151
|
Aggarwal N, Sachin, Nabi B, Aggarwal S, Baboota S, Ali J. Nano-based drug delivery system: a smart alternative towards eradication of viral sanctuaries in management of NeuroAIDS. Drug Deliv Transl Res 2022; 12:27-48. [PMID: 33486689 DOI: 10.1007/s13346-021-00907-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/03/2023]
Abstract
Even though the dawn of highly active antiretroviral therapy (HAART) proved out to be a boon for acquired immunodeficiency syndrome (AIDS) patients, management of HIV infections persists to be a major global health curse. A reduced efficacy with existing conventional therapy for brain targeting has been largely credited to the inability of antiretroviral (ARV) drugs to transmigrate across the blood-brain barrier (BBB) in productive concentrations. The review consists of nano-based drug delivery strategies rendering superior outcomes to delivery of ARV drugs to the viral sanctuaries in the brain. Nano-ART for ARV drugs promotes the development of an optimized dosage regimen, thereby improving the penetration of drugs across the BBB in an attempt to target the central reservoirs hosting viral population. Numerous efforts have been undertaken for making the drug more bioavailable and therapeutically effective by moulding them into various nanostructures. Polymeric nanocarriers, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, nanodiamonds, vesicle-based drug carriers, metal-based nanoparticles, and nano vaccines have been reported for their advancing role as a smart alternative for drug delivery to central nervous system. The high drug loading capacity of nanocarriers and their small size effectuating increased surface to volume ratio is accountable for improved efficacy of ARV drugs when formulated as nanotherapeutics. This review highlights the advancing role of nanotherapeutics in mediating a successful delivery of ARV drugs to eradicate viral loads in treating NeuroAIDS.
Collapse
Affiliation(s)
- Nidhi Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sachin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sumit Aggarwal
- Division of ECD, Indian Council of Medical Research, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
152
|
Tastan B, Tarakcioglu E, Birinci Y, Park Y, Genc S. Role of Exosomal MicroRNAs in Cell-to-Cell Communication. Methods Mol Biol 2022; 2257:269-292. [PMID: 34432284 DOI: 10.1007/978-1-0716-1170-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Exosomes, a type of extracellular vesicle, are small vesicles (30-100 nm) secreted into extracellular space from almost all types of cells. Exosomes mediate cell-to-cell communication carrying various biologically active molecules including microRNAs. Studies have shown that exosomal microRNAs play fundamental roles in healthy and pathological conditions such as immunity, cancer, and inflammation. In this chapter, we introduce the current knowledge on exosome biogenesis, techniques used in exosome research, and exosomal miRNA and their functions in biological and pathological processes.
Collapse
Affiliation(s)
- Bora Tastan
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Emre Tarakcioglu
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Yelda Birinci
- Department of Molecular Biology and Genetics, Science Faculty, Koç University, Istanbul, Turkey
| | - Yongsoo Park
- Department of Molecular Biology and Genetics, Science Faculty, Koç University, Istanbul, Turkey
| | - Sermin Genc
- Department of Neuroscience, Institute of Health Science, University of Dokuz Eylul, Izmir, Turkey. .,Izmir Biomedicine and Genome Center, Izmir, Turkey.
| |
Collapse
|
153
|
Abstract
Exosomes are a new horizon in modern therapy, presenting exciting new opportunities for advanced drug delivery and targeted release. Exosomes are small extracellular vesicles with a size range of 30-100 nm, secreted by all cell types in the human body and carrying a unique collection of DNA fragments, RNA species, lipids, protein biomarkers, transcription factors and metabolites. miRNAs are one of the most common RNA species in exosomes, and they play a role in a variety of biological processes including exocytosis, hematopoiesis and angiogenesis, as well as cellular communication via exosomes. Exosomes can act as cargo to transport this information from donor cells to near and long-distance target cells, participating in the reprogramming of recipient cells.
Collapse
Affiliation(s)
- Nihat Dilsiz
- Molecular Biology & Genetics, Faculty of Engineering & Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| |
Collapse
|
154
|
Lin B, Wang Y, Zhao K, Lü WD, Hui X, Ma Y, Lv R. Exosome-based rare earth nanoparticles for targeted in situ and metastatic tumor imaging with chemo-assisted immunotherapy. Biomater Sci 2021; 10:744-752. [PMID: 34940770 DOI: 10.1039/d1bm01809d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, a tumor exosome system DOX/2DG@E-RENPs with good biocompatibility, low immunogenicity, and a high targeting effect was proposed for theranostics with high chemo-/starvation/immunotherapy efficiency. DOX and 2-deoxy-D-glucose (DOX/2DG) together with rare earth nanoparticles (RENPs) can be simultaneously carried on the exosome by endocytosis of tumor cells and then exocytosis in vitro. This platform has a good monodispersity with an average size of 70 nm, and the system can emit upconversion luminescence and NIR II luminescence under a single NIR laser. In particular, this exosome can target homing cancer cells and kill the origin tumor cells. The strong targeting effect was proved by different cell lines with exosomes from different orthogonal cells (normal/cancer cells and human/mouse sources, respectively), and the in vivo NIR II imaging guided targeted cancer imaging and liver metastases can be realized by intravenous injection of E-RENPs. Furthermore, the good targeted therapeutic effect and in vivo NIR II imaging and metastases of this platform can be proved. The chemotherapy, starvation therapy, and immunotherapy (immune checkpoint inhibitors of an anti-PD-L1 antibody) could achieve effective synergistic therapy for lung adenocarcinoma, and the immunotherapy can be further proved by the clinical data. This will provide a new strategy for the precise targeting and treatment of tumors.
Collapse
Affiliation(s)
- Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Kun Zhao
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Wei-Dong Lü
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Xin Hui
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Yaqun Ma
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| |
Collapse
|
155
|
Exosomes, extracellular vesicles and the eye. Exp Eye Res 2021; 214:108892. [PMID: 34896308 DOI: 10.1016/j.exer.2021.108892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Exosomes are a subset of extracellular vesicles which accommodate a cargo of bioactive biomolecules that generally includes proteins, nucleic acids, lipids, sugars, and related conjugates depicting the cellular environment and are known to mediate a wide array of biological functions, like cellular communication, cellular differentiation, immunomodulation, neovascularization, and cellular waste management. The exponential implication of exosomes in the pathological development and progression of various disorders including neurodegenerative diseases, cardiovascular diseases, and cancer has offered a tremendous opportunity for exploring their role in ocular conditions. Ocular diseases such as age-related macular disease, glaucoma, infectious endophthalmitis, diabetic retinopathy, autoimmune uveitis etc face various challenges in their early diagnosis and treatments due to contributing factors such as delay in the onset of symptoms, microbial identification, difficulty in obtaining samples for biopsy or being diagnosed as masquerade syndromes. Studies have reported unique exosomal cargos that are involved in successful delivery of miRNA or proteins to recipient cells to express desired expression or exploited as a diagnostic marker for various diseases. Furthermore, engineered exosomes can be used for targeted delivery of therapeutics and exosomes being natural nanoparticles found in all types of cells, host may not elicit an immune response against it. With the rapid advancement of opting personalized therapeutics, extending exosomal research to sight-threatening ocular infections can possibly advance the current diagnostic and therapeutic approaches. This review briefs about the current knowledge of exosomes in visual systems, advancements in exosomal and ophthalmic research, participation of exosomes in the pathogenesis of common ocular diseases, the challenges for exosomal therapies along with the future of this promising domain of research for diseases that fatally threaten billions of people worldwide.
Collapse
|
156
|
Lin R, Lopez JP, Cruceanu C, Pierotti C, Fiori LM, Squassina A, Chillotti C, Dieterich C, Mellios N, Turecki G. Circular RNA circCCNT2 is upregulated in the anterior cingulate cortex of individuals with bipolar disorder. Transl Psychiatry 2021; 11:629. [PMID: 34893581 PMCID: PMC8664854 DOI: 10.1038/s41398-021-01746-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 01/12/2023] Open
Abstract
Gene expression dysregulation in the brain has been associated with bipolar disorder, but little is known about the role of non-coding RNAs. Circular RNAs are a novel class of long noncoding RNAs that have recently been shown to be important in brain development and function. However, their potential role in psychiatric disorders, including bipolar disorder, has not been well investigated. In this study, we profiled circular RNAs in the brain tissue of individuals with bipolar disorder. Total RNA sequencing was initially performed in samples from the anterior cingulate cortex of a cohort comprised of individuals with bipolar disorder (N = 13) and neurotypical controls (N = 13) and circular RNAs were identified and analyzed using "circtools". Significant circular RNAs were validated by RT-qPCR and replicated in the anterior cingulate cortex in an independent cohort (24 bipolar disorder cases and 27 controls). In addition, we conducted in vitro studies using B-lymphoblastoid cells collected from bipolar cases (N = 19) and healthy controls (N = 12) to investigate how circular RNAs respond following lithium treatment. In the discovery RNA sequencing analysis, 26 circular RNAs were significantly differentially expressed between bipolar disorder cases and controls (FDR < 0.1). Of these, circCCNT2 was RT-qPCR validated showing significant upregulation in bipolar disorder (p = 0.03). This upregulation in bipolar disorder was replicated in an independent post-mortem human anterior cingulate cortex cohort and in B-lymphoblastoid cell culture. Furthermore, circCCNT2 expression was reduced in response to lithium treatment in vitro. Together, our study is the first to associate circCCNT2 to bipolar disorder and lithium treatment.
