151
|
Immunomodulatory effects of Lactobacillus rhamnosus GG on dendritic cells, macrophages and monocytes from healthy donors. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
152
|
Su J, Su J, Shang X, Wan Q, Chen X, Rao Y. SNP detection of TLR8 gene, association study with susceptibility/resistance to GCRV and regulation on mRNA expression in grass carp, Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2015; 43:1-12. [PMID: 25514376 DOI: 10.1016/j.fsi.2014.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/17/2014] [Accepted: 12/06/2014] [Indexed: 05/10/2023]
Abstract
Toll-like receptor 8 (TLR8), a prototypical intracellular member of TLR family, is generally linked closely to antiviral innate immune through recognizing viral nucleic acid. In this study, 5'-flanking region of Ctenopharyngodon idella TLR8 (CiTLR8), 671bp in length, was amplified and eight SNPs containing one SNP in the intron, three SNPs in the coding region (CDS) and four SNPs in the 3'-untranslated region (UTR) were identified and characterized. Of which 4062 A/T was significantly associated with the susceptibility/resistance to GCRV both in genotype and allele (P < 0.05), while 4168 C/T was extremely significantly associated with that (P < 0.01) according to the case (susceptibility)-control (resistance) analysis. Following the verification experiment, further analyses of mRNA expression, linkage disequilibrium (LD), haplotype and microRNA (miRNA) target site indicated that 4062 A/T and 4168 C/T in 3'-UTR might affect the miRNA regulation, while the exertion of antiviral effects of 4062 A/T might rely on its interaction with other SNPs. Additionally, the high-density of SNPs in 3'-UTR might reflect the specific biological functions of 3'-UTR. And also, the mutation of 747 A/G in intron changing the potential transcriptional factor-binding sites (TFBS) nearby might affect the expression of CiTLR8 transcriptionally or post-transcriptionally. Moreover, as predicted, the A/G transition of the only non-synonymous SNP (3846 A/G) in CDS causing threonine/alanine variation, could shorten the length of the α-helix and ultimately affect the integrity of the Toll-IL-1 receptor (TIR) domain. The functional mechanism of 3846 A/G might also involve a threonine phosphorylation signaling. This study may broaden the knowledge of TLR polymorphisms, lay the foundation for further functional research of CiTLR8 and provide potential markers as well as theoretical basis for resistance molecular breeding of grass carp against GCRV.
Collapse
Affiliation(s)
- Juanjuan Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Xueying Shang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Quanyuan Wan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Youliang Rao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
153
|
Chatillon JF, Hamieh M, Bayeux F, Abasq C, Fauquembergue E, Drouet A, Guisier F, Latouche JB, Musette P. Direct Toll-Like Receptor 8 signaling increases the functional avidity of human CD8+ T lymphocytes generated for adoptive T cell therapy strategies. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:1-13. [PMID: 25866635 PMCID: PMC4386909 DOI: 10.1002/iid3.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/25/2014] [Accepted: 09/13/2014] [Indexed: 11/14/2022]
Abstract
Adoptive transfer of in vitro activated and expanded antigen-specific cytotoxic T lymphocytes (CTLs) is a promising therapeutic strategy for infectious diseases and cancers. Obtaining in vitro a sufficient amount of highly specific cytotoxic cells and capable of retaining cytotoxic activity in vivo remains problematic. We studied the role of Toll-Like Receptor-8 (TLR8) engagement on peripheral CTLs activated with melanoma antigen MART-1-expressing artificial antigen-presenting cells (AAPCs). After a 3-week co-culture, 3–27% of specific CTLs were consistently obtained. CTLs expressed TLR8 in the intracellular compartment and at the cell surface. Specific CTLs activated with a TLR8 agonist (CL075) 24 h before the end of the culture displayed neither any change in their production levels of molecules involved in cytotoxicity (IFN-γ, Granzyme B, and TNF-α) nor major significant change in their cell surface phenotype. However, these TLR8-stimulated lymphocytes displayed increased cytotoxic activity against specific peptide-pulsed target cells related to an increase in specific anti-melanoma CTL functional avidity. TLR8 engagement on CTLs could, therefore, be useful in different immunotherapy strategies.
Collapse
Affiliation(s)
- Jean-François Chatillon
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France
| | - Mohamad Hamieh
- University of Rouen Rouen, France ; INSERM U1079 Rouen, France
| | - Florence Bayeux
- Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France
| | - Claire Abasq
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France ; Rouen University Hospital Rouen, France
| | | | | | - Florian Guisier
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France ; Rouen University Hospital Rouen, France
| | - Jean-Baptiste Latouche
- University of Rouen Rouen, France ; INSERM U1079 Rouen, France ; Rouen University Hospital Rouen, France
| | - Philippe Musette
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France ; Rouen University Hospital Rouen, France
| |
Collapse
|
154
|
Xu C, Evensen Ø, Munang'andu HM. De novo assembly and transcriptome analysis of Atlantic salmon macrophage/dendritic-like TO cells following type I IFN treatment and Salmonid alphavirus subtype-3 infection. BMC Genomics 2015; 16:96. [PMID: 25765343 PMCID: PMC4337061 DOI: 10.1186/s12864-015-1302-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/29/2015] [Indexed: 12/23/2022] Open
Abstract
Background Interferons (IFN) are cytokines secreted by vertebrate cells involved in activation of signaling pathways that direct the synthesis of antiviral genes. To gain a global understanding of antiviral genes induced by type I IFNs in salmonids, we used RNA-seq to characterize the transcriptomic changes induced by type I IFN treatment and salmon alphavirus subtype 3 (SAV-3) infection in TO-cells, a macrophage/dendritic like cell-line derived from Atlantic salmon (Salmo salar L) head kidney leukocytes. Results More than 23 million reads generated by RNA-seq were de novo assembled into 58098 unigenes used to generate a total of 3149 and 23289 differentially expressed genes (DEGs) from TO-cells exposed to type I IFN treatment and SAV-3 infection, respectively. Although the DEGs were classified into genes associated with biological processes, cellular components and molecular function based on gene ontology classification, transcriptomic changes reported here show upregulation of genes belonging to the canonical type I IFN signaling pathways together with a broad spectrum of antiviral genes that block virus replication in host cells. In addition, the transcriptome shows a profile of genes associated with apoptosis as well as genes that activate adaptive immunity. Further, our findings show that the profile of genes expressed by TO-cells is comparable to orthologous genes expressed by mammalian macrophages and dendritic cells in response to type I IFNs. Twenty DEGs randomly selected for qRT-PCR confirmed the validity of the transcriptomic changes detected by RNA-seq by showing that the genes upregulated by RNA-seq were also upregulated by qRT-PCR and that genes downregulated by RNA-seq were also downregulated by qRT-PCR. Conclusions The de novo assembled transcriptome presented here provides a global description of genes induced by type I IFNs in TO-cells that could serve as a repository for future studies in fish cells. Transcriptome analysis shows that a large proportion of IFN genes expressed in this study are comparable to IFNs genes expressed in mammalia. In addition, the study shows that SAV-3 is a potent inducer of type I IFNs and that the responses it induces in TO-cells could serve as a model for studying IFN responses in salmonids.
