151
|
Jenner AL, Smalley M, Goldman D, Goins WF, Cobbs CS, Puchalski RB, Chiocca EA, Lawler S, Macklin P, Goldman A, Craig M. Agent-based computational modeling of glioblastoma predicts that stromal density is central to oncolytic virus efficacy. iScience 2022; 25:104395. [PMID: 35637733 PMCID: PMC9142563 DOI: 10.1016/j.isci.2022.104395] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
Oncolytic viruses (OVs) are emerging cancer immunotherapy. Despite notable successes in the treatment of some tumors, OV therapy for central nervous system cancers has failed to show efficacy. We used an ex vivo tumor model developed from human glioblastoma tissue to evaluate the infiltration of herpes simplex OV rQNestin (oHSV-1) into glioblastoma tumors. We next leveraged our data to develop a computational, model of glioblastoma dynamics that accounts for cellular interactions within the tumor. Using our computational model, we found that low stromal density was highly predictive of oHSV-1 therapeutic success, suggesting that the efficacy of oHSV-1 in glioblastoma may be determined by stromal-to-tumor cell regional density. We validated these findings in heterogenous patient samples from brain metastatic adenocarcinoma. Our integrated modeling strategy can be applied to suggest mechanisms of therapeutic responses for central nervous system cancers and to facilitate the successful translation of OVs into the clinic.
Collapse
Affiliation(s)
- Adrianne L. Jenner
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC, Canada
| | - Munisha Smalley
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles S. Cobbs
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Ralph B. Puchalski
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Aaron Goldman
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC, Canada
| |
Collapse
|
152
|
Seal SV, Henry M, Pajot C, Holuka C, Bailbé D, Movassat J, Darnaudéry M, Turner JD. A Holistic View of the Goto-Kakizaki Rat Immune System: Decreased Circulating Immune Markers in Non- Obese Type 2 Diabetes. Front Immunol 2022; 13:896179. [PMID: 35677049 PMCID: PMC9168276 DOI: 10.3389/fimmu.2022.896179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Type-2 diabetes is a complex disorder that is now considered to have an immune component, with functional impairments in many immune cell types. Type-2 diabetes is often accompanied by comorbid obesity, which is associated with low grade inflammation. However,the immune status in Type-2 diabetes independent of obesity remains unclear. Goto-Kakizaki rats are a non-obese Type-2 diabetes model. The limited evidence available suggests that Goto-Kakizaki rats have a pro-inflammatory immune profile in pancreatic islets. Here we present a detailed overview of the adult Goto-Kakizaki rat immune system. Three converging lines of evidence: fewer pro-inflammatory cells, lower levels of circulating pro-inflammatory cytokines, and a clear downregulation of pro-inflammatory signalling in liver, muscle and adipose tissues indicate a limited pro-inflammatory baseline immune profile outside the pancreas. As Type-2 diabetes is frequently associated with obesity and adipocyte-released inflammatory mediators, the pro-inflammatory milieu seems not due to Type-2 diabetes per se; although this overall reduction of immune markers suggests marked immune dysfunction in Goto-Kakizaki rats.
Collapse
Affiliation(s)
- Snehaa V Seal
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mathilde Henry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Clémentine Pajot
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Cyrielle Holuka
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Danielle Bailbé
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Jamileh Movassat
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Muriel Darnaudéry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
153
|
Rad HS, Shiravand Y, Radfar P, Ladwa R, Perry C, Han X, Warkiani ME, Adams MN, Hughes BGM, O'Byrne K, Kulasinghe A. Understanding the tumor microenvironment in head and neck squamous cell carcinoma. Clin Transl Immunology 2022; 11:e1397. [PMID: 35686027 PMCID: PMC9170522 DOI: 10.1002/cti2.1397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a heterogeneous group of tumors. While significant progress has been made using multimodal treatment, the 5-year survival remains at 50%. Developing effective therapies, such as immunotherapy, will likely lead to better treatment of primary and metastatic disease. However, not all HNSCC tumors respond to immune checkpoint blockade therapy. Understanding the complex cellular composition and interactions of the tumor microenvironment is likely to lead to new knowledge for effective therapies and treatment resistance. In this review, we discuss HNSCC characteristics, predictive biomarkers, factors influencing immunotherapy response, with a focus on the tumor microenvironment.
Collapse
Affiliation(s)
- Habib Sadeghi Rad
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
| | - Yavar Shiravand
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Payar Radfar
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
| | - Rahul Ladwa
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Chris Perry
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Xiaoyuan Han
- Department of Biomedical ScienceUniversity of the Pacific, Arthur A. Dugoni School of DentistryStocktonCAUSA
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
- Institute of Molecular MedicineSechenov First Moscow State UniversityMoscowRussia
| | - Mark N Adams
- Centre for Genomics and Personalised HealthSchool of Biomedical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Brett GM Hughes
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Royal Brisbane and Women's HospitalBrisbaneQLDAustralia
| | - Ken O'Byrne
- Princess Alexandra HospitalBrisbaneQLDAustralia
- Centre for Genomics and Personalised HealthSchool of Biomedical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Arutha Kulasinghe
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
154
|
Luangwattananun P, Chiraphapphaiboon W, Thuwajit C, Junking M, Yenchitsomanus PT. Activation of cytotoxic T lymphocytes by self-differentiated myeloid-derived dendritic cells for killing breast cancer cells expressing folate receptor alpha protein. Bioengineered 2022; 13:14188-14203. [PMID: 35734827 PMCID: PMC9342379 DOI: 10.1080/21655979.2022.2084262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Adoptive cell transfer (ACT) is a promising approach for cancer treatment. Activation of T lymphocytes by self-differentiated myeloid-derived antigen-presenting-cells reactive against tumor (SmartDC) resulted in specific anti-cancer function. Folate receptor alpha (FRα) is highly expressed in breast cancer (BC) cells and thus potential to be a target antigen for ACT. To explore the SmartDC technology for treatment of BC, we create SmartDC expressing FRα antigen (SmartDC-FRα) for activation of FRα-specific T lymphocytes. Human primary monocytes were transduced with lentiviruses containing tri-cistronic complementary DNA sequences encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-4 (IL-4), and FRα to generate SmartDC-FRα. Autologous T lymphocytes were activated by SmartDC-FRα by coculture. The activated T lymphocytes exhibited enhanced cytotoxicity against FRα-expressing BC cell cultures. Up to 84.9 ± 6.2% of MDA-MB-231 and 89.7 ± 1.9% of MCF-7 BC cell lines were specifically lysed at an effector-to-target ratio of 20:1. The cytotoxicity of T lymphocytes activated by SmartDC-FRα was also demonstrated in three-dimensional (3D) spheroid culture of FRα-expressing BC cells marked by size reduction and spheroid disruption. This study thus portray the potential development of T lymphocytes activated by SmartDC-FRα as ACT in FRα-expressing BC treatment.
Collapse
Affiliation(s)
- Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| |
Collapse
|
155
|
Ridge NA, Rajkumar-Calkins A, Dudzinski SO, Kirschner AN, Newman NB. Radiopharmaceuticals as Novel Immune System Tracers. Adv Radiat Oncol 2022; 7:100936. [PMID: 36148374 PMCID: PMC9486425 DOI: 10.1016/j.adro.2022.100936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigms for multiple cancers. However, ICI therapy often fails to generate measurable and sustained antitumor responses, and clinically meaningful benefits remain limited to a small proportion of overall patients. A major obstacle to development and effective application of novel therapeutic regimens is optimized patient selection and response assessment. Noninvasive imaging using novel immunoconjugate radiopharmaceuticals (immuno–positron emission tomography and immuno-single-photon emission computed tomography) can assess for expression of cell surface immune markers, such as programmed cell death protein ligand-1 (PD-L1), akin to a virtual biopsy. This emerging technology has the potential to provide clinicians with a quantitative, specific, real-time evaluation of immunologic responses relative to cancer burden in the body. We discuss the rationale for using noninvasive molecular imaging of the programmed cell death protein-1 and PD-L1 axis as a biomarker for immunotherapy and summarize the current status of preclinical and clinical studies examining PD-L1 immuno–positron emission tomography. The strategies described in this review provide insight for future clinical trials exploring the use of immune checkpoint imaging as a biomarker for both ICI and radiation therapy, and for the rational design of combinatorial therapeutic regimens.
Collapse
|
156
|
Bernard-Valnet R, Frieser D, Nguyen XH, Khajavi L, Quériault C, Arthaud S, Melzi S, Fusade-Boyer M, Masson F, Zytnicki M, Saoudi A, Dauvilliers Y, Peyron C, Bauer J, Liblau RS. Influenza vaccination induces autoimmunity against orexinergic neurons in a mouse model for narcolepsy. Brain 2022; 145:2018-2030. [PMID: 35552381 DOI: 10.1093/brain/awab455] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Narcolepsy with cataplexy or narcolepsy type 1 is a disabling chronic sleep disorder resulting from the destruction of orexinergic neurons in the hypothalamus. The tight association of narcolepsy with HLA-DQB1*06:02 strongly suggest an autoimmune origin to this disease. Furthermore, converging epidemiological studies have identified an increased incidence for narcolepsy in Europe following Pandemrix® vaccination against the 2009-2010 pandemic 'influenza' virus strain. The potential immunological link between the Pandemrix® vaccination and narcolepsy remains, however, unknown. Deciphering these mechanisms may reveal pathways potentially at play in most cases of narcolepsy. Here, we developed a mouse model allowing to track and study the T-cell response against 'influenza' virus haemagglutinin, which was selectively expressed in the orexinergic neurons as a new self-antigen. Pandemrix® vaccination in this mouse model resulted in hypothalamic inflammation and selective destruction of orexin-producing neurons. Further investigations on the relative contribution of T-cell subsets in this process revealed that haemagglutinin-specific CD4 T cells were necessary for the development of hypothalamic inflammation, but insufficient for killing orexinergic neurons. Conversely, haemagglutinin-specific CD8 T cells could not initiate inflammation but were the effectors of the destruction of orexinergic neurons. Additional studies revealed pathways potentially involved in the disease process. Notably, the interferon-γ pathway was proven essential, as interferon-γ-deficient CD8 T cells were unable to elicit the loss of orexinergic neurons. Our work demonstrates that an immunopathological process mimicking narcolepsy can be elicited by immune cross-reactivity between a vaccine antigen and a neuronal self-antigen. This process relies on a synergy between autoreactive CD4 and CD8 T cells for disease development. This work furthers our understanding of the mechanisms and pathways potentially involved in the development of a neurological side effect due to a vaccine and, likely, to narcolepsy in general.
Collapse
Affiliation(s)
- Raphaël Bernard-Valnet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.,Service of Neurology, Clinical Neurosciences Department, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - David Frieser
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Xuan-Hung Nguyen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.,Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Healthcare System, Hanoi, Vietnam
| | - Leila Khajavi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Clémence Quériault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Sébastien Arthaud
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience, University of Lyon 1, Bron, France
| | - Silvia Melzi
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience, University of Lyon 1, Bron, France
| | | | - Frederick Masson
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Matthias Zytnicki
- Unité de Mathématiques et Informatique Appliquées, INRAE, Castanet-Tolosan, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, INSERM U1061, Montpellier, France
| | - Christelle Peyron
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience, University of Lyon 1, Bron, France
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.,Department of Immunology, Toulouse University Hospitals, Toulouse, France
| |
Collapse
|
157
|
Moghaddam MZ, Ansariniya H, Seifati SM, Zare F, Fesahat F. Immunopathogenesis of endometriosis: An overview of the role of innate and adaptive immune cells and their mediators. Am J Reprod Immunol 2022; 87:e13537. [PMID: 35263479 DOI: 10.1111/aji.13537] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis is a chronic inflammatory disease associated with the growth and proliferation of endometrial-like tissues outside the uterus. Although the exact etiology and mechanism of the pathogenesis of the disease have not been fully elucidated, the immune system cells and the mediators produced by them can be named as effective factors in the onset and progression of the disease. AIMS We aim to attempt to review studies on the role of the immune system in endometriosis to better understand the pathogenesis of endometriosis. CONTENT Abundant production of inflammatory mediators by neutrophils and macrophages and reduced cytotoxicity of defined cells promote endometriosis at the early stages of the disease. Following an increase in the inflammation of the environment, the body takes compensatory mechanisms to reduce inflammation and establish homeostasis. For this purpose, the body produces remodeling and anti-inflammatory factors leading to slow conversion of the inflammatory environment into a non-inflammatory environment with proliferative and immunosuppressive properties. Environmental conditions induce M2 macrophages, TH2 cells, and Tregs differentiation, promoting disease progression by producing angiogenic and immunosuppressive factors. However, the exact molecular mechanism involved in changing inflammatory to non-inflammatory conditions is not yet fully understood. IMPLICATIONS Due to the common characteristics of endometriotic cells and cancer cells, most potential treatment options for endometriosis have been suggested due to the results of these methods in the treatment of cancer. In this pathway, immune system cells and soluble mediators can be used as targets.
