critical Care Medicine University, Denver, CO, USA
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany
| | | | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Friedrich Grimminger
- Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany
| | - Ralph Theo Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 130, 35392 Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
175
|
Allosteric coupling between α-rings of the 20S proteasome. Nat Commun 2020; 11:4580. [PMID: 32917864 PMCID: PMC7486400 DOI: 10.1038/s41467-020-18415-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 08/21/2020] [Indexed: 11/21/2022] Open
Abstract
Proteasomal machinery performs essential regulated protein degradation in eukaryotes. Classic proteasomes are symmetric, with a regulatory ATPase docked at each end of the cylindrical 20S. Asymmetric complexes are also present in cells, either with a single ATPase or with an ATPase and non-ATPase at two opposite ends. The mechanism that populates these different proteasomal complexes is unknown. Using archaea homologs, we construct asymmetric forms of proteasomes. We demonstrate that the gate conformation of the two opposite ends of 20S are coupled: binding one ATPase opens a gate locally, and also opens the opposite gate allosterically. Such allosteric coupling leads to cooperative binding of proteasomal ATPases to 20S and promotes formation of proteasomes symmetrically configured with two identical ATPases. It may also promote formation of asymmetric complexes with an ATPase and a non-ATPase at opposite ends. We propose that in eukaryotes a similar mechanism regulates the composition of the proteasomal population. The 26S proteasome is a protein degradation machine composed of a 20S core particle (CP) flanked at one or both ends by a 19S ATPase regulatory particle (RP). Here the authors reconstitute asymmetric archaeal proteasomes and reveal allosteric coupling between the conformations of gates in the α-rings positioned at opposite ends of the CP, which modulates RP assembly and substrate entry.
Collapse
|
176
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
177
|
Jeong S, Ahn J, Kwon AR, Ha NC. Cleavage-Dependent Activation of ATP-Dependent Protease HslUV from Staphylococcus aureus. Mol Cells 2020; 43:694-704. [PMID: 32694241 PMCID: PMC7468587 DOI: 10.14348/molcells.2020.0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/19/2020] [Accepted: 06/28/2020] [Indexed: 01/03/2023] Open
Abstract
HslUV is a bacterial heat shock protein complex consisting of the AAA+ ATPase component HslU and the protease component HslV. HslV is a threonine (Thr) protease employing the N-terminal Thr residue in the mature protein as the catalytic residue. To date, HslUV from Gram-negative bacteria has been extensively studied. However, the mechanisms of action and activation of HslUV from Gram-positive bacteria, which have an additional N-terminal sequence before the catalytic Thr residue, remain to be revealed. In this study, we determined the crystal structures of HslV from the Gram-positive bacterium Staphylococcus aureus with and without HslU in the crystallization conditions. The structural comparison suggested that a structural transition to the symmetric form of HslV was triggered by ATP-bound HslU. More importantly, the additional N-terminal sequence was cleaved in the presence of HslU and ATP, exposing the Thr9 residue at the N-terminus and activating the ATP-dependent protease activity. Further biochemical studies demonstrated that the exposed N-terminal Thr residue is critical for catalysis with binding to the symmetric HslU hexamer. Since eukaryotic proteasomes have a similar additional N-terminal sequence, our results will improve our understanding of the common molecular mechanisms for the activation of proteasomes.
Collapse
Affiliation(s)
- Soyeon Jeong
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| | - Jinsook Ahn
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| | - Ae-Ran Kwon
- Department of Beauty Care, College of Medical Science, Daegu Haany University, Gyeongsan 38610, Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
178
|
Maruyama H, Hirayama K, Yamashita M, Ohgi K, Tsujimoto R, Takayasu M, Shimohata H, Kobayashi M. Serum 20S proteasome levels are associated with disease activity in MPO-ANCA-associated microscopic polyangiitis. BMC Rheumatol 2020; 4:36. [PMID: 32864569 PMCID: PMC7447580 DOI: 10.1186/s41927-020-00137-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background Proteasomes are found in both the cell nucleus and cytoplasm and play a major role in the ubiquitin-dependent and -independent non-lysosomal pathways of intracellular protein degradation. Proteasomes are also involved in the turnover of various regulatory proteins, antigen processing, cell differentiation, and apoptosis. To determine the diagnostic value of serum proteasome in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), we investigated patients with AAV at various stages of the disease. Methods Serum 20S-proteasome was measured by ELISA in 44 patients with MPO-ANCA-associated microscopic polyangiitis (MPA) and renal involvement. Thirty of the patients provided serum samples before the initial treatment, and 30 provided samples during remission; 16 provided samples at both time points. Results The mean serum 20S-proteasome level was significantly higher in the active-vasculitis patients (3414.6 ± 2738.9 ng/mL; n = 30) compared to the inactive-vasculitis patients (366.4 ± 128.4 ng/mL; n = 30; p < 0.0001) and 40 controls (234.9 ± 90.1 ng/mL; p < 0.0001). There were significant positive correlations between the serum 20S-proteasome level and the Birmingham Vasculitis Activity Score (BVAS) (r = 0.581, p < 0.0001), the ANCA titer (r = 0.384, p < 0.0001), the white blood cell (WBC) count (r = 0.284, p = 0.0042), the platelet count (r = 0.369, p = 0.0002), and the serum C-reactive protein (CRP) level (r = 0.550, p < 0.0001). There were significant negative correlations between the serum 20S-proteasome level and both the hemoglobin concentration (r = - 0.351, p = 0.0003) and the serum albumin level (r = - 0.460, p < 0.0001). In a multiple regression analysis, there was a significant positive correlation between the serum 20S-proteasome level and only the BVAS results (β = 0.851, p = 0.0009). In a receiver operating curve analysis, the area under the curve for the serum 20S-proteasome level was 0.996, which is higher than those of the WBC count (0.738) and the serum CRP level (0.963). Conclusion The serum level of 20S-proteasome may be a useful marker for disease activity in AAV.