Collapse
Affiliation(s)
- Cheng Xu
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, P.O. Box 8146, Dep. NO-0033, Oslo, Norway.
| | - Øystein Evensen
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, P.O. Box 8146, Dep. NO-0033, Oslo, Norway.
| | - Hetron Mweemba Munang'andu
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, P.O. Box 8146, Dep. NO-0033, Oslo, Norway.
| |
Collapse
|
155
|
Rosadini CV, Kagan JC. Microbial strategies for antagonizing Toll-like-receptor signal transduction. Curr Opin Immunol 2015; 32:61-70. [PMID: 25615700 PMCID: PMC4336813 DOI: 10.1016/j.coi.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/24/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022]
Abstract
Within a few years of the discovery of Toll-like receptors (TLRs) and their role in innate immunity, viral and bacterial proteins were recognized to antagonize TLR signal transduction. Since then, as TLR signaling networks were unraveled, microbial systems have been discovered that target nearly every component within these pathways. However, recent findings as well as some notable exceptions promote the idea that more of these systems have yet to be discovered. For example, we know very little about microbial systems for directly targeting non-cytoplasmic portions of TLR signaling pathways, that is, the ligand interacting portions of the receptor itself. In this review, we compare and contrast strategies by which bacteria and viruses antagonize TLR signaling networks to identify potential areas for future research.
Collapse
Affiliation(s)
- Charles V Rosadini
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
156
|
Kornblit B, Enevold C, Wang T, Spellman S, Haagenson M, Lee SJ, Müller K. Toll-like receptor polymorphisms in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2015; 21:259-65. [PMID: 25464115 PMCID: PMC4297590 DOI: 10.1016/j.bbmt.2014.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022]
Abstract
To assess the impact of the genetic variation in toll-like receptors (TLRs) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT), we investigated 29 single nucleotide polymorphisms across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs3764879, which is located on the X chromosome, was significantly associated with outcome at the Bonferroni-corrected level P ≤ .001. Male hemizygosity and female homozygosity for the minor allele were significantly associated with disease-free survival (hazard ratio [HR], 1.47 [95% confidence interval {CI}, 1.16 to 1.85]; P = .001). Further analysis stratified by donor sex due to confounding by sex was suggestive for associations with overall survival (male donor: HR, 1.41 [95% CI, 1.09 to 1.83], P = .010; female donor: HR, 2.78 [95% CI, 1.43 to 5.41], P = .003), disease-free survival (male donor: HR, 1.45 [95% CI, 1.12 to 1.87], P = .005; female donor: HR, 2.34 [95% CI, 1.18 to 4.65], P = .015), and treatment-related mortality (male donor: HR, 1.49 [95% CI, 1.09 to 2.04], P = .012; female donor: HR, 3.12 [95% CI, 1.44 to 6.74], P = .004). In conclusion, our findings suggest that the minor allele of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT.
Collapse
Affiliation(s)
- Brian Kornblit
- The Laboratory for Allogeneic Hematopoietic Cell Transplantation, Department of Hematology, Rigshospitalet, Copehnhagen, Denmark.
| | - Christian Enevold
- Department of Infectious Diseases and Rheumatology, Institute for Inflammation Research, Rigshospitalet, Copenhagen, Denmark
| | - Tao Wang
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Mike Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephanie J Lee
- Clinical Transplant Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Klaus Müller
- Department of Infectious Diseases and Rheumatology, Institute for Inflammation Research, Rigshospitalet, Copenhagen, Denmark; Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
157
|
Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clin Exp Vaccine Res 2015; 4:23-45. [PMID: 25648619 PMCID: PMC4313107 DOI: 10.7774/cevr.2015.4.1.23] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 11/24/2014] [Accepted: 11/29/2014] [Indexed: 12/22/2022] Open
Abstract
Adjuvants improve the adaptive immune response to a vaccine antigen by modulating innate immunity or facilitating transport and presentation. The selection of an appropriate adjuvant has become vital as new vaccines trend toward narrower composition, expanded application, and improved safety. Functionally, adjuvants act directly or indirectly on antigen presenting cells (APCs) including dendritic cells (DCs) and are perceived as having molecular patterns associated either with pathogen invasion or endogenous cell damage (known as pathogen associated molecular patterns [PAMPs] and damage associated molecular patterns [DAMPs]), thereby initiating sensing and response pathways. PAMP-type adjuvants are ligands for toll-like receptors (TLRs) and can directly affect DCs to alter the strength, potency, speed, duration, bias, breadth, and scope of adaptive immunity. DAMP-type adjuvants signal via proinflammatory pathways and promote immune cell infiltration, antigen presentation, and effector cell maturation. This class of adjuvants includes mineral salts, oil emulsions, nanoparticles, and polyelectrolytes and comprises colloids and molecular assemblies exhibiting complex, heterogeneous structures. Today innovation in adjuvant technology is driven by rapidly expanding knowledge in immunology, cross-fertilization from other areas including systems biology and materials sciences, and regulatory requirements for quality, safety, efficacy and understanding as part of the vaccine product. Standardizations will aid efforts to better define and compare the structure, function and safety of adjuvants. This article briefly surveys the genesis of adjuvant technology and then re-examines polyionic macromolecules and polyelectrolyte materials, adjuvants currently not known to employ TLR. Specific updates are provided for aluminum-based formulations and polyelectrolytes as examples of improvements to the oldest and emerging classes of vaccine adjuvants in use.
Collapse
Affiliation(s)
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
158
|
Sabado RL, Pavlick A, Gnjatic S, Cruz CM, Vengco I, Hasan F, Spadaccia M, Darvishian F, Chiriboga L, Holman RM, Escalon J, Muren C, Escano C, Yepes E, Sharpe D, Vasilakos JP, Rolnitzsky L, Goldberg J, Mandeli J, Adams S, Jungbluth A, Pan L, Venhaus R, Ott PA, Bhardwaj N. Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma. Cancer Immunol Res 2015; 3:278-287. [PMID: 25633712 DOI: 10.1158/2326-6066.cir-14-0202] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Toll-like receptor (TLR) 7/8 agonist resiquimod has been used as an immune adjuvant in cancer vaccines. We evaluated the safety and immunogenicity of the cancer testis antigen NY-ESO-1 given in combination with Montanide (Seppic) with or without resiquimod in patients with high-risk melanoma. In part I of the study, patients received 100 μg of full-length NY-ESO-1 protein emulsified in 1.25 mL of Montanide (day 1) followed by topical application of 1,000 mg of 0.2% resiquimod gel on days 1 and 3 (cohort 1) versus days 1, 3, and 5 (cohort 2) of a 21-day cycle. In part II, patients were randomized to receive 100-μg NY-ESO-1 protein plus Montanide (day 1) followed by topical application of placebo gel [(arm A; n = 8) or 1,000 mg of 0.2% resiquimod gel (arm B; n = 12)] using the dosing regimen established in part I. The vaccine regimens were generally well tolerated. NY-ESO-1-specific humoral responses were induced or boosted in all patients, many of whom had high titer antibodies. In part II, 16 of 20 patients in both arms had NY-ESO-1-specific CD4⁺ T-cell responses. CD8⁺ T-cell responses were only seen in 3 of 12 patients in arm B. Patients with TLR7 SNP rs179008 had a greater likelihood of developing NY-ESO-1-specific CD8⁺ responses. In conclusion, NY-ESO-1 protein in combination with Montanide with or without topical resiquimod is safe and induces both antibody and CD4⁺ T-cell responses in the majority of patients; the small proportion of CD8⁺ T-cell responses suggests that the addition of topical resiquimod to Montanide is not sufficient to induce consistent NY-ESO-1-specific CD8⁺ T-cell responses.