Collapse
Affiliation(s)
- Maryam Zare Moghaddam
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Ansariniya
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Seifati
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
158
|
Chandra K, Roy Chowdhury A, Chatterjee R, Chakravortty D. GH18 family glycoside hydrolase Chitinase A of Salmonella enhances virulence by facilitating invasion and modulating host immune responses. PLoS Pathog 2022; 18:e1010407. [PMID: 35482710 PMCID: PMC9049553 DOI: 10.1371/journal.ppat.1010407] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Salmonella is a facultative intracellular pathogen that has co-evolved with its host and has also developed various strategies to evade the host immune responses. Salmonella recruits an array of virulence factors to escape from host defense mechanisms. Previously chitinase A (chiA) was found to be upregulated in intracellular Salmonella. Although studies show that several structurally similar chitinases and chitin-binding proteins (CBP) of many human pathogens have a profound role in various aspects of pathogenesis, like adhesion, virulence, and immune evasion, the role of chitinase in the intravacuolar pathogen Salmonella has not yet been elucidated. Therefore, we made chromosomal deletions of the chitinase encoding gene (chiA) to study the role of chitinase of Salmonella enterica in the pathogenesis of the serovars, Typhimurium, and Typhi using in vitro cell culture model and two different in vivo hosts. Our data indicate that ChiA removes the terminal sialic acid moiety from the host cell surface, and facilitates the invasion of the pathogen into the epithelial cells. Interestingly we found that the mutant bacteria also quit the Salmonella-containing vacuole and hyper-proliferate in the cytoplasm of the epithelial cells. Further, we found that ChiA aids in reactive nitrogen species (RNS) and reactive oxygen species (ROS) production in the phagocytes, leading to MHCII downregulation followed by suppression of antigen presentation and antibacterial responses. Notably, in the murine host, the mutant shows compromised virulence, leading to immune activation and pathogen clearance. In continuation of the study in C. elegans, Salmonella Typhi ChiA was found to facilitate bacterial attachment to the intestinal epithelium, intestinal colonization, and persistence by downregulating antimicrobial peptides. This study provides new insights on chitinase as an important and novel virulence determinant that helps in immune evasion and increased pathogenesis of Salmonella. Chitinases and chitin-binding proteins have been implicated in the pathogenesis of several human pathogens associated with the mucosal barrier. Interestingly, chitinases from the major enteric pathogen, Salmonella enterica, were reported to be upregulated during macrophage and epithelial cell infection. Although Salmonella Chitinase ChiA (encoded by STM14_0022) shares sequence similarity with the pathogenic chitinases, its role as a virulence determinant remained obscured. Here we aim to investigate the role of chitinase in the context of Salmonella pathogenesis using cell culture, mouse, and nematode models. We found that Salmonella requires ChiA to remodel the intestinal epithelium and access the host system. In the phagocytes, chitinase-mediated upregulation of nitric oxide (NO) leads to inhibition of MHC-I bound antigen presentation and CD8+ T cell proliferation. Furthermore, the absence of ChiA impairs bacterial adhesion and colonization in vivo. During the systemic phase in the murine host, Salmonella Typhimurium chitinase prevents immune activation and antimicrobial responses. Additionally, in the Caenorhabditis elegans, Salmonella Typhi chitinase promotes bacterial attachment to the intestinal epithelium and enhances pathogen colonization and persistence in the intestine by downregulating the antimicrobial peptides SPP1 and ABF2. In conclusion, our study provides novel insights into the role of Salmonella chitinase as a novel virulence factor.
Collapse
Affiliation(s)
- Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
159
|
Liu Z, Kilic G, Li W, Bulut O, Gupta MK, Zhang B, Qi C, Peng H, Tsay HC, Soon CF, Mekonnen YA, Ferreira AV, van der Made CI, van Cranenbroek B, Koenen HJPM, Simonetti E, Diavatopoulos D, de Jonge MI, Müller L, Schaal H, Ostermann PN, Cornberg M, Eiz-Vesper B, van de Veerdonk F, van Crevel R, Joosten LAB, Domínguez-Andrés J, Xu CJ, Netea MG, Li Y. Multi-Omics Integration Reveals Only Minor Long-Term Molecular and Functional Sequelae in Immune Cells of Individuals Recovered From COVID-19. Front Immunol 2022; 13:838132. [PMID: 35464396 PMCID: PMC9022455 DOI: 10.3389/fimmu.2022.838132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
The majority of COVID-19 patients experience mild to moderate disease course and recover within a few weeks. An increasing number of studies characterized the long-term changes in the specific anti-SARS-CoV-2 immune responses, but how COVID-19 shapes the innate and heterologous adaptive immune system after recovery is less well known. To comprehensively investigate the post-SARS-CoV-2 infection sequelae on the immune system, we performed a multi-omics study by integrating single-cell RNA-sequencing, single-cell ATAC-sequencing, genome-wide DNA methylation profiling, and functional validation experiments in 14 convalescent COVID-19 and 15 healthy individuals. We showed that immune responses generally recover without major sequelae after COVID-19. However, subtle differences persist at the transcriptomic level in monocytes, with downregulation of the interferon pathway, while DNA methylation also displays minor changes in convalescent COVID-19 individuals. However, these differences did not affect the cytokine production capacity of PBMCs upon different bacterial, viral, and fungal stimuli, although baseline release of IL-1Ra and IFN-γ was higher in convalescent individuals. In conclusion, we propose that despite minor differences in epigenetic and transcriptional programs, the immune system of convalescent COVID-19 patients largely recovers to the homeostatic level of healthy individuals.
Collapse
Affiliation(s)
- Zhaoli Liu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wenchao Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Bowen Zhang
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Cancan Qi
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Hsin-Chieh Tsay
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Chai Fen Soon
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Yonatan Ayalew Mekonnen
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Anaísa Valido Ferreira
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Caspar I van der Made
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elles Simonetti
- Laboratory of Pediatric Infectious Diseases, Radboud Centre for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dimitri Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Radboud Centre for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lisa Müller
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Philipp N Ostermann
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Markus Cornberg
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Frank van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
160
|
Brennan L, Brouwer-Visser J, Nüesch E, Karpova M, Heller A, Gaire F, Schneider M, Gomes B, Korski K. T-Cell Heterogeneity in Baseline Tumor Samples: Implications for Early Clinical Trial Design and Analysis. Front Immunol 2022; 13:760763. [PMID: 35558070 PMCID: PMC9086966 DOI: 10.3389/fimmu.2022.760763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background In early stage clinical trials, changes to levels of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment (TME) are critical biomarkers of the mechanism of action of novel immunotherapies. However, baseline heterogeneity of tumor samples, both between and within patients, and the resultant impact on the validity of clinical trial data is not well defined. Here we identify and quantify the impact of baseline variables on the heterogeneity of FoxP3+ and proliferating CD8+ T-cells levels (MKi67+CD8A+) in the TME both between and within patients for the purpose of informing clinical trial design and analysis. Methods We compared levels of FoxP3+ and MKi67+CD8+ cell densities (counts/mm2) from >1000 baseline tumor samples from clinical trials and commercially available sources. Using multivariate hierarchical regression techniques, we investigated whether inter-person heterogeneity of activated or regulatory T-cells could be attributed to baseline characteristics including demographics, indication, lesion type, tissue of excision, biopsy method, prior cancer treatment, and tissue type i.e., "fresh" or "archival" status. We also sought to characterize within-patient heterogeneity by lesion type and tissue type. Results Prior cancer treatment with hormone therapy or chemotherapy that induces immunogenic cell death may alter the TME. Archival tissue is an unreliable substitute for fresh tissue for determining baseline TIL levels. Baseline and on treatment biopsies should be matched by lesion type to avoid bias.
Collapse
Affiliation(s)
- Laura Brennan
- Roche Pharma Research and Early Development, Early Biomarker Development Oncology, Roche Innovation Center New York, Little Falls, NJ, United States
| | - Jurriaan Brouwer-Visser
- Roche Pharma Research and Early Development, Early Biomarker Development Oncology, Roche Innovation Center New York, Little Falls, NJ, United States
| | - Eveline Nüesch
- Roche Innovation Center Basel, Roche Pharma and Early Development, Basel, Switzerland
| | - Maria Karpova
- Roche Innovation Center Munich, Roche Pharma and Early Development, Penzberg, Germany
| | - Astrid Heller
- Roche Innovation Center Munich, Roche Pharma and Early Development, Penzberg, Germany
| | - Fabien Gaire
- Roche Innovation Center Munich, Roche Pharma and Early Development, Penzberg, Germany
| | - Meike Schneider
- Roche Innovation Center Basel, Roche Pharma and Early Development, Basel, Switzerland
| | - Bruno Gomes
- Roche Innovation Center Basel, Roche Pharma and Early Development, Basel, Switzerland
| | - Konstanty Korski
- Roche Innovation Center Munich, Roche Pharma and Early Development, Penzberg, Germany
| |
Collapse
|
161
|
Ayalew LE, Ahmed KA, Popowich S, Lockerbie BC, Gupta A, Tikoo SK, Ojkic D, Gomis S. Virulence of Emerging Arthrotropic Avian Reoviruses Correlates With Their Ability to Activate and Traffic Interferon-γ Producing Cytotoxic CD8 + T Cells Into Gastrocnemius Tendon. Front Microbiol 2022; 13:869164. [PMID: 35369435 PMCID: PMC8964311 DOI: 10.3389/fmicb.2022.869164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Newly emerging arthrotropic avian reoviruses (ARVs) are genetically divergent, antigenically heterogeneous, and economically costly. Nevertheless, the mechanism of emerging ARV-induced disease pathogenesis and potential differences in virulence between virus genotypes have not been adequately addressed. In this study, the life cycle of ARV, including the formation of cytoplasmic ARV neo-organelles, paracrystalline structures, and virus release mechanisms, were characterized in the infected host cell by transmission electron microscopy (TEM). In addition, progressive changes in the structure of infected cells were investigated by time-lapse and field emission scanning electron (FE-SE) microscopy. ARVs from the four genotypic cluster groups included in the study caused gross and microscopic lesions in the infected birds. Marked infiltration of γδT cells, CD4+ and CD8+ T lymphocytes were observed in ARV infected tendon tissues starting day 3 post-infection. The ARV variant from genotype cluster-2 triggered significantly high trafficking of IFN-γ producing CD8+ T lymphocytes in tendon tissues and concomitantly showed high morbidity and severe disease manifestations. In contrast, the ARV variant from genotype cluster-4 was less virulent, caused milder disease, and accompanied less infiltration of IFN-γ producing CD8+ T cells. Interestingly, when we blunted antiviral immune responses using clodronate liposomes (which depletes antigen-presenting cells) or cyclosporin (which inhibits cytokine production that regulates T-cell proliferation), significantly lower IFN-γ producing CD8+ T cells infiltrated into tendon tissues, resulting in reduced tendon tissues apoptosis and milder disease manifestations. In summary, these data suggest that the degree of ARV virulence and tenosynovitis/arthritis are potentially directly associated with the ability of the virus to traffic massive infiltration of cytotoxic CD8+ T cells into the infected tissues. Moreover, the ability to traffic cytotoxic CD8+ T cells into infected tendon tissues and the severity of tenosynovitis differ between variants from different ARV genotype cluster groups. However, more than one virus isolate per genotype group needs to be tested to further confirm the association of pathogenicity with genotype. These findings can be used to further examine the interaction of viral and cellular pathways which are essential for the pathogenesis of the disease at the molecular level and to develop effective disease control strategies.