Collapse
Affiliation(s)
- Hiroshi Maruyama
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| | - Kouichi Hirayama
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| | - Marina Yamashita
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| | - Kentaro Ohgi
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan.,Department of Intensive Care Medicine, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Ryuji Tsujimoto
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan.,Department of Nephrology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Mamiko Takayasu
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| | - Homare Shimohata
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| | - Masaki Kobayashi
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395 Japan
| |
Collapse
|
179
|
Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules 2020; 10:E1141. [PMID: 32759676 PMCID: PMC7463752 DOI: 10.3390/biom10081141] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review.
Collapse
Affiliation(s)
- Amanda B. Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sarah K. Gersing
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sven Larsen-Ledet
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sofie V. Nielsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Amelie Stein
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| |
Collapse
|
180
|
Li Y, Sun D, Ma Z, Yamaguchi K, Wang L, Zhong S, Yan X, Shang B, Nagashima Y, Koiwa H, Han J, Xie Q, Zhou M, Wang Z, Zhang X. Degradation of SERRATE via ubiquitin-independent 20S proteasome to survey RNA metabolism. NATURE PLANTS 2020; 6:970-982. [PMID: 32690892 PMCID: PMC7426255 DOI: 10.1038/s41477-020-0721-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/16/2020] [Indexed: 05/18/2023]
Abstract
SERRATE (SE) is a key factor in RNA metabolism. Here, we report that SE binds 20S core proteasome α subunit G1 (PAG1) among other components and is accumulated in their mutants. Purified PAG1-containing 20S proteasome degrades recombinant SE via an ATP- and ubiquitin-independent manner in vitro. Nevertheless, PAG1 is a positive regulator for SE in vivo, as pag1 shows comparable molecular and/or developmental defects relative to se. Furthermore, SE is poorly assembled into macromolecular complexes, exemplified by the microprocessor in pag1 compared with Col-0. SE overexpression triggered the destruction of both transgenic and endogenous protein, leading to similar phenotypes of se and SE overexpression lines. We therefore propose that PAG1 degrades the intrinsically disordered portion of SE to secure the functionality of folded SE that is assembled and protected in macromolecular complexes. This study provides insight into how the 20S proteasome regulates RNA metabolism through controlling its key factor in eukaryotes.
Collapse
Affiliation(s)
- Yanjun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Di Sun
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Zeyang Ma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Karissa Yamaguchi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Lin Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Songxiao Zhong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Xingxing Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Baoshuan Shang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Yukihiro Nagashima
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Jiajia Han
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhiye Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA.
