151
|
Jiao J, Sanchez JI, Saldarriaga OA, Solis LM, Tweardy DJ, Maru DM, Stevenson HL, Beretta L. Spatial molecular and cellular determinants of STAT3 activation in liver fibrosis progression in non-alcoholic fatty liver disease. JHEP Rep 2023; 5:100628. [PMID: 36687470 PMCID: PMC9850198 DOI: 10.1016/j.jhepr.2022.100628] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background & Aims The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is increasing. Individuals with NASH often develop liver fibrosis and advanced liver fibrosis is the main determinant of mortality in individuals with NASH. We and others have reported that STAT3 contributes to liver fibrosis and hepatocellular carcinoma in mice. Methods Here, we explored whether STAT3 activation in hepatocyte and non-hepatocyte areas, measured by phospho-STAT3 (pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD livers.Results: pSTAT3 scores in non-hepatocyte areas progressively increased with fibrosis severity (r = 0.53, p <0.001). Correlation analyses between pSTAT3 scores and expression of 1,540 immune- and cancer-associated genes revealed a large effect of STAT3 activation on gene expression changes in non-hepatocyte areas and confirmed a major role for STAT3 activation in fibrogenesis. Digital spatial transcriptomic profiling was also performed on 13 regions selected in hepatocyte and non-hepatocyte areas from four NAFLD liver biopsies with advanced fibrosis, using a customized panel of markers including pSTAT3, PanCK+CK8/18, and CD45. The regions were further segmented based on positive or negative pSTAT3 staining. Cell deconvolution analysis revealed that activated STAT3 was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells. Regression of liver fibrosis upon STAT3 inhibition in mice with NASH resulted in a reduction of HPCs, demonstrating a direct role for STAT3 in HPC expansion. Conclusion Increased understanding of the spatial dependence of STAT3 signaling in NASH and liver fibrosis progression could lead to novel targeted treatment approaches. Impact and implications Advanced liver fibrosis is the main determinant of mortality in patients with NASH. This study showed using liver biopsies from 133 patients with NAFLD, that STAT3 activation in non-hepatocyte areas is strongly associated with fibrosis severity, inflammation, and progression to NASH. STAT3 activation was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells (SECs), as determined by innovative technologies interrogating the spatial distribution of pSTAT3. Finally, STAT3 inhibition in mice resulted in reduced liver fibrosis and depletion of HPCs, suggesting that STAT3 activation in HPCs contributes to their expansion and fibrogenesis in NAFLD.
Collapse
Key Words
- DSP, digital spatial profiler
- FC, fold change
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HPCs, hepatic progenitor cells
- HSCs, hepatic stellate cells
- IPA, Ingenuity® Pathway Analysis
- LSECs, liver sinusoidal endothelial cells
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- SECs, sinusoidal endothelial cells
- STAT, signal transducer and activator of transcription
- STAT3
- cirrhosis
- fibrosis
- liver cancer
- pSTAT3, phospho-STAT3
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica I. Sanchez
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omar A. Saldarriaga
- Department of Pathology, The University of Texas Medical Branch, Galveston TX, USA
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David J. Tweardy
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dipen M. Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather L. Stevenson
- Department of Pathology, The University of Texas Medical Branch, Galveston TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
152
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
153
|
Deng H, Zhu S, Yang H, Cui H, Guo H, Deng J, Ren Z, Geng Y, Ouyang P, Xu Z, Deng Y, Zhu Y. The Dysregulation of Inflammatory Pathways Triggered by Copper Exposure. Biol Trace Elem Res 2023; 201:539-548. [PMID: 35312958 DOI: 10.1007/s12011-022-03171-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023]
Abstract
Copper (Cu) is an essential micronutrient for both human and animals. However, excessive intake of copper will cause damage to organs and cells. Inflammation is a biological response that can be induced by various factors such as pathogens, damaged cells, and toxic compounds. Dysregulation of inflammatory responses are closely related to many chronic diseases. Recently, Cu toxicological and inflammatory effects have been investigated in various animal models and cells. In this review, we summarized the known effect of Cu on inflammatory responses and sum up the molecular mechanism of Cu-regulated inflammation. Excessive Cu exposure can modulate a huge number of cytokines in both directions, increase and/or decrease through a variety of molecular and cellular signaling pathways including nuclear factor kappa-B (NF-κB) pathway, mitogen-activated protein kinase (MAPKs) pathway, JAK-STAT (Janus Kinase- signal transducer and activator of transcription) pathway, and NOD-like receptor protein 3 (NLRP3) inflammasome. Underlying the molecular mechanism of Cu-regulated inflammation could help further understanding copper toxicology and copper-associated diseases.
Collapse
Affiliation(s)
- Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Song Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huiru Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, 625014, Sichuan, China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Youtian Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
154
|
Wang J, Huang TJ, Mei Y, Luo FF, Xie DH, Peng LX, Liu BQ, Fan ML, Zhang JB, Zheng ST, Qian CN, Huang BJ. Novel long noncoding RNA LINC02820 augments TNF signaling pathway to remodel cytoskeleton and potentiate metastasis in esophageal squamous cell carcinoma. Cancer Gene Ther 2023; 30:375-387. [PMID: 36357564 PMCID: PMC9935391 DOI: 10.1038/s41417-022-00554-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in China. However, there are no targets to treat ESCC because the molecular mechanism behind the cancer is still unclear. Here, we found a novel long noncoding RNA LINC02820 was upregulated in ESCC and associated with the ESCC clinicopathological stage. Through a series of functional experiments, we observed that LINC02820 only promoted the migration and invasion capabilities of ESCC cell lines. Mechanically, we found that LINC02820 may affect the cytoskeletal remodeling, interact with splice factor 3B subunit 3 (SF3B3), and cooperate with TNFα to amplify the NF-κB signaling pathway, which can lead to ESCC metastasis. Overall, our findings revealed that LINC02820 is a potential biomarker and therapeutic target for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Jing Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Tie-Jun Huang
- Department of Nuclear Medicine, The Second People's Hospital of Shenzhen, Shenzhen, People's Republic of China
| | - Yan Mei
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Fei-Fei Luo
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - De-Huan Xie
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Li-Xia Peng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Bao-Qi Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Mei-Ling Fan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jiang-Bo Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Shu-Tao Zheng
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Guangzhou, People's Republic of China
| | - Chao-Nan Qian
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
- Guangzhou Concord Cancer Center, Guangzhou, People's Republic of China.
| | - Bi-Jun Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
155
|
Li H, Hu P, Zou Y, Yuan L, Xu Y, Zhang X, Luo X, Zhang Z. Tanshinone IIA and hepatocellular carcinoma: A potential therapeutic drug. Front Oncol 2023; 13:1071415. [PMID: 36798821 PMCID: PMC9928209 DOI: 10.3389/fonc.2023.1071415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Because of its high prevalence and poor long-term clinical treatment effect, liver disease is regarded as a major public health problem around the world. Among them, viral hepatitis, fatty liver, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and autoimmune liver disease are common causes and inducements of liver injury, and play an important role in the occurrence and development of hepatocellular carcinoma (HCC). Tanshinone IIA (TsIIA) is a fat soluble polyphenol of Salvia miltiorrhiza that is extracted from Salvia miltiorrhiza. Because of its strong biological activity (anti-inflammatory, antioxidant), it is widely used in Asia to treat cardiovascular and liver diseases. In addition, TsIIA has shown significant anti-HCC activity in previous studies. It not only has significant anti proliferation and pro apoptotic properties. It can also play an anti-cancer role by mediating a variety of signal pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-B (NF-κB). This review not only reviews the existing evidence and molecular mechanism of TsIIA's anti-HCC effect but also reviews the liver-protective effect of TsIIA and its impact on liver fibrosis, NAFLD, and other risk factors for liver cancer. In addition, we also conducted network pharmacological analysis on TsIIA and HCC to further screen and explore the possible targets of TsIIA against hepatocellular carcinoma. It is expected to provide a theoretical basis for the development of anti-HCC-related drugs based on TsIIA.
Collapse
Affiliation(s)
- Hu Li
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Pengbo Hu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China
| | - Yajun Zou
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Yuan
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Yucheng Xu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaohui Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaoyan Luo
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Zhiqiang Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China,*Correspondence: Zhiqiang Zhang,
| |
Collapse
|
156
|
Elbakry MMM, ElBakary NM, Hagag SA, Hemida EHA. Pomegranate Peel Extract Sensitizes Hepatocellular Carcinoma Cells to Ionizing Radiation, Induces Apoptosis and Inhibits MAPK, JAK/STAT3, β-Catenin/NOTCH, and SOCS3 Signaling. Integr Cancer Ther 2023; 22:15347354221151021. [PMID: 36710483 PMCID: PMC9893067 DOI: 10.1177/15347354221151021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tumor resistance is typically blamed for the failure of radiotherapy and chemotherapy to treat cancer in clinic patients. To improve the cytotoxicity of tumor cells using radiation in conjunction with specific tumor-selective cytotoxic drugs is crucial. Pomegranate has received overwhelmingly positive feedback as a highly nutritious food for enhancing health and treating a variety of ailments. In the present study, we aimed to examine the effects as well as mechanism of action of pomegranate peel extract (PPE) and/or γ-radiation (6-Gy) on hepatocellular carcinoma (HCC) cell lines HepG2. The findings of this study showed that PPE treatment of HepG2 cells considerably slowed the proliferation of cancer cells, and its combination with γ-irradiation potentiated this action. As a key player in tumor proliferation, and inflammatory cascade induction, the down-regulation of STAT3 following treatment of irradiated and non-irradiated HepG2 cells with PPE as recorded in the present work resulted in reduction of tumor growth, via modulating inflammatory response manifested by (down-regulation of TLR4 expression and NFKB level), suppressing survival markers expressed by reduction of JAK, NOTCH1, β-catenin, SOCS3, and enhancing apoptosis (induction of tumor PPAR-γ and caspase-3) followed by changes in redox tone (expressed by increase in Nrf-2, SOD and catalase activities, and decrease in MDA concentration). In conclusion, PPE might possess a considerable therapeutic potential against HCC in addition to its capability to enhance response of HepG2 cells to gamma radiation.