Collapse
Affiliation(s)
- Rachel Lubong Sabado
- Cancer Institute, New York University School of Medicine, New York.,Icahn School of Medicine at Mount Sinai Tisch Cancer Institute, Harvard Medical School, New York
| | - Anna Pavlick
- Cancer Institute, New York University School of Medicine, New York
| | - Sacha Gnjatic
- Ludwig Institute for Cancer Research, Harvard Medical School, New York.,Icahn School of Medicine at Mount Sinai Tisch Cancer Institute, Harvard Medical School, New York
| | - Crystal M Cruz
- Cancer Institute, New York University School of Medicine, New York
| | - Isabelita Vengco
- Cancer Institute, New York University School of Medicine, New York
| | - Farah Hasan
- Cancer Institute, New York University School of Medicine, New York
| | | | - Farbod Darvishian
- Department of Pathology, New York University School of Medicine, New York
| | - Luis Chiriboga
- Department of Pathology, New York University School of Medicine, New York
| | | | - Juliet Escalon
- Cancer Institute, New York University School of Medicine, New York
| | - Caroline Muren
- Cancer Institute, New York University School of Medicine, New York
| | - Crystal Escano
- Cancer Institute, New York University School of Medicine, New York
| | - Ethel Yepes
- Cancer Institute, New York University School of Medicine, New York
| | - Dunbar Sharpe
- Cancer Institute, New York University School of Medicine, New York
| | - John P Vasilakos
- 3M Drug Delivery Systems Division, Harvard Medical School, New York
| | - Linda Rolnitzsky
- Cancer Institute, New York University School of Medicine, New York
| | - Judith Goldberg
- Cancer Institute, New York University School of Medicine, New York
| | - John Mandeli
- 3M Drug Delivery Systems Division, Harvard Medical School, New York
| | - Sylvia Adams
- Cancer Institute, New York University School of Medicine, New York
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York
| | - Linda Pan
- Ludwig Institute for Cancer Research, Harvard Medical School, New York
| | - Ralph Venhaus
- Ludwig Institute for Cancer Research, Harvard Medical School, New York
| | - Patrick A Ott
- Cancer Institute, New York University School of Medicine, New York.,Dana-Farber Cancer Institute, Harvard Medical School, New York
| | - Nina Bhardwaj
- Cancer Institute, New York University School of Medicine, New York.,Department of Pathology, New York University School of Medicine, New York.,Icahn School of Medicine at Mount Sinai Tisch Cancer Institute, Harvard Medical School, New York
| |
Collapse
|
159
|
Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils. Nat Commun 2015; 6:6061. [PMID: 25616107 DOI: 10.1038/ncomms7061] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/09/2014] [Indexed: 12/24/2022] Open
Abstract
Controversy currently exists about the ability of human neutrophils to produce IL-6. Here, we show that the chromatin organization of the IL-6 genomic locus in human neutrophils is constitutively kept in an inactive configuration. However, we also show that upon exposure to stimuli that trigger chromatin remodelling at the IL-6 locus, such as ligands for TLR8 or, less efficiently, TLR4, highly purified neutrophils express and secrete IL-6. In TLR8-activated neutrophils, but not monocytes, IL-6 expression is preceded by the induction of a latent enhancer located 14 kb upstream of the IL-6 transcriptional start site. In addition, IL-6 induction is potentiated by endogenous TNFα, which prolongs the synthesis of the IκBζ co-activator and sustains C/EBPβ recruitment and histone acetylation at IL-6 regulatory regions. Altogether, these data clarify controversial literature on the ability of human neutrophils to generate IL-6 and uncover chromatin-dependent layers of regulation of IL-6 in these cells.
Collapse
|
160
|
Zhang J, Kong X, Zhou C, Li L, Nie G, Li X. Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways. FISH & SHELLFISH IMMUNOLOGY 2014; 41:380-8. [PMID: 25241605 DOI: 10.1016/j.fsi.2014.09.022] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/05/2014] [Accepted: 09/14/2014] [Indexed: 05/22/2023]
Abstract
Pattern recognition receptors (PRRs) recognize the conserved molecular structure of pathogens and trigger the signaling pathways that activate immune cells in response to pathogen infection. Toll-like receptors (TLRs) are the first and best characterized innate immune receptors. To date, at least 20 TLR types (TLR1, 2, 3, 4, 5M, 5S, 7, 8, 9, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, and 26) have been found in more than a dozen of fish species. However, of the TLRs identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S, TLR9, TLR21, and TLR22. Some studies have suggested that TLR2, TLR5M, TLR5S, TLR9, and TLR21 could specifically recognize PAMPs from bacteria. In addition, other TLRs including TLR1, TLR4, TLR14, TLR18, and TLR25 may also be sensors of bacteria. TLR signaling pathways in fish exhibit some particular features different from that in mammals. In this review, the ligand specificity and signal pathways of TLRs that recognize bacteria in fish are summarized. References for further studies on the specificity for recognizing bacteria using TLRs and the following reactions triggered are discussed. In-depth studies should be continuously performed to identify the ligand specificity of all TLRs in fish, particularly non-mammalian TLRs, and their signaling pathways. The discovery of TLRs and their functions will contribute to the understanding of disease resistance mechanisms in fish and provide new insights for drug intervention to manipulate immune responses.
Collapse
Affiliation(s)
- Jie Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Chuanjiang Zhou
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
161
|
Wunderlich F, Al-Quraishy S, Dkhil MA. Liver-inherent immune system: its role in blood-stage malaria. Front Microbiol 2014; 5:559. [PMID: 25408684 PMCID: PMC4219477 DOI: 10.3389/fmicb.2014.00559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
The liver is well known as that organ which is obligately required for the intrahepatocyte development of the pre-erythrocytic stages of the malaria-causative agent Plasmodium. However, largely neglected is the fact that the liver is also a central player of the host defense against the morbidity- and mortality-causing blood stages of the malaria parasites. Indeed, the liver is equipped with a unique immune system that acts locally, however, with systemic impact. Its main “antipodal” functions are to recognize and to generate effective immunoreactivity against pathogens on the one hand, and to generate tolerance to avoid immunoreactivity with “self” and harmless substances as dietary compounds on the other hand. This review provides an introductory survey of the liver-inherent immune system: its pathogen recognition receptors including Toll-like receptors (TLRs) and its major cell constituents with their different facilities to fight and eliminate pathogens. Then, evidence is presented that the liver is also an essential organ to overcome blood-stage malaria. Finally, we discuss effector responses of the liver-inherent immune system directed against blood-stage malaria: activation of TLRs, acute phase response, phagocytic activity, cytokine-mediated pro- and anti-inflammatory responses, generation of “protective” autoimmunity by extrathymic T cells and B-1 cells, and T cell-mediated repair of liver injuries mainly produced by malaria-induced overreactions of the liver-inherent immune system.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University , Düsseldorf, Germany
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia ; Department of Zoology and Entomology, Faculty of Science, Helwan University , Cairo, Egypt
| |
Collapse
|
162
|
Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol 2014; 7:a016246. [PMID: 25301932 DOI: 10.1101/cshperspect.a016246] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recognition of an invading pathogen is critical to elicit protective responses. Certain microbial structures and molecules, which are crucial for their survival and virulence, are recognized by different families of evolutionarily conserved pattern recognition receptors (PRRs). This recognition initiates a signaling cascade that leads to the transcription of inflammatory cytokines and chemokines to eliminate pathogens and attract immune cells, thereby perpetuating further adaptive immune responses. Considerable research on the molecular mechanisms underlying host-pathogen interactions has resulted in the discovery of multifarious PRRs. In this review, we discuss the recent developments in microbial recognition by Toll-like receptors (TLRs) and intracellular nucleic acid sensors and the signaling pathways initiated by them.