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
181
|
Tsimokha AS, Artamonova TO, Diakonov EE, Khodorkovskii MA, Tomilin AN. Post-Translational Modifications of Extracellular Proteasome. Molecules 2020; 25:molecules25153504. [PMID: 32752045 PMCID: PMC7435879 DOI: 10.3390/molecules25153504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is one of the major protein degradation pathways in eukaryotic cells. Abnormal functioning of this system has been observed in cancer and neurological diseases. The 20S proteasomes, essential components of the UPS, are present not only within the cells but also in the extracellular space, and their concentration in blood plasma has been found to be elevated and dependent upon the disease state, being of prognostic significance in patients suffering from cancer, liver diseases, and autoimmune diseases. However, functions of extracellular proteasomes and mechanisms of their release by cells remain largely unknown. The main mechanism of proteasome activity regulation is provided by modulation of their composition and post-translational modifications (PTMs). Moreover, diverse PTMs of proteins are known to participate in the loading of specific elements into extracellular vesicles. Since previous studies have revealed that the transport of extracellular proteasomes may occur via extracellular vesicles, we have set out to explore the PTMs of extracellular proteasomes in comparison to cellular counterparts. In this work, cellular and extracellular proteasomes were affinity purified and separated by SDS-PAGE for subsequent trypsinization and matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) analysis. In total, we could identify 64 and 55 PTM sites in extracellular and cellular proteasomes, respectively, including phosphorylation, ubiquitination, acetylation, and succinylation. We observed novel sites of acetylation at K238 and K192 of the proteasome subunits β2 and β3, respectively, that are specific for extracellular proteasomes. Moreover, cellular proteasomes show specific acetylation at K227 of α2 and ubiquitination at K201 of β3. Interestingly, succinylation of β6 at the residue K228 seems not to be present exclusively in extracellular proteasomes, whereas both extracellular and cellular proteasomes may also be acetylated at this site. The same situation takes place at K201 of the β3 subunit where ubiquitination is seemingly specific for cellular proteasomes. Moreover, crosstalk between acetylation, ubiquitination, and succinylation has been observed in the subunit α3 of both proteasome populations. These data will serve as a basis for further studies, aimed at dissection of the roles of extracellular proteasome-specific PTMs in terms of the function of these proteasomes and mechanism of their transport into extracellular space.
Collapse
Affiliation(s)
- Anna S. Tsimokha
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 Saint-Petersburg, Russia; (T.O.A.); (E.E.D.); (M.A.K.); (A.N.T.)
- Correspondence: ; Tel.: +7-812-297-1829; Fax: +7-812-297-0341
| | - Tatiana O. Artamonova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 Saint-Petersburg, Russia; (T.O.A.); (E.E.D.); (M.A.K.); (A.N.T.)
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., 195251 Saint-Petersburg, Russia
| | - Egor E. Diakonov
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 Saint-Petersburg, Russia; (T.O.A.); (E.E.D.); (M.A.K.); (A.N.T.)
| | - Mikhail A. Khodorkovskii
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 Saint-Petersburg, Russia; (T.O.A.); (E.E.D.); (M.A.K.); (A.N.T.)
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., 195251 Saint-Petersburg, Russia
| | - Alexey N. Tomilin
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 Saint-Petersburg, Russia; (T.O.A.); (E.E.D.); (M.A.K.); (A.N.T.)
| |
Collapse
|
182
|
Aichem A, Groettrup M. The ubiquitin-like modifier FAT10 - much more than a proteasome-targeting signal. J Cell Sci 2020; 133:133/14/jcs246041. [PMID: 32719056 DOI: 10.1242/jcs.246041] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) also called ubiquitin D (UBD) is a member of the ubiquitin-like modifier (ULM) family. The FAT10 gene is localized in the MHC class I locus and FAT10 protein expression is mainly restricted to cells and organs of the immune system. In all other cell types and tissues, FAT10 expression is highly inducible by the pro-inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor (TNF). Besides ubiquitin, FAT10 is the only ULM which directly targets its substrates for degradation by the 26S proteasome. This poses the question as to why two ULMs sharing the proteasome-targeting function have evolved and how they differ from each other. This Review summarizes the current knowledge of the special structure of FAT10 and highlights its differences from ubiquitin. We discuss how these differences might result in differential outcomes concerning proteasomal degradation mechanisms and non-covalent target interactions. Moreover, recent insights about the structural and functional impact of FAT10 interacting with specific non-covalent interaction partners are reviewed.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland .,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
183
|
Miake J. A Novel Treatment for Arrhythmias via the Control of the Degradation of Ion Channel Proteins. Yonago Acta Med 2020; 63:146-153. [PMID: 32884433 DOI: 10.33160/yam.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 11/05/2022]
Abstract
Although there are many reports on the regulation of ion channel expression in transcription and translation, few drugs have been studied to influence post-translational modification of ion channel proteins. The Kv1.5 channel is a potassium ion channel expressed in atrial muscle, belongs to the voltage-gated K+ channel superfamily, and forms an ultrarapid delayed rectifier potassium ion current. It is important to understand the fate of these channel proteins, as cardiac Kv1.5 mutations can cause arrhythmias. Disruption of quantitative and qualitative control mechanisms of channels leads to stagnation and degradation of intracellular channel proteins. As a result, ion channel proteins are not transported to the cell membrane and are involved in the development of atrial fibrillation. This review takes the Kv1.5 channel as an example and focuses on the degradation mechanism of ion channel proteins, and discusses its application to the treatment of arrhythmia by drugs that control the mechanism of ion channel protein degradation.