Collapse
Affiliation(s)
| | - Nermeen M. ElBakary
- Egyptian Atomic Energy Authority, Cairo, Egypt,Nermeen M. ElBakary, Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic-Energy Authority, 3 Ahmed Elzomoor St., Elzohoor Dist., Nasr City, P.O. Box 8029, Cairo 11765, Egypt.
| | | | | |
Collapse
|
157
|
Bodard S, Liu Y, Guinebert S, Kherabi Y, Asselah T. Performance of Radiomics in Microvascular Invasion Risk Stratification and Prognostic Assessment in Hepatocellular Carcinoma: A Meta-Analysis. Cancers (Basel) 2023; 15:cancers15030743. [PMID: 36765701 PMCID: PMC9913680 DOI: 10.3390/cancers15030743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death. Advances in phenomenal imaging are paving the way for application in diagnosis and research. The poor prognosis of advanced HCC warrants a personalized approach. The objective was to assess the value of imaging phenomics for risk stratification and prognostication of HCC. METHODS We performed a meta-analysis of manuscripts published to January 2023 on MEDLINE addressing the value of imaging phenomics for HCC risk stratification and prognostication. Publication information for each were collected using a standardized data extraction form. RESULTS Twenty-seven articles were analyzed. Our study shows the importance of imaging phenomics in HCC MVI prediction. When the training and validation datasets were analyzed separately by the random-effects model, in the training datasets, radiomics had good MVI prediction (AUC of 0.81 (95% CI 0.76-0.86)). Similar results were found in the validation datasets (AUC of 0.79 (95% CI 0.72-0.85)). Using the fixed effects model, the mean AUC of all datasets was 0.80 (95% CI 0.76-0.84). CONCLUSIONS Imaging phenomics is an effective solution to predict microvascular invasion risk, prognosis, and treatment response in patients with HCC.
Collapse
Affiliation(s)
- Sylvain Bodard
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- CNRS, INSERM, UMR 7371, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, 75006 Paris, France
- Correspondence: ; Tel.: +33-6-18-81-62-10
| | - Yan Liu
- Faculty of Life Science and Medicine, King’s College London, London WC2R 2LS, UK
- Median Technologies, 1800 Route des Crêtes, 06560 Valbonne, France
| | - Sylvain Guinebert
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Yousra Kherabi
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Tarik Asselah
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- Service d’Hépatologie, INSERM, UMR1149, Hôpital Beaujon, AP-HP.Nord, 92110 Clichy, France
| |
Collapse
|
158
|
Chi Q, Wang D, Sun T, Liang HP. Integrated bioinformatical and in vitro study on drug targets for liver cirrhosis based on unsupervised consensus clustering and immune cell infiltration. Front Pharmacol 2023; 13:909668. [PMID: 36686655 PMCID: PMC9846563 DOI: 10.3389/fphar.2022.909668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Liver cirrhosis is one of the most common cause of death in the world. The progress of liver cirrhosis involves health, liver cirrhosis and liver cancer, leading to great challenges in the diagnosis of the disease. Drug targets, which could be obtained conveniently, can help clinicians improve prognosis and treatment. Liver cirrhosis is associated with serum calcium levels. And studies reported Tanshinone IIA plays a therapeutic role in liver injury through activating calcium-dependent apoptosis. In this study, we explored the diagnostic key targets of Tanshinone IIA in liver cirrhosis through exploration of comprehensive dataset including health, liver cirrhosis and liver cancer patients. The unsupervised consensus clustering algorithm identified 3 novel subtypes in which differentially expressed genes (DEGs) between both subtypes were found by pairwise comparison. Then, 4 key drug targets of Tanshinone IIA were determined through the intersection of these DEGs. The diagnostic performance of target genes was assessed and further verified in the external dataset. We found that the 4 key drug targets could be used as effective diagnostic biomarkers. Then the immune scores in the high and low expression groups of target genes were estimated to identify significantly expressed immune cells. In addition, the immune infiltration of high and low target gene expression groups in several immune cells were significantly different. The findings suggest that 4 key drug targets may be a simple and useful diagnostic tool for predicting patients with cirrhosis. We further studied the carcinogenesis role of AKR1C3 and TPX2 in vitro. Both mRNA and protein expression in hepatoma carcinoma cells was detected using qRT-PCR and Western blot. And the knockdown of AKR1C3 and TPX2 significantly suppressed cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, Wuhan, China,State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Ting Sun
- Surgical Laboratory, General Hospital of Ningxia Medical University,, Yinchuan, Ningxia, China,Correspondence: Ting Sun, ; Hua-Ping Liang,
| | - Hua-Ping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China,Correspondence: Ting Sun, ; Hua-Ping Liang,
| |
Collapse
|
159
|
Xiang G, Xing N, Wang S, Zhang Y. Antitumor effects and potential mechanisms of aconitine based on preclinical studies: an updated systematic review and meta-analysis. Front Pharmacol 2023; 14:1172939. [PMID: 37180714 PMCID: PMC10174313 DOI: 10.3389/fphar.2023.1172939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Herbs originating from the Aconitum L. (Ranunculaceae), such as Aconitum carmichaelii Debeaux. (Wutou), Aconitum pendulum Busch. (Tiebangchui), and Aconitum kusnezoffii Reichb. (Caowu), etc. are highly valued for their medicinal properties. The roots and tubers of these herbs are commonly used to treat an array of ailments, including joint pain and tumors. The alkaloids present in them are the primary active components, with aconitine being the most notable. Aconitine has gained attention for its exceptional anti-inflammatory and analgesic properties, as well as its potential as an anti-tumor and cardiotonic agent. However, the exact process through which aconitine hinders the growth of cancerous cells and triggers their programmed cell death remains unclear. Therefore, we have undertaken a comprehensive systematic review and meta-analysis of the current research on the potential antitumor properties of aconitine. Methods: We conducted a thorough search of relevant preclinical studies in databases including PubMed, Web of Science, VIP, WanFang Data, CNKI, Embase, Cochrane Library, and National Center for Biotechnology Information (NCBI). The search was conducted up until 15 September 2022, and the data were statistically analyzed using RevMan 5.4 software. The number of tumor cell value-added, tumor cell apoptosis rate, thymus index (TI), and Bcl-2 gene expression level were the main indicators to be analyzed. Results: After applying the final inclusion criteria, a total of thirty-seven studies, comprising both in vivo and in vitro research were analyzed. The results showed that treatment with aconitine led to a significant reduction in tumor cell proliferation, a noteworthy increase in the rate of apoptosis among tumor cells, a decrease in the thymus index, and a reduction in the expression level of Bcl-2. These results suggested that aconitine could inhibit the proliferation, invasion, and migration abilities of tumor cells by regulating Bcl-2 etc., thereby enhancing the anti-tumor effects. Conclusion: In summary, our present study demonstrated that aconitine effectively reduced tumor size and volume, indicating a strong anti-tumor effect. Additionally, aconitine could increase the expression levels of caspase-3, Bax and other targets. Mechanistically, it may regulate the expression levels of Bax and Bcl-2 through the NF-κB signaling pathway, ultimately inhibiting tumor cell proliferation through autophagy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| |
Collapse
|
160
|
Han H, Lin T, Wang Z, Song J, Fang Z, Zhang J, You X, Du Y, Ye J, Zhou G. RNA-binding motif 4 promotes angiogenesis in HCC by selectively activating VEGF-A expression. Pharmacol Res 2023; 187:106593. [PMID: 36496136 DOI: 10.1016/j.phrs.2022.106593] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Increased angiogenesis in the liver plays a critical role in the progression of hepatocellular carcinoma (HCC). However, the molecular mechanism underlying increased angiogenesis in HCC is not well understood. Current study was designed to identify the potential angiogenic effect of RNA-binding motif 4 (RBM4)through a small-scale overexpression screening, followed by comparison of the expression level of RBM4 in cancer and adjacent tissues in multiple malignancies to explore the relationship between RBM4 and CD31 protein expression level and related clinical indicators, and understand the role of RBM4 in the hepatocellular carcinoma. To understand the specific mechanism of RBM4 in detail, transcriptome sequencing, mass spectrometry and multiple molecular cytological studies were performed. These cellular level results were verified by experiments in animal models of nude mice. The increased expression of RBM4 in cancer tissues, suggested its use as a prognostic biomarker. The RBM4 expression was found to be strongly correlated with tumor microvessel density. Mechanistically, RBM4 mediated its effects via interaction with HNRNP-M through the latter's WDR15 domain, which then stabilized RelA/p65 mRNA. Consequently, RBM4 induced the activation of the NF-kB signaling pathway, upregulating the expression of proangiogenic factor VEGF-A. The results confirmed the mechanism by which RBM4 promotes angiogenesis in hepatocellular carcinoma suggesting RBM4 as a crucial promoter of angiogenesis in HCC, helping understand regulation of NF-kB signaling in HCC.
Collapse
Affiliation(s)
- Hexu Han
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Ting Lin
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu 226001, China
| | - Zhenyu Wang
- Department of pediatric surgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Jingjing Song
- Department of Pediatrics, the Second Affiliated Hospital &Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China
| | - Ziyi Fang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Xiaomin You
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Yanping Du
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Jun Ye
- Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China.
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China.
| |
Collapse
|
161
|
Jianpiyiqi decoction inhibits proliferation and invasion by suppressing the Caspase-1/IRAKs/NF-κB signalling pathway in hepatoma Huh-7 cells. Eur J Integr Med 2023. [DOI: 10.1016/j.eujim.2023.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
162
|
Costante F, Stella L, Santopaolo F, Gasbarrini A, Pompili M, Asselah T, Ponziani FR. Molecular and Clinical Features of Hepatocellular Carcinoma in Patients with HBV-HDV Infection. J Hepatocell Carcinoma 2023; 10:713-724. [PMID: 37128594 PMCID: PMC10148646 DOI: 10.2147/jhc.s384751] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Hepatitis D virus (HDV) infection affects more than 10 million people worldwide, with an estimated prevalence of nearly 4.5% among HBsAg-positive individuals. Epidemiological studies have shown a significant increase in the prevalence of hepatocellular carcinoma (HCC) in patients with chronic HDV infection compared to those with chronic hepatitis B virus (HBV) mono-infection. Despite the clinical findings, data on molecular oncogenic mechanisms are limited and fragmentary. Moreover, the role of HDV in promoting the development of HCC has so far been controversial, because it is difficult to weigh the respective contributions of the two viruses. In this review, we focused on the direct oncogenic action of HDV, its role in modifying the tumor microenvironment, and the genetic signature of HDV-related HCC, comparing these features with HBV-related HCC.