Collapse
Affiliation(s)
- Rixing Lin
- grid.14709.3b0000 0004 1936 8649McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Integrated Program in Neuroscience, McGill University, Montreal, QC Canada
| | - Juan Pablo Lopez
- grid.419548.50000 0000 9497 5095Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Bavaria 80804 Germany
| | - Cristiana Cruceanu
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Caroline Pierotti
- grid.266832.b0000 0001 2188 8502Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM USA
| | - Laura M. Fiori
- grid.14709.3b0000 0004 1936 8649McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Alessio Squassina
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Nikolaos Mellios
- grid.266832.b0000 0001 2188 8502Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM USA ,Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada. .,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
157
|
Mikołajczyk K, Spyt D, Zielińska W, Żuryń A, Faisal I, Qamar M, Świniarski P, Grzanka A, Gagat M. The Important Role of Endothelium and Extracellular Vesicles in the Cellular Mechanism of Aortic Aneurysm Formation. Int J Mol Sci 2021; 22:ijms222313157. [PMID: 34884962 PMCID: PMC8658239 DOI: 10.3390/ijms222313157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Homeostasis is a fundamental property of biological systems consisting of the ability to maintain a dynamic balance of the environment of biochemical processes. The action of endogenous and exogenous factors can lead to internal balance disorder, which results in the activation of the immune system and the development of inflammatory response. Inflammation determines the disturbances in the structure of the vessel wall, connected with the change in their diameter. These disorders consist of accumulation in the space between the endothelium and the muscle cells of low-density lipoproteins (LDL), resulting in the formation of fatty streaks narrowing the lumen and restricting the blood flow in the area behind the structure. The effect of inflammation may also be pathological dilatation of the vessel wall associated with the development of aneurysms. Described disease entities strongly correlate with the increased migration of immune cells. Recent scientific research indicates the secretion of specific vesicular structures during migration activated by the inflammation. The review focuses on the link between endothelial dysfunction and the inflammatory response and the impact of these processes on the development of disease entities potentially related to the secretion of extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Klaudia Mikołajczyk
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Dominika Spyt
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Agnieszka Żuryń
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Inaz Faisal
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Murtaz Qamar
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Piotr Świniarski
- Department of Urology and Andrology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland;
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
- Correspondence:
| |
Collapse
|
158
|
Khazaei-Poul Y, Shojaei S, Koochaki A, Ghanbarian H, Mohammadi-Yeganeh S. Evaluating the influence of Human Umbilical Cord Mesenchymal Stem Cells-derived exosomes loaded with miR-3182 on metastatic performance of Triple Negative Breast Cancer cells. Life Sci 2021; 286:120015. [PMID: 34614416 DOI: 10.1016/j.lfs.2021.120015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022]
Abstract
AIMS Deregulation of microRNA (miRNA) function has been linked to numerous human cancers, such as Triple Negative Breast Cancer (TNBC). Exosomes, a subgroup of extracellular vehicles (EVs), can efficiently deliver many different cargo types to the target cell and have an extensive role in delivering therapeutic cargo for treatment. The present study intended to interrogate the effects of exosomal delivery of miR-3182 on TNBC cellular processes. MAIN METHODS Human Umbilical Cord Mesenchymal Stem Cells (HUCMSCs) were cultured and exosomes were isolated and characterized using TEM, SEM, DLS, and Western blot. Exosomes were transfected with miR-3182 and added to the treatment groups. The expression level of miR-3182 and their target genes including mTOR and S6KB1 were evaluated using RT-qPCR. The effects of miR-3182 loaded HUCMSC-exosomes treatment on the cellular aspect of MDA-MB-231 cells including their viability, migration potency, cell cycle status and apoptosis were investigated. KEY FINDINGS According to the results, exosomal miR-3182 significantly abolished cell proliferation and migration (P < 0.05). miR-3182 loaded exosomes also induced apoptosis in TNBC cells by down-regulating mTOR and S6KB1 genes (P < 0.05). SIGNIFICANCE In nutshell, miR-3182-loaded HUCMSC-exosomes can suppress TNBC invasion, suggesting that exosomes containing miR-3182 could be a reliable therapeutic paradigm in TNBC therapy.
Collapse
Affiliation(s)
- Yalda Khazaei-Poul
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samaneh Shojaei
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ameneh Koochaki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samira Mohammadi-Yeganeh
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
159
|
Huang K, Huang L, Zhang X, Zhang M, Wang Q, Lin H, Yu Z, Li X, Liu XB, Wu Q, Wang Y, Wang J, Jin X, Gao H, Han X, Lin R, Cen S, Liu Z, Huang B. Mast cells-derived exosomes worsen the development of experimental cerebral malaria. Acta Trop 2021; 224:106145. [PMID: 34562426 DOI: 10.1016/j.actatropica.2021.106145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Cerebral malaria (CM) is the most severe neurological complication caused by Plasmodium falciparum infection. The accumulating evidence demonstrated that mast cells (MCs) and its mediators played a critical role in mediating malaria severity. Earlier studies identified that exosomes were emerging as key mediators of intercellular communication and can be released from several kinds of MCs. However, the potential functions and pathological mechanisms of MCs-derived exosomes (MCs-Exo) impacting on CM pathogenesis remain largely unknown. Herein, we utilized an experimental CM (ECM) model (C57BL/6 mice infected with P. berghei ANKA strain), and then intravenously (i.v.) injected MCs-Exo into P. berghei ANKA-infected mice to unfold this mechanism and investigate the effect of MCs-Exo on ECM pathogenies. We also used an in vitro model by investigating the pathogenesis development of brain microvascular endothelial cells line (bEnd.3 cells) co-cultured with P. berghei ANKA blood-stage soluble antigen (PbAg) after MCs-Exo treatment. The higher numbers of MCs and levels of MCs degranulation were observed in skin, cervical lymph node, and brain of ECM mice than those of the uninfected mice. Exosomes were successfully isolated from culture supernatants of mouse MCs line (P815 cells) and characterized by spherical vesicles with the diameter of 30-150 nm, and expression of typical exosomal markers (e.g., CD9, CD63, and CD81). The i.v. injection of MCs-Exo dramatically elevated incidence of ECM in the P. berghei ANKA-infected mice, exacerbated liver and brain histopathological damage, promoted Th1 cytokine response, aggravated brain vascular endothelial activation and blood brain barrier breakdown in ECM mice. In addition, the treatment of MCs-Exo led to the decrease of cells viability and mRNA levels of Ang-1, ZO-1, and Claudin-5, but increase of mRNA levels of Ang-2, CCL2, CXCL1, and CXCL9 in bEnd.3 cells co-cultured with PbAg in vitro. Taken together, our data indicated that MCs-Exo could worsen pathogenesis of ECM in mice.
Collapse
|
160
|
Pelizzo G, Silvestro S, Avanzini MA, Zuccotti G, Mazzon E, Calcaterra V. Mesenchymal Stromal Cells for the Treatment of Interstitial Lung Disease in Children: A Look from Pediatric and Pediatric Surgeon Viewpoints. Cells 2021; 10:3270. [PMID: 34943779 PMCID: PMC8699409 DOI: 10.3390/cells10123270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been proposed as a potential therapy to treat congenital and acquired lung diseases. Due to their tissue-regenerative, anti-fibrotic, and immunomodulatory properties, MSCs combined with other therapy or alone could be considered as a new approach for repair and regeneration of the lung during disease progression and/or after post- surgical injury. Children interstitial lung disease (chILD) represent highly heterogeneous rare respiratory diseases, with a wild range of age of onset and disease expression. The chILD is characterized by inflammatory and fibrotic changes of the pulmonary parenchyma, leading to gas exchange impairment and chronic respiratory failure associated with high morbidity and mortality. The therapeutic strategy is mainly based on the use of corticosteroids, hydroxychloroquine, azithromycin, and supportive care; however, the efficacy is variable, and their long-term use is associated with severe toxicity. The role of MSCs as treatment has been proposed in clinical and pre-clinical studies. In this narrative review, we report on the currently available on MSCs treatment as therapeutical strategy in chILD. The progress into the therapy of respiratory disease in children is mandatory to ameliorate the prognosis and to prevent the progression in adult age. Cell therapy may be a future therapy from both a pediatric and pediatric surgeon's point of view.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Valeria Calcaterra
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
161
|
Lahiri D, Nag M, Dey A, Sarkar T, Pattnaik S, Ghosh S, Edinur HA, Pati S, Kari ZA, Ray RR. Exosome-associated host–pathogen interaction: a potential effect of biofilm formation. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractExosomes being non-ionized micro-vesicles with a size range of 30–100 nm possess the ability to bring about intracellular communication and intercellular transport of various types of cellular components like miRNA, mRNA, DNA, and proteins. This is achieved through the targeted transmission of various inclusions to nearby or distant tissues. This is associated with the effective communication of information to bring about changes in physiological properties and functional attributes. The extracellular vesicles (EVs), produced by fungi, parasites, and bacteria, are responsible to bring about modulation/alteration of the immune responses exerted by the host body. The lipids, nucleic acids, proteins, and glycans of EVs derived from the pathogens act as the ligands of different families of pattern recognition receptors of the host body. The bacterial membrane vesicles (BMVs) are responsible for the transfer of small RNA species, along with other types of noncoding RNA thereby playing a key role in the regulation of the host immune system. Apart from immunomodulation, the BMVs are also responsible for bacterial colonization in the host tissue, biofilm formation, and survival therein showing antibiotic resistance, leading to pathogenesis and virulence. This mini-review would focus on the role of exosomes in the development of biofilm and consequent immunological responses within the host body along with an analysis of the mechanism associated with the development of resistance.
Collapse
|
162
|
Zhang J, Hou M, Chen G, Mao H, Chen W, Wang W, Chen J. An electrochemical biosensor based on DNA “nano-bridge” for amplified detection of exosomal microRNAs. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
163
|
Munoz-Perez E, Gonzalez-Pujana A, Igartua M, Santos-Vizcaino E, Hernandez RM. Mesenchymal Stromal Cell Secretome for the Treatment of Immune-Mediated Inflammatory Diseases: Latest Trends in Isolation, Content Optimization and Delivery Avenues. Pharmaceutics 2021; 13:pharmaceutics13111802. [PMID: 34834217 PMCID: PMC8617629 DOI: 10.3390/pharmaceutics13111802] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Considering the high prevalence and the complex pharmacological management of immune-mediated inflammatory diseases (IMIDs), the search for new therapeutic approaches for their treatment is vital. Although the immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSCs) have been extensively studied as a potential therapy in this field, direct MSC implantation presents some limitations that could slow down the clinical translation. Since the beneficial effects of MSCs have been mainly attributed to their ability to secrete a plethora of bioactive factors, their secretome has been proposed as a new and promising pathway for the treatment of IMIDs. Formed from soluble factors and extracellular vesicles (EVs), the MSC-derived secretome has been proven to elicit immunomodulatory effects that control the inflammatory processes that occur in IMIDs. This article aims to review the available knowledge on the MSC secretome, evaluating the advances in this field in terms of its composition, production and application, as well as analyzing the pending challenges in the field. Moreover, the latest research involving secretome administration in IMIDs is discussed to provide an updated state-of-the-art for this field. Finally, novel secretome delivery alternatives are reviewed, paying special attention to hydrogel encapsulation as one of the most convenient and promising strategies.