Collapse
Affiliation(s)
- Lisanework E Ayalew
- Department of Veterinary Pathology, Western College of Veterinary Medicine (WCVM), University of Saskatchewan, Saskatoon, SK, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine (WCVM), University of Saskatchewan, Saskatoon, SK, Canada
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine (WCVM), University of Saskatchewan, Saskatoon, SK, Canada
| | - Betty-Chow Lockerbie
- Department of Veterinary Pathology, Western College of Veterinary Medicine (WCVM), University of Saskatchewan, Saskatoon, SK, Canada
| | - Ashish Gupta
- Department of Veterinary Pathology, Western College of Veterinary Medicine (WCVM), University of Saskatchewan, Saskatoon, SK, Canada
| | - Suresh K Tikoo
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Davor Ojkic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine (WCVM), University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
162
|
Anti-Gr-1 Antibody Provides Short-Term Depletion of MDSC in Lymphodepleted Mice with Active-Specific Melanoma Therapy. Vaccines (Basel) 2022; 10:vaccines10040560. [PMID: 35455309 PMCID: PMC9032646 DOI: 10.3390/vaccines10040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
Lymphodepletion, reconstitution and active-specific tumor cell vaccination (LRAST) enhances the induction of tumor-specific T cells in a murine melanoma model. Myeloid-derived suppressor cells (MDSC) may counteract the induction of tumor-reactive T cells and their therapeutic efficacy. Thus, the aim of the study was to evaluate a possible benefit of MDSC depletion using anti-Gr-1 antibodies (Ab) in combination with LRAST. Female C57BL/6 mice with 3 days established subcutaneous (s.c.) D5 melanoma were lymphodepleted with cyclophosphamide and reconstituted with naive splenocytes. Vaccination was performed with irradiated syngeneic mGM-CSF-secreting D5G6 melanoma cells. MDSC depletion was performed using anti-Gr-1 Ab (clone RB6-8C5). Induction of tumor-specific T cells derived from tumor vaccine draining lymph nodes (TVDLN) was evaluated by the amount of tumor-specific interferon (IFN)-γ release. LRAST combined with anti-Gr-1 mAb administration enhanced the induction of tumor-specific T cells in TVDLN capable of releasing IFN-γ in a tumor-specific manner. Additional anti-Gr-1 mAb administration in LRAST-treated mice delayed growth of D5 melanomas by two weeks. Furthermore, we elucidate the impact of anti-Gr-1-depleting antibodies on the memory T cell compartment. Our data indicate that standard of care treatment regimens against cancer can be improved by implementing agents, e.g., depleting antibodies, which target and eliminate MDSC.
Collapse
|
163
|
PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade. Cell Rep 2022; 38:110582. [PMID: 35354055 PMCID: PMC9838175 DOI: 10.1016/j.celrep.2022.110582] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/08/2022] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
Abstract
Despite the success of immune checkpoint inhibitor (ICI) therapy for cancer, resistance and relapse are frequent. Combination therapies are expected to enhance response rates and overcome this resistance. Herein, we report that combining PRMT7 inhibition with ICI therapy induces a strong anti-tumor T cell immunity and restrains tumor growth in vivo by increasing immune cell infiltration. PRMT7-deficient B16.F10 melanoma exhibits increased expression of genes in the interferon pathway, antigen presentation, and chemokine signaling. PRMT7 deficiency or inhibition with SGC3027 in B16.F10 melanoma results in reduced DNMT expression, loss of DNA methylation in the regulatory regions of endogenous retroviral elements (ERVs) causing their increased expression. PRMT7-deficient cells increase RIG-I and MDA5 expression with a reduction in the H4R3me2s repressive histone mark at their gene promoters. Our findings identify PRMT7 as a regulatory checkpoint for RIG-I, MDA5, and their ERV-double-stranded RNA (dsRNA) ligands, facilitating immune escape and anti-tumor T cell immunity to restrain tumor growth.
Collapse
|
164
|
Dacheux MA, Lee SC, Shin Y, Norman DD, Lin KH, E S, Yue J, Benyó Z, Tigyi GJ. Prometastatic Effect of ATX Derived from Alveolar Type II Pneumocytes and B16-F10 Melanoma Cells. Cancers (Basel) 2022; 14:cancers14061586. [PMID: 35326737 PMCID: PMC8946623 DOI: 10.3390/cancers14061586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Although metastases are the principal cause of cancer-related deaths, the molecular aspects of the role of stromal cells in the establishment of the metastatic niche remain poorly understood. One of the most prevalent sites for cancer metastasis is the lungs. According to recent research, lung stromal cells such as bronchial epithelial cells and resident macrophages secrete autotaxin (ATX), an enzyme with lysophospholipase D activity that promotes cancer progression. In fact, several studies have shown that many cell types in the lung stroma could provide a rich source of ATX in diseases. In the present study, we sought to determine whether ATX derived from alveolar type II epithelial (ATII) pneumocytes could modulate the progression of lung metastasis, which has not been evaluated previously. To accomplish this, we used the B16-F10 syngeneic melanoma model, which readily metastasizes to the lungs when injected intravenously. Because B16-F10 cells express high levels of ATX, we used the CRISPR-Cas9 technology to knock out the ATX gene in B16-F10 cells, eliminating the contribution of tumor-derived ATX in lung metastasis. Next, we used the inducible Cre/loxP system (Sftpc-CreERT2/Enpp2fl/fl) to generate conditional knockout (KO) mice in which ATX is specifically deleted in ATII cells (i.e., Sftpc-KO). Injection of ATX-KO B16-F10 cells into Sftpc-KO or Sftpc-WT control littermates allowed us to investigate the specific contribution of ATII-derived ATX in lung metastasis. We found that targeted KO of ATX in ATII cells significantly reduced the metastatic burden of ATX-KO B16-F10 cells by 30% (unpaired t-test, p = 0.028) compared to Sftpc-WT control mice, suggesting that ATX derived from ATII cells could affect the metastatic progression. We detected upregulated levels of cytokines such as IFNγ (unpaired t-test, p < 0.0001) and TNFα (unpaired t-test, p = 0.0003), which could favor the increase in infiltrating CD8+ T cells observed in the tumor regions of Sftpc-KO mice. Taken together, our results highlight the contribution of host ATII cells as a stromal source of ATX in the progression of melanoma lung metastasis.
Collapse
Affiliation(s)
- Mélanie A. Dacheux
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
| | - Sue Chin Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
| | - Yoojin Shin
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
| | - Derek D. Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
| | - Kuan-Hung Lin
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
| | - Shuyu E
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (S.E.); (J.Y.)
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (S.E.); (J.Y.)
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, H-1428 Budapest, Hungary;
| | - Gábor J. Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
- Correspondence: ; Tel.: +1-901-448-4793
| |
Collapse
|
165
|
Si W, Liang H, Bugno J, Xu Q, Ding X, Yang K, Fu Y, Weichselbaum RR, Zhao X, Wang L. Lactobacillus rhamnosus GG induces cGAS/STING- dependent type I interferon and improves response to immune checkpoint blockade. Gut 2022; 71:521-533. [PMID: 33685966 PMCID: PMC8710942 DOI: 10.1136/gutjnl-2020-323426] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Our goals were to evaluate the antitumour efficacy of Lactobacillus rhamnosus GG (LGG) in combination with immune checkpoint blockade (ICB) immunotherapies on tumour growth and to investigate the underlying mechanisms. DESIGN We used murine models of colorectal cancer and melanoma to evaluate whether oral administration of LGG improves the efficacy of ICB therapies. We performed the whole genome shotgun metagenome sequencing of intestinal contents and RNA sequencing of dendritic cells (DCs). In a series of in vitro and in vivo experiments, we further defined the immunological and molecular mechanisms of LGG-mediated antitumour immunity. RESULTS We demonstrate that oral administration of live LGG augmented the antitumour activity of anti-programmed cell death 1 (PD-1) immunotherapy by increasing tumour-infiltrating DCs and T cells. Moreover, the combination treatment shifted the gut microbial community towards enrichment in Lactobacillus murinus and Bacteroides uniformis, that are known to increase DC activation and CD8+tumour recruitment. Mechanistically, treatment with live LGG alone or in combination with anti-PD-1 antibody triggered type I interferon (IFN) production in DCs, enhancing the cross-priming of antitumour CD8+ T cells. In DCs, cyclic GMP-AMP synthase (cGAS)/stimulator of IFN genes (STING) was required for IFN-β induction in response to LGG, as evidenced by the significant decrease in IFN-β levels in cGAS or STING-deficient DCs. LGG induces IFN-β production via the cGAS/STING/TANK binding kinase 1/interferon regulatory factor 7 axis in DCs. CONCLUSION Our findings have offered valuable insight into the molecular mechanisms of live LGG-mediated antitumour immunity and establish an empirical basis for developing oral administration of live LGG as a combination agent with ICB for cancer therapies.
Collapse
Affiliation(s)
- Wei Si
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Hua Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, USA
| | - Qi Xu
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Xingchen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Yanbin Fu
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA .,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA .,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
166
|
Cattolico C, Bailey P, Barry ST. Modulation of Type I Interferon Responses to Influence Tumor-Immune Cross Talk in PDAC. Front Cell Dev Biol 2022; 10:816517. [PMID: 35273962 PMCID: PMC8902310 DOI: 10.3389/fcell.2022.816517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of many cancer types. However, pancreatic ductal adenocarcinomas (PDACs) exhibit poor responses to immune checkpoint inhibitors with immunotherapy-based trials not generating convincing clinical activity. PDAC tumors often have low infiltration of tumor CD8+ T cells and a highly immunosuppressive microenvironment. These features classify PDAC as immunologically "cold." However, the presence of tumor T cells is a favorable prognostic feature in PDAC. Intrinsic tumor cell properties govern interactions with the immune system. Alterations in tumor DNA such as genomic instability, high tumor mutation burden, and/or defects in DNA damage repair are associated with responses to both immunotherapy and chemotherapy. Cytotoxic or metabolic stress produced by radiation and/or chemotherapy can act as potent immune triggers and prime immune responses. Damage- or stress-mediated activation of nucleic acid-sensing pathways triggers type I interferon (IFN-I) responses that activate innate immune cells and natural killer cells, promote maturation of dendritic cells, and stimulate adaptive immunity. While PDAC exhibits intrinsic features that have the potential to engage immune cells, particularly following chemotherapy, these immune-sensing mechanisms are ineffective. Understanding where defects in innate immune triggers render the PDAC tumor-immune interface less effective, or how T-cell function is suppressed will help develop more effective treatments and harness the immune system for durable outcomes. This review will focus on the pivotal role played by IFN-I in promoting tumor cell-immune cell cross talk in PDAC. We will discuss how PDAC tumor cells bypass IFN-I signaling pathways and explore how these pathways can be co-opted or re-engaged to enhance the therapeutic outcome.
Collapse
Affiliation(s)
- Carlotta Cattolico
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
167
|
Li W, Li Y, Jin X, Liao Q, Chen Z, Peng H, Zhou Y. CD38: A Significant Regulator of Macrophage Function. Front Oncol 2022; 12:775649. [PMID: 35251964 PMCID: PMC8891633 DOI: 10.3389/fonc.2022.775649] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Cluster of differentiation 38 (CD38) is a cell surface glycoprotein and multifunctional extracellular enzyme. As a NADase, CD38 produces adenosine through the adenosine energy pathway to cause immunosuppression. As a cell surface receptor, CD38 is necessary for immune cell activation and proliferation. The aggregation and polarization of macrophages are affected by the knockout of CD38. Intracellular NAD+ levels are reduced by nuclear receptor liver X receptor-alpha (LXR) agonists in a CD38-dependent manner, thereby reducing the infection of macrophages. Previous studies suggested that CD38 plays an important role in the regulation of macrophage function. Therefore, as a new marker of macrophages, the effect of CD38 on macrophage proliferation, polarization and function; its possible mechanism; the relationship between the expression level of CD38 on macrophage surfaces and disease diagnosis, treatment, etc; and the role of targeting CD38 in macrophage-related diseases are reviewed in this paper to provide a theoretical basis for a comprehensive understanding of the relationship between CD38 and macrophages.