Collapse
Affiliation(s)
- Junichiro Miake
- Division of Pharmacology, Department of Pathophysiological and Therapeutic Science, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
184
|
Guzmán-Téllez P, Martínez-Valencia D, Silva-Olivares A, Del Ángel RM, Serrano-Luna J, Shibayama M. Naegleria fowleri and Naegleria gruberi 20S proteasome: identification and characterization. Eur J Cell Biol 2020; 99:151085. [PMID: 32646643 DOI: 10.1016/j.ejcb.2020.151085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022] Open
Abstract
The Naegleria are ubiquitous free-living amoebae and are characterized by the presence of three phases in their biological cycle: trophozoite, cyst and flagellate. Of this genus, only Naegleria fowleri has been reported as pathogenic to humans. The proteasome is a multi-catalytic complex and is considered to be the most important structure responsible for the degradation of intracellular proteins. This structure is related to the maintenance of cellular homeostasis and, in pathogenic microorganisms, to the modulation of their virulence. Until now, the proteasome and its function have not been described for the Naegleria genus. In the current study, using bioinformatic analysis, protein sequences homologous to those reported for the subunits of the 20S proteasome in other organisms were found, and virtual modelling was used to determine their three-dimensional structure. The presence of structural and catalytic subunits of the 20S proteasome was detected by Western and dot blot assays. Its localization was observed by immunofluorescence microscopy to be mainly in the cytoplasm, and a leading role of the chymotrypsin-like catalytic activity was determined using fluorogenic peptidase assays and specific proteasome inhibitors. Finally, the role of the 20S proteasome in the proliferation and differentiation of Naegleria genus trophozoites was demonstrated.
Collapse
Affiliation(s)
- Paula Guzmán-Téllez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Diana Martínez-Valencia
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Rosa M Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico.
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico.
| |
Collapse
|
185
|
Saha A, Oanca G, Mondal D, Warshel A. Exploring the Proteolysis Mechanism of the Proteasomes. J Phys Chem B 2020; 124:5626-5635. [PMID: 32498514 DOI: 10.1021/acs.jpcb.0c04435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proteasome is a key protease in the eukaryotic cells which is responsible for various important cellular processes such as the control of the cell cycle, immune responses, protein homeostasis, inflammation, apoptosis, and the response to proteotoxic stress. Acting as a major molecular machine for protein degradation, proteasome first identifies damaged or obsolete regulatory proteins by attaching ubiquitin chains and subsequently utilizes conserved pore loops of the heterohexameric ring of AAA+ (ATPases associated with diverse cellular activities) to pull and mechanically unfold and translocate the misfolded protein to the active site for proteolysis. A detailed knowledge of the reaction mechanism for this proteasomal proteolysis is of central importance, both for fundamental understanding and for drug discovery. The present study investigates the mechanism of the proteolysis by the proteasome with full consideration of the protein's flexibility and its impact on the reaction free energy. Major attention is paid to the role of the protein electrostatics in determining the activation barriers. The reaction mechanism is studied by considering a small artificial fluorogenic peptide substrate (Suc-LLVY-AMC) and evaluating the activation barriers and reaction free energies for the acylation and deacylation steps, by using the empirical valence bond method. Our results shed light on the proteolysis mechanism and thus should be important for further studies of the proteasome action.
Collapse
Affiliation(s)
- Arjun Saha
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave., Los Angeles, California 90089-1062, United States
| | - Gabriel Oanca
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave., Los Angeles, California 90089-1062, United States
| | - Dibyendu Mondal
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave., Los Angeles, California 90089-1062, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave., Los Angeles, California 90089-1062, United States
| |
Collapse
|
186
|
Shagufta, Ahmad I. Transition metal complexes as proteasome inhibitors for cancer treatment. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
187
|
Genetic Selection Based on a Ste6 *C-HA-Ura3 Substrate Identifies New Cytosolic Quality Control Alleles in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:1879-1891. [PMID: 32299823 PMCID: PMC7263692 DOI: 10.1534/g3.120.401186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein quality control in the cytosol (CytoQC) is an important cellular pathway consisting of a network of components which monitor the folding of cytosolic proteins and ensure the efficient removal of aberrant ones. Our understanding of CytoQC mechanisms is limited in part by the ability of current approaches to identify new genes in the pathway. In this study, we developed a CytoQC reporter substrate, Ste6*C-HA-Ura3, for a new genetic selection of spontaneous CytoQC mutations in the yeast Saccharomyces cerevisiae In addition to UBR1, which encodes for a known CytoQC E3 ligase, we identified six new CytoQC candidates. In the preliminary characterization of two mutants, we found that Doa4 is involved in the degradation of misfolded substrates while Pup2 functions in the selectivity of CytoQC and ERAD substrates. Overall, the strategy demonstrates the potential to identify novel genes and advance our understanding of CytoQC.