Collapse
Affiliation(s)
- Federico Costante
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Leonardo Stella
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
| | - Tarik Asselah
- Service d’Hépatologie, Hôpital Beaujon UMR 1149 Inserm - Université de Paris, Clichy, France
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
- Correspondence: Francesca Romana Ponziani; Federico Costante, Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, Rome, 00168, Italy, Tel +390630156264, Email ;
| |
Collapse
|
163
|
Wu X, Lu W, Xu C, Jiang C, Zhuo Z, Wang R, Zhang D, Cui Y, Chang L, Zuo X, Wang Y, Mei H, Zhang W, Zhang M, Li C. Macrophages Phenotype Regulated by IL-6 Are Associated with the Prognosis of Platinum-Resistant Serous Ovarian Cancer: Integrated Analysis of Clinical Trial and Omics. J Immunol Res 2023; 2023:6455704. [PMID: 37124547 PMCID: PMC10132904 DOI: 10.1155/2023/6455704] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Background The treatment of platinum-resistant recurrent ovarian cancer (PROC) is a clinical challenge and a hot topic. Tumor microenvironment (TME) as a key factor promoting ovarian cancer progression. Macrophage is a component of TME, and it has been reported that macrophage phenotype is related to the development of PROC. However, the mechanism underlying macrophage polarization and whether macrophage phenotype can be used as a prognostic indicator of PROC remains unclear. Methods We used ESTIMATE to calculate the number of immune and stromal components in high-grade serous ovarian cancer (HGSOC) cases from The Cancer Genome Atlas database. The differential expression genes (DEGs) were analyzed via protein-protein interaction network, Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analysis to reveal major pathways of DEGs. CD80 was selected for survival analysis. IL-6 was selected for gene set enrichment analysis (GSEA). A subsequent cohort study was performed to confirm the correlation of IL-6 expression with macrophage phenotype in peripheral blood and to explore the clinical utility of macrophage phenotype for the prognosis of PROC patients. Results A total of 993 intersecting genes were identified as candidates for further survival analysis. Further analysis revealed that CD80 expression was positively correlated with the survival of HGSOC patients. The results of GO and KEGG analysis suggested that macrophage polarization could be regulated via chemokine pathway and cytokine-cytokine receptor interaction. GSEA showed that the genes were mainly enriched in IL-6-STAT-3. Correlation analysis for the proportion of tumor infiltration macrophages revealed that M2 was correlated with IL-6. The results of a cohort study demonstrated that the regulation of macrophage phenotype by IL-6 is bidirectional. The high M1% was a protective factor for progression-free survival. Conclusion Thus, the macrophage phenotype is a prognostic indicator in PROC patients, possibly via a hyperactive IL-6-related pathway, providing an additional clue for the therapeutic intervention of PROC.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wenping Lu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chaojie Xu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Cuihong Jiang
- Department of Oncology, Guang'anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing 102627, China
| | - Zhili Zhuo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ruipeng Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Dongni Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yongjia Cui
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Lei Chang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xi Zuo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ya'nan Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Heting Mei
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Weixuan Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mengfan Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Li
- Department of Biology, Chemistry, and Pharmacy, Free University of Berlin, Berlin 14195, Germany
| |
Collapse
|
164
|
Lan C, Huang X, Liao X, Zhou X, Peng K, Wei Y, Han C, Peng T, Wang J, Zhu G. PUS1 May Be a Potential Prognostic Biomarker and Therapeutic Target for Hepatocellular Carcinoma. Pharmgenomics Pers Med 2023; 16:337-355. [PMID: 37091827 PMCID: PMC10115212 DOI: 10.2147/pgpm.s405621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Objective The mechanisms of pseudouridine synthase (PUS) are not definite in hepatocellular carcinoma (HCC), the objective of this study is to investigate the effect of PUS genes in HCC. Materials and Methods Differentially expressed and prognostic gene of PUS enzymes was identified based on The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Profiling Interactive Analysis (GEPIA) databases. For the identified gene, pseudouridine synthase 1 (PUS1), was used for further research. The clinicopathological feature of PUS1 was analyzed by Student's t-test. Prognostic significance was explored by Kaplan-Meier (KM) analysis and Cox proportional hazards regression model. Receiver operating characteristic (ROC) curve was applied to appraise diagnostic and prognostic value. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Gene Set Enrichment Analysis (GSEA) were implemented to explore mechanism of PUS1. A Guangxi cohort was applied to verify differential expression. In vitro cell experiments were implemented to investigate the influence for proliferation, reactive oxygen species (ROS) level, migration, and invasion of HCC cells after a knockdown of PUS1. Results PUS1 was significantly overexpressed in HCC tissues, and patients with high PUS1 were related to unpromising clinicopathological features. Survival analysis revealed high PUS1 expression was associated with a poor overall survival (OS) and 1 year-recurrence free survival (RFS), was an independent risk factor. Meanwhile, ROC curve showed that PUS1 had a diagnostic and prognostic significance to HCC. Functional enrichment analysis implied that PUS1 may be involved in metabolic pathways, mitochondrial function, non-alcoholic fatty liver disease (NAFLD), and some important carcinogenic pathways. Cell assays revealed that knockdown of PUS1 significantly constrained the migration, proliferation, invasion and improved the ROS level of HCC cells. Conclusion PUS1 may be a prognostic biomarker and a underlying treatment target for HCC.
Collapse
Affiliation(s)
- Chenlu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xinlei Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Kai Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Yongguang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Jianyao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Jianyao Wang, Department of General Surgery, Shenzhen Children’s Hospital, Lianhua District, Shenzhen, 518026, Guangdong Province, People’s Republic of China, Email
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
- Correspondence: Guangzhi Zhu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China, Tel +86-771-5356528, Fax +86-771-5350031, Email
| |
Collapse
|
165
|
Abdel Halim AS, Rudayni HA, Chaudhary AA, Ali MAM. MicroRNAs: Small molecules with big impacts in liver injury. J Cell Physiol 2023; 238:32-69. [PMID: 36317692 DOI: 10.1002/jcp.30908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
A type of small noncoding RNAs known as microRNAs (miRNAs) fine-tune gene expression posttranscriptionally by binding to certain messenger RNA targets. Numerous physiological processes in the liver, such as differentiation, proliferation, and apoptosis, are regulated by miRNAs. Additionally, there is growing evidence that miRNAs contribute to liver pathology. Extracellular vesicles like exosomes, which contain secreted miRNAs, may facilitate paracrine and endocrine communication between various tissues by changing the gene expression and function of distal cells. The use of stable miRNAs as noninvasive biomarkers was made possible by the discovery of these molecules in body fluids. Circulating miRNAs reflect the conditions of the liver that are abnormal and may serve as new biomarkers for the early detection, prognosis, and evaluation of liver pathological states. miRNAs are appealing therapeutic targets for a range of liver disease states because altered miRNA expression is associated with deregulation of the liver's metabolism, liver damage, liver fibrosis, and tumor formation. This review provides a comprehensive review and update on miRNAs biogenesis pathways and mechanisms of miRNA-mediated gene silencing. It also outlines how miRNAs affect hepatic cell proliferation, death, and regeneration as well as hepatic detoxification. Additionally, it highlights the diverse functions that miRNAs play in the onset and progression of various liver diseases, including nonalcoholic fatty liver disease, alcoholic liver disease, fibrosis, hepatitis C virus infection, and hepatocellular carcinoma. Further, it summarizes the diverse liver-specific miRNAs, illustrating the potential merits and possible caveats of their utilization as noninvasive biomarkers and appealing therapeutic targets for liver illnesses.
Collapse
Affiliation(s)
- Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
166
|
Zhu B, Zheng J, Hong G, Bai T, Qian W, Liu J, Hou X. L-Fucose inhibits the progression of cholangiocarcinoma by causing microRNA-200b overexpression. Chin Med J (Engl) 2022; 135:2956-2967. [PMID: 36728287 PMCID: PMC10106127 DOI: 10.1097/cm9.0000000000002368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant biliary tract tumor with an extremely poor prognosis. There is an urgent demand to explore novel therapeutic strategies. L-fucose has been confirmed to participate in anti-inflammation and antitumor activities. However, the effect of L-fucose on the progression of CCA has not been well investigated. This study aimed to determine whether L-fucose induced the inhibition of CCA and its possible mechanism. METHODS The anti-growth activity was determined using Cell Counting Kit-8 assay, colony formation assays, Annexin V-fluorescein isothiocyanate/propidium iodide (FITC/PI) assay, and cell cycle analysis. The anti-metastasis activity was determined by wound healing, transwell, and invasion assays. The anti-angiogenesis activity was determined by tube formation and transwell assays. MicroRNAs that may be involved in the L-fucose-induced CCA inhibition was analyzed using bioinformatics methods. The preclinical therapeutic efficacy was mainly estimated by ultrasound in xenograft nude mouse models. Differences were analyzed via Student's t test or one-way analysis of variance. RESULTS L-Fucose induced apoptosis and G0/G1 cell cycle arrest, inhibited cell epithelial-mesenchymal transition of CCA cells, and additionally inhibited tube formation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner, leading to a decrease in cell proliferation, metastasis, and angiogenesis. Mechanistically, L-fucose induced microRNA-200b (miR-200b) upregulation, and mitogen-activated protein kinase 7 (MAPK7) downregulation was found to be targeted by miR-200b, with decreased cell proliferation and metastasis. Additionally, phosphorylated signal transducer and activator of transcription 3 was found to be downregulated after L-fucose treatment. Finally, in vivo experiments in CCA xenograft models also confirmed the antitumor properties of L-fucose. CONCLUSION L-Fucose inhibited the progression of CCA via the miR-200b/MAPK7 and signal transducer and activator of transcription 3 signaling pathways.
Collapse
Affiliation(s)
- Biqiang Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jingjing Zheng
- Department of Diagnostic Medical Sonography, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Gaichao Hong
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jinsong Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
167
|
Ishtiaq SM, Arshad MI, Khan JA. PPARγ signaling in hepatocarcinogenesis: Mechanistic insights for cellular reprogramming and therapeutic implications. Pharmacol Ther 2022; 240:108298. [PMID: 36243148 DOI: 10.1016/j.pharmthera.2022.108298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) is leading cause of cancer-related mortalities globally. The therapeutic approaches for chronic liver diseases-associated liver cancers aimed at modulating immune check-points and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway during multistep process of hepatocarcinogenesis that played a dispensable role in immunopathogenesis and outcomes of disease. Herein, the review highlights PPARγ-induced effects in balancing inflammatory (tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1) and anti-inflammatory cytokines (IL-10, transforming growth factor beta (TGF-β), and interplay of PPARγ, hepatic stellate cells and fibrogenic niche in cell-intrinsic and -extrinsic crosstalk of hepatocarcinogenesis. PPARγ-mediated effects in pre-malignant microenvironment promote growth arrest, cell senescence and cell clearance in liver cancer pathophysiology. Furthermore, PPARγ-immune cell axis of liver microenvironment exhibits an immunomodulation strategy of resident immune cells of the liver (macrophages, natural killer cells, and dendritic cells) in concomitance with current clinical guidelines of the European Association for Study of Liver Diseases (EASL) for several liver diseases. Thus, mechanistic insights of PPARγ-associated high value targets and canonical signaling suggest PPARγ as a possible therapeutic target in reprogramming of hepatocarcinogenesis to decrease burden of liver cancers, worldwide.