Collapse
Affiliation(s)
- Wentao Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Yanling Li
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xi Jin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Honghua Peng
- Department of The Oncology, Third Xianya Hospital, Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Yanhong Zhou, ; Honghua Peng,
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
- *Correspondence: Yanhong Zhou, ; Honghua Peng,
| |
Collapse
|
168
|
Tong S, Cinelli MA, El-Sayed NS, Huang H, Patel A, Silverman RB, Yang S. Inhibition of interferon-gamma-stimulated melanoma progression by targeting neuronal nitric oxide synthase (nNOS). Sci Rep 2022; 12:1701. [PMID: 35105915 PMCID: PMC8807785 DOI: 10.1038/s41598-022-05394-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) is shown to stimulate melanoma development and progression. However, the underlying mechanism has not been completely defined. Our study aimed to determine the role of neuronal nitric oxide synthase (nNOS)-mediated signaling in IFN-γ-stimulated melanoma progression and the anti-melanoma effects of novel nNOS inhibitors. Our study shows that IFN-γ markedly induced the expression levels of nNOS in melanoma cells associated with increased intracellular nitric oxide (NO) levels. Co-treatment with novel nNOS inhibitors effectively alleviated IFN-γ-activated STAT1/3. Further, reverse phase protein array (RPPA) analysis demonstrated that IFN-γ induced the expression of HIF1α, c-Myc, and programmed death-ligand 1 (PD-L1), in contrast to IFN-α. Blocking the nNOS-mediated signaling pathway using nNOS-selective inhibitors was shown to effectively diminish IFN-γ-induced PD-L1 expression in melanoma cells. Using a human melanoma xenograft mouse model, the in vivo studies revealed that IFN-γ increased tumor growth compared to control, which was inhibited by the co-administration of nNOS inhibitor MAC-3-190. Another nNOS inhibitor, HH044, was shown to effectively inhibit in vivo tumor growth and was associated with reduced PD-L1 expression levels in melanoma xenografts. Our study demonstrates the important role of nNOS-mediated NO signaling in IFN-γ-stimulated melanoma progression. Targeting nNOS using highly selective small molecular inhibitors is a unique and effective strategy to improve melanoma treatment.
Collapse
Affiliation(s)
- Shirley Tong
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Maris A Cinelli
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA
| | - Naglaa Salem El-Sayed
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - He Huang
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA
| | - Anika Patel
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA.,Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sun Yang
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
169
|
King RJ, Shukla SK, He C, Vernucci E, Thakur R, Attri KS, Dasgupta A, Chaika NV, Mulder SE, Abrego J, Murthy D, Gunda V, Pacheco CG, Grandgenett PM, Lazenby AJ, Hollingsworth MA, Yu F, Mehla K, Singh PK. CD73 induces GM-CSF/MDSC-mediated suppression of T cells to accelerate pancreatic cancer pathogenesis. Oncogene 2022; 41:971-982. [PMID: 35001076 PMCID: PMC8840971 DOI: 10.1038/s41388-021-02132-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Metabolic alterations regulate cancer aggressiveness and immune responses. Given the poor response of pancreatic ductal adenocarcinoma (PDAC) to conventional immunotherapies, we investigated the link between metabolic alterations and immunosuppression. Our metabolic enzyme screen indicated that elevated expression of CD73, an ecto-5'-nucleotidase that generates adenosine, correlates with increased aggressiveness. Correspondingly, we observed increased interstitial adenosine levels in tumors from spontaneous PDAC mouse models. Diminishing CD73 by genetic manipulations ablated in vivo tumor growth, and decreased myeloid-derived suppressor cells (MDSC) in orthotopic mouse models of PDAC. A high-throughput cytokine profiling demonstrated decreased GM-CSF in mice implanted with CD73 knockdowns. Furthermore, we noted increased IFN-γ expression by intratumoral CD4+ and CD8+ T cells in pancreatic tumors with CD73 knockdowns. Depletion of CD4+ T cells, but not CD8+ T cells abrogated the beneficial effects of decreased CD73. We also observed that splenic MDSCs from Nt5e knockdown tumor-bearing mice were incompetent in suppressing T cell activation in the ex vivo assays. Replenishing GM-CSF restored tumor growth in Nt5e knockout tumors, which was reverted by MDSC depletion. Finally, anti-CD73 antibody treatment significantly improved gemcitabine efficacy in orthotopic models. Thus, targeting the adenosine axis presents a novel therapeutic opportunity for improving the anti-tumoral immune response against PDAC.
Collapse
Affiliation(s)
- Ryan J. King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Surendra K. Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Chunbo He
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Ravi Thakur
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Kuldeep S. Attri
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Aneesha Dasgupta
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Nina V. Chaika
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Scott E. Mulder
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Jaime Abrego
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Divya Murthy
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Camila G. Pacheco
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Paul M. Grandgenett
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Audrey J. Lazenby
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Michael A. Hollingsworth
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| |
Collapse
|
170
|
Ko A, Coward VS, Gokgoz N, Dickson BC, Tsoi K, Wunder JS, Andrulis IL. Investigating the Potential of Isolating and Expanding Tumour-Infiltrating Lymphocytes from Adult Sarcoma. Cancers (Basel) 2022; 14:548. [PMID: 35158816 PMCID: PMC8833772 DOI: 10.3390/cancers14030548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Sarcomas are a heterogeneous group of mesenchymal neoplasms, many of which are associated with a high risk of metastasis and poor prognosis. Conventional chemotherapy and targeted therapies have varying effects across individuals and tumour subtypes. The current therapies frequently provide limited clinical benefit; hence, more effective treatments are urgently needed. Recent advances in immunotherapy, such as checkpoint inhibition or adoptive cell therapy (ACT), show potential in increasing efficacy by providing a more personalized treatment. Therapy with tumour-infiltrating lymphocytes (TILs) is an emerging field in immunotherapy. Here, we collected 190 sarcoma tumour specimens from patients without pre-operative adjuvant treatment in order to isolate TILs. We compared different methods of TIL expansion and optimized a protocol specifically for efficacy in culturing TILs from sarcoma. The expanded TIL populations were characterized by flow cytometry analysis using CD3, CD4, CD8, CD14, CD19 and CD56 markers. The TIL populations were non-specifically stimulated to establish TIL reactivity. Through an optimized expansion protocol, TILs were isolated and cultured from 54 of 92 primary sarcoma specimens. The isolated TILs varied in CD4+ and CD8+ T-cell compositions and retained their ability to release IFNγ upon stimulation. Our results suggest that certain sarcoma subtypes have the potential to yield a sufficient number of TILs for TIL therapy.
Collapse
Affiliation(s)
- Alice Ko
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (B.C.D.); (I.L.A.)
| | - Victoria S. Coward
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.G.); (J.S.W.)
| | - Brendan C. Dickson
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (B.C.D.); (I.L.A.)
- University of Toronto Musculoskeletal Oncology Unit, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Kim Tsoi
- University of Toronto Musculoskeletal Oncology Unit, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Jay S. Wunder
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.G.); (J.S.W.)
- University of Toronto Musculoskeletal Oncology Unit, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Irene L. Andrulis
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (B.C.D.); (I.L.A.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.G.); (J.S.W.)
| |
Collapse
|
171
|
Restricting tumor lactic acid metabolism using dichloroacetate improves T cell functions. BMC Cancer 2022; 22:39. [PMID: 34991504 PMCID: PMC8734242 DOI: 10.1186/s12885-021-09151-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Background Lactic acid produced by tumors has been shown to overcome immune surveillance, by suppressing the activation and function of T cells in the tumor microenvironment. The strategies employed to impair tumor cell glycolysis could improve immunosurveillance and tumor growth regulation. Dichloroacetate (DCA) limits the tumor-derived lactic acid by altering the cancer cell metabolism. In this study, the effects of lactic acid on the activation and function of T cells, were analyzed by assessing T cell proliferation, cytokine production and the cellular redox state of T cells. We examined the redox system in T cells by analyzing the intracellular level of reactive oxygen species (ROS), superoxide and glutathione and gene expression of some proteins that have a role in the redox system. Then we co-cultured DCA-treated tumor cells with T cells to examine the effect of reduced tumor-derived lactic acid on proliferative response, cytokine secretion and viability of T cells. Result We found that lactic acid could dampen T cell function through suppression of T cell proliferation and cytokine production as well as restrain the redox system of T cells by decreasing the production of oxidant and antioxidant molecules. DCA decreased the concentration of tumor lactic acid by manipulating glucose metabolism in tumor cells. This led to increases in T cell proliferation and cytokine production and also rescued the T cells from apoptosis. Conclusion Taken together, our results suggest accumulation of lactic acid in the tumor microenvironment restricts T cell responses and could prevent the success of T cell therapy. DCA supports anti-tumor responses of T cells by metabolic reprogramming of tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09151-2.
Collapse
|
172
|
Stunnenberg M, van Hamme JL, Zijlstra-Willems EM, Gringhuis SI, Geijtenbeek TBH. Crosstalk between R848 and abortive HIV-1 RNA-induced signaling enhances antiviral immunity. J Leukoc Biol 2022; 112:289-298. [PMID: 34982481 PMCID: PMC9542596 DOI: 10.1002/jlb.4a0721-365r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pathogens trigger multiple pattern recognition receptors (PRRs) that together dictate innate and adaptive immune responses. Understanding the crosstalk between PRRs is important to enhance vaccine efficacy. Abortive HIV-1 RNA transcripts are produced during acute and chronic HIV-1 infection and are known ligands for different PRRs, leading to antiviral and proinflammatory responses. Here, we have investigated the crosstalk between responses induced by these 58 nucleotide-long HIV-1 RNA transcripts and different TLR ligands. Costimulation of dendritic cells (DCs) with abortive HIV-1 RNA and TLR7/8 agonist R848, but not other TLR agonists, resulted in enhanced antiviral type I IFN responses as well as adaptive immune responses via the induction of DC-mediated T helper 1 (TH 1) responses and IFNγ+ CD8+ T cells. Our data underscore the importance of crosstalk between abortive HIV-1 RNA and R848-induced signaling for the induction of effective antiviral immunity.
Collapse
Affiliation(s)
- Melissa Stunnenberg
- Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John L van Hamme
- Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther M Zijlstra-Willems
- Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sonja I Gringhuis
- Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
173
|
Ju SA, Park SM, Joe Y, Chung HT, An WG, Kim BS. Anti-4-1BB antibody-based combination therapy augments antitumor immunity by enhancing CD11c +CD8 + T cells in renal cell carcinoma. Oncol Lett 2022; 23:43. [PMID: 34976155 PMCID: PMC8674882 DOI: 10.3892/ol.2021.13161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
To improve the potential treatment strategies of incurable renal cell carcinoma (RCC), which is highly resistant to chemotherapy and radiotherapy, the present study established a combination therapy with immunostimulatory factor (ISTF) and anti-4-1BB monoclonal antibodies (mAbs) to augment the antitumor response in a murine RCC model. ISTF isolated from Actinobacillus actinomycetemcomitans stimulates macrophages, dendritic cells and B cells to produce IL-6, TNF-α, nitric oxide and major histocompatibility complex class II expression. 4-1BB (CD137) is expressed in activated immune cells, including activated T cells, and is a promising target for cancer immunotherapy. The administration of anti-4-1BB mAbs promoted antitumor immunity via enhancing CD11c+CD8+ T cells. The CD11c+CD8+ T cells were characterized by high killing activity and IFN-γ-producing ability, representing a phenotype of active effector cytotoxic T lymphocytes. The present study showed that combination therapy with ISTF and anti-4-1BB mAbs promoted partial tumor regression with established RCC, but monotherapy with ISTF or anti-4-1BB mAbs did not. These effects were speculated to be caused by the increase in CD11c+CD8+ T cells in the spleen and tumor, and IFN-γ production. These insights into the effector mechanisms of the combination of ISTF and anti-4-1BB mAbs may be useful for targeting incurable RCC.