Collapse
|
188
|
Li F, Jäger V. Synthesis of proteasome inhibitor 6-deoxy-omuralide and its enantiomer using stereoselective alkylation of substituted proline ester. Org Biomol Chem 2020; 18:4423-4432. [PMID: 32469026 DOI: 10.1039/d0ob01053g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A potent 20S proteasome inhibitor, 6-deoxy-omuralide was stereoselectively synthesized in 20 steps with 5.1% overall yield staring from a chiral boron agent and d-glyceraldehyde acetonide. The stereoselective alkylation of the substituted proline ester with 3-iodo-2-methylprop-1-ene served as the key step. The enantiomer of 6-deoxy-omuralide was achieved in 20 steps with 4.6% overall yield by just changing the chiral boron reagents in the first step. Our current work provides a flexible approach to 6-deoxy-omuralide and its enantiomer with the adornment at the C4 position.
Collapse
Affiliation(s)
- Feng Li
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Volker Jäger
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| |
Collapse
|
189
|
The Proteasome Governs Fungal Morphogenesis via Functional Connections with Hsp90 and cAMP-Protein Kinase A Signaling. mBio 2020; 11:mBio.00290-20. [PMID: 32317319 PMCID: PMC7175089 DOI: 10.1128/mbio.00290-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein homeostasis is critical for proliferation and viability of all organisms. For Candida albicans, protein homeostasis also modulates the transition between yeast and filamentous forms, which is critical for virulence. A key regulator of morphogenesis is the molecular chaperone Hsp90, which mediates proteostasis under physiological and stress conditions. Hsp90 regulates morphogenesis by repressing cyclic AMP-protein kinase A (cAMP-PKA) signaling, such that inhibition of Hsp90 causes filamentation in the absence of an inducing cue. We explored the effect of perturbation of another facet of protein homeostasis and discovered that morphogenesis is also regulated by the proteasome, a large 33-subunit protein complex consisting of a 20S catalytic core and two 19S regulatory particles, which controls degradation of intracellular proteins. We identified a conserved role of the proteasome in morphogenesis as pharmacological inhibition of the proteasome induced filamentation of C. albicans and the related species Candida dubliniensis, Candida tropicalis, Candida krusei, and Candida parapsilosis For C. albicans, genetic depletion of any of 29 subunits of the 19S or 20S particle induced filamentation. Filaments induced by inhibition of either the proteasome or Hsp90 have shared structural characteristics, such as aberrant nuclear content, and shared genetic dependencies, such as intact cAMP-PKA signaling. Consistent with a functional connection between these facets of protein homeostasis that modulate morphogenesis, we observed that proteasome inhibition results in an accumulation of ubiquitinated proteins that overwhelm Hsp90 function, relieving Hsp90-mediated repression of morphogenesis. Together, our findings provide a mechanism whereby interconnected facets of proteostasis regulate C. albicans morphogenesis.IMPORTANCE Fungi cause life-threatening infections and pose a serious threat to human health as there are very few effective antifungal drugs. Candida albicans is a major human fungal pathogen and cause of morbidity and mortality in immunocompromised individuals. A key trait that enables C. albicans virulence is its ability to transition between yeast and filamentous forms. Understanding the mechanisms regulating this virulence trait can facilitate the development of much-needed, novel therapeutic strategies. A key regulator of morphogenesis is the molecular chaperone Hsp90, which is crucial for proteostasis. Here, we expanded our understanding of how proteostasis regulates fungal morphogenesis and identified the proteasome as a repressor of filamentation in C. albicans and related species. Our work suggests that proteasome inhibition overwhelms Hsp90 function, thereby inducing morphogenesis. This work provides a foundation for understanding the role of the proteasome in fungal virulence and offers potential for targeting the proteasome to disarm fungal pathogens.
Collapse
|
190
|
AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Biomolecules 2020; 10:biom10040629. [PMID: 32325699 PMCID: PMC7226402 DOI: 10.3390/biom10040629] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022] Open
Abstract
Adenosine triphosphatases (ATPases) associated with a variety of cellular activities (AAA+), the hexameric ring-shaped motor complexes located in all ATP-driven proteolytic machines, are involved in many cellular processes. Powered by cycles of ATP binding and hydrolysis, conformational changes in AAA+ ATPases can generate mechanical work that unfolds a substrate protein inside the central axial channel of ATPase ring for degradation. Three-dimensional visualizations of several AAA+ ATPase complexes in the act of substrate processing for protein degradation have been resolved at the atomic level thanks to recent technical advances in cryogenic electron microscopy (cryo-EM). Here, we summarize the resulting advances in structural and biochemical studies of AAA+ proteases in the process of proteolysis reactions, with an emphasis on cryo-EM structural analyses of the 26S proteasome, Cdc48/p97 and FtsH-like mitochondrial proteases. These studies reveal three highly conserved patterns in the structure–function relationship of AAA+ ATPase hexamers that were observed in the human 26S proteasome, thus suggesting common dynamic models of mechanochemical coupling during force generation and substrate translocation.