Collapse
Affiliation(s)
- Syeda Momna Ishtiaq
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Junaid Ali Khan
- Department of Pharmacology and Physiology, MNS University of Agriculture, Multan 60000, Pakistan.
| |
Collapse
|
168
|
Zaki MY, Alhasan SF, Shukla R, McCain M, Laszczewska M, Geh D, Patman GL, Televantou D, Whitehead A, Maurício JP, Barksby B, Gee LM, Paish HL, Leslie J, Younes R, Burt AD, Borthwick LA, Thomas H, Beale GS, Govaere O, Sia D, Anstee QM, Tiniakos D, Oakley F, Reeves HL. Sulfatase-2 from Cancer Associated Fibroblasts: An Environmental Target for Hepatocellular Carcinoma? Liver Cancer 2022; 11:540-557. [PMID: 36589727 PMCID: PMC9801184 DOI: 10.1159/000525375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Heparin sulphate proteoglycans in the liver tumour microenvironment (TME) are key regulators of cell signalling, modulated by sulfatase-2 (SULF2). SULF2 overexpression occurs in hepatocellular carcinoma (HCC). Our aims were to define the nature and impact of SULF2 in the HCC TME. Methods In liver biopsies from 60 patients with HCC, expression and localization of SULF2 were analysed associated with clinical parameters and outcome. Functional and mechanistic impacts were assessed with immunohistochemistry (IHC), in silico using The Cancer Genome Atlas (TGCA), in primary isolated cancer activated fibroblasts, in monocultures, in 3D spheroids, and in an independent cohort of 20 patients referred for sorafenib. IHC targets included αSMA, glypican-3, β-catenin, RelA-P-ser536, CD4, CD8, CD66b, CD45, CD68, and CD163. SULF2 impact of peripheral blood mononuclear cells was assessed by migration assays, with characterization of immune cell phenotype using fluorescent activated cell sorting. Results We report that while SULF2 was expressed in tumour cells in 15% (9/60) of cases, associated with advanced tumour stage and type 2 diabetes, SULF2 was more commonly expressed in cancer-associated fibroblasts (CAFs) (52%) and independently associated with shorter survival (7.2 vs. 29.2 months, p = 0.003). Stromal SULF2 modulated glypican-3/β-catenin signalling in vitro, although in vivo associations suggested additional mechanisms underlying the CAF-SULF2 impact on prognosis. Stromal SULF2 was released by CAFS isolated from human HCC. It was induced by TGFβ1, promoted HCC proliferation and sorafenib resistance, with CAF-SULF2 linked to TGFβ1 and immune exhaustion in TGCA HCC patients. Autocrine activation of PDGFRβ/STAT3 signalling was evident in stromal cells, with the release of the potent monocyte/macrophage chemoattractant CCL2 in vitro. In human PBMCs, SULF2 preferentially induced the migration of macrophage precursors (monocytes), inducing a phenotypic change consistent with immune exhaustion. In human HCC tissues, CAF-SULF2 was associated with increased macrophage recruitment, with tumouroid studies showing stromal-derived SULF2-induced paracrine activation of the IKKβ/NF-κB pathway, tumour cell proliferation, invasion, and sorafenib resistance. Conclusion SULF2 derived from CAFs modulates glypican-3/β-catenin signalling but also the HCC immune TME, associated with tumour progression and therapy resistance via activation of the TAK1/IKKβ/NF-κB pathway. It is an attractive target for combination therapies for patients with HCC.
Collapse
Affiliation(s)
- Marco Y.W. Zaki
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Newcastle Fibrosis Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Sari F. Alhasan
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ruchi Shukla
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Misti McCain
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Maja Laszczewska
- Newcastle Fibrosis Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Daniel Geh
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Newcastle Fibrosis Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Gillian L. Patman
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Despina Televantou
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Anna Whitehead
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - João P. Maurício
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ben Barksby
- Newcastle Fibrosis Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lucy M. Gee
- Newcastle Fibrosis Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Hannah L. Paish
- Newcastle Fibrosis Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ramy Younes
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Department of Medicine, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alastair D. Burt
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Lee A. Borthwick
- Newcastle Fibrosis Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Huw Thomas
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Gary S. Beale
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Olivier Govaere
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Daniela Sia
- Division of Liver Diseases, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Quentin M. Anstee
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Department of Medicine, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Department of Pathology, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Helen L. Reeves
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
- Department of Medicine, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
169
|
Gallucci GM, Alsuwayt B, Auclair AM, Boyer JL, Assis DN, Ghonem NS. Fenofibrate Downregulates NF-κB Signaling to Inhibit Pro-inflammatory Cytokine Secretion in Human THP-1 Macrophages and During Primary Biliary Cholangitis. Inflammation 2022; 45:2570-2581. [PMID: 35838934 PMCID: PMC10853883 DOI: 10.1007/s10753-022-01713-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Abstract
Chronic liver diseases, e.g., cholestasis, are negatively impacted by inflammation, which further aggravates liver injury. Pharmacotherapy targeting the peroxisome proliferator-activated receptor alpha (PPARα), e.g., fenofibrate, has recently become an off-label therapeutic option for patients with refractory cholestasis. Clinical studies show that fibrates can reduce some pro-inflammatory cytokines in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC); however, its anti-inflammatory mechanisms have not been established. Numerous cytokines are regulated by the transcription factor nuclear receptor kappa B (NF-κB), and PPARα has been shown to interfere with NF-κB signaling. This study investigates the anti-inflammatory mechanism of fenofibrate by inhibiting NF-κB signaling in human macrophages and clinical outcomes in patients with PBC. For adult patients with PBC and an incomplete biochemical response to ursodiol (13-15 mg/kg/day), the addition of fenofibrate (145-160 mg/day) reduced serum levels of TNF-α, IL-17A, IL-1β, IL-6, IL-8, and MCP-1 and increased IL-10. In THP-1 cells, pretreatment with fenofibrate (125 μM) reduced LPS-stimulated peak concentrations of IL-1β (- 63%), TNF-α (- 88%), and IL-8 (- 54%), in a PPARα-dependent manner. Treatment with fenofibrate prior to LPS significantly decreased nuclear NF-κB p50 and p65 subunit binding by 49% and 31%, respectively. Additionally, fenofibrate decreased nuclear NF-κB p50 and p65 protein expression by 66% and 55% and increased cytoplasmic levels by 53% and 54% versus LPS alone, respectively. Lastly, fenofibrate increased IκBα levels by 2.7-fold (p < 0.001) vs. LPS. These data demonstrate that fenofibrate reduces pro-inflammatory cytokines section by inhibiting in NF-κB signaling, which likely contribute to its anti-inflammatory effects during chronic liver diseases.
Collapse
Affiliation(s)
- Gina M Gallucci
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA
| | - Bader Alsuwayt
- School of Pharmacy, Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Adam M Auclair
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA
| | - James L Boyer
- Yale School of Medicine, Liver Center, New Haven, CT, USA
| | - David N Assis
- Yale School of Medicine, Liver Center, New Haven, CT, USA
| | - Nisanne S Ghonem
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA.
| |
Collapse
|
170
|
Combination of Bone-Modifying Agents with Immunotarget Therapy for Hepatocellular Carcinoma with Bone Metastases. J Clin Med 2022; 11:jcm11236901. [PMID: 36498476 PMCID: PMC9738198 DOI: 10.3390/jcm11236901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Due to limited investigations about efficacy of tyrosine kinase inhibitors (TKIs) plus immune-checkpoint inhibitors (ICIs) versus TKIs alone, and effects of durations of bone modifying agents (BMAs) on the survival of patients with hepatocellular carcinoma (HCC) and bone metastases (BoM), we aim to compare the efficacy of TKIs both alone and in combination with ICIs, as well as comparing long-term and no or perioperative use of BMAs for patients with HCC and BoM. Patients with pathologically confirmed HCC and BoM were included in the study. They were stratified into the TKIs group and the TKIs + ICIs group, and the perioperative and the long-term use of BMAs group. Overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR) were calculated to assess the response to these regimes. The cumulative risk of initial skeletal-related events (SREs) was used to evaluate treatment efficacy for bone lesions. A total of 21 (33.9%) patients received TKIs (Sorafenib or Lenvatinib) alone and 41 (66.1%) received TKIs + ICIs. The combination group showed higher ORR than monotherapy group (1/21, 4.7% vs. 9/41, 22.0%; p = 0.1432); Additionally, the TKIs + ICIs group offered improved OS (18 months vs. 31 months; p = 0.015) and PFS (10 months vs. 23 months; p = 0.014), while this survival benefits were more profound in virus-infected patients than those non-infected. Prolonged OS (33 months vs. 16 months; p = 0.0048) and PFS (33 months vs. 11 months; p = 0.0027) were observed in patients with long-term use of BMAs compared with no or perioperative use of BMAs. The TKIs + ICIs combination and long-term adjuvant of BMAs may offer a survival advantage for HCC patients with BoM without severe adverse events, which requires further validations.
Collapse
|
171
|
Hong Y, Zhang Y, Zhao H, Chen H, Yu QQ, Cui H. The roles of lncRNA functions and regulatory mechanisms in the diagnosis and treatment of hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:1051306. [PMID: 36467404 PMCID: PMC9716033 DOI: 10.3389/fcell.2022.1051306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 10/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent and deadly type of liver cancer. While the underlying molecular mechanisms are poorly understood, it is documented that lncRNAs may play key roles. Many HCC-associated lncRNAs have been linked to HBV and HCV infection, mediating gene expression, cell growth, development, and death. Studying the regulatory mechanisms and biological functions of HCC-related lncRNAs will assist our understanding of HCC pathogenesis as well as its diagnosis and management. Here, we address the potential of dysregulated lncRNAs in HCC as diagnostic and therapeutic biomarkers, and we evaluate the oncogenic or tumor-suppressive properties of these lncRNAs.
Collapse
Affiliation(s)
- Yuling Hong
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Yunxing Zhang
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Haibo Zhao
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Hailing Chen
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Qing-Qing Yu
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Hongxia Cui
- Jining First People’s Hospital, Jining Medical College, Jining, China
| |
Collapse
|
172
|
Xiao Y, Li Y, Shi D, Wang X, Dai S, Yang M, Kong L, Chen B, Huang X, Lin C, Liao W, Xu B, Chen X, Wang L, Chen X, Ouyang Y, Liu G, Li H, Song L. MEX3C-Mediated Decay of SOCS3 mRNA Promotes JAK2/STAT3 Signaling to Facilitate Metastasis in Hepatocellular Carcinoma. Cancer Res 2022; 82:4191-4205. [PMID: 36112698 DOI: 10.1158/0008-5472.can-22-1203] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Tumor metastasis is one of the major causes of high mortality in patients with hepatocellular carcinoma (HCC). Sustained activation of STAT3 signaling plays a critical role in HCC metastasis. RNA binding protein (RBP)-mediated posttranscriptional regulation is involved in the precise control of signal transduction, including STAT3 signaling. In this study, we investigated whether RBPs are important regulators of HCC metastasis. The RBP MEX3C was found to be significantly upregulated in highly metastatic HCC and correlated with poor prognosis in HCC. Mechanistically, MEX3C increased JAK2/STAT3 pathway activity by downregulating SOCS3, a major negative regulator of JAK2/STAT3 signaling. MEX3C interacted with the 3'UTR of SOCS3 and recruited CNOT7 to ubiquitinate and accelerate decay of SOCS3 mRNA. Treatment with MEX3C-specific antisense oligonucleotide significantly inhibited JAK2/STAT3 pathway activation, suppressing HCC migration in vitro and metastasis in vivo. These findings highlight a novel mRNA decay-mediated mechanism for the disruption of SOCS3-driven negative regulation of JAK2/STAT3 signaling, suggesting MEX3C may be a potential prognostic biomarker and promising therapeutic target in HCC. SIGNIFICANCE This study reveals that RNA-binding protein MEX3C induces SOCS3 mRNA decay to promote JAK2/STAT3 activation and tumor metastasis in hepatocellular carcinoma, identifying MEX3C targeting as a potential approach for treating metastatic disease.