Collapse
Affiliation(s)
- Seong-A Ju
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | | | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Won G An
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Byung-Sam Kim
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
174
|
Kim SH, Park JH, Lee SJ, Lee HS, Jung JK, Lee YR, Cho HI, Kim JK, Kim K, Park CS, Lee CK. Efficient Anti-Tumor Immunotherapy Using Tumor Epitope-Coated Biodegradable Nanoparticles Combined With Polyinosinic-Polycytidylic Acid and an Anti-PD1 Monoclonal Antibody. Immune Netw 2022; 22:e42. [DOI: 10.4110/in.2022.22.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sang-Hyun Kim
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Ji-Hyun Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Sun-Jae Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Hee-Sung Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jae-Kyung Jung
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Young-Ran Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Korea
| | - Hyun-Il Cho
- Research and Development Division, ViGenCell Inc., Seoul 06591, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Kyungjae Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Chan-Su Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Chong-Kil Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
175
|
Chang-Monteagudo A, Ochoa-Azze R, Climent-Ruiz Y, Macías-Abraham C, Rodríguez-Noda L, Valenzuela-Silva C, Sánchez-Ramírez B, Perez-Nicado R, Hernández-García T, Orosa-Vázquez I, Díaz-Hernández M, García-García MDLÁ, Jerez-Barceló Y, Triana-Marrero Y, Ruiz-Villegas L, Rodríguez-Prieto LD, Puga-Gómez R, Guerra-Chaviano PP, Zúñiga-Rosales Y, Marcheco-Teruel B, Rodríguez-Acosta M, Noa-Romero E, Enríquez-Puertas J, Porto-González D, Fernández-Medina O, Valdés-Zayas A, Chen GW, Herrera-Martínez L, Valdés-Balbín Y, García-Rivera D, Verez-Bencomo V. A single dose of SARS-CoV-2 FINLAY-FR-1A vaccine enhances neutralization response in COVID-19 convalescents, with a very good safety profile: An open-label phase 1 clinical trial. LANCET REGIONAL HEALTH. AMERICAS 2021; 4:100079. [PMID: 34541571 PMCID: PMC8442527 DOI: 10.1016/j.lana.2021.100079] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND As a first step towards a vaccine protecting COVID-19 convalescents from reinfection, we evaluated FINLAY-FR-1A vaccine in a clinical trial. METHODS Thirty COVID-19 convalescents aged 22-57 years were studied: convalescents of mild COVID-19, asymptomatic convalescents, both with PCR-positive at the moment of diagnosis; and individuals with subclinical infection detected by viral-specific IgG. They received a single intramuscular injection of the FINLAY-FR-1A vaccine (50 µg of the recombinant dimeric receptor binding domain). The primary outcomes were safety and reactogenicity, assessed over 28 days after vaccination. The secondary outcome was vaccine immunogenicity. Humoral response at baseline and following vaccination was evaluated by ELISA and live-virus neutralization test. The effector T cellular response was also assessed. Cuban Public Registry of Clinical Trials, WHO-ICTRP: https://rpcec.sld.cu/en/trials/RPCEC00000349-En. FINDINGS No serious adverse events were reported. Minor adverse events were found, the most common, local pain: 3 (10%) and redness: 2 (6·7%). The vaccine elicited a >21 fold increase in IgG anti-RBD antibodies 28 days after vaccination. The median of inhibitory antibody titres (94·0%) was three times greater than that of the COVID-19 convalescent panel. Virus neutralization titres higher than 1:160 were found in 24 (80%) participants. There was also an increase in RBD-specific T cells producing IFN-γ and TNF-α. INTERPRETATION A single dose of the FINLAY-FR-1A vaccine against SARS-CoV-2 was an efficient booster of pre-existing natural immunity, with excellent safety profile. FUNDING Partial funding for this study was received from the Project-2020-20, Fondo de Ciencia e Innovación (FONCI), Ministry of Science, Technology and the Environment, Cuba. RESUMEN. ANTECEDENTES Como un primer paso hacia una vacuna que proteja a los convalecientes de COVID-19 de la reinfección, evaluamos la vacuna FINLAY-FR-1A en un ensayo clínico. MÉTODOS Se estudiaron treinta convalecientes de COVID-19 de 22 a 57 años: convalecientes de COVID-19 leve y convalecientes asintomáticos, ambos con prueba PCR positiva al momento del diagnóstico; e individuos con infección subclínica detectada por IgG específica viral. Los participantes recibieron una dosis única por vía intramuscular de la vacuna FINLAY-FR-1A (50 µg del dominio de unión al receptor recombinante dimérico del SARS CoV-2). Las variables de medida primarias fueron la seguridad y la reactogenicidad, evaluadas durante 28 días después de la vacunación. La variable secundaria, la inmunogenicidad. La respuesta humoral, al inicio del estudio y después de la vacunación, se evaluó por ELISA y mediante la prueba de neutralización del virus vivo. También se evaluó la respuesta de células T efectoras. Registro Público Cubano de Ensayos Clínicos, WHO-ICTRP: https://rpcec.sld.cu/en/trials/RPCEC00000349-En. RESULTADOS No se reportaron eventos adversos graves. Se encontraron eventos adversos leves, los más comunes, dolor local: 3 (10%) y enrojecimiento: 2 (6·7%). La vacuna estimuló un incremento >21 veces de los anticuerpos IgG anti-RBD 28 días después de la vacunación. La mediana de los títulos de anticuerpos inhibidores (94·0%) fue aproximadamente tres veces mayor que la del panel de convalecientes de COVID-19. Se encontraron títulos de neutralización viral superiores a 1:160 en 24 (80%) de los participantes. También hubo un aumento en las células T específicas de RBD que producen IFN-γ y TNF-α. INTERPRETACIÓN Una sola dosis de la vacuna FINLAY-FR-1A contra el SARS-CoV-2 reforzó eficazmente la inmunidad natural preexistente, con un excelente perfil de seguridad. FINANCIAMIENTO Se recibió un financiamiento parcial del Proyecto-2020-20, Fondo de Ciencia e Innovación (FONCI), Ministerio de Ciencia, Tecnología y Medio Ambiente, Cuba.
Collapse
Affiliation(s)
- Arturo Chang-Monteagudo
- National Institute of Hematology and Immunology, 8th Ave. N° 460 between 17 and 19 Streets, Vedado, Havana, Cuba
| | - Rolando Ochoa-Azze
- Finlay Vaccine Institute, 21st Ave. N° 19810 between 198 and 200 Streets, Atabey, Playa, Havana, Cuba
| | - Yanet Climent-Ruiz
- Finlay Vaccine Institute, 21st Ave. N° 19810 between 198 and 200 Streets, Atabey, Playa, Havana, Cuba
| | - Consuelo Macías-Abraham
- National Institute of Hematology and Immunology, 8th Ave. N° 460 between 17 and 19 Streets, Vedado, Havana, Cuba
| | - Laura Rodríguez-Noda
- Finlay Vaccine Institute, 21st Ave. N° 19810 between 198 and 200 Streets, Atabey, Playa, Havana, Cuba
| | | | | | - Rocmira Perez-Nicado
- Finlay Vaccine Institute, 21st Ave. N° 19810 between 198 and 200 Streets, Atabey, Playa, Havana, Cuba
| | - Tays Hernández-García
- Center of Molecular Immunology, 15 Ave. and 216 Street, Siboney, Playa, Havana, Cuba
| | - Ivette Orosa-Vázquez
- Center of Molecular Immunology, 15 Ave. and 216 Street, Siboney, Playa, Havana, Cuba
| | | | | | - Yanet Jerez-Barceló
- National Institute of Hematology and Immunology, 8th Ave. N° 460 between 17 and 19 Streets, Vedado, Havana, Cuba
| | - Yenisey Triana-Marrero
- National Institute of Hematology and Immunology, 8th Ave. N° 460 between 17 and 19 Streets, Vedado, Havana, Cuba
| | - Laura Ruiz-Villegas
- National Institute of Hematology and Immunology, 8th Ave. N° 460 between 17 and 19 Streets, Vedado, Havana, Cuba
| | - Luis Dairon Rodríguez-Prieto
- National Institute of Hematology and Immunology, 8th Ave. N° 460 between 17 and 19 Streets, Vedado, Havana, Cuba
| | | | - Pedro Pablo Guerra-Chaviano
- National Coordinating Center of Clinical Trials, 5 Ave. between 60 and 62 Ave., Miramar, Playa, Havana, Cuba
| | - Yaíma Zúñiga-Rosales
- National Center of Medical Genetics, 31 Ave. N° 3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | - Beatriz Marcheco-Teruel
- National Center of Medical Genetics, 31 Ave. N° 3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | | | - Enrique Noa-Romero
- Research Center of Civil Defense. San José de las Lajas, Mayabeque, Cuba
| | | | | | | | - Anet Valdés-Zayas
- Center of Molecular Immunology, 15 Ave. and 216 Street, Siboney, Playa, Havana, Cuba
| | - Guang-Wu Chen
- Chengdu Olisynn Biotech. Co. Ltd., People's Republic of China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | | | - Yury Valdés-Balbín
- Finlay Vaccine Institute, 21st Ave. N° 19810 between 198 and 200 Streets, Atabey, Playa, Havana, Cuba
| | - Dagmar García-Rivera
- Finlay Vaccine Institute, 21st Ave. N° 19810 between 198 and 200 Streets, Atabey, Playa, Havana, Cuba
| | - Vicente Verez-Bencomo
- Finlay Vaccine Institute, 21st Ave. N° 19810 between 198 and 200 Streets, Atabey, Playa, Havana, Cuba
| |
Collapse
|
176
|
Zhang T, Larson R, Dave K, Polson N, Zhang H. Developing patient-centric specifications for autologous chimeric antigen receptor T cell therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
177
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
178
|
Pro-Inflammatory Serum Amyloid a Stimulates Renal Dysfunction and Enhances Atherosclerosis in Apo E-Deficient Mice. Int J Mol Sci 2021; 22:ijms222212582. [PMID: 34830462 PMCID: PMC8623330 DOI: 10.3390/ijms222212582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Acute serum amyloid A (SAA) is an apolipoprotein that mediates pro-inflammatory and pro-atherogenic pathways. SAA-mediated signalling is diverse and includes canonical and acute immunoregulatory pathways in a range of cell types and organs. This study aimed to further elucidate the roles for SAA in the pathogenesis of vascular and renal dysfunction. Two groups of male ApoE-deficient mice were administered SAA (100 µL, 120 µg/mL) or vehicle control (100 µL PBS) and monitored for 4 or 16 weeks after SAA treatment; tissue was harvested for biochemical and histological analyses at each time point. Under these conditions, SAA administration induced crosstalk between NF-κB and Nrf2 transcriptional factors, leading to downstream induction of pro-inflammatory mediators and antioxidant response elements 4 weeks after SAA administration, respectively. SAA treatment stimulated an upregulation of renal IFN-γ with a concomitant increase in renal levels of p38 MAPK and matrix metalloproteinase (MMP) activities, which is linked to tissue fibrosis. In the kidney of SAA-treated mice, the immunolocalisation of inducible nitric oxide synthase (iNOS) was markedly increased, and this was localised to the parietal epithelial cells lining Bowman’s space within glomeruli, which led to progressive renal fibrosis. Assessment of aortic root lesion at the study endpoint revealed accelerated atherosclerosis formation; animals treated with SAA also showed evidence of a thinned fibrous cap as judged by diffuse collagen staining. Together, this suggests that SAA elicits early renal dysfunction through promoting the IFN-γ-iNOS-p38 MAPK axis that manifests as the fibrosis of renal tissue and enhanced cardiovascular disease.
Collapse
|
179
|
Targeted Therapies in Autoimmune Skin Diseases. J Invest Dermatol 2021; 142:969-975.e7. [PMID: 34756580 DOI: 10.1016/j.jid.2021.08.439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023]
Abstract
Unlike the established anti-inflammatory drugs with a broad range, new-targeted therapeutic approaches have emerged in the management of autoimmune skin diseases to increase efficacy and decrease adverse reactions on the basis of an improved molecular understanding of pathogenesis. Most inflammatory dermatoses are driven by misled immune responses physiologically directed at exogenous pathogens, that is, type 1 immunity against viral pathogens, type 2 immunity against parasites, and type 3 immunity against fungi and bacteria. Pathogenic hallmarks of these major immune reaction patterns are characterized within this article, and a comprehensive overview of current clinical trials evaluating targeted therapeutics for respective dermatoses is outlined.
Collapse
|
180
|
Effect of Age on Innate and Adaptive Immunity in Hospitalized COVID-19 Patients. J Clin Med 2021; 10:jcm10204798. [PMID: 34682920 PMCID: PMC8538457 DOI: 10.3390/jcm10204798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
An effective but balanced cellular and inflammatory immune response may limit the severity of coronavirus disease (COVID-19), whereas uncontrolled inflammation leads to disease progression. Older age is associated with higher risk of COVID-19 and a worse outcome, but the underlying immunological mechanisms for this age-related difference are not clear. We investigated the impact of age on viral replication, inflammation, and innate and adaptive cellular immune responses in 205 hospitalized COVID-19 patients. During the early symptomatic phase of COVID-19, we found that patients above 65 years had significantly higher viral load, higher levels of proinflammatory markers, and inadequate mobilization and activation of monocytes, dendritic cells, natural killer cells, and CD8 T cells compared to those below 65 years. Our study points toward age-related deficiencies in the innate immune cellular response to SARS-CoV-2 as a potential cause of poorly controlled viral replication and inflammation during the early symptom phase and subsequent disease progression.