Collapse
|
191
|
Transient knots in intrinsically disordered proteins and neurodegeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:79-103. [PMID: 32828471 DOI: 10.1016/bs.pmbts.2020.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We provide a brief overview of the topological features found in structured proteins and of the dynamical processes that involve knots. We then discuss the knotted states that arise in the intrinsically disordered polyglutamine and α-synuclein. We argue that the existence of the knotted conformations stalls degradation by proteases and thus enhances aggregation. This mechanism works if the length of a peptide chain exceeds a threshold, as in the Huntington disease. We also study the cavities that form within the conformations of the disordered proteins. The volume of the cavities varies in time in a way that is different than that of the radius of gyration or the end-to-end distance. In addition, we study the traffic between the conformational basins and identify patterns associated with the deep and shallow knots. The results are obtained by molecular dynamics simulations that use coarse-grained and all-atom models (with and without the explicit solvent).
Collapse
|
192
|
Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin-Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel) 2020; 12:cancers12040902. [PMID: 32272746 PMCID: PMC7226376 DOI: 10.3390/cancers12040902] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
193
|
Niu X, Ma S, Hu Y, Jin C. Backbone 1H, 13C and 15N resonance assignments of the proteasome lid subunit Rpn12 from Saccharomyces cerevisiae. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:147-150. [PMID: 32072453 DOI: 10.1007/s12104-020-09935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
The 26S proteasome degrades selected polyubiquitinated proteins in the ubiquitin-proteasome system, which is the major pathway for programmed protein degradation in eukaryotic cells. The Saccharomyces cerevisiae Rpn12 locates in the lid of the 19S regulatory particle within the 26S proteasome and plays a role in recruiting the extrinsic ubiquitin receptor Rpn10. Rpn12 contains a N-terminal TPR (tetratrico peptide repeat)-like domain and a C-terminal WH (winged helix) domain. Interaction of Rpn12 with several subunits of 19S has been observed and it may play an important role in the 19S regulatory particle rearrangement after ubiquitylated substrate binding to the proteasome. Herein, we report the resonance assignments of backbone 1H, 13C and 15N atoms of the Saccharomyces cerevisiae Rpn12, which provide valuable information for further studies of the dynamics and interactions of the Rpn12 subunit using NMR techniques.
Collapse
Affiliation(s)
- Xiaogang Niu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Shuaipeng Ma
- College of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Yunfei Hu
- Wuhan Institute of Physics and Mathematics, CAS, Wuhan, 430071, China
| | - Changwen Jin
- College of Life Sciences, Peking University, Beijing, 100871, China.
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
194
|
Elmatboly AM, Sherif AM, Deeb DA, Benmelouka A, Bin-Jumah MN, Aleya L, Abdel-Daim MM. The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11461-11483. [PMID: 32072427 DOI: 10.1007/s11356-020-07914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Aggregation of particular proteins in the form of inclusion bodies or plaques followed by neuronal death is a hallmark of neurodegenerative proteopathies such as primary Parkinsonism, Alzheimer's disease, Lou Gehrig's disease, and Huntington's chorea. Complex polygenic and environmental factors implicated in these proteopathies. Accumulation of proteins in these disorders indicates a substantial disruption in protein homeostasis (proteostasis). Proteostasis or cellular proteome homeostasis is attained by the synchronization of a group of cellular mechanisms called the proteostasis network (PN), which is responsible for the stability of the proteome and achieves the equilibrium between synthesis, folding, and degradation of proteins. In this review, we will discuss the different types of PN and the impact of PN component dysfunction on the four major neurodegenerative diseases mentioned earlier. Graphical abstract.