Collapse
Affiliation(s)
- Elena Munoz-Perez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
| | - Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| |
Collapse
|
164
|
Zhang X, Hsueh MF, Huebner JL, Kraus VB. TNF-α Carried by Plasma Extracellular Vesicles Predicts Knee Osteoarthritis Progression. Front Immunol 2021; 12:758386. [PMID: 34691080 PMCID: PMC8526961 DOI: 10.3389/fimmu.2021.758386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022] Open
Abstract
Objectives To identify plasma extracellular vesicles (EVs) associated with radiographic knee osteoarthritis (OA) progression. Methods EVs of small (SEV), medium (MEV) and large (LEV) sizes from plasma of OA participants (n=30) and healthy controls (HCs, n=22) were profiled for surface markers and cytokine cargo by high-resolution flow cytometry. The concentrations of cytokines within (endo-) and outside (exo-) EVs were quantified by multiplex ELISA. EV associations with knee radiographic OA (rOA) progression were assessed by multivariable linear regression (adjusted for baseline clinical variables of age, gender, BMI and OA severity) and receiver operating characteristic (ROC) curve analysis. Results Based on integrated mean fluorescence intensity (iMFI), baseline plasma MEVs carrying CD56 (corresponding to natural killer cells) predicted rOA progression with highest area under the ROC curve (AUC) 0.714 among surface markers. Baseline iMFI of TNF-α in LEVs, MEVs and SEVs, and the total endo-EV TNF-α concentration, predicted rOA progression with AUCs 0.688, 0.821, 0.821, 0.665, respectively. In contrast, baseline plasma exo-EV TNF-α (the concentration in the same unit of plasma after EV depletion) did not predict rOA progression (AUC 0.478). Baseline endo-EV IFN-γ and exo-EV IL-6 concentrations were also associated with rOA progression, but had low discriminant capacity (AUCs 0.558 and 0.518, respectively). Conclusions Plasma EVs carry pro-inflammatory cargo that predict risk of knee rOA progression. These findings suggest that EV-associated TNF-α may be pathogenic in OA. The sequestration of pathogenic TNF-α within EVs may provide an explanation for the lack of success of systemic TNF-α inhibitors in OA trials to date.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States.,Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Ming-Feng Hsueh
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States.,Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States.,Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States.,Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
165
|
Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapy for Alzheimer's Disease: Progress and Opportunity. MEMBRANES 2021; 11:membranes11100796. [PMID: 34677562 PMCID: PMC8540094 DOI: 10.3390/membranes11100796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD), as a neurodegenerative disorder, is characterized by mass neuronal and synaptic loss and, currently, there are no successful curative therapies. Extracellular vesicles (EVs) are an emerging approach to intercellular communication via transferring cellular materials such as proteins, lipids, mRNAs, and miRNAs from parental cells to recipient cells, leading to the reprogramming of the molecular machinery. Numerous studies have suggested the therapeutic potential of EVs derived from mesenchymal stem cells (MSCs) in the treatment of AD, based on the neuroprotective, regenerative and immunomodulatory effects as effective as MSCs. In this review, we focus on the biology and function of EVs, the potential of MSC-derived EVs for AD therapy in preclinical and clinical studies, as well as the potent mechanisms of MSC-derived EVs actions. Finally, we highlight the modification strategies and diagnosis utilities in order to make advance in this field.
Collapse
|
166
|
The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. Int J Mol Sci 2021; 22:ijms221910743. [PMID: 34639084 PMCID: PMC8509551 DOI: 10.3390/ijms221910743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to trauma is one of the most important and prevalent risk factors for mental and physical ill-health. Excessive or prolonged stress exposure increases the risk of a wide variety of mental and physical symptoms. However, people differ strikingly in their susceptibility to develop signs and symptoms of mental illness after traumatic stress. Post-traumatic stress disorder (PTSD) is a debilitating disorder affecting approximately 8% of the world’s population during their lifetime, and typically develops after exposure to a traumatic event. Despite that exposure to potentially traumatizing events occurs in a large proportion of the general population, about 80–90% of trauma-exposed individuals do not develop PTSD, suggesting an inter-individual difference in vulnerability to PTSD. While the biological mechanisms underlying this differential susceptibility are unknown, epigenetic changes have been proposed to underlie the relationship between exposure to traumatic stress and the susceptibility to develop PTSD. Epigenetic mechanisms refer to environmentally sensitive modifications to DNA and RNA molecules that regulate gene transcription without altering the genetic sequence itself. In this review, we provide an overview of various molecular biological, biochemical and physiological alterations in PTSD, focusing on changes at the genomic and epigenomic level. Finally, we will discuss how current knowledge may aid us in early detection and improved management of PTSD patients.
Collapse
|
167
|
Padda J, Khalid K, Khedr A, Patel V, Al-Ewaidat OA, Tasnim F, Padda S, Cooper AC, Jean-Charles G. Exosome-Derived microRNA: Efficacy in Cancer. Cureus 2021; 13:e17441. [PMID: 34589347 PMCID: PMC8460558 DOI: 10.7759/cureus.17441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Exosome-derived microRNA (miRNA) has been the focus of attention in recent years. Mainly, their role in the pathogenesis of different types of cancer has been extensively studied. The different types of exosomal miRNAs (exomiRs) act as either oncogenes or oncosupressors. They have potential prognostic and diagnostic efficacy in different types of cancer due to their high stability and easy detection in bodily fluids. This is especially true in lung cancer, colorectal cancer, ovarian cancer, and breast cancer. However, their efficacy as potential therapies has not been widely investigated. This review will discuss the structure and functions of exosomes and miRNA, as well as the role of exomiRs in the pathogenesis of different types of cancer through boosting growth, promoting progression, chemotherapy resistance, angiogenesis, metastasis, and immune system evasion. We will also discuss the application of exomiRs in diagnosing different types of cancer and their role in prognosis. Furthermore, we shed light on the challenges of developing therapeutic agents using miRNAs and how the carriage of therapeutic miRNA by exosomes can help solve these challenges. Finally, we examine recent studies exploring the potential of exomiRs in treating cancers such as neuroblastoma, glioblastoma, and melanoma.
Collapse
Affiliation(s)
| | | | - Anwar Khedr
- Internal Medicine, JC Medical Center, Orlando, USA
| | - Vinay Patel
- Internal Medicine, JC Medical Center, Orlando, USA
| | | | | | | | | | - Gutteridge Jean-Charles
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, Advent Health & Orlando Health Hospital, Orlando, USA
| |
Collapse
|
168
|
An enriched environment prevents cognitive impairment in an Alzheimer's disease model by enhancing the secretion of exosomal microRNA-146a from the choroid plexus. Brain Behav Immun Health 2021; 9:100149. [PMID: 34589894 PMCID: PMC8474441 DOI: 10.1016/j.bbih.2020.100149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by the extensive deposition of amyloid-β plaques and neurofibrillary tangles. We previously found that preserved function of astrocytes is associated with cognitively normal subjects with AD pathology. Here we show that an enriched environment (EE) can prevent cognitive impairment in AD model mice by ameliorating astrocytic inflammation and increasing synaptic density in the subiculum area of the hippocampus. In AD model mice treated with an EE, increased levels of microRNA (miR)-146a and down-regulation of NF-κB were observed in the hippocampus. In addition, increased levels of interferon (IFN)-γ were seen in serum from mice exposed to an EE. In vitro, enhanced miR-146a expression was observed in exosomes derived from the choroid plexus (CP) after IFN-γ treatment. In further in vitro experiments, we transfected miR-146a into Aβ/lipopolysaccharide-induced inflammatory astrocytes and showed that miR-146a ameliorated astrocytic inflammation by down-regulating tumor necrosis factor receptor-associated factor 6 and NF-κB. The present study indicates that following an EE, exosomal miR-146a derived from the CP cells is a key factor in ameliorating astrocytic inflammation, leading to synaptogenesis and correction of cognitive impairment. An enriched environment (EE) prevented the cognitive impairment in 5 × FAD mice. An EE inhibited astrocytic inflammation and increased miR-146a in hippocampus. An EE increased the levels of interferon-γ (IFN-γ) in serum. IFN-γ increased the secretion of exosomal miR-146a from cultured choroid plexus. Transfection of miR-146a down-regulated NF-κB in cultured astrocytes.