Collapse
|
181
|
Mrahleh MA, Matar S, Jafar H, Wehaibi S, Aslam N, Awidi A. Human Wharton's Jelly-Derived Mesenchymal Stromal Cells Primed by Tumor Necrosis Factor-α and Interferon-γ Modulate the Innate and Adaptive Immune Cells of Type 1 Diabetic Patients. Front Immunol 2021; 12:732549. [PMID: 34650558 PMCID: PMC8506215 DOI: 10.3389/fimmu.2021.732549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
The unique immunomodulation and immunosuppressive potential of Wharton’s jelly-derived mesenchymal stromal cells (WJ-MSCs) make them a promising therapeutic approach for autoimmune diseases including type 1 diabetes (T1D). The immunomodulatory effect of MSCs is exerted either by cell-cell contact or by secretome secretion. Cell-cell contact is a critical mechanism by which MSCs regulate immune-responses and generate immune regulatory cells such as tolerogenic dendritic cells (tolDCs) and regulatory T cell (Tregs). In this study, we primed WJ-MSCs with TNF-α and IFN-γ and investigated the immunomodulatory properties of primed WJ-MSCs on mature dendritic cells (mDCs) and activated T cells differentiated from mononuclear cells (MNCs) of T1D patient’s. Our findings revealed that primed WJ-MSCs impaired the antigen-mediated immunity, upregulated immune-tolerance genes and downregulated immune-response genes. We also found an increase in the production of anti-inflammatory cytokines and suppression of the production of pro-inflammatory cytokines. Significant upregulation of FOXP3, IL10 and TGFB1 augmented an immunosuppressive effect on adaptive T cell immunity which represented a strong evidence in support of the formation of Tregs. Furthermore, upregulation of many critical genes involved in the immune-tolerance mechanism (IDO1 and PTGES2/PTGS) was detected. Interestingly, upregulation of ENTPD1/NT5E genes express a strong evidence to switch immunostimulatory response toward immunoregulatory response. We conclude that WJ-MSCs primed by TNF-α and IFN-γ may represent a promising tool to treat the autoimmune disorders and can provide a new evidence to consider MSCs- based therapeutic approach for the treatment of TID.
Collapse
Affiliation(s)
| | - Suzan Matar
- Department of Clinical Laboratory Science, The University of Jordan, School of Science, Amman, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Anatomy & Histology, The University of Jordan, School of Medicine, Amman, Jordan
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Hematology & Oncology, The University of Jordan, School of Medicine, Amman, Jordan
| |
Collapse
|
182
|
Mohammad Mirzaei N, Su S, Sofia D, Hegarty M, Abdel-Rahman MH, Asadpoure A, Cebulla CM, Chang YH, Hao W, Jackson PR, Lee AV, Stover DG, Tatarova Z, Zervantonakis IK, Shahriyari L. A Mathematical Model of Breast Tumor Progression Based on Immune Infiltration. J Pers Med 2021; 11:jpm11101031. [PMID: 34683171 PMCID: PMC8540934 DOI: 10.3390/jpm11101031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023] Open
Abstract
Breast cancer is the most prominent type of cancer among women. Understanding the microenvironment of breast cancer and the interactions between cells and cytokines will lead to better treatment approaches for patients. In this study, we developed a data-driven mathematical model to investigate the dynamics of key cells and cytokines involved in breast cancer development. We used gene expression profiles of tumors to estimate the relative abundance of each immune cell and group patients based on their immune patterns. Dynamical results show the complex interplay between cells and molecules, and sensitivity analysis emphasizes the direct effects of macrophages and adipocytes on cancer cell growth. In addition, we observed the dual effect of IFN-γ on cancer proliferation, either through direct inhibition of cancer cells or by increasing the cytotoxicity of CD8+ T-cells.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (N.M.M.); (S.S.); (D.S.); (M.H.)
| | - Sumeyye Su
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (N.M.M.); (S.S.); (D.S.); (M.H.)
| | - Dilruba Sofia
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (N.M.M.); (S.S.); (D.S.); (M.H.)
| | - Maura Hegarty
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (N.M.M.); (S.S.); (D.S.); (M.H.)
| | - Mohamed H. Abdel-Rahman
- Department of Ophthalmology, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.H.A.-R.); (C.M.C.); (D.G.S.)
| | - Alireza Asadpoure
- Department of Civil and Environmental Engineering, University of Massachusetts, Dartmouth, MA 02747, USA;
| | - Colleen M. Cebulla
- Department of Ophthalmology, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.H.A.-R.); (C.M.C.); (D.G.S.)
| | - Young Hwan Chang
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR 97239, USA; (Y.H.C.); (Z.T.)
| | - Wenrui Hao
- Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Pamela R. Jackson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, Phoenix, AZ 85054, USA;
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Daniel G. Stover
- Department of Ophthalmology, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.H.A.-R.); (C.M.C.); (D.G.S.)
| | - Zuzana Tatarova
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR 97239, USA; (Y.H.C.); (Z.T.)
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (N.M.M.); (S.S.); (D.S.); (M.H.)
- Correspondence:
| |
Collapse
|
183
|
He H, Liao Q, Zhao C, Zhu C, Feng M, Liu Z, Jiang L, Zhang L, Ding X, Yuan M, Zhang X, Xu J. Conditioned CAR-T cells by hypoxia-inducible transcription amplification (HiTA) system significantly enhances systemic safety and retains antitumor efficacy. J Immunother Cancer 2021; 9:jitc-2021-002755. [PMID: 34615704 PMCID: PMC8496395 DOI: 10.1136/jitc-2021-002755] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Background Hypoxia is a striking feature of most solid tumors and could be used to discriminate tumors from normoxic tissues. Therefore, the design of hypoxia-conditioned Chimeric Antigen Receptor (CAR) T cells is a promising strategy to reduce on-target off-tumor toxicity in adoptive cell therapy. However, existing hypoxia-conditioned CAR-T designs have been only partially successful in enhancing safety profile but accompanied with reduced cytotoxic efficacy. Our goal is to further improve safety profile with retained excellent antitumor efficacy. Methods In this study, we designed and constructed a hypoxia-inducible transcription amplification system (HiTA-system) to control the expression of CAR in T (HiTA-CAR-T) cells. CAR expression was determined by Flow cytometry, and the activation and cytotoxicity of HiTA-CAR-T cells in vitro were evaluated in response to antigenic stimulations under hypoxic or normoxic conditions. The safety of HiTA-CAR-T cells was profiled in a mouse model for its on-target toxicity to normal liver and other tissues, and antitumor efficacy in vivo was monitored in murine xenograft models. Results Our results showed that HiTA-CAR-T cells are highly restricted to hypoxia for their CAR expression, activation and cytotoxicity to tumor cells in vitro. In a mouse model in vivo, HiTA-CAR-T cells targeting Her2 antigen showed undetectable CAR expression in all different normoxic tissues including human Her2-expresing liver, accordingly, no liver and systemic toxicity were observed; In contrast, regular CAR-T cells targeting Her2 displayed significant toxicity on human Her2-expression liver. Importantly, HiTA-CAR-T cells were able to achieve significant tumor suppression in murine xenograft models. Conclusion Our HiTA system showed a remarkable improvement in hypoxia-restricted transgene expression in comparison with currently available systems. HiTA-CAR-T cells presented significant antitumor activities in absence of any significant liver or systemic toxicity in vivo. This approach could be also applied to design CAR-T cell targeting other tumor antigens.
Collapse
Affiliation(s)
- Huan He
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qibin Liao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meiqi Feng
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhuoqun Liu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lang Jiang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Yuan
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
184
|
Stoycheva D, Simsek H, Weber W, Hauser AE, Klotzsch E. External cues to drive B cell function towards immunotherapy. Acta Biomater 2021; 133:222-230. [PMID: 33636402 DOI: 10.1016/j.actbio.2021.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022]
Abstract
Immunotherapy stands out as a powerful and promising therapeutic strategy in the treatment of cancer, infections, and autoimmune diseases. Adoptive immune therapies are usually centered on modified T cells and their specific expansion towards antigen-specific T cells against cancer and other diseases. However, despite their unmatched features, the potential of B cells in immunotherapy is just beginning to be explored. The main role of B cells in the immune response is to secrete antigen-specific antibodies and provide long-term protection against foreign pathogens. They further function as antigen-presenting cells (APCs) and secrete pro- and anti-inflammatory cytokines and thus exert positive and negative regulatory stimuli on other cells involved in the immune response such as T cells. Therefore, while hyperactivation of B cells can cause autoimmunity, their dysfunctions lead to severe immunodeficiencies. Only suitably activated B cells can play an active role in the treatment of cancers, infections, and autoimmune diseases. As a result, studies have focused on B cell-targeted immunotherapies in recent years. For this, the development, functions, interactions with the microenvironment, and clinical importance of B cells should be well understood. In this review, we summarize the main events during B cell activation. From the viewpoint of mechanobiology we discuss the translation of external cues such as surface topology, substrate stiffness, and biochemical signaling into B cell functions. We further dive into current B cell-targeted therapy strategies and their clinical applications. STATEMENT OF SIGNIFICANCE: B cells are proving as a promising tool in the field of immunotherapy. B cells exhibit various functions such as antibody production, antigen presentation or secretion of immune-regulatory factors which can be utilized in the fight against oncological or immunological disorders. In this review we discuss the importance of external mechanobiological cues such as surface topology, substrate stiffness, and biochemical signaling on B cell function. We further summarize B cell-targeted therapy strategies and their clinical applications, as in the context of anti-tumor responses and autoimmune diseases.
Collapse
|
185
|
Gong L, Kwong DLW, Dai W, Wu P, Wang Y, Lee AWM, Guan XY. The Stromal and Immune Landscape of Nasopharyngeal Carcinoma and Its Implications for Precision Medicine Targeting the Tumor Microenvironment. Front Oncol 2021; 11:744889. [PMID: 34568077 PMCID: PMC8462296 DOI: 10.3389/fonc.2021.744889] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
The evolution of the tumor microenvironment (TME) is a cancer-dependent and dynamic process. The TME is often a complex ecosystem with immunosuppressive and tumor-promoting functions. Conventional chemotherapy and radiotherapy, primarily focus on inducing tumor apoptosis and hijacking tumor growth, whereas the tumor-protective microenvironment cannot be altered or destructed. Thus, tumor cells can quickly escape from extraneous attack and develop therapeutic resistance, eventually leading to treatment failure. As an Epstein Barr virus (EBV)-associated malignancy, nasopharyngeal carcinoma (NPC) is frequently infiltrated with varied stromal cells, making its microenvironment a highly heterogeneous and suppressive harbor protecting tumor cells from drug penetration, immune attack, and facilitating tumor development. In the last decade, targeted therapy and immunotherapy have emerged as promising options to treat advanced, metastatic, recurrent, and resistant NPC, but lack of understanding of the TME had hindered the therapeutic development and optimization. Single-cell sequencing of NPC-infiltrating cells has recently deciphered stromal composition and functional dynamics in the TME and non-malignant counterpart. In this review, we aim to depict the stromal landscape of NPC in detail based on recent advances, and propose various microenvironment-based approaches for precision therapy.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Pingan Wu
- Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Wang
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
186
|
Seiringer P, Garzorz-Stark N, Eyerich K. T-Cell‒Mediated Autoimmunity: Mechanisms and Future Directions. J Invest Dermatol 2021; 142:804-810. [PMID: 34538423 DOI: 10.1016/j.jid.2021.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/28/2022]
Abstract
T cells are key drivers of autoimmunity in numerous noncommunicable inflammatory skin diseases by directly harming host tissue or through helping B cells in producing autoantibodies. Technological advances have contributed to identifying autoantigens, the Holy Grail of autoimmunity, in many inflammatory disorders of the skin. Novel therapeutic approaches such as chimeric (auto)antibody receptor T cells are a milestone on the way to finding individualized, well-tolerated, targeted therapies. This review summarizes the current knowledge on pathogenesis, immune response pattern‒related ontology, diagnostic approaches, and treatment options of autoimmune skin diseases.