Collapse
Affiliation(s)
- Surya Pandey
- Laboratory of Molecular Immunobiology, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
163
|
Snyder JM, Treuting PM, Nagy L, Yam C, Yi J, Brasfield A, Nguyen LPA, Hajjar AM. Humanized TLR7/8 expression drives proliferative multisystemic histiocytosis in C57BL/6 mice. PLoS One 2014; 9:e107257. [PMID: 25229618 PMCID: PMC4168129 DOI: 10.1371/journal.pone.0107257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023] Open
Abstract
A humanized TLR7/TLR8 transgenic mouse line was engineered for studies using TLR7/8 ligands as vaccine adjuvants. The mice developed a spontaneous immune-mediated phenotype prior to six months of age characterized by runting, lethargy, blepharitis, and corneal ulceration. Histological examination revealed a marked, multisystemic histiocytic infiltrate that effaced normal architecture. The histological changes were distinct from those previously reported in mouse models of systemic lupus erythematosus. When the mice were crossed with MyD88-/- mice, which prevented toll-like receptor signaling, the inflammatory phenotype resolved. Illness may be caused by constitutive activation of human TLR7 or TLR8 in the bacterial artificial chromosome positive mice as increased TLR7 and TLR8 expression or activation has previously been implicated in autoimmune disease.
Collapse
Affiliation(s)
- Jessica M. Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
- Comparative Pathology Program, University of Washington, Seattle, Washington, United States of America
| | - Piper M. Treuting
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
- Comparative Pathology Program, University of Washington, Seattle, Washington, United States of America
| | - Lee Nagy
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Cathy Yam
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jaehun Yi
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alicia Brasfield
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lisa Phuong Anh Nguyen
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Adeline M. Hajjar
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
164
|
van Montfoort N, Olagnier D, Hiscott J. Unmasking immune sensing of retroviruses: interplay between innate sensors and host effectors. Cytokine Growth Factor Rev 2014; 25:657-68. [PMID: 25240798 DOI: 10.1016/j.cytogfr.2014.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retroviruses can selectively trigger an array of innate immune responses through various PRR. The identification and the characterization of the molecular basis of retroviral DNA sensing by the DNA sensors IFI16 and cGAS has been one of the most exciting developments in viral immunology in recent years. DNA sensing by these cytosolic sensors not only leads to the initiation of the type I interferon (IFN) antiviral response and the induction of the inflammatory response, but also triggers cell death mechanisms including pyroptosis and apoptosis in retrovirus-infected cells, thereby providing important insights into the pathophysiology of chronic retroviral infection. Host restriction factors such as SAMHD1 and Trex1 play important roles in regulating innate immune sensing, and have led to the idea that innate immune defense and host restriction actually converge at different levels to determine the outcome of retroviral infection. In this review, we discuss the sensing of retroviruses by cytosolic DNA sensors, the relevance of host factors during retroviral infection, and the interplay between host factors and the innate antiviral response in different cell types, within the context of two human pathogenic retroviruses - human immunodeficiency virus (HIV-1) and human T cell-leukemia virus type I (HTLV-1).
Collapse
Affiliation(s)
- Nadine van Montfoort
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA
| | - David Olagnier
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA
| | - John Hiscott
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA.
| |
Collapse
|
165
|
Testosterone persistently dysregulates hepatic expression of Tlr6 and Tlr8 induced by Plasmodium chabaudi malaria. Parasitol Res 2014; 113:3609-20. [PMID: 25056943 DOI: 10.1007/s00436-014-4026-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/04/2014] [Indexed: 01/20/2023]
Abstract
Testosterone (T) is known to induce persistent susceptibility to Plasmodium chabaudi malaria. Pathogens recognizing Toll-like receptors (TLRs), though potentially important against malaria, have not yet been examined for their T-sensitivity. Here, we investigate effects of T and P. chabaudi on mRNA expression and promoter DNA methylation of Tlr1-9 genes in the liver of female C57BL/6 mice. These are treated with T or vehicle for 3 weeks, and then treatment is discontinued for 12 weeks, before challenging with P. chabaudi for 8 days. Our data reveal that T induces a 9.1-fold downregulation of Tlr6 mRNA and 6.3-fold upregulation of Tlr8 mRNA. Blood-stage infections induce significant increases in mRNA expression of Tlr1, 2, 4, 6, 7, and 8 varying between 2.5-fold and 21-fold in control mice. In T-pretreated mice, these Tlr genes are also significantly responsive to infections. However, the malaria-induced upregulations of the relative mRNA expressions of Tlr6 and Tlr8 are 5.6-fold higher and 6.5-fold lower in T-pretreated mice than in control mice. Infections induce a massive DNA down-methylation of the Tlr6 gene promoter in control mice, which is still more pronounced in T-pretreated mice, while significant changes are not detectable for the DNA methylation status of the Tlr8 promoter. Our data support the view that hepatic expression of Tlr6, but not that of Tlr8 is epigenetically controlled, and that the dysregulations of Tlr6 and Tlr8 critically contribute to T-induced persistent susceptibility to P. chabaudi malaria, possibly by dys-balancing responses of TLR6-mediated pathogen recognition and TLR8-mediated generation of anti-malaria "protective" autoimmunity.
Collapse
|
166
|
Ovocalyxin-36 is an effector protein modulating the production of proinflammatory mediators. Vet Immunol Immunopathol 2014; 160:1-11. [DOI: 10.1016/j.vetimm.2014.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/29/2014] [Accepted: 03/03/2014] [Indexed: 01/31/2023]
|
167
|
Cervantes JL, Hawley KL, Benjamin SJ, Weinerman B, Luu SM, Salazar JC. Phagosomal TLR signaling upon Borrelia burgdorferi infection. Front Cell Infect Microbiol 2014; 4:55. [PMID: 24904837 PMCID: PMC4033037 DOI: 10.3389/fcimb.2014.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022] Open
Abstract
Internalization and degradation of live Bb within phagosomal compartments of monocytes, macrophages and dendritic cells (DCs), allows for the release of lipoproteins, nucleic acids and other microbial products, triggering a broad and robust inflammatory response. Toll-like receptors (TLRs) are key players in the recognition of spirochetal ligands from whole viable organisms (i.e., vita-PAMPs). Herein we will review the role of endosomal TLRs in the response to the Lyme disease spirochete.
Collapse
Affiliation(s)
- Jorge L Cervantes
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA
| | - Kelly L Hawley
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA
| | - Sarah J Benjamin
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA
| | - Bennett Weinerman
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA
| | - Stephanie M Luu
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington, CT, USA
| | - Juan C Salazar
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA ; Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
168
|
Verrall AJ, Netea MG, Alisjahbana B, Hill PC, van Crevel R. Early clearance of Mycobacterium tuberculosis: a new frontier in prevention. Immunology 2014; 141:506-13. [PMID: 24754048 DOI: 10.1111/imm.12223] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Early clearance (EC) is the successful eradication of inhaled Mycobacterium tuberculosis before an adaptive immune response develops. Evidence for EC comes from case contact studies that consistently show that a proportion of heavily exposed individuals do not develop M. tuberculosis infection. Further support for the existence of this phenotype comes from genetic loci associated with tuberculin reactivity. In this review we discuss aspects of the innate response that may underpin EC and hypotheses that can be tested through field laboratory link studies in M. tuberculosis case contacts. Specifically, we consider mechanisms whereby alveolar macrophages recognize and kill intracellular M. tuberculosis, and how other cell types, such as neutrophils, natural killer T cells, mucosa-associated invariant T cells and cd T cells may assist. How EC may be impaired by HIV infection or vitamin D deficiency is also explored. As EC is a form of protective immunity, further study may advance the development of vaccines and immunotherapies to prevent M. tuberculosis infection.