Collapse
Affiliation(s)
| | - Ahmed M Sherif
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Dalia A Deeb
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Amira Benmelouka
- Faculty of Medicine, University of Algiers, Sidi M'Hamed, Algeria
| | - May N Bin-Jumah
- Biology Department, College Of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
195
|
Wysocka M, Romanowska A, Gruba N, Michalska M, Giełdoń A, Lesner A. A Peptidomimetic Fluorescent Probe to Detect the Trypsin β2 Subunit of the Human 20S Proteasome. Int J Mol Sci 2020; 21:ijms21072396. [PMID: 32244300 PMCID: PMC7177456 DOI: 10.3390/ijms21072396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 01/20/2023] Open
Abstract
This work describes the chemical synthesis, combinatorial selection, and enzymatic evaluation of peptidomimetic fluorescent substrates specific for the trypsin-like (β2) subunit of the 20S human proteasome. After deconvolution of a library comprising nearly 6000 compounds composed of peg substituted diaminopropionic acid DAPEG building blocks, the sequence ABZ–Dap(O2(Cbz))–Dap(GO1)–Dap(O2(Cbz))–Arg–ANB–NH2, where ABZ is 2-aminobenzoic acid, and ANB- 5 amino 2- nitro benzoic acid was selected. Its cleavage followed sigmoidal kinetics, characteristic for allosteric enzymes, with Km = 3.22 ± 0.02 μM, kcat = 245 s−1, and kcat/Km = 7.61 × 107 M−1 s−1. This process was practically halted when a selective inhibitor of the β2 subunit of the 20S human proteasome was supplemented to the reaction system. Titration of the substrate resulting in decreased amounts of proteasome 20S produced a linear signal up to 10−11 M. Using this substrate, we detected human proteasome 20S in human urine samples taken from the bladders of cancer patients. This observation could be useful for the noninvasive diagnosis of this severe disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Lesner
- Correspondence: ; Tel.: +48-585-235-095; Fax: +48-585-235-472
| |
Collapse
|
196
|
Wang X, Meul T, Meiners S. Exploring the proteasome system: A novel concept of proteasome inhibition and regulation. Pharmacol Ther 2020; 211:107526. [PMID: 32173559 DOI: 10.1016/j.pharmthera.2020.107526] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
The proteasome is a well-identified therapeutic target for cancer treatment. It acts as the main protein degradation system in the cell and degrades key mediators of cell growth, survival and function. The term "proteasome" embraces a whole family of distinct complexes, which share a common proteolytic core, the 20S proteasome, but differ by their attached proteasome activators. Each of these proteasome complexes plays specific roles in the control of cellular function. In addition, distinct proteasome interacting proteins regulate proteasome activity in subcellular compartments and in response to cellular signals. Proteasome activators and regulators may thus serve as building blocks to fine-tune proteasome function in the cell according to cellular needs. Inhibitors of the proteasome, e.g. the FDA approved drugs Velcade™, Kyprolis™, Ninlaro™, inactivate the catalytic 20S core and effectively block protein degradation of all proteasome complexes in the cell resulting in inhibition of cell growth and induction of apoptosis. Efficacy of these inhibitors, however, is hampered by their pronounced cytotoxic side-effects as well as by the emerging development of resistance to catalytic proteasome inhibitors. Targeted inhibition of distinct buiding blocks of the proteasome system, i.e. proteasome activators or regulators, represents an alternative strategy to overcome these limitations. In this review, we stress the importance of the diversity of the proteasome complexes constituting an entire proteasome system. Our building block concept provides a rationale for the defined targeting of distinct proteasome super-complexes in disease. We thereby aim to stimulate the development of innovative therapeutic approaches beyond broad catalytic proteasome inhibition.
Collapse
Affiliation(s)
- Xinyuan Wang
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany.
| |
Collapse
|
197
|
Wang L, Yu F, Xu N, Lu L. Grass carp reovirus capsid protein interacts with cellular proteasome subunit beta-type 7: Evidence for the involvement of host proteasome during aquareovirus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:77-86. [PMID: 31846778 DOI: 10.1016/j.fsi.2019.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The eukaryotic proteasome is a large multi-subunit complex that plays an important role in a wide range of fundamental cellular functions by degrading un-needed or damaged proteins, which also can be inverted or manipulated by viruses to favor viral infection. In this study, we demonstrated that proteasome subunit beta-type 7 (PSMB7), a proteasome-constitutive protein that is important for proteasome assembly, interacts with grass carp reovirus (GCRV) capsid proteins. Yeast 2-hybrid assay indicates that capsid protein VP38 of genotype Ⅲ GCRV could bind PSMB7, and this mutual interaction was further confirmed by pull-down, co-immunoprecipitation and subcellular co-localization assays. Furthermore, VP38 homologous proteins, VP7 from genotype I and VP35 from genotype II GCRV, can also interact with host PSMB7 in similar protein-protein interaction assays. Finally, PSMB7 expression level remains stable during GCRV infection, while, psmb7 gene transcription was repressed upon GCRV challenge; interaction with PSMB7 doesn't result in protein degradation of either VP7 or VP38 during viral infection. Thus, the interaction between host PSMB7 and viral capsid protein might suggest that interfering with PSMB7-mediated proteasome assembly should be involved in efficient aquareovirus infection.