Collapse
Affiliation(s)
- Peter Seiringer
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Center of Allergy and Environment (ZAUM), Helmholtz Center and Technical University of Munich, Munich, Germany
| | - Natalie Garzorz-Stark
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; Center for molecular medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; Center for molecular medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
187
|
Colombani T, Eggermont LJ, Hatfield SM, Rogers ZJ, Rezaeeyazdi M, Memic A, Sitkovsky MV, Bencherif SA. Oxygen-Generating Cryogels Restore T Cell Mediated Cytotoxicity in Hypoxic Tumors. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2102234. [PMID: 37745940 PMCID: PMC10516343 DOI: 10.1002/adfm.202102234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 09/26/2023]
Abstract
Solid tumors are protected from antitumor immune responses due to their hypoxic microenvironments. Weakening hypoxia-driven immunosuppression by hyperoxic breathing of 60% oxygen has shown to be effective in unleashing antitumor immune cells against solid tumors. However, efficacy of systemic oxygenation is limited against solid tumors outside of lungs and has been associated with unwanted side effects. As a result, it is essential to develop targeted oxygenation alternatives to weaken tumor hypoxia as novel approaches to restore immune responses against cancer. Herein, we report on injectable oxygen-generating cryogels (O2-cryogels) to reverse tumor-induced hypoxia. These macroporous biomaterials were designed to locally deliver oxygen, inhibit the expression of hypoxia-inducible genes in hypoxic melanoma cells, and reduce the accumulation of immunosuppressive extracellular adenosine. Our data show that O2-cryogels enhance T cell-mediated secretion of cytotoxic proteins, restoring the killing ability of tumor-specific CTLs, both in vitro and in vivo. In summary, O2-cryogels provide a unique and safe platform to supply oxygen as a co-adjuvant in hypoxic tumors and have the potential to improve cancer immunotherapies.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Loek J. Eggermont
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Stephen M. Hatfield
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | | | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia
| | - Michail V. Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
188
|
The role of CD8 + Granzyme B + T cells in the pathogenesis of Takayasu's arteritis. Clin Rheumatol 2021; 41:167-176. [PMID: 34494213 DOI: 10.1007/s10067-021-05903-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/11/2021] [Accepted: 09/01/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE T cell-mediated immune response plays a key role in Takayasu arteritis (TAK). Although previous studies have showed the roles of CD4+T cell and its subsets in TAK, the change of CD8+ T cell subsets remains unclear. This study investigated the role of CD8+ T cell subsets in TAK. METHODS The study consisted of 56 TA patients and 51 healthy controls. The percentages of CD8+T cells, CD8+GranzymeB+ T cells, CD8+Perforin+ T cells, and CD8+IFN-γ+ T cells in blood samples were analyzed by flow cytometry. RESULTS We found that the percentages of CD8+GranzymeB+ T cells (P = 0.030), CD8+Perforin+ T cells (P = 0.000), and CD8+IFN-γ+ T cells (P = 0.002) in CD8+T cells were higher in TAK patients compared to control group. After 6 months of treatment, the proportion of CD8+T cells in lymphocytes were significantly lower in TAK patients than the baseline assessment (P = 0.033). A lower ratio of CD8+GranzymeB+ T cells/CD8+ T cells were showed in TAK patents after treatment compared with TAK patients before treatments (P = 0.011). The change of CD8+GranzymeB+ T cells/CD8+ T cells ratio was positively correlated with the change of ITAS (r = 0.721, P = 0.002) and ITAS-A (r = 0.637, P = 0.008). Finally, the immunofluorescence staining showed the infiltration of CD8+ Granzyme B + cells in the aortic tissue of TAK patients. CONCLUSION Our results disclose that the CD8+ T lymphocytes may play a role in TAK pathogenesis. Targeting CD8+GranzymeB+ T lymphocytes or Granzyme B inhibitors could be a potential therapeutic approach for the treatment of TAK. Key Points • Our study investigated role the of CD8+ T cell subsets in TAK. • We found the percentages of CD8+GranzymeB+ T cells, CD8+Perforin+ T cells, and CD8+IFN-γ+ T cells in CD3+CD8+T cells were higher in TAK patients. • The proportion of CD8+T cells in lymphocytes and the ratio of CD8+GranzymeB+ T cells/CD8+ T cells were significantly lower in TAK patients after treatment.
Collapse
|
189
|
Garg SS, Sharma A, Gupta J. Immunomodulation and immunotherapeutics of COVID-19. Clin Immunol 2021; 231:108842. [PMID: 34461289 PMCID: PMC8393504 DOI: 10.1016/j.clim.2021.108842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 causes coronavirus disease 2019, a pandemic which was originated from Wuhan city of China. The pandemic has affected millions of people worldwide. The pathogenesis of SARS-CoV-2 is characterized by a cytokine storm in the blood (cytokinemia) and tissues, especially the lungs. One of the major repercussions of this inflammatory process is the endothelial injury-causing intestinal bleeding, coagulopathy, and thromboembolism which result in various sudden and unexpected post-COVID complications including kidney failure, myocardial infarction, or multiorgan failure. In this review, we have summarized the immune responses, biochemical changes, and inflammatory responses in the human body after infection with the SARS-CoV-2 virus. The increased amount of inflammatory cytokines, chemokines, and involvement of complement proteins in inflammatory reaction increase the risk of occurrence of disease.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Atulika Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
190
|
Han L, Tu S, Shen P, Yan J, Huang Y, Ba X, Li T, Lin W, Li H, Yu K, Guo J, Huang Y, Qin K, Wang Y, Chen Z. A comprehensive transcriptomic analysis of alternate interferon signaling pathways in peripheral blood mononuclear cells in rheumatoid arthritis. Aging (Albany NY) 2021; 13:20511-20533. [PMID: 34432649 PMCID: PMC8436925 DOI: 10.18632/aging.203432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 01/13/2023]
Abstract
Interferon (IFN) signaling pathways play crucial roles in the pathogenesis of rheumatoid arthritis (RA). Prior studies have mainly studied mixed alterations in the IFN signaling pathway in RA, but these studies have not been sufficient to elucidate how imbalanced IFN signaling subtly influences immune cells. Single-cell RNA (scRNA) sequencing makes it possible to better understand the alternations in the interferon signaling pathways in RA. In the present study, we found that IFN signaling pathways were activated in natural killer (NK) cells, monocytes, T cells, B cells, and most immune cell subclasses in RA. We then explored and analyzed the connections between abnormal IFN signaling pathways and cellular functional changes in RA. Single-Cell rEgulatory Network Inference and Clustering (SCENIC) analysis and gene regulatory network (GRN) construction were also performed to identify key transcription factors in RA. Finally, we also investigated altered IFN signaling pathways in multiple RA peripheral blood samples, which indicated that abnormal IFN signaling pathways were universally observed in RA. Our study contributes to a better understanding of the delicate and precise regulation of IFN signaling in the immune system in RA. Furthermore, common alternations in IFN signaling pathway-related transcription factors could help to identify novel therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihui Li
- Department of Cardiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Yu
- Department of Cardiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Guo
- Wuhan Institute of Biotechnology, Wuhan Biobank, Wuhan 430000, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
191
|
CD8 + T lymphocyte is a main source of interferon-gamma production in Takayasu's arteritis. Sci Rep 2021; 11:17111. [PMID: 34429489 PMCID: PMC8384861 DOI: 10.1038/s41598-021-96632-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/05/2021] [Indexed: 01/27/2023] Open
Abstract
Interferon-gamma (IFN-γ) is a cytokine involved in the pathogenesis of Takayasu’s arteritis (TAK). However, the source of IFN-γ in TAK patients is not fully clear. We aimed to investigate the source of IFN-γ in TAK. 60 TAK patients and 35 health controls were enrolled. The lymphocyte subsets of peripheral blood were detected by flow cytometry, cytokines were detected by Bio-plex. The correlation among lymphocyte subsets, cytokines and disease activity indexes was analyzed by person correlation. The level of serum IFN-γ in TAK patients was significantly increased (P < 0.05). The percentage of CD3+IFN-γ+ cells in peripheral blood CD3+ cells was significantly higher in TAK patients than that of healthy control group (P = 0.002). A higher proportion of CD3+CD8+IFN-γ+ cells/CD3+IFN-γ+ cells (40.23 ± 11.98% vs 35.12 ± 11.51%, P = 0.049), and a significantly lower CD3+CD4+IFN-γ+/ CD3+CD8+IFN-γ+ ratio (1.34 ± 0.62% vs 1.80 ± 1.33%, P = 0.027) were showed in the TAK group than that of control group. The CD3+CD8+IFN-γ+/CD3+IFN-γ+ ratio was positively correlated with CD3+IFN-γ+cells/ CD3+cells ratio (r = 0.430, P = 0.001), serum IFN-γ level (r = 0.318, P = 0.040) and IL-17 level (r = 0.326, P = 0.031). It was negatively correlated with CD3+CD4+IFN-γ+/CD3+IFN-γ+ ratio (r = − 0.845, P < 0.001). IFN-γ secreted by CD3+CD8 + T cells is an important source of serum IFN-γ in TAK patients.
Collapse
|
192
|
Dai B, Hackney JA, Ichikawa R, Nguyen A, Elstrott J, Orozco LD, Sun KH, Modrusan Z, Gogineni A, Scherl A, Gubatan J, Habtezion A, Deswal M, Somsouk M, Faubion WA, Chai A, Sharafali Z, Hassanali A, Oh YS, Tole S, McBride J, Keir ME, Yi T. Dual targeting of lymphocyte homing and retention through α4β7 and αEβ7 inhibition in inflammatory bowel disease. Cell Rep Med 2021; 2:100381. [PMID: 34467254 PMCID: PMC8385326 DOI: 10.1016/j.xcrm.2021.100381] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/09/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Anti-integrins are therapeutically effective for inflammatory bowel disease, yet the relative contribution of α4β7 and αEβ7 to gut lymphocyte trafficking is not fully elucidated. Here, we evaluate the effect of α4β7 and αEβ7 blockade using a combination of murine models of gut trafficking and longitudinal gene expression analysis in etrolizumab-treated patients with Crohn's disease (CD). Dual blockade of α4β7 and αEβ7 reduces CD8+ T cell accumulation in the gut to a greater extent than blockade of either integrin alone. Anti-αEβ7 reduces epithelial:T cell interactions and promotes egress of activated T cells from the mucosa into lymphatics. Inflammatory gene expression is greater in human intestinal αEβ7+ T cells. Etrolizumab-treated patients with CD display a treatment-specific reduction in inflammatory and cytotoxic intraepithelial lymphocytes (IEL) genes. Concurrent blockade of α4β7 and αEβ7 promotes reduction of cytotoxic IELs and inflammatory T cells in the gut mucosa through a stepwise inhibition of intestinal tissue entry and retention.
Collapse
Affiliation(s)
- Bingbing Dai
- Departments of Immunology Discovery, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A. Hackney
- OMNI Biomarker Development, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ryan Ichikawa
- Biomarker Discovery OMNI, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Allen Nguyen
- OMNI Biomarker Development, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Justin Elstrott
- Biomedical Imaging, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Luz D. Orozco
- Bioinformatics, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kai-Hui Sun
- Molecular Biology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Molecular Biology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alvin Gogineni
- Biomedical Imaging, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexis Scherl
- Pathology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Monika Deswal
- University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Ma Somsouk
- University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - William A. Faubion
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Akiko Chai
- Product Development, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zaineb Sharafali
- Product Development, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Azra Hassanali
- Product Development, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Young S. Oh
- Product Development, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Swati Tole
- Product Development, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jacqueline McBride
- OMNI Biomarker Development, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mary E. Keir
- Biomarker Discovery OMNI, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tangsheng Yi
- Departments of Immunology Discovery, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
193
|
Yonekura S, Ueda K. EVI2B Is a New Prognostic Biomarker in Metastatic Melanoma with IFNgamma Associated Immune Infiltration. Cancers (Basel) 2021; 13:cancers13164110. [PMID: 34439264 PMCID: PMC8391972 DOI: 10.3390/cancers13164110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Ecotropic viral integration site 2B (EVI2B) is a protein-coding gene known as a lymphocyte-specific marker in peripheral blood. However, the prognostic value of EVI2B expression in metastatic melanoma tissue and its detailed profile of tumor-infiltrating lymphocytes are still unclear. In publicly available datasets, we found that increased EVI2B was significantly associated with longer prognoses such as overall survival and disease-specific survival. The EVI2B-high melanoma tissue had a favorable distribution/clustering pattern of infiltrating lymphocytes with increased CD8+ T cells over regulatory T cells. Moreover, EVI2B expression correlated with multiple immunomodulatory genes including IFN-γ signature genes. In conclusion, EVI2B is a prognostic biomarker with IFN-γ associated immune infiltration in metastatic melanoma. Abstract Background: To assess the prognostic role and the antitumor immunological relevance of ecotropic viral integration site 2B (EVI2B) in metastatic melanoma. Methods: In this study, we integrated clinical data, mRNA expression data, and the distribution and fraction of tumor infiltrating lymphocytes (TILs) using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets (GSE65904 and GSE19234). Results: The univariate and multivariate analyses showed that higher gene expression of EVI2B was significantly associated with longer prognoses. The EVI2B-high melanoma tissue had favorable histological parameters such as a brisk global distribution pattern and clustering structure of TILs (i.e., Banfield and Raftery index) with enriched CD8+ T cells over regulatory T cells and increased cytotoxicity scores. In addition, EVI2B expression positively correlated with IFN-γ signature genes (CXCL10, CXCL9, HLA-DRA, IDO1, IFNG, and STAT1) and other various immunomodulatory genes. Conclusion: EVI2B is a novel prognostic biomarker with IFN-γ associated immune infiltration in metastatic melanoma.