Collapse
|
169
|
Zhao Z, Yang S, Zhou A, Li X, Fang R, Zhang S, Zhao G, Li P. Small Extracellular Vesicles in the Development, Diagnosis, and Possible Therapeutic Application of Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:732702. [PMID: 34527593 PMCID: PMC8435888 DOI: 10.3389/fonc.2021.732702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) persists among the most lethal and broad-spreading malignancies in China. The exosome is a kind of extracellular vesicle (EV) from about 30 to 200 nm in diameter, contributing to the transfer of specific functional molecules, such as metabolites, proteins, lipids, and nucleic acids. The paramount role of exosomes in the formation and development of ESCC, which relies on promoting intercellular communication in the tumor microenvironment (TME), is manifested with immense amounts. Tumor-derived exosomes (TDEs) participate in most hallmarks of ESCC, including tumorigenesis, invasion, angiogenesis, immunologic escape, metastasis, radioresistance, and chemoresistance. Published reports have delineated that exosome-encapsulated cargos like miRNAs may have utility in the diagnosis, as prognostic biomarkers, and in the treatment of ESCC. This review summarizes the function of exosomes in the neoplasia, progression, and metastasis of ESCC, which improves our understanding of the etiology and pathogenesis of ESCC, and presents a promising target for early diagnostics in ESCC. However, recent studies of exosomes in the treatment of ESCC are sparse. Thus, we introduce the advances in exosome-based methods and indicate the possible applications for ESCC therapy in the future.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Fang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
170
|
Zhang C, Song J, Lou L, Qi X, Zhao L, Fan B, Sun G, Lv Z, Fan Z, Jiao B, Yang J. Doxorubicin-loaded nanoparticle coated with endothelial cells-derived exosomes for immunogenic chemotherapy of glioblastoma. Bioeng Transl Med 2021; 6:e10203. [PMID: 34589592 PMCID: PMC8459598 DOI: 10.1002/btm2.10203] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
Treatments of glioblastoma (GBM) have not been very effective, largely due to the inefficiency of drugs in penetrating the blood brain barrier (BBB). In this study, we investigated the potential of exosome-coated doxorubicin (DOX)-loaded nanoparticles (ENPDOX) in BBB penetration, inducing immunogenic cell death (ICD) and promoting survival of GBM-bearing mice. DOX-loaded nanoparticles (NPDOX) were coated with exosomes prepared from mouse brain endothelial bEnd.3 cells. ENPDOX cellular uptake was examined. Penetration of ENPDOX through the BBB was tested in an in vitro transwell system and a GBM mouse model. The effects of ENPDOX in inducing apoptosis and ICD were assessed. Finally, the efficacy of ENPDOX in the treatment of GBM-bearing mice was assessed. ENPDOX was taken up by bEnd.3 cells and could penetrate the BBB both in vitro and in vivo. In vitro, ENDDOX induced apoptosis and ICD of glioma GL261 cells. Systemic administration of ENPDOX resulted in maturation of dendritic cells, activation of cytotoxic cells, altered production of cytokines, suppressed proliferation and increased apoptosis of GBM cells in vivo and prolonged survival of GBM-bearing mice. Our findings indicate that ENPDOX may be a potent therapeutic strategy for GBM which warrants further investigation in clinical application.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurosurgery, the Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jian Song
- Department of Neurosurgery, the Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Lei Lou
- Department of Neurosurgery, the Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xuejiao Qi
- Department of Neurosurgery, the Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Lei Zhao
- Department of Neurosurgery, the Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Bo Fan
- Department of Neurosurgery, the Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Guozhu Sun
- Department of Neurosurgery, the Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Zhongqiang Lv
- Department of Neurosurgery, the Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Zhenzeng Fan
- Department of Neurosurgery, the Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Baohua Jiao
- Department of Neurosurgery, the Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jiankai Yang
- Department of Neurosurgery, the Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
171
|
Altered Proteomic Profile of Adipose Tissue-Derived Mesenchymal Stem Cell Exosomes from Cats with Severe Chronic Gingivostomatitis. Animals (Basel) 2021; 11:ani11082466. [PMID: 34438923 PMCID: PMC8388770 DOI: 10.3390/ani11082466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Feline chronic gingivostomatitis (FCGS) is a common pathology in cats, related to an aberrant immune response. The cause of FCGS remains elusive, despite extensive investigations. A multitude of conditions and infectious agents have been related, without proof of causation, as follows: virus, bacteria, environmental stress, hypersensitivity, etc. In recent years, therapies based on feline adipose-derived mesenchymal stem cells (fAd-MSC) have become an interesting alternative for the treatment of different complex pathologies in cats. Mesenchymal stem cells secrete a wide variety of therapeutic elements, such as bioactive molecules and extracellular vesicles, such as exosomes. It is essential to characterize these elements, to better understand their mechanisms of action. In this study, we show, for the first time, that the proteomic profile of fAd-MSC-derived exosomes, from calicivirus-positive patients with severe FCGS, is altered. Using bioinformatic tools, we have demonstrated the existence of different proteins in the exosomes from diseased patients, responsible for an altered biological effect. In addition, the exosomes do not only experience changes in their cargo, but are also produced in larger quantities. This study might contribute to the better prediction of the clinical outcomes of mesenchymal stem cell treatments in veterinary patients with immune-mediated diseases, such as FCGS. Abstract Feline chronic gingivostomatitis (FCGS) is a pathology with a complicated therapeutic approach and with a prevalence between 0.7 and 12%. Although the etiology of the disease is diverse, feline calicivirus infection is known to be a predisposing factor. To date, the available treatment helps in controlling the disease, but cannot always provide a cure, which leads to a high percentage of refractory animals. Mesenchymal stem cells (MSCs) play a pivotal role in the homeostasis and reparation of different tissues and have the ability to modulate the immune system responses. This ability is, in part, due to the capacity of exosomes to play a part in intercellular cell communication. However, the precise role of MSC-derived exosomes and their alterations in immunocompromised pathologies remains unknown, especially in veterinary patients. The goal of this work was to analyze the proteomic profile of feline adipose tissue-derived MSCs (fAd-MSCs) from calicivirus-positive FCGS patients, and to detect possible modifications of the exosomal cargo, to gain better knowledge of the disease’s etiopathogenesis. Using high-resolution mass spectrometry and functional enrichment analysis with Gene Ontology, exosomes isolated from the fAd-MSCs of five healthy cats and five calicivirus-positive FCGS patients, were pooled and compared. The results showed that the fAd-MSCs from cats suffering from FCGS not only had a higher exosome production, but also their exosomes showed significant alterations in their proteomic profile. Eight proteins were exclusively found in the exosomes from the FCGS group, and five proteins could only be found in the exosomes from the healthy cats. When comparing the exosomal cargo between the two groups, significant upregulation of 17 and downregulation of 13 proteins were detected in the FCGS group compared to the control group. These findings shed light on new perspectives on the roles of MSCs and their relation to this disease, which may help in identifying new therapeutic targets and selecting specific biomarkers.
Collapse
|
172
|
Fang WH, Agrawal DK, Thankam FG. "Smart Exosomes": A Smart Approach for Tendon Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:613-625. [PMID: 34074136 DOI: 10.1089/ten.teb.2021.0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shoulder tendon injuries are the common musculoskeletal disorder resulting in significant pain and disability. These injuries are characterized by chronic inflammation and tissue degeneration. Tendon pathology exhibits poor innate healing ability, enhanced inflammation, disorganized collagen fibers, calcification, and scar tissue formation affecting the normal healing process. Extracellular vesicle, especially exosomes, treatment has been emerging as a potential regenerative strategy improving the outcomes and biomechanical properties, accelerating tenocyte proliferation and migration, reducing inflammation, and facilitating the healing at tendon-bone interface. In this article, we critically reviewed the potential role of exosomes in tendon regeneration and their applications to accelerate the healing response following injury. In addition, the article provides novel insights on the concept of "Smart Exosomes" by programming/manipulating the secretome contents and functions of exosomes in the management of shoulder tendon injury.
Collapse
Affiliation(s)
- William H Fang
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
173
|
Zhang Y, Pan Y, Liu Y, Li X, Tang L, Duan M, Li J, Zhang G. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem Cell Res Ther 2021; 12:434. [PMID: 34344478 PMCID: PMC8336384 DOI: 10.1186/s13287-021-02517-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Scar formation is a common consequence of skin wound healing, and no effective treatment exists. Umbilical cord blood mesenchymal stem cells (UCB-MSCs) can improve wound healing; however, the role of UCB-MSCs remains unclear and whether they can ameliorate scar formation has not been fully elucidated. METHODS To determine the function of UCB-MSCs, we examined and compared the therapeutic effects of UCB-MSCs and UCB-MSC-derived exosomes (UCB-MSC-exo) on skin healing in rats. Moreover, UCB-MSC-exo-specific miRNAs were identified and their effects in inhibiting the human dermal fibroblast (HDF) differentiation into myofibroblasts were investigated. RESULTS Both UCB-MSCs and UCB-MSC-exo accelerated wound closure; reduced scar formation; improved the regeneration of skin appendages, nerves, and vessels; and regulated the natural distribution of collagen fibers in wound healing. Additionally, UCB-MSC-exo suppressed the excessive formation of myofibroblasts and collagen I and increased the proliferation and migration of skin cells in vivo and in vitro. Functional analysis showed that UCB-MSC-derived miRNAs were closely related to the transforming growth factor-β (TGF-β) signaling pathway, which could induce myofibroblast differentiation. We identified abundant miRNAs that were highly expressed in UCB-MSC-exo. miR-21-5p and miR-125b-5p were predicted to contribute to TGF-β receptor type II (TGFBR2) and TGF-β receptor type I (TGFBR1) inhibition, respectively. Using miRNA mimics, we found that miR-21-5p and miR-125b-5p were critical for anti-myofibroblast differentiation in the TGF-β1-induced HDF. CONCLUSION The effect of UCB-MSCs in stimulating regenerative wound healing might be achieved through exosomes, which can be, in part, through miR-21-5p- and miR-125b-5p-mediated TGF-β receptor inhibition, suggesting that UCB-MSC-exo might represent a novel strategy to prevent scar formation during wound healing.
Collapse
Affiliation(s)
- Yan Zhang
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Yingjin Pan
- Center of Prosthodontics and Oral Implantology, Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan, 528000, China
| | - Yanhong Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Xiheng Li
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Liang Tang
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Mengna Duan
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China.
| | - Jiang Li
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China.
- Affiliated Stomatology Hospital of Guangzhou Medical University, 39 Huangsha Ave., Guangzhou, 510080, Guangdong, China.
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 1345 Pudong Rd., Changchun, Jilin, 130600, China.
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), 4899 Juye St., Changchun, Jilin, 130112, China.
| |
Collapse
|
174
|
Extracellular Vesicles as Biological Indicators and Potential Sources of Autologous Therapeutics in Osteoarthritis. Int J Mol Sci 2021; 22:ijms22158351. [PMID: 34361116 PMCID: PMC8347326 DOI: 10.3390/ijms22158351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/30/2022] Open
Abstract
Along with cytokines, extracellular vesicles (EVs) released by immune cells in the joint contribute to osteoarthritis (OA) pathogenesis. By high-resolution flow cytometry, we characterized 18 surface markers and 4 proinflammatory cytokines carried by EVs of various sizes in plasma and synovial fluid (SF) from individuals with knee OA, with a primary focus on immune cells that play a major role in OA pathogenesis. By multiplex immunoassay, we also measured concentrations of cytokines within (endo) and outside (exo) EVs. EVs carrying HLA-DR, -DP and -DQ were the most enriched subpopulations in SF relative to plasma (25–50-fold higher depending on size), suggesting a major contribution to the SF EV pool from infiltrating immune cells in OA joints. In contrast, the CD34+ medium and small EVs, reflecting hematopoietic stem cells, progenitor cells, and endothelial cells, were the most significantly enriched subpopulations in plasma relative to SF (7.3- and 7.7-fold higher). Ratios of EVs derived from neutrophils and lymphocytes were highly correlated between SF and plasma, indicating that plasma EVs could reflect OA severity and serve as systemic biomarkers of OA joint pathogenesis. Select subsets of plasma EVs might also provide next generation autologous biological products for intra-articular therapy of OA joints.