Collapse
Affiliation(s)
- Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Dai
- Department of Medicinal Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Muwen Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingzhi Kong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Boyu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Liao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Benke Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Yangtze University, Jingzhou, China
| | - Xin Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Lishuai Wang
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Heping Li
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
173
|
Yoon JS, Lee CW. Protein phosphatases regulate the liver microenvironment in the development of hepatocellular carcinoma. Exp Mol Med 2022; 54:1799-1813. [PMID: 36380016 PMCID: PMC9722691 DOI: 10.1038/s12276-022-00883-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The liver is a complicated heterogeneous organ composed of different cells. Parenchymal cells called hepatocytes and various nonparenchymal cells, including immune cells and stromal cells, are distributed in liver lobules with hepatic architecture. They interact with each other to compose the liver microenvironment and determine its characteristics. Although the liver microenvironment maintains liver homeostasis and function under healthy conditions, it also shows proinflammatory and profibrogenic characteristics that can induce the progression of hepatitis and hepatic fibrosis, eventually changing to a protumoral microenvironment that contributes to the development of hepatocellular carcinoma (HCC). According to recent studies, phosphatases are involved in liver diseases and HCC development by regulating protein phosphorylation in intracellular signaling pathways and changing the activities and characteristics of liver cells. Therefore, this review aims to highlight the importance of protein phosphatases in HCC development and in the regulation of the cellular components in the liver microenvironment and to show their significance as therapeutic targets.
Collapse
Affiliation(s)
- Joon-Sup Yoon
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| | - Chang-Woo Lee
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351 Republic of Korea
| |
Collapse
|
174
|
Seo E, Jang H, Kwon S, Kwon Y, Kim S, Lee S, Jeong AJ, Shin HM, Kim Y, Ma S, Kim H, Lee Y, Suh P, Ye S. Loss of phospholipase Cγ1 suppresses hepatocellular carcinogenesis through blockade of STAT3-mediated cancer development. Hepatol Commun 2022; 6:3234-3246. [PMID: 36153805 PMCID: PMC9592768 DOI: 10.1002/hep4.2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Phospholipase C gamma 1 (PLCγ1) plays an oncogenic role in several cancers, alongside its usual physiological roles. Despite studies aimed at identifying the effect of PLCγ1 on tumors, the pathogenic role of PLCγ1 in the tumorigenesis and development of hepatocellular carcinoma (HCC) remains unknown. To investigate the function of PLCγ1 in HCC, we generated hepatocyte-specific PLCγ1 conditional knockout (PLCγ1f/f ; Alb-Cre) mice and induced HCC with diethylnitrosamine (DEN). Here, we identified that hepatocyte-specific PLCγ1 deletion effectively prevented DEN-induced HCC in mice. PLCγ1f/f ; Alb-Cre mice showed reduced tumor burden and tumor progression, as well as a decreased incidence of HCC and less marked proliferative and inflammatory responses. We also showed that oncogenic phenotypes such as repressed apoptosis, and promoted proliferation, cell cycle progression and migration, were induced by PLCγ1. In terms of molecular mechanism, PLCγ1 regulated the activation of signal transducer and activator of transcription 3 (STAT3) signaling. Moreover, PLCγ1 expression is elevated in human HCC and correlates with a poor prognosis in patients with HCC. Our results suggest that PLCγ1 promotes the pathogenic progression of HCC, and PLCγ1/STAT3 axis was identified as a potential therapeutic target pathway for HCC.
Collapse
Affiliation(s)
- Eun‐Bi Seo
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21PLUS)Seoul National University College of MedicineSeoulRepublic of Korea
| | - Hyun‐Jun Jang
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Sun‐Ho Kwon
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Yong‐Jin Kwon
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21PLUS)Seoul National University College of MedicineSeoulRepublic of Korea
| | - Seul‐Ki Kim
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Song‐Hee Lee
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Ae Jin Jeong
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Hyun Mu Shin
- Wide River Institute of ImmunologySeoul National UniversityHongcheonRepublic of Korea
| | - Yong‐Nyun Kim
- Division of Translational ScienceNational Cancer CenterGoyangRepublic of Korea
| | - Stephanie Ma
- State Key Laboratory of Liver ResearchLi Ka Shing Faculty of Medicine, The University of Hong KongHong Kong
| | - Haeryoung Kim
- Department of PathologySeoul National University College of MedicineSeoulRepublic of Korea
| | - Yun‐Han Lee
- Department of Molecular MedicineKeimyung University School of MedicineDaeguRepublic of Korea
| | - Pann‐Ghill Suh
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
- Korea Brain Research Institute (KBRI)DaeguRepublic of Korea
| | - Sang‐Kyu Ye
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21PLUS)Seoul National University College of MedicineSeoulRepublic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheonRepublic of Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Neuro‐Immune Information Storage Network Research CenterSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
175
|
Hepatitis B Virus-Encoded HBsAg Contributes to Hepatocarcinogenesis by Inducing the Oncogenic Long Noncoding RNA LINC00665 through the NF-κB Pathway. Microbiol Spectr 2022; 10:e0273121. [PMID: 35993712 PMCID: PMC9603668 DOI: 10.1128/spectrum.02731-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Clinical and in vivo studies have demonstrated a role for hepatitis B virus (HBV)-encoded HBsAg (hepatitis B surface antigen) in HBV-related hepatocellular carcinoma (HCC); however, the underlying mechanisms remain largely unknown. Here, we investigated the role of HBsAg in regulating long noncoding RNAs (lncRNAs) involved in HCC progression. Our analysis of microarray data sets identified LINC00665 as an HBsAg-regulated lncRNA. Furthermore, LINC00665 is upregulated in liver samples from HBV-infected patients as well as in HCC, specifically in HBV-related HCC liver samples. These findings were supported by our in vitro data demonstrating that HBsAg, as well as HBV, positively regulates LINC00665 in multiple HBV cell culture models. Next, we evaluated the oncogenic potential of LINC00665 by its overexpression and CRISPR interference (CRISPRi)-based knockdown in various cell-based assays. LINC00665 promoted cell proliferation, migration, and colony formation but inhibited cell apoptosis in vitro. We then identified the underlying mechanism of HBsAg-mediated regulation of LINC00665. We used immunofluorescence assays to show that HBsAg enhanced the nuclear translocation of NF-κB factors in HepG2 cells, confirming that HBsAg activates NF-κB. Inhibition of NF-κB signaling nullified HBsAg-mediated LINC00665 upregulation, suggesting that HBsAg acts through NF-κB to regulate LINC00665. Furthermore, the LINC00665 promoter contains NF-κB binding sites, and their disruption abrogated HBsAg-induced LINC00665 upregulation. Finally, HBsAg facilitated the enrichment of the NF-κB factors NF-κB1, RelA, and c-Rel in the LINC00665 promoter. Taken together, this work shows that HBsAg can drive hepatocarcinogenesis by upregulating oncogenic LINC000665 through the NF-κB pathway, thereby identifying a novel mechanism in HBV-related HCC. IMPORTANCE Hepatitis B virus (HBV) is a major risk factor for hepatocellular carcinoma (HCC). Numerous reports indicate an oncogenic role for HBV-encoded HBsAg; however, the underlying mechanisms are not well understood. Here, we studied the role of HBsAg in regulating lncRNAs involved in hepatocarcinogenesis. We demonstrate that HBsAg, as well as HBV, positively regulates oncogenic lncRNA LINC00665. The clinical significance of this lncRNA is highlighted by our observation that LINC00665 is upregulated in liver samples during HBV infection and HBV-related HCC. Furthermore, we show LINC00665 can drive hepatocarcinogenesis by promoting cell proliferation, colony formation, and cell migration and inhibiting apoptosis. Taken together, this work identified LINC00665 as a novel gene through which HBsAg can drive hepatocarcinogenesis. Finally, we show that HBsAg enhances LINC00665 levels in hepatocytes by activating the NF-κB pathway, thereby identifying a novel mechanism by which HBV may contribute to HCC.
Collapse
|
176
|
Kang J, Zheng Z, Li X, Huang T, Rong D, Liu X, Qin M, Wang Y, Kong X, Song J, Lv C, Pan X. Midazolam exhibits antitumour and enhances the efficiency of Anti-PD-1 immunotherapy in hepatocellular carcinoma. Cancer Cell Int 2022; 22:312. [PMID: 36224624 PMCID: PMC9555186 DOI: 10.1186/s12935-022-02735-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Midazolam (MDZ) is an anaesthetic that is widely used for anxiolysis and sedation. More recently, MDZ has also been described to be related to the outcome of various types of carcinomas. However, how MDZ influences the progression of hepatocellular carcinoma (HCC) and its effects on the biological function and tumour immune microenvironment of this type of tumour remain unknown. METHODS The effects of MDZ on the proliferation, invasion, and migration of HCC cell lines were examined in vitro using the Cell Counting Kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), Transwell, and wound healing assays. Additionally, western blotting was employed to confirm that PD-L1 was expressed. Chromatin immunoprecipitation-seq (ChIP-seq) analysis was used to pinpoint the transcriptional regulation regions of NF-κB and programmed death-ligand 1 (PD-L1). A C57BL/6 mouse model was used to produce subcutaneous HCC tumors in order to evaluate the in vivo performance of MDZ. Mass spectrometry was also used to assess changes in the tumour immunological microenvironment following MDZ injection. RESULTS The HCC-LM3 and Hep-3B cell lines' proliferation, invasion, and migration were controlled by MDZ, according to the results of the CCK8, EdU, Transwell, and wound healing assays. PD-L1 expression was shown by ChIP-seq analysis to be boosted by NF-κB, and by Western blotting analysis, it was shown that MDZ downregulated the expression of NF-κB. Additionally, in vivo tests revealed that intraperitoneal MDZ injections reduced HCC tumor development and enhanced the effectiveness of anti-PD-1 therapy. The CD45+ immune cell proportions were higher in the MDZ group than in the PBS group, according to the mass spectrometry results. Injection of MDZ resulted in a decrease in the proportions of CD4+ T cells, CD8+ T cells, natural killer (NK) cells, monocytes, Tregs, and M2 macrophages and a rise in the proportion of dendritic cells. Additionally, the concentrations of the cytokines IFN-g and TNF-a were noticeably raised whereas the concentrations of the CD8+ T-cell fatigue markers ICOS, TIGIT, and TIM3 were noticeably lowered. CONCLUSION According to this study, MDZ inhibited the progression of HCC by inhibiting the NF-κB pathway and reducing the exhaustion of CD8+ T cells. In clinical practice, MDZ combined with anti-PD-1 therapy might contribute to synergistically improving the antitumor efficacy of HCC treatment.