Collapse
Affiliation(s)
- Satoru Yonekura
- Gustave Roussy Cancer Campus (GRCC), 94800 Villejuif, France
- Correspondence:
| | - Kosuke Ueda
- Gustave Roussy Cancer Campus (GRCC), 94800 Villejuif, France
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan;
| |
Collapse
|
194
|
Conserved Gammaherpesvirus Protein Kinase Counters the Antiviral Effects of Myeloid Cell-Specific STAT1 Expression To Promote the Establishment of Splenic B Cell Latency. J Virol 2021; 95:e0085921. [PMID: 34132573 DOI: 10.1128/jvi.00859-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gammaherpesviruses establish lifelong infections and are associated with B cell lymphomas. Murine gammaherpesvirus 68 (MHV68) infects epithelial and myeloid cells during acute infection, with subsequent passage of the virus to B cells, where physiological B cell differentiation is usurped to ensure the establishment of a chronic latent reservoir. Interferons (IFNs) represent a major antiviral defense system that engages the transcriptional factor STAT1 to attenuate diverse acute and chronic viral infections, including those of gammaherpesviruses. Correspondingly, global deficiency of type I or type II IFN signaling profoundly increases the pathogenesis of acute and chronic gammaherpesvirus infection, compromises host survival, and impedes mechanistic understanding of cell type-specific role of IFN signaling. Here, we demonstrate that myeloid-specific STAT1 expression attenuates acute and persistent MHV68 replication in the lungs and suppresses viral reactivation from peritoneal cells, without any effect on the establishment of viral latent reservoir in splenic B cells. All gammaherpesviruses encode a conserved protein kinase that antagonizes type I IFN signaling in vitro. Here, we show that myeloid-specific STAT1 deficiency rescues the attenuated splenic latent reservoir of the kinase-null MHV68 mutant. However, despite having gained access to splenic B cells, the protein kinase-null MHV68 mutant fails to drive B cell differentiation. Thus, while myeloid-intrinsic STAT1 expression must be counteracted by the gammaherpesvirus protein kinase to facilitate viral passage to splenic B cells, expression of the viral protein kinase continues to be required to promote optimal B cell differentiation and viral reactivation, highlighting the multifunctional nature of this conserved viral protein during chronic infection. IMPORTANCE IFN signaling is a major antiviral system of the host that suppresses replication of diverse viruses, including acute and chronic gammaherpesvirus infection. STAT1 is a critical member and the primary antiviral effector of IFN signaling pathways. Given the significantly compromised antiviral status of global type I or type II IFN deficiency, unabated gammaherpesvirus replication and pathogenesis hinders understanding of cell type-specific antiviral effects. In this study, a mouse model of myeloid-specific STAT1 deficiency unveiled site-specific antiviral effects of STAT1 in the lungs and peritoneal cavity, but not the spleen, of chronically infected hosts. Interestingly, expression of a conserved gammaherpesvirus protein kinase was required to counteract the antiviral effects of myeloid-specific STAT1 expression to facilitate latent infection of splenic B cells, revealing a cell type-specific virus-host antagonism during the establishment of chronic gammaherpesvirus infection.
Collapse
|
195
|
Arvind V, Huang AH. Reparative and Maladaptive Inflammation in Tendon Healing. Front Bioeng Biotechnol 2021; 9:719047. [PMID: 34350166 PMCID: PMC8327090 DOI: 10.3389/fbioe.2021.719047] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Tendon injuries are common and debilitating, with non-regenerative healing often resulting in chronic disease. While there has been considerable progress in identifying the cellular and molecular regulators of tendon healing, the role of inflammation in tendon healing is less well understood. While inflammation underlies chronic tendinopathy, it also aids debris clearance and signals tissue repair. Here, we highlight recent findings in this area, focusing on the cells and cytokines involved in reparative inflammation. We also discuss findings from other model systems when research in tendon is minimal, and explore recent studies in the treatment of human tendinopathy to glean further insights into the immunobiology of tendon healing.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alice H. Huang
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
196
|
Alinezhadbalalami N, Graybill PM, Imran KM, Verbridge SS, Allen IC, Davalos RV. Generation of Tumor-activated T cells using electroporation. Bioelectrochemistry 2021; 142:107886. [PMID: 34303065 DOI: 10.1016/j.bioelechem.2021.107886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
Expansion of cytotoxic T lymphocytes (CTLs) is a crucial step in almost all cancer immunotherapeutic methods. Current techniques for expansion of tumor-reactive CTLs present major limitations. This study introduces a novel method to effectively produce and expand tumor-activated CTLs using high-voltage pulsed electric fields. We hypothesize that utilizing high-voltage pulsed electric fields may be an ideal method to activate and expand CTLs due to their non-thermal celldeath mechanism. Tumor cells were subjected to high-frequency irreversible electroporation (HFIRE) with various electric field magnitudes (1250, 2500 V/cm) and pulse widths (1, 5, and 10 µs), or irreversible electroporation (IRE) at 1250 V/cm. The treated tumor cells were subsequently cocultured with CD4+ and CD8+ T cells along with antigen-presenting cells. We show that tumor-activated CTLs can be produced and expanded when exposed to treated tumor cells. Our results suggest that CTLs are more effectively expanded when pulsed with HFIRE conditions that induce significant cell death (longer pulse widths and higher voltages). Activated CD8+ T cells demonstrate cytotoxicity to untreated tumor cells suggesting effector function of the activated CTLs. The activated CTLs produced with our technique could be used for clinical applications with the goal of targeting and eliminating the tumor.
Collapse
Affiliation(s)
- Nastaran Alinezhadbalalami
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Philip M Graybill
- Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, 1 Riverside Circle, Roanoke, VA 24016, USA; Institute for Critical Technology and Applied Sciences, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Scott S Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger Street, Blacksburg, VA 24061, USA; Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| |
Collapse
|
197
|
Zhao C, Zhang Y, Zheng H. The Effects of Interferons on Allogeneic T Cell Response in GVHD: The Multifaced Biology and Epigenetic Regulations. Front Immunol 2021; 12:717540. [PMID: 34305954 PMCID: PMC8297501 DOI: 10.3389/fimmu.2021.717540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. This beneficial effect is derived mainly from graft-versus-leukemia (GVL) effects mediated by alloreactive T cells. However, these alloreactive T cells can also induce graft-versus-host disease (GVHD), a life-threatening complication after allo-HSCT. Significant progress has been made in the dissociation of GVL effects from GVHD by modulating alloreactive T cell immunity. However, many factors may influence alloreactive T cell responses in the host undergoing allo-HSCT, including the interaction of alloreactive T cells with both donor and recipient hematopoietic cells and host non-hematopoietic tissues, cytokines, chemokines and inflammatory mediators. Interferons (IFNs), including type I IFNs and IFN-γ, primarily produced by monocytes, dendritic cells and T cells, play essential roles in regulating alloreactive T cell differentiation and function. Many studies have shown pleiotropic effects of IFNs on allogeneic T cell responses during GVH reaction. Epigenetic mechanisms, such as DNA methylation and histone modifications, are important to regulate IFNs’ production and function during GVHD. In this review, we discuss recent findings from preclinical models and clinical studies that characterize T cell responses regulated by IFNs and epigenetic mechanisms, and further discuss pharmacological approaches that modulate epigenetic effects in the setting of allo-HSCT.
Collapse
Affiliation(s)
- Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
198
|
Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat Rev Immunol 2021; 22:158-172. [PMID: 34155388 DOI: 10.1038/s41577-021-00566-3] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy offers substantive benefit to patients with various tumour types, in some cases leading to complete tumour clearance. However, many patients do not respond to immunotherapy, galvanizing the field to define the mechanisms of pre-existing and acquired resistance. Interferon-γ (IFNγ) is a cytokine that has both protumour and antitumour activities, suggesting that it may serve as a nexus for responsiveness to immunotherapy. Many cancer immunotherapies and chemotherapies induce IFNγ production by various cell types, including activated T cells and natural killer cells. Patients resistant to these therapies commonly have molecular aberrations in the IFNγ signalling pathway or express resistance molecules driven by IFNγ. Given that all nucleated cells can respond to IFNγ, the functional consequences of IFNγ production need to be carefully dissected on a cell-by-cell basis. Here, we review the cells that produce IFNγ and the different effects of IFNγ in the tumour microenvironment, highlighting the pleiotropic nature of this multifunctional and abundant cytokine.
Collapse
Affiliation(s)
- Angela M Gocher
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
199
|
Gokina NI, Fairchild RI, Prakash K, DeLance NM, Bonney EA. Deficiency in CD4 T Cells Leads to Enhanced Postpartum Internal Carotid Artery Vasoconstriction in Mice: The Role of Nitric Oxide. Front Physiol 2021; 12:686429. [PMID: 34220551 PMCID: PMC8242360 DOI: 10.3389/fphys.2021.686429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The risk of postpartum (PP) stroke is increased in complicated pregnancies. Deficiency in CD4 T cell subsets is associated with preeclampsia and may contribute to PP vascular disease, including internal carotid artery (ICA) stenosis and stroke. We hypothesized that CD4 T cell deficiency in pregnancy would result in ICA dysregulation, including enhanced ICA vasoconstriction. We characterized the function, mechanical behavior, and structure of ICAs from C57BL/6 (WT) and CD4 deficient (CD4KO) mice, and assessed the role of NO in the control of ICA function at pre-conception and PP. WT and CD4KO mice were housed under pathogen-free conditions, mated to same-strain males, and allowed to litter or left virgin. At 3 days or 4 weeks PP, mice were euthanized. The responses to phenylephrine (PE), high K+ and acetylcholine (ACh) were assessed in pressurized ICAs before and after NOS inhibition. Passive lumen diameters were measured at 3–140 mmHg. eNOS and iNOS expression as well as the presence of T cells were evaluated by immunohistochemistry. Constriction of WT ICAs to PE was not modified PP. In contrast, responses to PE were significantly increased in ICAs from PP as compared to virgin CD4KO mice. Constriction to high K+ was not enhanced PP. ICAs from WT and CD4KO mice were equally sensitive to ACh with a significant rightward shift of dose-response curves after L-NNA treatment. NOS inhibition enhanced PE constriction of ICAs from WT virgin and PP mice. Although a similar effect was detected in ICAs of virgin CD4KO mice, no such changes were observed in vessels from PP CD4KO mice. Passive arterial distensibility at physiological levels of pressure was not modified at PP. ICA diameters were significantly increased in PP with no change in vascular wall thickness. Comparison of eNOS expression in virgin, 3 days and 4 weeks PP revealed a reduced expression in ICA from CD4 KO vs. WT PP vessels which reached significance at 4 weeks PP. iNos expression was similar and decreased over the PP period in vessels from WT and CD4KO mice. Dysregulation of the CD4 T cell population in pregnancy may make ICA vulnerable to vasospasm due to decreased NO-dependent control of ICA constriction. This may lead to cerebral hypoperfusion and increase the risk of maternal PP stroke.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Rebecca I Fairchild
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Kirtika Prakash
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Nicole M DeLance
- Microscopy Imaging Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
200
|
Abstract
Introduction: Innate immunity is armed with interferons (IFNs) that link innate immunity to adaptive immunity to generate long-term and protective immune responses against invading pathogens and tumors. However, regulation of IFN production is crucial because chronic IFN responses can have deleterious effects on both antitumor and antimicrobial immunity in addition to provoking autoinflammatory or autoimmune conditions.Areas covered: Here, we focus on the accumulated evidence on antimicrobial and antitumor activities of type I and II IFNs. We first summarize the intracellular and intercellular mechanisms regulating IFN production and signaling. Then, we discuss the mechanisms modulating the dual nature of IFNs for both antitumor and antimicrobial immune responses. Finally, we review the detrimental role of IFNs for induction of autoinflammation and autoimmunity.Expert opinion: The current evidence suggests that the dual role of IFNs for antimicrobial and antitumor immunity is dependent not only on the timing, administration route, and dose of IFNs but also on the type of pathogen/tumor. Therefore, we think that combinatorial therapies involving IFN-inducing adjuvants and immune-checkpoint blockers may offer therapeutic potential, especially for cancer, whereas infectious, autoinflammatory or autoimmune diseases require fine adjustment of timing, dose, and route of the administration for candidate IFN-based vaccines or immunotherapies.
Collapse
Affiliation(s)
- Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), Osaka, Japan
| |
Collapse
|