Collapse
|
169
|
Wang CH, Eng HL, Lin KH, Liu HC, Chang CH, Lin TM. Functional polymorphisms of TLR8 are associated with hepatitis C virus infection. Immunology 2014; 141:540-8. [PMID: 24205871 DOI: 10.1111/imm.12211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/31/2013] [Accepted: 11/06/2013] [Indexed: 01/14/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a worldwide threat to public health. Toll-like receptor 8 (TLR8) is critical for eliminating RNA viruses, and variation within the TLR8 gene may alter the function of TLR8 in response to HCV infection. Our previous study demonstrated that the TLR8-129G>C (rs3764879) and TLR8+1G>A (rs3764880) variants were in complete linkage disequilibrium, and that the frequency of TLR8-129C/+1A was significantly higher in male patients with HCV infection compared with the healthy controls. In the present study, we found that the promoter activity of TLR8-129G was higher than that of TLR8-129C in THP-1 cells. Moreover, TLR8-129G mRNA stability and competitive DNA-binding ability were significantly lower than that of TLR8-129C. To investigate the functional effects of TLR8 polymorphisms, we compared the nuclear factor-κB (NF-κB)-driven luciferase activity in HEK293 cells transfected with the TLR8 variants. TLR8+1A plasmids induced less NF-κB signalling than did those transfected with TLR8+1G after 20 μm CL075 (P = 0.011) stimulation. We also analysed the mRNA expression and cytokine production in whole blood and monocytes from people of various genotypes stimulated ex vivo by the interferon-γ and TLR7/8 agonist CL075, R848. TLR8 expression in CD14⁺ cells derived from volunteers with TLR8-129G/+1G was significantly higher than that derived from TLR8-129C/+1A, and interleukin-12p40 production was higher in volunteers with TLR8-129G/+1G after stimulation. The data indicate that variations in TLR8 genes may modulate immune responses during HCV infection.
Collapse
MESH Headings
- Adult
- Binding Sites
- Case-Control Studies
- Cytokines/blood
- DNA/metabolism
- Genes, Reporter
- Genetic Predisposition to Disease
- HEK293 Cells
- HeLa Cells
- Hepatitis C, Chronic/blood
- Hepatitis C, Chronic/diagnosis
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/immunology
- Humans
- Immunity, Innate/genetics
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Luciferases/biosynthesis
- Luciferases/genetics
- Male
- NF-kappa B/genetics
- Odds Ratio
- Phenotype
- Polymorphism, Genetic
- Promoter Regions, Genetic
- RNA Stability
- RNA, Messenger/metabolism
- Signal Transduction
- Time Factors
- Toll-Like Receptor 8/agonists
- Toll-Like Receptor 8/genetics
- Toll-Like Receptor 8/immunology
- Toll-Like Receptor 8/metabolism
- Transfection
Collapse
Affiliation(s)
- Chiou-Huey Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, E-DA Hospital/I-SHOU University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
170
|
Chattergoon MA, Latanich R, Quinn J, Winter ME, Buckheit RW, Blankson JN, Pardoll D, Cox AL. HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal Toll-like receptors without induction of type 1 interferon. PLoS Pathog 2014; 10:e1004082. [PMID: 24788318 PMCID: PMC4006909 DOI: 10.1371/journal.ppat.1004082] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/07/2014] [Indexed: 02/07/2023] Open
Abstract
Innate immune sensing of viral infection results in type I interferon (IFN) production and inflammasome activation. Type I IFNs, primarily IFN-α and IFN-β, are produced by all cell types upon virus infection and promote an antiviral state in surrounding cells by inducing the expression of IFN-stimulated genes. Type I IFN production is mediated by Toll-like receptor (TLR) 3 in HCV infected hepatocytes. Type I IFNs are also produced by plasmacytoid dendritic cells (pDC) after sensing of HIV and HCV through TLR7 in the absence of productive pDC infection. Inflammasomes are multi-protein cytosolic complexes that integrate several pathogen-triggered signaling cascades ultimately leading to caspase-1 activation and generation pro-inflammatory cytokines including interleukin (IL)-18 and IL-1β. Here, we demonstrate that HIV and HCV activate the inflammasome, but not Type I IFN production, in monocytes and macrophages in an infection-independent process that requires clathrin-mediated endocytosis and recognition of the virus by distinct endosomal TLRs. Knockdown of each endosomal TLR in primary monocytes by RNA interference reveals that inflammasome activation in these cells results from HIV sensing by TLR8 and HCV recognition by TLR7. Despite its critical role in type I IFN production by pDCs stimulated with HIV, TLR7 is not required for inflammasome activation by HIV. Similarly, HCV activation of the inflammasome in monocytes does not require TLR3 or its downstream signaling adaptor TICAM-1, while this pathway leads to type I IFN in infected hepatocytes. Monocytes and macrophages do not produce type I IFN upon TLR8 or TLR7 sensing of HIV or HCV, respectively. These findings reveal a novel infection-independent mechanism for chronic viral induction of key anti-viral programs and demonstrate distinct TLR utilization by different cell types for activation of the type I IFN vs. inflammasome pathways of inflammation. Pathogens are detected by the immune system in multiple ways that initiate responses to control infection. Two systems of first line defense against viruses are 1) the production of Type I interferons and 2) production of the cytokines IL-1β and IL-18 by the inflammasome. Type I interferons promote an antiviral state in the infected host. Inflammasome cytokines induce inflammation, modulate adaptive immune responses, and have direct antiviral effects. While both are produced in response to the chronic human viral infections HIV and HCV, we demonstrate here that inflammasome activation does not require cell infection and that the mechanisms for viral sensing as well as cell types in which sensing occurs are distinct between the two viruses and between the type I interferon vs. inflammasome systems. The relative amount of sensing via these different mechanisms may affect the balance between antiviral and inflammatory responses to chronic infection.