Collapse
Affiliation(s)
- Junwei Kang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiying Zheng
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tian Huang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dawei Rong
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xinyang Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Miaomiao Qin
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuliang Wang
- Basic Medical School, Nanjing Medical University, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Xiongxiong Pan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
177
|
Zhang Y, Yang X, Hu Y, Huang X. Integrated Bioinformatic Investigation of EXOSCs in Hepatocellular Carcinoma Followed by the Preliminary Validation of EXOSC5 in Cell Proliferation. Int J Mol Sci 2022; 23:ijms232012161. [PMID: 36293016 PMCID: PMC9603681 DOI: 10.3390/ijms232012161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022] Open
Abstract
The Exosome complex (EXOSC) is a multiprotein complex that was originally discovered as the machinery of RNA degradation. Interestingly, recent studies have reported that EXOSC family members (EXOSCs) are associated with various human diseases, including cancers. It will be interesting to investigate whether EXOSCs are related to the processes of hepatocellular carcinoma (HCC). In this study, multiple public databases and experimental validation were utilized to systemically investigate the role of EXOSCs, especially EXOSC5, in HCC. It is worth considering that the mRNA and protein levels of many EXOSCs were elevated in HCC, although there were some differences in the results from different database analyses. The over-expression of EXOSCs could predict HCC to some extent, as evidenced by the positive correlation between the elevated EXOSCs and alpha fetoprotein (AFP) levels, as well as with a high accuracy, as shown by the receiver operating characteristic curve analysis. Additionally, higher mRNA expressions of specific EXOSCs were significantly related to clinical cancer stage, shorter overall survival and disease-free survival in HCC patients. A moderate mutation rate of EXOSCs was also observed in HCC. Furthermore, a gene functional enrichment analysis indicated that EXOSCs were mainly involved in the metabolism of RNA. Moreover, we revealed that the expression of EXOSCs is remarkably related to immune cell infiltration. Finally, EXOSC5 was upregulated in HCC tissues and cell lines, promoting cell growth and proliferation via activated signal transducer and activator of transcription 3 (STAT3). The bioinformatic analyses, following verification in situ and in vitro, provided a direction for further functions and underlying mechanism of EXOSCs in HCC.
Collapse
Affiliation(s)
| | | | | | - Xin Huang
- Correspondence: ; Tel./Fax: +86-731-88912463
| |
Collapse
|
178
|
Bian CF, Wang Y, Yu A, Fu L, Zhang D, Zhu W, Lv W. Gut microbiota changes and biological mechanism in hepatocellular carcinoma after transarterial chemoembolization treatment. Front Oncol 2022; 12:1002589. [PMID: 36267958 PMCID: PMC9577458 DOI: 10.3389/fonc.2022.1002589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
Background and aims Intestinal flora is closely associated with the occurrence and development of hepatocellular carcinoma (HCC). However, gut microbial changes and biological mechanisms in HCC after transarterial chemoembolization (TACE) treatment are rarely reported. Methods We evaluated changes in intestinal flora after TACE in rabbit HCC models and assessed the impact of these changes on the disease. Twenty-four rabbit VX2 HCC models were established and intestinal flora structures, intestinal barrier function, changes in blood lipopolysaccharide (LPS) levels, Toll-like receptor 4 (TLR4), Cyclooxygenase-2 (COX-2), and p-signal transducer and activator of transcription 3(p-STAT3) protein expression levels were studied after TACE treatment. Results Compared with healthy rabbits, the intestinal flora in HCC models exhibited structural changes; intestinal barrier function was decreased, and increased LPS levels entered the circulation. A short-term follow-up after TACE showed the procedure partially reversed the intestinal microflora disorder caused by the tumor: intestinal barrier and liver functions were improved, intestinal LPS levels in the blood were reduced, and liver metabolism toward LPS was enhanced. Correlation analyses of the first 75 significantly changed bacteria with clinical factors showed that harmful bacteria had decreased and beneficial bacteria increased. Blood LPS levels and downstream signaling molecule TLR4, COX-2, and p-STAT3 protein expression levels were reduced, which correlated with tumor drug resistance and invasion capabilities. Conclusions We first characterized gut microbiota changes and biological mechanisms in HCC after TACE treatment. Our data provide a theoretical research basis for TACE combined with an intestinal flora intervention and systemic chemotherapy.
Collapse
Affiliation(s)
- Chao-Fan Bian
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Ying Wang
- Department of Interventional Therapy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ao Yu
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Lulan Fu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ding Zhang
- Department of Medical, 3D Medicines Inc., Shanghai, China
| | - Wenzhi Zhu
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Weifu Lv
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
179
|
HE X, XIAO J, FAN C, LU Z, CAO H, YU L, ZHENG Y, LIU J. Zebrafish facilitates drug screening: potential of 3-deoxy-andrographoside from Chuanxinlian ) as an anti-inflammatory agent. J TRADIT CHIN MED 2022; 42:749-757. [PMID: 36083482 PMCID: PMC9924720 DOI: 10.19852/j.cnki.jtcm.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To systematically evaluate the anti-inflammatory potential of diterpene lactones from Chuanxinlian () (AP). METHODS We firstly adopted zebrafish, a novel and ideal animal model for high-throughput drug screening, to investigate the anti-inflammatory activities of 17 diterpene lactones isolated from AP. RESULTS The results showed that most of diterpene lactones displayed significant anti-inflammatory effects in lipopolysaccharide microinjection-, copper sulfate exposure- or tail transection-induced zebrafish inflammation models. Moreover, diterpene lactone 3-deoxy-andrographoside (AP-5) was firstly found to attenuate inflammatory responses, which was closely associated with the myeloid differentiation primary response 88/nuclear factor-kappa B and signal transducer and activator of transcription 3 pathways. CONCLUSION Our research sheds light on the inestimable roles of zebrafish in high-throughput drug screening, elucidates the potent inhibitory effects of diterpene lactones against inflammation and indicates that AP-5 may serve as a potential alternative agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xuemei HE
- 1 Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 2 Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| | - Junjie XIAO
- 1 Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 2 Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| | - Chunlin FAN
- 3 Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zibin LU
- 1 Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 2 Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| | - Huihui CAO
- 1 Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 2 Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| | - Linzhong YU
- 1 Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 2 Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| | - Yuanru ZHENG
- 1 Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 2 Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
- 4 School of Pharmacy, Guangdong Pharmaceutical university, Guangzhou 510006, China
- ZHENG Yuanru, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China. Telephone: +86-20-61648539; +86-20-39352135
| | - Junshan LIU
- 1 Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 2 Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
- 5 Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- Associate Prof. LIU Junshan, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
180
|
Li Z, Hao E, Cao R, Lin S, Zou L, Huang T, Du Z, Hou X, Deng J. Analysis on internal mechanism of zedoary turmeric in treatment of liver cancer based on pharmacodynamic substances and pharmacodynamic groups. CHINESE HERBAL MEDICINES 2022; 14:479-493. [PMID: 36405057 PMCID: PMC9669400 DOI: 10.1016/j.chmed.2022.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/04/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Zedoary tumeric (Curcumae Rhizoma, Ezhu in Chinese) has a long history of application and has great potential in the treatment of liver cancer. The antiliver cancer effect of zedoary tumeric depends on the combined action of multiple pharmacodynamic substances. In order to clarify the specific mechanism of zedoary tumeric against liver cancer, this paper first analyzes the mechanism of its single pharmacodynamic substance against liver cancer, and then verifies the joint anti liver cancer mechanism of its "pharmacodynamic group". By searching the research on the antihepatoma effect of active components of zedoary tumeric in recent years, we found that pharmacodynamic substances, including curcumol, zedoarondiol, curcumenol, curzerenone, curdione, curcumin, germacrone, β-elemene, can act on multi-target and multi-channel to play an antihepatoma role. For example, curcumin can regulate miR, GLO1, CD133, VEGF, YAP, LIN28B, GPR81, HCAR-1, P53 and PI3K/Akt/mTOR, HSP70/TLR4 and NF-κB. Wnt/TGF/EMT, Nrf2/Keap1, JAK/STAT and other pathways play an antihepatoma role. Network pharmacological analysis showed that the core targets of the "pharmacodynamic group" for anti-life cancer are AKT1, EGFR, MAPK8, etc, and the core pathways are neuroactive live receiver interaction, nitrogen metabolism, HIF-1 signaling pathway, etc. At the same time, by comparing and analyzing the relationship between the specific mechanisms of pharmacodynamic substance and "pharmacodynamic group", it is found that they have great reference significance in target, pathway, biological function, determination of core pharmacodynamic components, formation of core target protein interaction, in-depth research of single pharmacodynamic substance, increasing curative effect and so on. By analyzing the internal mechanism of zedoary tumeric pharmacodynamic substance and "pharmacodynamic group" in the treatment of liver cancer, this paper intends to provide some ideas and references for the deeper pharmacological research of zedoary tumeric and the relationship between pharmacodynamic substance and "pharmacodynamic group".
Collapse
Affiliation(s)
- Zeyu Li
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Rui Cao
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Si Lin
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Linghui Zou
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Tianyan Huang
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Zhengcai Du
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Xiaotao Hou
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| | - Jiagang Deng
- China ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Nanning 530200, China
- Guangxi Scientific Experiment Center of Traditional Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of Pharmacodynamics of Traditional Chinese Medicine, Nanning 530000, China
| |
Collapse
|
181
|
Identification and Validation of an Inflammatory Response-Related Polygenic Risk Score as a Prognostic Marker in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:1739995. [PMID: 36212175 PMCID: PMC9534708 DOI: 10.1155/2022/1739995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Aims We hypothesized that the expression patterns of inflammatory response-related genes may be a potential tool for hepatocellular carcinoma (HCC) risk scoring. Background Inflammatory response plays a pivotal role in the pathogenesis of HCC. Objective To establish and validate a hallmark inflammatory response gene-based polygenic risk score as a prognostic tool in HCC. Methods We screened differentially expressed inflammatory response genes and established an inflammatory response-related polygenic risk score (IRPRS) in an HCC-related dataset. Patients with HCC were categorized into high- and low-risk groups according to the median IRPRS, and the overall survival between the two groups was compared. The IRPRS was validated in an independent external dataset. Tumor-infiltrating lymphocytes (TILs) in high- and low-risk groups were compared, and gene set enrichment analysis was performed to characterize high-risk HCC identified using this IRPRS. Results Four differentially expressed hallmark inflammatory response genes (CD14, AQP9, SERPINE1, and ITGA5) were identified to construct the IRPRS. Patients in the high-risk group had significantly shorter overall survival than those in the low-risk group in both the training set and the test set. Furthermore, the IRPRS remained an independent prognostic factor compared to the routine clinicopathological characteristics. Many cancer-related hallmark gene sets and TILs were significantly enriched in the high-risk group. Conclusions We established and validated a four-hallmark inflammatory response gene-based polygenic risk score, which could successfully divide patients with HCC into high-risk and low-risk groups. These two risk groups of HCC possess significantly distinct prognostic and biological characteristics.