Collapse
|
175
|
Leiva F, Bravo S, Garcia KK, Moya J, Guzman O, Vidal R. Temporal Gene Expression Signature of Plasma Extracellular Vesicles-MicroRNAs from Post-Smolt Coho Salmon Challenged with Piscirickettsia salmonis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:602-614. [PMID: 34390423 DOI: 10.1007/s10126-021-10049-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Piscirickettsiosis is the most important bacterial disease in the Chilean salmon industry, which has borne major economic losses due to failure to control it. Cells use extracellular vesicles (EVs) as an inter-cellular communicators to deliver several factors (e.g., microRNAs) that may regulate the responses of other cells. However, there is limited knowledge about the identification and characterization of EV-miRNAs in salmonids or the effect of infections on these. In this study, Illumina sequencing technology was used to identify Coho salmon plasma EV-miRNAs upon Piscirickettsia salmonis infection at four different time points. A total of 118 novels and 188 known EV-miRNAs, including key immune teleost miRNAs families (e.g., miR-146, miR-122), were identified. A total of 245 EV-miRNAs were detected as differentially expressed (FDR < 5%) in terms of control, with a clear down-regulation pattern throughout the disease. KEGG enrichment results of EV-miRNAs target genes showed that they were grouped mainly in cellular, stress, inflammation and immune responses. Therefore, it is hypothesized that P. salmonis could potentially benefit from unbalanced modulation response of Coho salmon EV-miRNAs in order to promote a hyper-inflammatory and compromised immune response through the suppression of different key immune host miRNAs during the course of the infection, as indicated by the results of this study.
Collapse
Affiliation(s)
- Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Scarlet Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Killen Ko Garcia
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Moya
- Benchmark Animal Health Chile, Santa Rosa 560 Of.26, Puerto Varas, Chile
| | - Osiel Guzman
- IDEVAC SpA, Francisco Bilbao 1129 Of. 306, Osorno, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
176
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
177
|
Alberro A, Iparraguirre L, Fernandes A, Otaegui D. Extracellular Vesicles in Blood: Sources, Effects, and Applications. Int J Mol Sci 2021; 22:ijms22158163. [PMID: 34360924 PMCID: PMC8347110 DOI: 10.3390/ijms22158163] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are important players for intercellular communication. EVs are secreted by almost all cell types; they can transfer information between nearby or distant cells, and they are highly abundant in body fluids. In this review, we describe the general characteristics of EVs, as well as isolation and characterization approaches. Then, we focus on one of the most relevant sources of EVs: the blood. Indeed, apart from EVs secreted by blood cells, EVs of diverse origins travel in the bloodstream. We present the numerous types of EVs that have been found in circulation. Besides, the implications of blood-derived EVs in both physiological and pathological processes are summarized, highlighting their potential as biomarkers for the diagnosis, treatment monitoring, and prognosis of several diseases, and also as indicators of physiological modifications. Finally, the applications of EVs introduced in the circulatory system are discussed. We describe the use of EVs from distinct origins, naturally produced or engineered, autologous, allogeneic, or even from different species and the effects they have when introduced in circulation. Therefore, the present work provides a comprehensive overview of the components, effects, and applications of EVs in blood.
Collapse
Affiliation(s)
- Ainhoa Alberro
- Multiple Sclerosis Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (L.I.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Leire Iparraguirre
- Multiple Sclerosis Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (L.I.)
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - David Otaegui
- Multiple Sclerosis Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (L.I.)
- Correspondence:
| |
Collapse
|
178
|
Kashif H, Shah D, Sukumari-Ramesh S. Dysregulation of microRNA and Intracerebral Hemorrhage: Roles in Neuroinflammation. Int J Mol Sci 2021; 22:8115. [PMID: 34360881 PMCID: PMC8347974 DOI: 10.3390/ijms22158115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health problem and devastating subtype of stroke with high morbidity and mortality. Notably, there is no effective treatment for ICH. Neuroinflammation, a pathological hallmark of ICH, contributes to both brain injury and repair and hence, it is regarded as a potential target for therapeutic intervention. Recent studies document that microRNAs, small non-coding RNA molecules, can regulate inflammatory brain response after ICH and are viable molecular targets to alter brain function. Therefore, there is an escalating interest in studying the role of microRNAs in the pathophysiology of ICH. Herein, we provide, for the first time, an overview of the microRNAs that play roles in ICH-induced neuroinflammation and identify the critical knowledge gap in the field, as it would help design future studies.
Collapse
Affiliation(s)
| | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (D.S.)
| |
Collapse
|
179
|
Flynn JK, Langner CA, Karmele EP, Baker PJ, Pei L, Gorfu EG, Bochart RM, Santiana M, Smelkinson MG, Nutman TB, Altan-Bonnet N, Bosinger SE, Kelsall BL, Brenchley JM, Ortiz AM. Luminal microvesicles uniquely influence translocating bacteria after SIV infection. Mucosal Immunol 2021; 14:937-948. [PMID: 33731830 PMCID: PMC8225551 DOI: 10.1038/s41385-021-00393-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 02/04/2023]
Abstract
Microbial translocation contributes to persistent inflammation in both treated and untreated HIV infection. Although translocation is due in part to a disintegration of the intestinal epithelial barrier, there is a bias towards the translocation of Proteobacteria. We hypothesized that intestinal epithelial microvesicle cargo differs after HIV infection and contributes to biased translocation. We isolated gastrointestinal luminal microvesicles before and after progressive simian immunodeficiency virus (SIV) infection in rhesus macaques and measured miRNA and antimicrobial peptide content. We demonstrate that these microvesicles display decreased miR-28-5p, -484, -584-3p, and -584-5p, and let-7b-3p, as well as increased beta-defensin 1 after SIV infection. We further observed dose-dependent growth sensitivity of commensal Lactobacillus salivarius upon co-culture with isolated microvesicles. Infection-associated microvesicle differences were not mirrored in non-progressively SIV-infected sooty mangabeys. Our findings describe novel alterations of antimicrobial control after progressive SIV infection that influence the growth of translocating bacterial taxa. These studies may lead to the development of novel therapeutics for treating chronic HIV infection, microbial translocation, and inflammation.
Collapse
Affiliation(s)
- Jacob K. Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Charlotte A. Langner
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Erik P. Karmele
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892
| | - Phillip J. Baker
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Luxin Pei
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Edlawit G. Gorfu
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Rachele M. Bochart
- Division of Animal Resources, Yerkes National Primate Research Center (YNPRC), Atlanta, GA 30329
| | - Marianita Santiana
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Thomas B. Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Steven E. Bosinger
- Yerkes Nonhuman Primate Genomics Core Laboratory, YNPRC, Atlanta, GA 30329,Division of Microbiology & Immunology, YNPRC, Atlanta, GA 30329,Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30329
| | - Brian L. Kelsall
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892,Corresponding author: Jason Brenchley, 4 Memorial Drive, 9000 Rockville Pike, Bethesda MD 20892, Phone: 301-496-1498, Fax: 301-480-1535,
| | - Alexandra M. Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| |
Collapse
|
180
|
Simionescu N, Zonda R, Petrovici AR, Georgescu A. The Multifaceted Role of Extracellular Vesicles in Glioblastoma: microRNA Nanocarriers for Disease Progression and Gene Therapy. Pharmaceutics 2021; 13:988. [PMID: 34210109 PMCID: PMC8309075 DOI: 10.3390/pharmaceutics13070988] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive form of brain cancer in adults, characterized by poor survival rates and lack of effective therapies. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression post-transcriptionally through specific pairing with target messenger RNAs (mRNAs). Extracellular vesicles (EVs), a heterogeneous group of cell-derived vesicles, transport miRNAs, mRNAs and intracellular proteins, and have been shown to promote horizontal malignancy into adjacent tissue, as well as resistance to conventional therapies. Furthermore, GB-derived EVs have distinct miRNA contents and are able to penetrate the blood-brain barrier. Numerous studies have attempted to identify EV-associated miRNA biomarkers in serum/plasma and cerebrospinal fluid, but their collective findings fail to identify reliable biomarkers that can be applied in clinical settings. However, EVs carrying specific miRNAs or miRNA inhibitors have great potential as therapeutic nanotools in GB, and several studies have investigated this possibility on in vitro and in vivo models. In this review, we discuss the role of EVs and their miRNA content in GB progression and resistance to therapy, with emphasis on their potential as diagnostic, prognostic and disease monitoring biomarkers and as nanocarriers for gene therapy.
Collapse
Affiliation(s)
- Natalia Simionescu
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
- “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Radu Zonda
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Anca Roxana Petrovici
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Hasdeu Street, 050568 Bucharest, Romania
| |
Collapse
|
181
|
Mentor S, Fisher D. High-Resolution Insights Into the in vitro Developing Blood-Brain Barrier: Novel Morphological Features of Endothelial Nanotube Function. Front Neuroanat 2021; 15:661065. [PMID: 34248507 PMCID: PMC8267063 DOI: 10.3389/fnana.2021.661065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
High-resolution electron microscopy (HREM) imaging of the in vitro blood-brain barrier (BBB), is a promising modality for investigating the dynamic morphological interplay underpinning BBB development. The successful establishment of BBB integrity is grounded in the brain endothelial cells (BEC’s) ability to occlude its paracellular spaces of brain capillaries through the expression of the intercellular tight junction (TJ) proteins. The impermeability of these paracellular spaces are crucial in the regulation of transcellular transport systems to achieve homeostasis of the central nervous system. To-date research describing morphologically, the dynamics by which TJ interaction is orchestrated to successfully construct a specialized barrier remains undescribed. In this study, the application of HREM illuminates the novel, dynamic and highly restrictive BEC paracellular pathway which is founded based on lateral membrane alignment which is the functional imperative for the mechanical juxtapositioning of TJ zones that underpin molecular bonding and sealing of the paracellular space. For the first time, we report on the secretion of a basement membrane in vitro, which allow BECs to orientate themselves into distinct basolateral and apicolateral domains and establish a 3-dimensional BEC construct. We report for the first time, on the expression of nanovesicles bound to the plasma membrane surfaces of the BECs. These membrane-bound vesicles are reported to possess an array of DNA/RNA constituents and chemotaxic properties affecting the formation of nanotubes that span the paracellular space between BECs, facilitating BBB construction, alluding to a functional role in mediating cell-to-cell communication. This study suggests that novel, ultrathin nanotubular (NT) structures are involved in functional roles in bringing into alignment the paracellular space of BECs. Immortalized mouse BECs (b.End3, b.End5) and primary rat cardiac microvascular ECs were used to further validate the in vitro BBB model by profiling variances in peripheral EC monolayer development. These cardiac capillary ECs presented with an opposite topographical profile: large fenestra and intercellular spaces, devoid of morphological ultrastructures. This comparative study alludes to the role of NT facilitation in TJ-induced hemifusion of apicolateral BEC membranes, as a structural event forming the basis for establishing a polarized BBB.