Collapse
Affiliation(s)
- Michael A. Chattergoon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rachel Latanich
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffrey Quinn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew E. Winter
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert W. Buckheit
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joel N. Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Drew Pardoll
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
171
|
Guo Q, Lan P, Yu X, Han Q, Zhang J, Tian Z, Zhang C. Immunotherapy for hepatoma using a dual-function vector with both immunostimulatory and pim-3-silencing effects. Mol Cancer Ther 2014; 13:1503-13. [PMID: 24723452 DOI: 10.1158/1535-7163.mct-13-0722] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumorigenesis is an immortalization process in which the growth of normal cells is uncontrolled and programmed cell death is suppressed. Molecular biologic and immunologic studies have revealed that the aberrant expression of some proto-oncogenes boosts proliferation and inhibits apoptosis, which is vital for tumor development. The hypofunction of the host immune system also drives the development and metastasis of malignant tumors. Pim-3, a member of the Pim family, is aberrantly expressed in several cancers. Data suggest that Pim-3 inhibits apoptosis by phosphorylating the proapoptotic BH3-only protein Bad. Here, we constructed a dual-function small hairpin RNA (shRNA) vector containing an shRNA targeting Pim-3 and a TLR7-stimulating ssRNA. Stimulation with this bi-functional vector in vitro promoted significant apoptosis of Hepa1-6 cells by regulating the expression of apoptosis-related proteins and induced secretion of type I IFNs. Most importantly, this bi-functional vector more effectively inhibited subcutaneous Hepa1-6 cell growth than did single shRNA and ssRNA treatment in vivo. Natural killer (NK), CD4(+) T, and CD8(+) T cells and macrophages were required for effective tumor suppression, and CD4(+) T cells were shown to play a helper role in the activation of NK cells, possibly by regulating the secretion of Th1 or Th2 cytokines. This ssRNA-shRNA bi-functional vector may represent a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Qie Guo
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, ChinaAuthors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Peixiang Lan
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xin Yu
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiuju Han
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Zhang
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, ChinaAuthors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Cai Zhang
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
172
|
Hashemi-Shahri SM, Taheri M, Gadari A, Naderi M, Bahari G, Hashemi M. Association Between TLR8 and TLR9 Gene Polymorphisms and Pulmonary Tuberculosis. ACTA ACUST UNITED AC 2014. [DOI: 10.17795/gct-18316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
173
|
Schoborg RV, Borel N. Porcine epidemic diarrhea virus (PEDV) co-infection induced chlamydial persistence/stress does not require viral replication. Front Cell Infect Microbiol 2014; 4:20. [PMID: 24660163 PMCID: PMC3952398 DOI: 10.3389/fcimb.2014.00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/05/2014] [Indexed: 12/26/2022] Open
Abstract
Chlamydiae may exist at the site of infection in an alternative replicative form, called the aberrant body (AB). ABs are produced during a viable but non-infectious developmental state termed “persistence” or “chlamydial stress.” As persistent/stressed chlamydiae: (i) may contribute to chronic inflammation observed in diseases like trachoma; and (ii) are more resistant to current anti-chlamydial drugs of choice, it is critical to better understand this developmental stage. We previously demonstrated that porcine epidemic diarrhea virus (PEDV) co-infection induced Chlamydia pecorum persistence/stress in culture. One critical characteristic of persistence/stress is that the chlamydiae remain viable and can reenter the normal developmental cycle when the stressor is removed. Thus, we hypothesized that PEDV-induced persistence would be reversible if viral replication was inhibited. Therefore, we performed time course experiments in which Vero cells were C. pecorum/PEDV infected in the presence of cycloheximide (CHX), which inhibits viral but not chlamydial protein synthesis. CHX-exposure inhibited PEDV replication, but did not inhibit induction of C. pecorum persistence at 24 h post-PEDV infection, as indicated by AB formation and reduced production of infectious EBs. Interestingly, production of infectious EBs resumed when CHX-exposed, co-infected cells were incubated 48–72 h post-PEDV co-infection. These data demonstrate that PEDV co-infection-induced chlamydial persistence/stress is reversible and suggest that this induction (i) does not require viral replication in host cells; and (ii) does not require de novo host or viral protein synthesis. These data also suggest that viral binding and/or entry may be required for this effect. Because the PEDV host cell receptor (CD13 or aminopeptidase N) stimulates cellular signaling pathways in the absence of PEDV infection, we suspect that PEDV co-infection might alter CD13 function and induce the chlamydiae to enter the persistent state.
Collapse
Affiliation(s)
- Robert V Schoborg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University Johnson City, TN, USA
| | - Nicole Borel
- Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich Zurich, Switzerland
| |
Collapse
|
174
|
Rauta PR, Samanta M, Dash HR, Nayak B, Das S. Toll-like receptors (TLRs) in aquatic animals: Signaling pathways, expressions and immune responses. Immunol Lett 2014; 158:14-24. [DOI: 10.1016/j.imlet.2013.11.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
|
175
|
A heavy toll on the outcome of ischemic brain stroke. Exp Neurol 2014; 254:166-7. [PMID: 24512751 DOI: 10.1016/j.expneurol.2014.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/20/2014] [Accepted: 02/02/2014] [Indexed: 11/24/2022]
|
176
|
Ohto U, Tanji H, Shimizu T. Structure and function of toll-like receptor 8. Microbes Infect 2014; 16:273-82. [PMID: 24513445 DOI: 10.1016/j.micinf.2014.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) sense pathogen-associated molecular patterns originating from invading microorganisms and initiate innate immune responses. Recent structural studies of TLR-ligand complexes have revealed the detailed molecular mechanisms by which each TLR specifically recognizes its own ligands. This review focuses on the structure of TLR8 and discusses the similarities and diversities of TLR-ligand interactions and signaling mechanisms.
Collapse
Affiliation(s)
- Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, JST, Japan.
| |
Collapse
|
177
|
Genetic variations in Toll-like receptors (TLRs 3/7/8) are associated with systemic lupus erythematosus in a Taiwanese population. Sci Rep 2014; 4:3792. [PMID: 24445780 PMCID: PMC3896912 DOI: 10.1038/srep03792] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs), as innate immunity sensors, play critical roles in immune responses. Six SNPs of TLR3, TLR7, and TLR8 were genotyped to determine their associations with systemic lupus erythematosus (SLE) and clinical manifestations of SLE. TLR7 SNP rs3853839 was independently associated with SLE susceptibility in females (G vs. C: p = 0.0051). TLR7 rs3853839-G (G vs. C: p = 0.0100) and TLR8 rs3764880-G (recessive model: p = 0.0173; additive model: p = 0.0161) were associated with pericardial effusion in females relative to healthy females. Anti-SSA positive cases were more likely to have the dominant TLR7 rs179010-T allele than normal controls (p = 0.0435). TLR3 rs3775296-T was associated with photosensitivity (p = 0.0020) and anemia (p = 0.0082). The “G-G” haplotype of TLR7 rs3853839 and TLR8 rs3764880 increased risk of SLE in females (age adjusted p = 0.0032). These findings suggest that TLR variations that modify gene expression affect risk for SLE susceptibility, clinical phenotype development, and production of autoantibodies.
Collapse
|
178
|
TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A 2014; 111:1497-502. [PMID: 24474776 DOI: 10.1073/pnas.1314121111] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with diverse clinical presentations characterized by the presence of autoantibodies to nuclear components. Toll-like receptor (TLR)7, TLR8, and TLR9 sense microbial or endogenous nucleic acids and are implicated in the development of SLE. In mice TLR7-deficiency ameliorates SLE, but TLR8- or TLR9-deficiency exacerbates the disease because of increased TLR7 response. Thus, both TLR8 and TLR9 control TLR7 function, but whether TLR8 and TLR9 act in parallel or in series in the same or different cell types in controlling TLR7-mediated lupus remains unknown. Here, we reveal that double TLR8/9-deficient (TLR8/9(-/-)) mice on the C57BL/6 background showed increased abnormalities characteristic of SLE, including splenomegaly, autoantibody production, frequencies of marginal zone and B1 B cells, and renal pathology compared with single TLR8(-/-) or TLR9(-/-) mice. On the cellular level, TLR8(-/-) and TLR8/9(-/-) dendritic cells were hyperesponsive to TLR7 ligand R848, but TLR9(-/-) cells responded normally. Moreover, B cells from TLR9(-/-) and TLR8/9(-/-) mice were hyperesponsive to R848, but TLR8(-/-) B cells were not. These results reveal that TLR8 and TLR9 have an additive effect on controlling TLR7 function and TLR7-mediated lupus; however, they act on different cell types. TLR8 controls TLR7 function on dendritic cells, and TLR9 restrains TLR7 response on B cells.