Collapse
|
182
|
Makino Y, Hikita H, Kato S, Sugiyama M, Shigekawa M, Sakamoto T, Sasaki Y, Murai K, Sakane S, Kodama T, Sakamori R, Kobayashi S, Eguchi H, Takemura N, Kokudo N, Yokoi H, Mukoyama M, Tatsumi T, Takehara T. STAT3 is Activated by CTGF-mediated Tumor-stroma Cross Talk to Promote HCC Progression. Cell Mol Gastroenterol Hepatol 2022; 15:99-119. [PMID: 36210625 PMCID: PMC9672888 DOI: 10.1016/j.jcmgh.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Signal transducer and activator of transcription 3 (STAT3) is known as a pro-oncogenic transcription factor. Regarding liver carcinogenesis, however, it remains controversial whether activated STAT3 is pro- or anti-tumorigenic. This study aimed to clarify the significance and mechanism of STAT3 activation in hepatocellular carcinoma (HCC). METHODS Hepatocyte-specific Kras-mutant mice (Alb-Cre KrasLSL-G12D/+; KrasG12D mice) were used as a liver cancer model. Cell lines of hepatoma and stromal cells including stellate cells, macrophages, T cells, and endothelial cells were used for culture. Surgically resected 12 HCCs were used for human analysis. RESULTS Tumors in KrasG12D mice showed up-regulation of phosphorylated STAT3 (p-STAT3), together with interleukin (IL)-6 family cytokines, STAT3 target genes, and connective tissue growth factor (CTGF). Hepatocyte-specific STAT3 knockout (Alb-Cre KrasLSL-G12D/+ STAT3fl/fl) downregulated p-STAT3 and CTGF and suppressed tumor progression. In coculture with stromal cells, proliferation, and expression of p-STAT3 and CTGF, were enhanced in hepatoma cells via gp130/STAT3 signaling. Meanwhile, hepatoma cells produced CTGF to stimulate integrin/nuclear factor kappa B signaling and up-regulate IL-6 family cytokines from stromal cells, which could in turn activate gp130/STAT3 signaling in hepatoma cells. In KrasG12D mice, hepatocyte-specific CTGF knockout (Alb-Cre KrasLSL-G12D/+ CTGFfl/fl) downregulated p-STAT3, CTGF, and IL-6 family cytokines, and suppressed tumor progression. In human HCC, single cell RNA sequence showed CTGF and IL-6 family cytokine expression in tumor cells and stromal cells, respectively. CTGF expression was positively correlated with that of IL-6 family cytokines and STAT3 target genes in The Cancer Genome Atlas. CONCLUSIONS STAT3 is activated by CTGF-mediated tumor-stroma crosstalk to promote HCC progression. STAT3-CTGF positive feedback loop could be a therapeutic target.
Collapse
Affiliation(s)
- Yuki Makino
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiya Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuya Sakamoto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoichi Sasaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sadatsugu Sakane
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuyuki Takemura
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kokudo
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
183
|
Ferroptosis-Related Genes with Regard to CTLA-4 and Immune Infiltration in Hepatocellular Carcinoma. Biochem Genet 2022; 61:687-703. [PMID: 36094606 DOI: 10.1007/s10528-022-10279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Comprehensive analysis of ferroptosis in Hepatocellular Carcinoma (HCC) and its relation to the tumor immune microenvironment are needed. Data included HCC in The Cancer Genome Atlas and International Cancer Genome Consortium. And two datasets from Gene Expression Omnibus (GEO) were used as the validation set. Based on the expression of ferroptosis-related genes, HCC patients were divided into two subtypes. Cluster 1 showed lower tumor grade, lower CTLA-4, and a more favorable prognosis than Cluster 2. Patients with higher SLC7A11 (50%) had a poorer prognosis in HCC. SLC7A11 is characterized by more NK CD56bright cells, less DC, and neuroactive ligand-receptor interaction and cytokine receptor interaction. Ferroptosis-related genes especially SLC7A11 might be a valuable prognostic factor in HCC.
Collapse
|
184
|
Huo Y, Cao K, Kou B, Chai M, Dou S, Chen D, Shi Y, Liu X. TP53BP2: Roles in suppressing tumorigenesis and therapeutic opportunities. Genes Dis 2022. [PMID: 37492707 PMCID: PMC10363587 DOI: 10.1016/j.gendis.2022.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Malignant tumor is still a major problem worldwide. During tumorigenesis or tumor development, tumor suppressor p53-binding protein 2 (TP53BP2), also known as apoptosis stimulating protein 2 of p53 (ASPP2), plays a critical role in p53 dependent and independent manner. Expression of TP53BP2 is highly correlated with the prognosis and survival rate of malignant tumor patients. TP53BP2 can interact with p53, NF-κB p65, Bcl-2, HCV core protein, PP1, YAP, CagA, RAS, PAR3, and other proteins to regulate cell function. Moreover, TP53BP2 can also regulate the proliferation, apoptosis, autophagy, migration, EMT and drug resistance of tumor cells through downstream signaling pathways, such as NF-κB, RAS/MAPK, mevalonate, TGF-β1, PI3K/AKT, aPKC-ι/GLI1 and autophagy pathways. As a potential therapeutic target, TP53BP2 has been attracted more attention. We review the role of TP53BP2 in tumorigenesis or tumor development and the signal pathway involved in TP53BP2, which may provide more deep insight and strategies for tumor treatment.
Collapse
|
185
|
Xiao Y, Liang J, Witwer KW, Zhang Y, Wang Q, Yin H. Extracellular vesicle-associated microRNA-30b-5p activates macrophages through the SIRT1/ NF-κB pathway in cell senescence. Front Immunol 2022; 13:955175. [PMID: 36119099 PMCID: PMC9471260 DOI: 10.3389/fimmu.2022.955175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammation is widely observed in aging, but it is unclear whether extracellular vesicles (EVs) play a role in chronic disease-associated senescence. In our study, LC/MS profiling revealed that senescent cell derived EVs (SEN EVs) activate the immune response pathways of macrophages. Significantly more EVs were found in the supernatant of SEN than of control (CON) cell cultures, and SEN EVs were enriched in miR-30b-5p, which directly target sirtuin1 (SIRT1). In vitro, we found that SEN EV treatment resulted in increased cellular levels of interleukin-1β (IL-1β) and IL-6 and decreased levels of SIRT1. Increased cytokine levels could be reversed by SIRT1 activation and miR-30b-5p inhibition. Furthermore, miR-30b-5p significantly increased with age in both mouse liver tissue and EVs harvested from the tissue, with differences in EVs observed both earlier and in the later magnitude of aging. Western blot and qPCR proved that miR-30b-5p downregulated the level of SIRT1 in mouse macrophages. Collectively, we propose that EVs carrying miR-30b-5p from SEN cells can induce chronic inflammation through macrophage activation. This occurs through the downregulation of SIRT1 and the corresponding activation of NF-κB pathways that enhance pro-inflammatory cytokine production. Collectively, these results demonstrate that EVs carrying pro-inflammatory signals are released by SEN cells and then activate immune cells in the SEN microenvironment, changing the inflammatory balance. Our results also explain why inflammation increases with age even though SEN cells can be immediately eliminated under rigorous immune surveillance.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi Liang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ying Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Qian Wang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Hang Yin, ; Qian Wang,
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- *Correspondence: Hang Yin, ; Qian Wang,
| |
Collapse
|
186
|
Taylor RS, Ruiz Daniels R, Dobie R, Naseer S, Clark TC, Henderson NC, Boudinot P, Martin SA, Macqueen DJ. Single cell transcriptomics of Atlantic salmon ( Salmo salar L.) liver reveals cellular heterogeneity and immunological responses to challenge by Aeromonas salmonicida. Front Immunol 2022; 13:984799. [PMID: 36091005 PMCID: PMC9450062 DOI: 10.3389/fimmu.2022.984799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a multitasking organ with essential functions for vertebrate health spanning metabolism and immunity. In contrast to mammals, our understanding of liver cellular heterogeneity and its role in regulating immunological status remains poorly defined in fishes. Addressing this knowledge gap, we generated a transcriptomic atlas of 47,432 nuclei isolated from the liver of Atlantic salmon (Salmo salar L.) contrasting control fish with those challenged with a pathogenic strain of Aeromonas salmonicida, a problematic bacterial pathogen in global aquaculture. We identified the major liver cell types and their sub-populations, revealing poor conservation of many hepatic cell marker genes utilized in mammals, while identifying novel heterogeneity within the hepatocyte, lymphoid, and myeloid lineages. This included polyploid hepatocytes, multiple T cell populations including γδ T cells, and candidate populations of monocytes/macrophages and dendritic cells. A dominant hepatocyte population radically remodeled its transcriptome following infection to activate the acute phase response and other defense functions, while repressing routine functions such as metabolism. These defense-specialized hepatocytes showed strong activation of genes controlling protein synthesis and secretion, presumably to support the release of acute phase proteins into circulation. The infection response further involved up-regulation of numerous genes in an immune-cell specific manner, reflecting functions in pathogen recognition and killing, antigen presentation, phagocytosis, regulation of inflammation, B cell differentiation and T cell activation. Overall, this study greatly enhances our understanding of the multifaceted role played by liver immune and non-immune cells in host defense and metabolic remodeling following infection and provides many novel cell-specific marker genes to empower future studies of this organ in fishes.
Collapse
Affiliation(s)
- Richard S. Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Shahmir Naseer
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Thomas C. Clark
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Samuel A.M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
187
|
Li J, Zhao M, Li J, Wang M, Zhao C. Combining fecal microbiome and metabolomics to reveal the disturbance of gut microbiota in liver injury and the therapeutic mechanism of shaoyao gancao decoction. Front Pharmacol 2022; 13:911356. [PMID: 36059945 PMCID: PMC9428823 DOI: 10.3389/fphar.2022.911356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Chemical liver injury is closely related to gut microbiota and its metabolites. In this study, we combined 16S rRNA gene sequencing, 1H NMR-based fecal metabolomics and GC-MS to evaluate the changes in gut microbiota, fecal metabolites and Short-chain fatty acids (SCFAs) in CCl4-induced liver injury in Sprague-Dawley rats, and the therapeutic effect of Shaoyao Gancao Decoction (SGD). The results showed that CCl4-induced liver injury overexpressed CYP2E1, enhanced oxidative stress, decreased antioxidant enzymes (SOD, GSH), increased peroxidative products MDA and inflammatory responses (IL-6, TNF-α), which were ameliorated by SGD treatment. H&E staining showed that SGD could alleviate liver tissue lesions, which was confirmed by the recovered liver index, ALT and AST. Correlation network analysis indicated that liver injury led to a decrease in microbiota correlation, while SGD helped restore it. In addition, fecal metabolomic confirmed the PICRUSt results that liver injury caused disturbances in amino acid metabolism, which were modulated by SGD. Spearman’s analysis showed that liver injury disrupted ammonia transport, urea cycle, intestinal barrier and energy metabolism. Moreover, the levels of SCFAs were also decreased, and the abundance of Lachnoclostridium, Blautia, Lachnospiraceae_NK4A136_group, UCG-005 and Turicibacter associated with SCFAs were altered. However, all this can be alleviated by SGD. More importantly, pseudo germ-free rats demonstrated that the absence of gut microbiota aggravated liver injury and affected the efficacy of SGD. Taken together, we speculate that the gut microbiota has a protective role in the pathogenesis of liver injury, and has a positive significance for the efficacy of SGD. Moreover, SGD can treat liver injury by modulating gut microbiota and its metabolites and SCFAs. This provides useful evidence for the study of the pathogenesis of liver injury and the clinical application of SGD.