Collapse
Affiliation(s)
- Shireen Mentor
- Neurobiology Research Group, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - David Fisher
- Neurobiology Research Group, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.,Adjunct Professor in School of Health Professions, University of Missouri, Columbia, MO, United States
| |
Collapse
|
182
|
Zhang Y, Yan J, Liu Y, Chen Z, Li X, Tang L, Li J, Duan M, Zhang G. Human Amniotic Fluid Stem Cell-Derived Exosomes as a Novel Cell-Free Therapy for Cutaneous Regeneration. Front Cell Dev Biol 2021; 9:685873. [PMID: 34235150 PMCID: PMC8255501 DOI: 10.3389/fcell.2021.685873] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Adult wound healing often results in fibrotic scarring that is caused by myofibroblast aggregation. Human amniotic fluid stem cells (hAFSCs) exhibit significantly anti-fibrotic scarring properties during wound healing. However, it is little known whether hAFSCs directly or indirectly (paracrine) contribute to this process. Using the full-thickness skin-wounded rats, we investigated the therapeutic potential of hAFSC-derived exosomes (hAFSC-exo). Our results showed that hAFSC-exo accelerated the wound healing rate and improved the regeneration of hair follicles, nerves, and vessels, as well as increased proliferation of cutaneous cells and the natural distribution of collagen during wound healing. Additionally, hAFSC-exo suppressed the excessive aggregation of myofibroblasts and the extracellular matrix. We identified several miRNAs, including let-7-5p, miR-22-3p, miR-27a-3p, miR-21-5p, and miR-23a-3p, that were presented in hAFSC-exo. The functional analysis demonstrated that these hAFSC-exo-miRNAs contribute to the inhibition of the transforming growth factor-β (TGF-β) signaling pathway by targeting the TGF-β receptor type I (TGF-βR1) and TGF-β receptor type II (TGF-βR2). The reduction of TGF-βR1 and TGF-βR2 expression induced by hAFSC-exo was also confirmed in the healing tissue. Finally, using mimics of miRNAs, we found that hAFSC-exo-miRNAs were essential for myofibroblast suppression during the TGF-β1-induced human dermal fibroblast-to-myofibroblast transition in vitro. In summary, this study is the first to show that exosomal miRNAs used in hAFSC-based therapy inhibit myofibroblast differentiation. Our study suggests that hAFSC-exo may represent a strategic tool for suppressing fibrotic scarring during wound healing.
Collapse
Affiliation(s)
- Yan Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Jiaqing Yan
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanhong Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Chen
- Chengnan Branch, Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Xiheng Li
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Liang Tang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Jiang Li
- Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mengna Duan
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
183
|
Ayyar KK, Moss AC. Exosomes in Intestinal Inflammation. Front Pharmacol 2021; 12:658505. [PMID: 34177577 PMCID: PMC8220320 DOI: 10.3389/fphar.2021.658505] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are 30–150 nm sized vesicles released by a variety of cells, and are found in most physiological compartments (feces, blood, urine, saliva, breast milk). They can contain different cargo, including nucleic acids, proteins and lipids. In Inflammatory Bowel Disease (IBD), a distinct exosome profile can be detected in blood and fecal samples. In addition, circulating exosomes can carry targets on their surface for monoclonal antibodies used as IBD therapy. This review aims to understand the exosome profile in humans and other mammals, the cargo contained in them, the effect of exosomes on the gut, and the application of exosomes in IBD therapy.
Collapse
Affiliation(s)
- Kanchana K Ayyar
- Division of Gastroenterology, Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Alan C Moss
- Division of Gastroenterology, Department of Medicine, Boston Medical Center, Boston, MA, United States
| |
Collapse
|
184
|
Vickram A, Srikumar P, Srinivasan S, Jeyanthi P, Anbarasu K, Thanigaivel S, Nibedita D, Jenila Rani D, Rohini K. Seminal exosomes - An important biological marker for various disorders and syndrome in human reproduction. Saudi J Biol Sci 2021; 28:3607-3615. [PMID: 34121904 PMCID: PMC8176048 DOI: 10.1016/j.sjbs.2021.03.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Exosomes are nano-sized membrane vesicles, secreted by different types of cells into the body's biological fluids. They are found in abundance in semen as compared to other fluids. Exosomes contain a cargo of lipid molecules, proteins, phospholipids, cholesterol, mRNAs, and miRNAs. Each molecule of seminal exosomes (SE) has a potential role in male reproduction for childbirth. Many potential candidates are available within the seminal exosomes that can be used as diagnostic markers for various diseases or syndromes associated with male reproduction. Also these seminal exospmes play a major role in female reproductive tract for effective fertilization. AIM The aim of this review is to focus on the advancement of human seminal exosomal research and its various properties. METHODS We used many databases like Scopus, Google scholar, NCBI-NLM and other sources to filter the articles of interest published in exosomes. We used phrases like "Exosomes in human semen", "Composition of exosomes in human semen" and other relevant words to filter the best articles. RESULTS Seminal exosomes play a major role in sperm functions like cell-to-cell communication, motility of the sperm cells, maintaining survival capacity for the sperm in the female reproductive tract and spermatogenesis. Also, seminal exosomes are used as a carrier for many regulatory elements using small RNA molecules. miRNAs of the seminal exosomes can be used as a diagnostic marker for prostate cancer instead of prostate specific antigen (PSA). Epididymosomes can be used as a biomarker for reproductive diseases and male infertility. CONCLUSION Seminal exosomes could be used as biological markers for various reproductive disorders, male infertility diagnosis, and it can be used in anti-retroviral research for the identification of novel therapeutics for HIV-1 infection and transmission.
Collapse
Affiliation(s)
- A.S. Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - P.S. Srikumar
- Unit of Psychiatry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah,Malaysia
| | - S. Srinivasan
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - K. Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - S. Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Dey Nibedita
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - D. Jenila Rani
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah, Malaysia
| |
Collapse
|
185
|
Georgescu A, Simionescu M. Extracellular Vesicles: Versatile Nanomediators, Potential Biomarkers and Therapeutic Agents in Atherosclerosis and COVID-19-Related Thrombosis. Int J Mol Sci 2021; 22:5967. [PMID: 34073119 PMCID: PMC8198837 DOI: 10.3390/ijms22115967] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cells convey information among one another. One instrument employed to transmit data and constituents to specific (target) cells is extracellular vesicles (EVs). They originate from a variety of cells (endothelial, immune cells, platelets, mesenchymal stromal cells, etc.), and consequently, their surface characteristics and cargo vary according to the paternal cell. The cargo could be DNA, mRNA, microRNA, receptors, metabolites, cytoplasmic proteins, or pathological molecules, as a function of which EVs exert different effects upon endocytosis in recipient cells. Recently, EVs have become important participants in a variety of pathologies, including atherogenesis and coronavirus disease 2019 (COVID-19)-associated thrombosis. Herein, we summarize recent advances and some of our own results on the role of EVs in atherosclerotic cardiovascular diseases, and discuss their potential to function as signaling mediators, biomarkers and therapeutic agents. Since COVID-19 patients have a high rate of thrombotic events, a special section of the review is dedicated to the mechanism of thrombosis and the possible therapeutic potential of EVs in COVID-19-related thrombosis. Yet, EV mechanisms and their role in the transfer of information between cells in normal and pathological conditions remain to be explored.
Collapse
Affiliation(s)
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy, 050568 Bucharest, Romania;
| |
Collapse
|
186
|
Bi H, Ren D, Zhang J, Wang H. [Advances in Exosomes in the Pathogenesis and Diagnosis of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:589-596. [PMID: 32702793 PMCID: PMC7406446 DOI: 10.3779/j.issn.1009-3419.2020.104.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The incidence of lung cancer is high worldwide, and lung cancer is the leading cause of death from malignant tumors in both men and women. Early diagnosis of lung cancer can significantly improve the patient's prognosis. Therefore, searching for specific markers to assist in the early diagnosis of lung cancer is urgent question. Exosomes are nano-sized microvesicles and contain various biomaterial, including nucleic acids, proteins, and lipids. Exosomes are important carriers of these biomaterial, serve important roles in intracellular communications and signal transduction among tissues. Due to its unique enrichment mechanism, it has the stability and specificity as a biomarker. Exosomes are not only involved in the formation of tumor microenvironment and new blood vessels in lung cancer, but also involved in chemotherapy, targeted therapy response and prognosis assessment. Many research advances bring new hope for prolonging the survival of lung cancer patients. This article reviews the value of exosome specific protein and microRNA (miRNA) in lung cancer in the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Huanhuan Bi
- Department of Respiratory and Critical Care Medcine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Dunqiang Ren
- Department of Respiratory and Critical Care Medcine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jun Zhang
- Department of Respiratory and Critical Care Medcine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongmei Wang
- Department of Respiratory and Critical Care Medcine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
187
|
Alzhrani GN, Alanazi ST, Alsharif SY, Albalawi AM, Alsharif AA, Abdel-Maksoud MS, Elsherbiny N. Exosomes: Isolation, characterization, and biomedical applications. Cell Biol Int 2021; 45:1807-1831. [PMID: 33913604 DOI: 10.1002/cbin.11620] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are nano-sized bioactive vesicles of 30-150 nm in diameter. They are secreted by exocytosis of nearly all type of cells in to the extracellular fluid. Thereby, they can be found in many biological fluids. Exosomes regulate intracellular communication between cells via delivery of their cargo which include lipids, proteins, and nucleic acid. Many desirable features of exosomes made them promising candidates in several therapeutic applications. In this review, we discuss the use of exosomes as diagnostic tools and their possible biomedical applications. Additionally, current techniques used for isolation, purification, and characterization of exosomes from both biological fluids and in vitro cell cultures were discussed.