Collapse
|
179
|
Cervantes JL, La Vake CJ, Weinerman B, Luu S, O'Connell C, Verardi PH, Salazar JC. Human TLR8 is activated upon recognition of Borrelia burgdorferi RNA in the phagosome of human monocytes. J Leukoc Biol 2013; 94:1231-41. [PMID: 23906644 PMCID: PMC3828603 DOI: 10.1189/jlb.0413206] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/05/2013] [Accepted: 07/07/2013] [Indexed: 01/01/2023] Open
Abstract
Phagocytosed Borrelia burgdorferi (Bb), the Lyme disease spirochete, induces a robust and complex innate immune response in human monocytes, in which TLR8 cooperates with TLR2 in the induction of NF-κB-mediated cytokine production, whereas TLR8 is solely responsible for transcription of IFN-β through IRF7. We now establish the role of Bb RNA in TLR8-mediated induction of IFN-β. First, using TLR2-transfected HEK.293 cells, which were unable to phagocytose intact Bb, we observed TLR2 activation by lipoprotein-rich borrelial lysates and TLR2 synthetic ligands but not in response to live spirochetes. Purified Bb RNA, but not borrelial DNA, triggered TLR8 activation. Neither of these 2 ligands induced activation of TLR7. Using purified human monocytes we then show that phagocytosed live Bb, as well as equivalent amounts of borrelial RNA delivered into the phagosome by polyethylenimine (PEI), induces transcription of IFN-β and secretion of TNF-α. The cytokine response to purified Bb RNA was markedly impaired in human monocytes naturally deficient in IRAK-4 and in cells with knockdown TLR8 expression by small interfering RNA. Using confocal microscopy we provide evidence that TLR8 colocalizes with internalized Bb RNA in both early (EEA1) and late endosomes (LAMP1). Live bacterial RNA staining indicates that spirochetal RNA does not transfer from the phagosome into the cytosol. Using fluorescent dextran particles we show that phagosomal integrity in Bb-infected monocytes is not affected. We demonstrate, for the first time, that Bb RNA is a TLR8 ligand in human monocytes and that transcription of IFN-β in response to the spirochete is induced from within the phagosomal vacuole through the TLR8-MyD88 pathway.
Collapse
Affiliation(s)
- Jorge L Cervantes
- 1.Connecticut Children's Medical Center, Division of Infectious Diseases and Immunology, 282 Washington St., Hartford, CT 06106.
| | | | | | | | | | | | | |
Collapse
|
180
|
Kono DH, Baccala R, Theofilopoulos AN. TLRs and interferons: a central paradigm in autoimmunity. Curr Opin Immunol 2013; 25:720-7. [PMID: 24246388 DOI: 10.1016/j.coi.2013.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/06/2013] [Indexed: 01/08/2023]
Abstract
Investigations into the pathogenesis of lupus have largely focused on abnormalities in components of the adaptive immune system. Despite important advances, however, the question about the origin of the pathogenic process, the primary disease trigger, and the dominance of autoantibodies against nuclear components, remained unanswered. Discoveries in the last decade have provided some resolution to these questions by elucidating the central role of nucleic acid-sensing TLRs and the attendant inflammatory response, particularly the production of type I interferons. These priming events are responsible for initiating the adaptive responses that ultimately mediate the pathogenic process.
Collapse
Affiliation(s)
- Dwight H Kono
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, United States.
| | | | | |
Collapse
|
181
|
Magor KE, Miranzo Navarro D, Barber MRW, Petkau K, Fleming-Canepa X, Blyth GAD, Blaine AH. Defense genes missing from the flight division. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:377-88. [PMID: 23624185 PMCID: PMC7172724 DOI: 10.1016/j.dci.2013.04.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/16/2013] [Indexed: 05/12/2023]
Abstract
Birds have a smaller repertoire of immune genes than mammals. In our efforts to study antiviral responses to influenza in avian hosts, we have noted key genes that appear to be missing. As a result, we speculate that birds have impaired detection of viruses and intracellular pathogens. Birds are missing TLR8, a detector for single-stranded RNA. Chickens also lack RIG-I, the intracellular detector for single-stranded viral RNA. Riplet, an activator for RIG-I, is also missing in chickens. IRF3, the nuclear activator of interferon-beta in the RIG-I pathway is missing in birds. Downstream of interferon (IFN) signaling, some of the antiviral effectors are missing, including ISG15, and ISG54 and ISG56 (IFITs). Birds have only three antibody isotypes and IgD is missing. Ducks, but not chickens, make an unusual truncated IgY antibody that is missing the Fc fragment. Chickens have an expanded family of LILR leukocyte receptor genes, called CHIR genes, with hundreds of members, including several that encode IgY Fc receptors. Intriguingly, LILR homologues appear to be missing in ducks, including these IgY Fc receptors. The truncated IgY in ducks, and the duplicated IgY receptor genes in chickens may both have resulted from selective pressure by a pathogen on IgY FcR interactions. Birds have a minimal MHC, and the TAP transport and presentation of peptides on MHC class I is constrained, limiting function. Perhaps removing some constraint, ducks appear to lack tapasin, a chaperone involved in loading peptides on MHC class I. Finally, the absence of lymphotoxin-alpha and beta may account for the observed lack of lymph nodes in birds. As illustrated by these examples, the picture that emerges is some impairment of immune response to viruses in birds, either a cause or consequence of the host-pathogen arms race and long evolutionary relationship of birds and RNA viruses.
Collapse
Affiliation(s)
- Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | |
Collapse
|
182
|
Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS One 2013; 8:e76008. [PMID: 24124528 PMCID: PMC3790827 DOI: 10.1371/journal.pone.0076008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022] Open
Abstract
Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets), natural killer cells, CD56+ T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity.
Collapse
|
183
|
Lee PT, Zou J, Holland JW, Martin SAM, Kanellos T, Secombes CJ. Identification and characterization of TLR7, TLR8a2, TLR8b1 and TLR8b2 genes in Atlantic salmon (Salmo salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:295-305. [PMID: 23747412 DOI: 10.1016/j.dci.2013.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
Mammalian Toll-like receptor (TLR) 7 and 8 are responsible for recognizing viral single-stranded RNA (ssRNA) and are activated by anti-viral imidazoquinoline compounds, leading to a series of defensive mechanisms being launched to protect the host against viruses. In this study, we identified two TLR7 (with one probably a pseudogene) and three TLR8 genes, namely TLR8a2, TLR8b1 and TLR8b2 from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs. Bioinformatics analysis showed that salmon TLR7 and TLR8a2 are closely related to the corresponding trout orthologs, however, salmon TLR8b1 and TLR8b2 share the highest amino acid sequence similarity to zebrafish TLR8b and formed a subfamily of the piscine TLR8 molecules in phylogenetic tree analysis. A conserved gene synteny was found with the salmon TLR7/8a members as seen in other vertebrate loci. Deduced domain organisation of salmon TLR7 and TLR8 molecules showed similar structural features, with equal numbers of leucine-rich repeats (LRRs) and insertion motifs. Individual TLR molecules were expressed in a similar pattern between parr and post-smolts, with a high expression level in immune tissues. Promoter analysis predicted several transcription factor binding sites in the TLR8a1/2 and TLR8b1 5' flanking regions, namely C/EBP, AP-1, STAT, NFκB, and IRF family, suggesting cytokine regulation of the genes. Hence, three recombinant cytokines, type I IFN, IFNγ and IL-1β were used to study the regulation of the salmon TLR gene expression levels in primary head kidney cells and the Salmon Head Kidney-1 (SHK-1) cell line. Salmon TLR7 and TLR8a1 gene expression was more sensitive to type I IFN and IFNγ treatment in primary head kidney cells and SHK-1 cells respectively, with no significant up-regulation of TLR8a2 and TLR8b2 by any of the treatments. On the other hand, salmon TLR8a1 and TLR8b1 were most sensitive to IL-1β treatment in SHK-1 cells and primary head kidney cells, respectively. TLR8b2 was undetectable in SHK-1 cells under these same conditions.