Collapse
Affiliation(s)
- Longlong Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Fei Yu
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Ning Xu
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|
198
|
Exploring long-range cooperativity in the 20S proteasome core particle from Thermoplasma acidophilum using methyl-TROSY-based NMR. Proc Natl Acad Sci U S A 2020; 117:5298-5309. [PMID: 32094174 DOI: 10.1073/pnas.1920770117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 20S core particle (CP) proteasome is a molecular assembly catalyzing the degradation of misfolded proteins or proteins no longer required for function. It is composed of four stacked heptameric rings that form a barrel-like structure, sequestering proteolytic sites inside its lumen. Proteasome function is regulated by gates derived from the termini of α-rings and through binding of regulatory particles (RPs) to one or both ends of the barrel. The CP is dynamic, with an extensive allosteric pathway extending from one end of the molecule to catalytic sites in its center. Here, using methyl-transverse relaxation optimized spectroscopy (TROSY)-based NMR optimized for studies of high-molecular-weight complexes, we evaluate whether the pathway extends over the entire 150-Å length of the molecule. By exploiting a number of different labeling schemes, the two halves of the molecule can be distinguished, so that the effects of 11S RP binding, or the introduction of gate or allosteric pathway mutations at one end of the barrel can be evaluated at the distal end. Our results establish that while 11S binding and the introduction of key mutations affect each half of the CP allosterically, they do not further couple opposite ends of the molecule. This may have implications for the function of so-called "hybrid" proteasomes where each end of the CP is bound with a different regulator, allowing the CP to be responsive to both RPs simultaneously. The methodology presented introduces a general NMR strategy for dissecting pathways of communication in homo-oligomeric molecular machines.
Collapse
|
199
|
Sun Q, Zhou T, Xi D, Li X, Lü Z, Xu F, Wang C, Niu Y, Xu P. Design and synthesis of tripeptidyl furylketones as selective inhibitors against the β5 subunit of human 20S proteasome. Eur J Med Chem 2020; 192:112160. [PMID: 32146375 DOI: 10.1016/j.ejmech.2020.112160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/01/2023]
Abstract
A series of tripeptidic proteasome inhibitors with furylketone as C-terminus were designed and synthesized. Biochemical evaluations against β1, β2 and β5 subunits revealed that they acted selectively on β5 subunit with IC50s against chymotrypsin-like (CT-L) activity in micromolar range. LC-MS/MS analysis of the ligand-20S proteasome mixture showed that the most potent compound 11m (IC50 = 0.18 μM) made no covalent modification on 20S proteasome. However, it was identified acting in a slowly reversible manner in wash-out assay and the reversibility was much lower than that of MG132, suggesting the possibility of these tripeptidic furylketones forming reversible covalent bonds with 20S proteasome. Several compounds were selected for anti-proliferative assay towards multiple cancer cell lines, and compound 11m displayed comparable potency to positive control (MG132) in all cell lines tested. Furthermore, the pharmacokinetic (PK) data in rats indicated 11m behaved similarly (Cmax, 2007 μg/L; AUC0-t, 680 μg/L·h; Vss, 0.66 L/kg) to the clinical used agent carfilzomib. All these data suggest 11m is a good lead compound to be developed to novel anti-tumor agent.
Collapse
Affiliation(s)
- Qi Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Tongliang Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dandan Xi
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaona Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zirui Lü
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chao Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
200
|
Hammack LJ, Panfair D, Kusmierczyk AR. A novel proteasome assembly intermediate bypasses the need to form α-rings first. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30312-0. [PMID: 32081431 DOI: 10.1016/j.bbrc.2020.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022]
Abstract
Proteasomes provide the main route of intracellular protein degradation. They consist of a central protease, termed the 20S proteasome, or core particle (CP), that partners with one or more regulatory complexes. The quaternary structure of the CP is conserved across all domains of life and is comprised of four coaxially stacked heptameric rings formed by structurally related α and β subunits. In eukaryotes, biogenesis of the CP is generally assumed to involve the obligate formation of α-rings. These serve as templates upon which β subunits assemble to form half-proteasomes which dimerize to give rise to CP. Here, we demonstrate the in vivo existence of an assembly-competent intermediate containing an incomplete set of both α and β subunits. The novel intermediate exhibits a precursor-product relationship with the well characterized CP assembly intermediate, the 13S. This is the first evidence that eukaryotic CP, like its archaeal and bacterial counterparts, can assemble in an α-ring independent manner.
Collapse
Affiliation(s)
- Lindsay J Hammack
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Dilrajkaur Panfair
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Andrew R Kusmierczyk
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|