Collapse
Affiliation(s)
- Ghadi N Alzhrani
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sarah T Alanazi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sumayyah Y Alsharif
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Amani M Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Anwar A Alsharif
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed S Abdel-Maksoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
188
|
Kim DK, Bandara G, Cho YE, Komarow HD, Donahue DR, Karim B, Baek MC, Kim HM, Metcalfe DD, Olivera A. Mastocytosis-derived extracellular vesicles deliver miR-23a and miR-30a into pre-osteoblasts and prevent osteoblastogenesis and bone formation. Nat Commun 2021; 12:2527. [PMID: 33953168 PMCID: PMC8100305 DOI: 10.1038/s41467-021-22754-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and other manifestations of bone disease are frequent in patients with systemic mastocytosis (SM) in association with the presence of mast cell infiltrates in bone marrow, although the mechanisms behind bone disease remain poorly understood. We find that extracellular vesicles (EVs) released by neoplastic mast cells and present in the serum of patients with SM (SM-EVs) block osteoblast differentiation and mineralization in culture, and when injected into mice diminish the expression of osteoblast markers, and trabecular bone volume and microarchitecture. We demonstrate that miRNA-30a and miRNA-23a, increased in SM-EVs and neoplastic mast cell-derived EVs, attenuate osteoblast maturation by suppressing expression of RUNX2 and SMAD1/5, essential drivers of osteogenesis. Thus, SM-EVs carry and deliver miRNAs that epigenetically interfere with bone formation and can contribute to bone mass reduction in SM. These findings also suggest possibilities for novel approaches to the management of bone disease in mast cell proliferative disorders.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
- Department of Food and Nutrition, Andong National University, Andong, Kyungpook, Republic of Korea
| | - Hirsh D Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Danielle R Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
189
|
Extracellular vesicle-mediated miR135a-5p transfer in hypertensive rat contributes to vascular smooth muscle cell proliferation via targeting FNDC5. Vascul Pharmacol 2021; 140:106864. [PMID: 33865997 DOI: 10.1016/j.vph.2021.106864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Background Extracellular vesicles (EVs) from vascular adventitial fibroblasts (AFs) contribute to the proliferation of vascular smooth muscle cells (VSMCs) and vascular remodeling in spontaneously hypertensive rat (SHR). This study shows the crucial roles of EVs-mediated miR135a-5p transfer in VSMC proliferation and the underlying mechanisms in hypertension. Methods AFs and VSMCs were obtained from the aorta of Wistar-Kyoto rat (WKY) and SHR. EVs were isolated from the culture of AFs with ultracentrifugation method. Results MiR135a-5p level in SHR-EVs was significantly increased. MiR135a-5p inhibitor prevented the SHR-EVs-induced VSMC proliferation. Fibronectin type III domain containing 5 (FNDC5) was a target gene of miR135a-5p. FNDC5 level was lower in VSMCs of SHR. MiR135a-5p inhibitor not only increased FNDC5 expression, but reversed the SHR-EVs-induced FNDC5 downregulation in VSMCs of SHR. MiR135a-5p mimic inhibited FNDC5 expression, but failed to promote the SHR-EVs-induced FNDC5 downregulation in VSMCs of SHR. Exogenous FNDC5 prevented the SHR-EVs-induced VSMC proliferation of both WKY and SHR. Knockdown of miR135a-5p in fibroblasts completely prevented the upregulation of miR135a-5p in the EVs. The SHR-EVs from the miR135a-5p knockdown-treated fibroblasts lost their roles in inhibiting FNDC5 expression and promoting proliferation in VSMCs of both WKY and SHR. Conclusions Increased miR135a-5p in the SHR-EVs promoted VSMC proliferation of WKY and SHR via inhibiting FNDC5 expression. MiR135a-5p and FNDC5 are crucial targets for intervention of VSMC proliferation in hypertension.
Collapse
|
190
|
Komuro H, Kawai-Harada Y, Aminova S, Pascual N, Malik A, Contag CH, Harada M. Engineering Extracellular Vesicles to Target Pancreatic Tissue In Vivo. Nanotheranostics 2021; 5:378-390. [PMID: 33912378 PMCID: PMC8077969 DOI: 10.7150/ntno.54879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
Extracellular vesicles (EVs) are naturally released, cell-derived vesicles that mediate intracellular communication, in part, by transferring genetic information and, thus, have the potential to be modified for use as a therapeutic gene or drug delivery vehicle. Advances in EV engineering suggest that directed delivery can be accomplished via surface alterations. Here we assess enriched delivery of engineered EVs displaying an organ targeting peptide specific to the pancreas. We first characterized the size, morphology, and surface markers of engineered EVs that were decorated with a recombinant protein specific to pancreatic β-cells. This β-cell-specific recombinant protein consists of the peptide p88 fused to the EV-binding domain of lactadherin (C1C2). These engineered EVs, p88-EVs, specifically bound to pancreatic β-cells in culture and transferred encapsulated plasmid DNA (pDNA) as early as in 10 min suggesting that the internalization of peptide-bearing EVs is a rapid process. Biodistribution of p88-EVs administrated intravenously into mice showed an altered pattern of EV localization and improved DNA delivery to the pancreas relative to control EVs, as well as an accumulation of targeting EVs to the pancreas using luciferase activity as a readout. These findings demonstrate that systemic administration of engineered EVs can efficiently deliver their cargo as gene carriers to targeted organs in live animals.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, Michigan, USA
| | - Yuki Kawai-Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, Michigan, USA
| | - Shakhlo Aminova
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, Michigan, USA
- Lyman Briggs College, Michigan State University, Michigan, USA
| | - Nathaniel Pascual
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, Michigan, USA
- Department of Chemical Engineering and Material, Michigan State University, Michigan, USA
| | - Anshu Malik
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, Michigan, USA
| | - Christopher H. Contag
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, Michigan, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, Michigan, USA
| |
Collapse
|
191
|
Xiao K, Dong Z, Wang D, Liu M, Ding J, Chen W, Shang Z, Yue C, Zhang Y. Clinical value of lncRNA CCAT1 in serum extracellular vesicles as a potential biomarker for gastric cancer. Oncol Lett 2021; 21:447. [PMID: 33868485 PMCID: PMC8045156 DOI: 10.3892/ol.2021.12708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) in extracellular vesicles (EVs) are considered to be novel non-invasive biomarkers for gastric cancer (GC). lncRNA colon cancer-associated transcript 1 (CCAT1) is aberrantly expressed in certain types of cancer. However, the role of EV lncRNA CCAT1 in patients with GC remains unclear. The current study aimed to assess the expression levels of lncRNA CCAT1 in the serum EVs of patients with GC and evaluate its potential clinical value. EVs were isolated from serum using a commercial kit and ultracentrifugation, and were identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting. Serum EV lncRNA CCAT1 levels in patients with GC, chronic gastritis or atypical hyperplasia and healthy control subjects were detected by reverse transcription-quantitative PCR. Additionally, lncRNA CCAT1 was detected in GC and adjacent non-cancerous tissue samples. Serum EVs were successfully isolated and identified in all patients. The results revealed that serum EV lncRNA CCAT1 levels in patients with GC were significantly higher compared with those in healthy controls, patients with chronic gastritis or atypical hyperplasia (all P<0.05). Additionally, EV lncRNA CCAT1 expression levels were significantly different among various groups based on the depth of invasion, distant metastasis and the Tumor-Node-Metastasis stage. The area under the curve (AUC) value of EV lncRNA CCAT1 was 0.890 [95% confidence interval (CI), 0.826–0.937] with 79.6% sensitivity and 92.6% specificity. The combination of EV lncRNA CCAT1 and carcinoembryonic antibody produced an AUC value of 0.910 (95% CI, 0.849–0.951) with the sensitivity and specificity of 80.5 and 92.6%, respectively. In addition, lncRNA CCAT1 was determined to be stable in serum EVs. The expression levels of lncRNA CCAT1 in GC tissue were positively correlated with those in serum EVs, and high levels of lncRNA CCAT1 were associated with a low disease-free survival rate in patients with GC. The results of the present study demonstrated that serum EV lncRNA CCAT1 levels were upregulated in patients with GC compared with those healthy subjects and patients with other illnesses, and may therefore be used as a novel biomarker for this type of cancer.
Collapse
Affiliation(s)
- Ke Xiao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ding Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Min Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Juan Ding
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wendan Chen
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ziqi Shang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Congbo Yue
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
192
|
Bongiovanni L, Andriessen A, Wauben MHM, Hoen ENMN', de Bruin A. Extracellular Vesicles: Novel Opportunities to Understand and Detect Neoplastic Diseases. Vet Pathol 2021; 58:453-471. [PMID: 33813952 PMCID: PMC8064535 DOI: 10.1177/0300985821999328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Laura Bongiovanni
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Present address: Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | | | | | - Alain de Bruin
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
193
|
Kim GB, Shon OJ, Seo MS, Choi Y, Park WT, Lee GW. Mesenchymal Stem Cell-Derived Exosomes and Their Therapeutic Potential for Osteoarthritis. BIOLOGY 2021; 10:285. [PMID: 33915850 PMCID: PMC8066608 DOI: 10.3390/biology10040285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Exosomes are nano-sized vesicles (50-150 nm in diameter) that contain nucleic acids (e.g., microRNA and messenger RNA), functional proteins, and bioactive lipids. They are secreted by various types of cells, including B cells, T cells, reticulocytes, dendritic cells, mast cells, epithelial cells, and mesenchymal stem cells (MSCs). They perform a wide variety of functions, including the repair of damaged tissues, regulation of immune responses, and reduction in inflammation. When considering the limitations of MSCs, including issues in standardization and immunogenicity, MSC-derived exosomes have advantages such as small dimensions, low immunogenicity, and lack of requirement for additional procedures for culture expansion or delivery. MSC-derived exosomes have shown outstanding therapeutic effects through chondro-protective and anti-inflammatory properties. MSC-derived exosomes may enable a new therapeutic paradigm for the treatment of osteoarthritis. However, further research is needed to prove their clinical effectiveness and feasibility.
Collapse
Affiliation(s)
- Gi Beom Kim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Oog-Jin Shon
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Young Choi
- Department of Orthopedic Surgery, Kosin University College of Medicine, Kosin University Gospel Hospital, 262 Gamcheon-ro, Seogu, Busan 49267, Korea;
| | - Wook Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| |
Collapse
|
194
|
Su T, Zhang P, Zhao F, Zhang S. Exosomal MicroRNAs Mediating Crosstalk Between Cancer Cells With Cancer-Associated Fibroblasts and Tumor-Associated Macrophages in the Tumor Microenvironment. Front Oncol 2021; 11:631703. [PMID: 33869017 PMCID: PMC8049566 DOI: 10.3389/fonc.2021.631703] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small extracellular vesicles containing diverse bioactive molecules. They play essential roles in mediating bidirectional interplay between cancer and stromal cells. Specific elements are selected into different types of exosomes via various mechanisms, including microRNAs (miRNAs), a subset of non-coding RNA that could epigenetically reprogram cells and modulate their activities. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) are two major types of stromal cells inhibiting immune response and facilitating tumor progression. Notably, accumulated studies provided critical evidence regarding the significance of exosomal miRNA–mediated intercellular crosstalk between cancer cells with TAMs and CAFs for tumor progression. This review aimed to summarize the current knowledge of cell–cell interactions between stromal and cancer cells conveyed by exosome-derived miRNAs. The findings might help find effective therapeutic targets of cancer.