Collapse
Affiliation(s)
- P T Lee
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | | | | | | | | | | |
Collapse
|
184
|
Qian T, Wang K, Mu Y, Ao J, Chen X. Molecular characterization and expression analysis of TLR 7 and TLR 8 homologs in large yellow croaker (Pseudosciaena crocea). FISH & SHELLFISH IMMUNOLOGY 2013; 35:671-679. [PMID: 23742866 DOI: 10.1016/j.fsi.2013.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
The two toll-like receptor (TLR) genes, LycTLR7 and LycTLR8, were cloned from large yellow croaker (Pseudosciaena crocea), an economically important marine fish in China. The full-length cDNAs of LycTLR7 and LycTLR8 are 3544 and 3593 bp, with an open reading frame (ORF) of 3165 and 3093 bp, encoding 1053 and 1030 amino acids, respectively. The TLR family motifs, such as leucine rich repeat (LRR) and Toll/interleukin (IL)-1 receptor (TIR) domain, are conserved in the LycTLR7 and LycTLR8, with 17 and 14 LRRs, and with a TIR domain, respectively. It is also noted that an LRR N-terminal domain (LRR-NT, residues 24-60) is present in the LycTLR7 but not in the LycTLR8. Both LycTLR7 and LycTLR8 contain a conserved extracellular CxRCxxxxxPCxxC motif, which was found in TLR7/TLR8 of other species and required for stimulus-induced signal transduction. Homology comparison shows that LycTLR7 has 79%, 71.9%, 65.9% and 65.8% identity to fugu, rainbow trout, carp and catfish TLR7, while LycTLR8 has 67.1%, 60.7%, 60.6%, 52.4%, and 51.5% identity to fugu TLR8, rainbow trout TLR8a1, rainbow trout TLR8a2, catfish TLR8-2, and catfish TLR8-1, respectively. Subcellular localization analysis revealed that both LycTLR7 and LycTLR8 are located in the endoplasmic reticulum of epithelioma papulosum cyprini (EPC) cells, which is similar to TLR7/TLR8 in mammals. The two TLRs were constitutively expressed in all tissues tested, especially in immune-related tissues such as spleen, head kidney and gills. An increased expression of LycTLR7 and LycTLR8 was observed in head kidney and spleen of large yellow croakers stimulated by poly (I:C), a viral mimic. In head kidney, their mRNA expression was up-regulated more than 10 times compared to the controls at 12 h after poly (I:C) stimulation. These results suggested that LycTLR7 and LycTLR8 may play a role in the defense against viral infection like their mammalian homologs.
Collapse
Affiliation(s)
- Tanglong Qian
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Daxue Road 178, Xiamen 361005, PR China
| | | | | | | | | |
Collapse
|
185
|
Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 2013; 13:551-65. [DOI: 10.1038/nri3479] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
186
|
Singh VV, Chauhan SK, Rai R, Kumar A, Singh SM, Rai G. Decreased pattern recognition receptor signaling, interferon-signature, and bactericidal/permeability-increasing protein gene expression in cord blood of term low birth weight human newborns. PLoS One 2013; 8:e62845. [PMID: 23626859 PMCID: PMC3633842 DOI: 10.1371/journal.pone.0062845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 03/28/2013] [Indexed: 12/20/2022] Open
Abstract
Background Morbidity and mortality rates of low birth weight (LBW) newborns at term are higher than rates in normal birth weight (NBW) newborns. LBW newborns are at greater risk to acquire recurrent bacterial and viral infections during their first few weeks of life possibly as an outcome of compromised innate immune functions. As adaptive immunity is in a naive state, increased risk of infection of LBW as compared to NBW newborns may reflect impairments in innate immunity. Methodology To characterize the increased susceptibility to infections in LBW newborns we used microarray technology to identify differences in gene expression in LBW newborns (n = 8) compared to NBW newborns (n = 4) using cord blood. The results obtained from the microarray study were validated on a larger number of samples using real time RT-PCR (LBW = 22, NBW = 18) and western blotting (LBW = 12, NBW = 12). The Interferome database was used to identify interferon (IFN) signature genes and ingenuity pathway analysis identified canonical pathways and biological functions associated with the differentially expressed genes in LBW newborns. ELISAs for IFNs and bactericidal/permeability-increasing protein were performed in both LBW and NBW newborns and in adults (LBW = 18, NBW = 18, Adults = 8). Principal Findings Upon microarray analysis, we identified 1,391 differentially expressed genes, of which, 1,065 genes were down-regulated and 326 genes were up-regulated in the LBW compared to NBW newborns. Of note, 70 IFN-signature genes were found to be significantly down-regulated in LBW compared to NBW newborns. Ingenuity pathway analysis revealed pattern recognition receptors signaling including Toll-Like Receptors (TLRs) -1, -5, and -8 genes and IFN signaling as the most significantly impacted pathways. Respiratory infectious diseases were the most significantly affected bio-functions in LBW newborns. Conclusion and Significance Diminished PRRs, IFN-signature, and BPI gene expression raises the possibility that impairments in these pathways contribute to the susceptibility of LBW term infants to infection.
Collapse
Affiliation(s)
- Vikas Vikram Singh
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Sudhir Kumar Chauhan
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Richa Rai
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shiva M. Singh
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Geeta Rai
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi, India
- * E-mail:
| |
Collapse
|
187
|
Koh YT, Scatizzi JC, Gahan JD, Lawson BR, Baccala R, Pollard KM, Beutler BA, Theofilopoulos AN, Kono DH. Role of nucleic acid-sensing TLRs in diverse autoantibody specificities and anti-nuclear antibody-producing B cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:4982-90. [PMID: 23589617 DOI: 10.4049/jimmunol.1202986] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nucleic acid (NA)-sensing TLRs (NA-TLRs) promote the induction of anti-nuclear Abs in systemic lupus erythematosus. However, the extent to which other nonnuclear pathogenic autoantibody specificities that occur in lupus and independently in other autoimmune diseases depend on NA-TLRs, and which immune cells require NA-TLRs in systemic autoimmunity, remains to be determined. Using Unc93b1(3d) lupus-prone mice that lack NA-TLR signaling, we found that all pathogenic nonnuclear autoantibody specificities examined, even anti-RBC, required NA-TLRs. Furthermore, we document that NA-TLRs in B cells were required for the development of antichromatin and rheumatoid factor. These findings support a unifying NA-TLR-mediated mechanism of autoantibody production that has both pathophysiological and therapeutic implications for systemic lupus erythematosus and several other humoral-mediated autoimmune diseases. In particular, our findings suggest that targeting of NA-TLR signaling in B cells alone would be sufficient to specifically block production of a broad diversity of autoantibodies.
Collapse
Affiliation(s)
- Yi Ting Koh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
He X, Jia H, Jing Z, Liu D. Recognition of pathogen-associated nucleic acids by endosomal nucleic acid-sensing toll-like receptors. Acta Biochim Biophys Sin (Shanghai) 2013; 45:241-58. [PMID: 23369718 PMCID: PMC7109797 DOI: 10.1093/abbs/gms122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Foreign nucleic acids, the essential signature molecules of invading pathogens that act as danger signals for host cells, are detected by endosomal nucleic acid-sensing toll-like receptors (TLRs) 3, 7, 8, 9, and 13. These TLRs have evolved to recognize ‘non-self’ nucleic acids within endosomal compartments and rapidly initiate innate immune responses to ensure host protection through induction of type I interferons, inflammatory cytokines, chemokines, and co-stimulatory molecules and maturation of immune cells. In this review, we highlight our understanding of the recognition of pathogen-associated nucleic acids and activation of corresponding signaling pathways through endosomal nucleic acid-sensing TLRs 3, 7, 8, 9, and 13 for an enormous diversity of pathogens, with particular emphasis on their compartmentalization, intracellular trafficking, proteolytic cleavage, autophagy, and regulatory programs.
Collapse
Affiliation(s)
- Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
- Correspondence address. Tel: +86-931-8341979; Fax: +86-931-8340977; E-mail: (Z.J.)/ (D.L.)
| | - Dingxiang Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
- Correspondence address. Tel: +86-931-8341979; Fax: +86-931-8340977; E-mail: (Z.J.)/ (D.L.)
| |
Collapse
|