Collapse
Affiliation(s)
- Tong Su
- Shanghai Key Laboratory of Gynecology Oncology, Department of Gynecology and Obstetrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Panpan Zhang
- Shanghai Key Laboratory of Gynecology Oncology, Department of Gynecology and Obstetrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Zhang
- Shanghai Key Laboratory of Gynecology Oncology, Department of Gynecology and Obstetrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
195
|
Almohammai A, Rahbarghazi R, Keyhanmanesh R, Rezaie J, Ahmadi M. Asthmatic condition induced the activity of exosome secretory pathway in rat pulmonary tissues. JOURNAL OF INFLAMMATION-LONDON 2021; 18:14. [PMID: 33794910 PMCID: PMC8015058 DOI: 10.1186/s12950-021-00275-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND The recent studies highlighted the critical role of exosomes in the regulation of inflammation. Here, we investigated the dynamic biogenesis of the exosomes in the rat model of asthma. RESULTS Our finding showed an increase in the expression of IL-4 and the suppression of IL-10 in asthmatic lung tissues compared to the control samples (p < 0.05). Along with the promotion of IL-4, the protein level of TNF-α was induced, showing an active inflammatory status in OVA-sensitized rats. According to our data, the promotion of asthmatic responses increased exosome biogenesis indicated by increased CD63 levels and acetylcholine esterase activity compared to the normal condition (p < 0.05). CONCLUSION Data suggest that the stimulation of inflammatory response in asthmatic rats could simultaneously increase the paracrine activity of pulmonary cells via the exosome biogenesis. Exosome biogenesis may correlate with the inflammatory response.
Collapse
Affiliation(s)
- Asheed Almohammai
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, University of Medical Sciences, Urmia, Iran.
| | - Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
196
|
Du J, Sun Q, Wang Z, Wang F, Chen F, Wang H, Shang G, Chen X, Ding S, Li C, Wu D, Zhang W, Zhong M, Li Y. Tubular epithelial cells derived-exosomes containing CD26 protects mice against renal ischemia/reperfusion injury by maintaining proliferation and dissipating inflammation. Biochem Biophys Res Commun 2021; 553:134-140. [PMID: 33770578 DOI: 10.1016/j.bbrc.2021.03.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023]
Abstract
Ischemia-reperfusion injury (IR) is the leading cause of acute kidney injury (AKI). No effective drugs to treat IR-related AKI are currently available. Recent pre-clinical trials have evaluated the therapeutic potential of extracellular vesicles-exosomes to chronic kidney disease. Here, we found exosomes derived from the tubular epithelial cell in IR condition (ExoIR) enriched CD26, compared with control (ExoNormal). Tracking exosomes in vivo certified tubular epithelial cell uptake exosomes. We have isolated exosomes with overexpression of CD26 (ExoCD26+) from culture media from tubular epithelial cell line transferred by adenovirus vectors. After administration of exosomes (100 mg) or bovine serum albumin (BSA, equivalent protein control) in IR or sham operation mice after 72 h via tail vein injection, the renal function impairment and histology injury were relived in mice receiving ExoCD26+. Immunofluorescence staining with proliferating cell nuclear antigen revealed ExoCD26+ recovered proliferation of cells partly after IR injury. Cell cycle modulator, p53 and p21 were upregulated in IR mice receiving BSA control, ExoNormal, and ExoIR. ExoCD26+ significantly blunt this protein upregulation. Inflammatory cell infiltration and chemokine receptor (CXCR4) were dissipated in IR mice receiving ExoCD26+. Downstream chemokine of CXCR4, stromal derived factor-1 (SDF1) also decreased after administration of ExoCD26+ in IR mice. Finally, ExoCD26+ suppressed inundant collagenⅠ expression in IR kidney. In conclusion, Tubular epithelial cells derived-exosomes containing CD26 might be one of the therapy modes for IR-AKI by maintaining proliferation and dissipating inflammation.
Collapse
Affiliation(s)
- Juan Du
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiang Sun
- Department of Vascular Surgery, Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhihao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, Shandong, China
| | - Feng Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Critical Care Medicine, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Fangfang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guokai Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaomei Chen
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shifang Ding
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chen Li
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dawei Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yihui Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
197
|
Secreted Extracellular Vesicle Molecular Cargo as a Novel Liquid Biopsy Diagnostics of Central Nervous System Diseases. Int J Mol Sci 2021; 22:ijms22063267. [PMID: 33806874 PMCID: PMC8004928 DOI: 10.3390/ijms22063267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Secreted extracellular vesicles (EVs) are heterogeneous cell-derived membranous granules which carry a large diversity of molecules and participate in intercellular communication by transferring these molecules to target cells by endocytosis. In the last decade, EVs’ role in several pathological conditions, from etiology to disease progression or therapy evasion, has been consolidated, including in central nervous system (CNS)-related disorders. For this review, we performed a systematic search of original works published, reporting the presence of molecular components expressed in the CNS via EVs, which have been purified from plasma, serum or cerebrospinal fluid. Our aim is to provide a list of molecular EV components that have been identified from both nonpathological conditions and the most common CNS-related disorders. We discuss the methods used to isolate and enrich EVs from specific CNS-cells and the relevance of its components in each disease context.
Collapse
|
198
|
He JG, Zhou HY, Xue SG, Lu JJ, Xu JF, Zhou B, Hu ZL, Wu PF, Long LH, Ni L, Jin Y, Wang F, Chen JG. Transcription Factor TWIST1 Integrates Dendritic Remodeling and Chronic Stress to Promote Depressive-like Behaviors. Biol Psychiatry 2021; 89:615-626. [PMID: 33190845 DOI: 10.1016/j.biopsych.2020.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Deficiency in neuronal structural plasticity is involved in the development of major depressive disorder. TWIST1, a helix-loop-helix transcription factor that is essential for morphogenesis and organogenesis, is normally expressed at low levels in mature neurons. However, it is poorly understood what role TWIST1 plays in the brain and whether it is involved in the pathophysiology of depression. METHODS Depressive-like behaviors in C57BL/6J mice were developed by chronic social defeat stress. Genetic and pharmacological approaches were used to investigate the role of the TWIST1-miR-214-PPAR-δ signaling pathway in depressive-like behaviors. Molecular biological and morphological studies were performed to define the molecular mechanisms downstream of TWIST1. RESULTS The expression of TWIST1 was positively correlated with depressive behaviors in humans and mice. Chronic stress elevated TWIST1 expression in the medial prefrontal cortex of mice, which was reversed by fluoxetine treatment. While the overexpression of TWIST1 increased susceptibility to stress, the knockdown of TWIST1 prevented the defective morphogenesis of dendrites of pyramidal neurons in layer II/III of the medial prefrontal cortex and alleviated depressive-like behaviors. Mechanistically, this prodepressant property of TWIST1 was mediated, at least in part, through the repression of miR-214-PPAR-δ signaling and mitochondrial function, which was also mimicked by genetic and pharmacological inhibition of PPAR-δ. CONCLUSIONS These results suggest that TWIST1 in the medial prefrontal cortex mediates chronic stress-induced dendritic remodeling and facilitates the occurrence of depressive-like behavior, providing new information for developing drug targets for depression therapy.
Collapse
Affiliation(s)
- Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hai-Yun Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shi-Ge Xue
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jia-Jing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jun-Feng Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bin Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, People's Republic of China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, People's Republic of China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, People's Republic of China
| | - Lan Ni
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - You Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, People's Republic of China; Key Laboratory of Neurological Diseases, Ministry of Education of China, Wuhan, People's Republic of China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, People's Republic of China; Key Laboratory of Neurological Diseases, Ministry of Education of China, Wuhan, People's Republic of China.
| |
Collapse
|
199
|
Zhang Y, Li C, Qin Y, Cepparulo P, Millman M, Chopp M, Kemper A, Szalad A, Lu X, Wang L, Zhang ZG. Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J Extracell Vesicles 2021; 10:e12073. [PMID: 33728031 PMCID: PMC7931803 DOI: 10.1002/jev2.12073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
There are no effective treatments for chemotherapy induced peripheral neuropathy (CIPN). Small extracellular vesicles (sEVs) facilitate intercellular communication and mediate nerve function and tumour progression. We found that the treatment of mice bearing ovarian tumour with sEVs derived from cerebral endothelial cells (CEC-sEVs) in combination with a chemo-drug, oxaliplatin, robustly reduced oxaliplatin-induced CIPN by decreasing oxaliplatin-damaged myelination and nerve fibres of the sciatic nerve and significantly amplified chemotherapy of oxaliplatin by reducing tumour size. The combination therapy substantially increased a set of sEV cargo-enriched miRNAs, but significantly reduced oxaliplatin-increased proteins in the sciatic nerve and tumour tissues. Bioinformatics analysis revealed the altered miRNAs and proteins formed two distinct networks that regulate neuropathy and tumour growth, respectively. Intravenously administered CEC-sEVs were internalized by axons of the sciatic nerve and cancer cells. Reduction of CEC-sEV cargo miRNAs abolished the effects of CEC-sEVs on oxaliplatin-inhibited axonal growth and on amplification of the anti-cancer effect in ovarian cancer cells, suggesting that alterations in the networks of miRNAs and proteins in recipient cells contribute to the therapeutic effect of CEC-sEVs on CIPN. Together, the present study demonstrates that CEC-sEVs suppressed CIPN and enhanced chemotherapy of oxaliplatin in the mouse bearing ovarian tumour.
Collapse
Affiliation(s)
- Yi Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Chao Li
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Yi Qin
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | | | | | - Michael Chopp
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
- Department of PhysicsOakland UniversityRochesterMichiganUSA
| | - Amy Kemper
- Department of PathologyHenry Ford Health SystemDetroitMichiganUSA
| | - Alexandra Szalad
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Xuerong Lu
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Lei Wang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Zheng Gang Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| |
Collapse
|
200
|
Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Am J Cancer Res 2021; 11:3996-4010. [PMID: 33664877 PMCID: PMC7914371 DOI: 10.7150/thno.56035] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized lipid vesicles originating from the endosomal system that carry many macromolecules from their parental cells and play important roles in intercellular communication. The functions and underlying mechanisms of exosomes in atherosclerosis have recently been intensively studied. In this review, we briefly introduce exosome biology and then focus on advances in the roles of exosomes in atherosclerosis, specifically exosomal changes associated with atherosclerosis, their cellular origins and potential functional cargos, and their detailed impacts on recipient cells. We also discuss the potential of exosomes as biomarkers and drug carriers for managing atherosclerosis.
Collapse
|