Collapse
Affiliation(s)
- Jingwei Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianming Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Miao Wang, ; Chunjie Zhao,
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Miao Wang, ; Chunjie Zhao,
| |
Collapse
|
188
|
Wu L, Ge Y, Yuan Y, Li H, Sun H, Xu C, Wang Y, Zhao T, Wang X, Liu J, Gao S, Chang A, Hao J, Huang C. Genome-wide CRISPR screen identifies MTA3 as an inducer of gemcitabine resistance in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 548:215864. [PMID: 35981571 DOI: 10.1016/j.canlet.2022.215864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Gemcitabine (GEM) resistance is one of the major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC) in clinic. Here, through CRISPR/Cas9 activation library screen, we found that MTA3 mediates the GEM resistance of PDAC and thus might be a potential therapeutic target for combination chemotherapy. The CRISPR library screening showed that MTA3 is the most enriched gene in the surviving GEM-treated cells, and bioinformatic and histology analysis implied its high correlation with GEM resistance. MTA3 promoted GEM resistance of PDAC cells in in vitro and in vivo experiments. Mechanistically, as a component of the Mi-2/nucleosome remodeling and deacetylase transcriptional repression complex, MTA3 transcriptionally represses CRIP2, a transcriptional repressor of NF-Κb/p65, activating NF-κB signaling and consequently leading to GEM resistance. Furthermore, the treatment of GEM increases MTA3 expression in PDAC cells via activating STAT3 signaling, thereby inducing the acquired chemoresistance of PDAC to GEM. In patients derived xenografts (PDX) mouse model, Colchicine suppresses the expression of MTA3 and increases the sensitivity of tumor cells to GEM. Based on these findings, MTA3 plays a key role in GEM resistance in pancreatic cancer and is a promising therapeutic target for reversing GEM chemotherapy resistance.
Collapse
Affiliation(s)
- Liangliang Wu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yi Ge
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yudong Yuan
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Hui Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Huizhi Sun
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Chao Xu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yifei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
189
|
Lasa M, Contreras-Jurado C. Thyroid hormones act as modulators of inflammation through their nuclear receptors. Front Endocrinol (Lausanne) 2022; 13:937099. [PMID: 36004343 PMCID: PMC9393327 DOI: 10.3389/fendo.2022.937099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Reciprocal crosstalk between endocrine and immune systems has been well-documented both in physiological and pathological conditions, although the connection between the immune system and thyroid hormones (THs) remains largely unclear. Inflammation and infection are two important processes modulated by the immune system, which have profound effects on both central and peripheral THs metabolism. Conversely, optimal levels of THs are necessary for the maintenance of immune function and response. Although some effects of THs are mediated by their binding to cell membrane integrin receptors, triggering a non-genomic response, most of the actions of these hormones involve their binding to specific nuclear thyroid receptors (TRs), which generate a genomic response by modulating the activity of a great variety of transcription factors. In this special review on THs role in health and disease, we highlight the relevance of these hormones in the molecular mechanisms linked to inflammation upon their binding to specific nuclear receptors. In particular, we focus on THs effects on different signaling pathways involved in the inflammation associated with various infectious and/or pathological processes, emphasizing those mediated by NF-kB, p38MAPK and JAK/STAT. The findings showed in this review suggest new opportunities to improve current therapeutic strategies for the treatment of inflammation associated with several infections and/or diseases, such as cancer, sepsis or Covid-19 infection.
Collapse
Affiliation(s)
- Marina Lasa
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas “Alberto Sols”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Constanza Contreras-Jurado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Alfonso X El Sabio, Madrid, Spain
- Departamento de Fisiopatología Endocrina y del Sistema Nervioso, Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
190
|
Chen H, Li X, Sun Y, Du Y, Wu S, Wu Y, Liu H, Liu Y, Wang Y, Zhao Q, Yin S. HAO1 negatively regulates liver macrophage activation via the NF-κB pathway in alcohol-associated liver disease. Cell Signal 2022; 99:110436. [PMID: 35953025 DOI: 10.1016/j.cellsig.2022.110436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Inflammation is a key factor contributing to the progression of alcohol-associated liver disease (ALD). Accumulating data have shown that ethyl alcohol (EtOH) induced liver macrophages activation along with an inflammatory response that contributes to the development of ALD. The liver-specific peroxisomal enzyme hydroxyacid oxidase 1 (HAO1) has been found to be associated with chronic liver disease. But the role of HAO1 remains unknown in ALD. In our study, HAO1 was found to be decreased in ALD patients and EtOH-fed mice. Interestingly, HAO1 expression was reduced in primary hepatocytes, whereas HAO1 was elevated in peripheral blood monocytes from ALD patients and EtOH-fed mice liver macrophages as well as LPS-treated RAW264.7 cells. Moreover, HAO1 knockdown exacerbated the inflammatory response, while HAO1 overexpression inhibited inflammation in LPS-stimulated RAW264.7 cells. Additionally, overexpression or silencing of HAO1 in vitro significantly affected NF-κB signaling pathway. Collectively, the results revealed a key role of HAO1-mediated macrophage activation and may provide a potential target for treating ALD.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Xiaofeng Li
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yingyin Sun
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Du
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Sha Wu
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yuanyuan Wu
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Huiping Liu
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yaru Liu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yongmei Wang
- Department of Nursing, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qihang Zhao
- First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Shi Yin
- Department of Geriatrics, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
191
|
Yuan J, Wang Y, Wang X, Zhang W, Ding R, Yue S, Li X. Construction and experimental verification of user-friendly molecular subtypes mediated by immune-associated genes in hepatocellular carcinoma. Front Oncol 2022; 12:924059. [PMID: 35992798 PMCID: PMC9391001 DOI: 10.3389/fonc.2022.924059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for third most cancer death globally, and its prognosis continues to be poor even with many novel therapeutic approaches emerging. The advent of immunotherapy seems to offer new hope, but low response rates are an unresolved problem. To gain further knoeledge of the effect of immune-related genes in HCC, we examined the connection between immune-related genes and the immune microenvironment in HCC through the HCC transcriptome dataset. The study also aimed to construct and experimentally validate user-friendly molecular subtypes mediated by immune-related genes in HCC. The immune cell infiltration patterns differs in HCC adjacent non-disease tissues and cancerous tissues. Patients with HCC could be classified into 2 subtypes: subtype A and subtype B. Specifically, subtype A shows characteristics of a hot tumor, in which the infiltration of cells exhibiting antigens and the expression of other crucial factors associated with immune function are higher than in a cold tumor. In addition, we identified Hub genes for the different subtypes and constructed a prognostic prediction model based on six genes (KLRB1, KLF2, S100A9, MSC, ANXA5, and IMPDH1). Further experimental analysis of HCC samples exhibited that the expression levels of KLF2 and ANXA5 were associated with immune cell infiltration and expression of PD-L1 in cancer tissues. Our work suggests that the expression of immune-related genes has crucial effect on the tumor microenvironment and prognosis of HCC patients and may be associated with immunotherapeutic response, which provides new clues for the widespread and effective application of immunotherapy in HCC.
Collapse
Affiliation(s)
- Juzheng Yuan
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xudan Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wenjie Zhang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Rui Ding, ; Shuqiang Yue, ; Xiao Li,
| | - Shuqiang Yue
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Rui Ding, ; Shuqiang Yue, ; Xiao Li,
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Rui Ding, ; Shuqiang Yue, ; Xiao Li,
| |
Collapse
|
192
|
Huang Y, Huang Y, Wang H, Zhang H, Shi L, Li C, Li X, Zeng Y, Liu Y, Wu M, Wang J, Wang J. The effect of low molecular weight-polycyclic aromatic hydrocarbons responsive hsa_circ_0039929/hsa-miR-15b-3p_R-1/FGF2 circuit on inflammatory response of A549 cells via the PI3K/AKT pathway and epithelial-mesenchymal transition process. ENVIRONMENTAL TOXICOLOGY 2022; 37:2005-2018. [PMID: 35475590 DOI: 10.1002/tox.23546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Inflammation is widely recognized as an essential inducer of epithelial-mesenchymal transition (EMT). Meanwhile, competitive endogenous RNA (ceRNA) has been involved in a variety of disease processes. Therefore, the aim of the current study is to explore the regulation of ceRNA in the PI3K/AKT pathway and EMT mechanism in inflammatory response caused by low molecular weight-polycyclic aromatic hydrocarbons (LMW-PAHs). The A549 cells were treated with an equal mixture of phenanthrene (Phe) and fluorene (Flu), and total RNA was extracted for transcriptome sequencing. The target regulation of ceRNA hsa_circ_0039929/hsa-miR-15b-3p_R-1/FGF2 was further determined for mechanism study. The mixture of Phe and Flu significantly upregulated the expressions of hsa_circ_0039929 and FGF2, down-regulated hsa-miR-15b-3p_R-1, activated the PI3K/AKT pathway and promoted EMT. Mechanically, the overexpression of hsa-miR-15b-3p_R-1 inhibited the expressions of hsa_circ_0039929 and FGF2, reversed the activation of PI3K/AKT signaling pathway by LMW-PAHs, and blocked the occurrence of EMT progression. Furthermore, knockdown of hsa_circ_0039929 could promote the levels of hsa-miR-15b-3p_R-1, while inhibit the expression of FGF2. The effects of hsa_circ_0039929 knockdowns on PI3K/AKT pathways and EMT progress resembled the hsa-miR-15b-3p_R-1 overexpression. All above suggested that ceRNA hsa_circ_0039929/hsa-miR-15b-3p_R-1/FGF2 played an important role in the inflammation and EMT caused by LMW-PAHs.
Collapse
Affiliation(s)
- Yushan Huang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yamin Huang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Haojun Zhang
- Department of Hospital Infection Control, Gansu Province Hospital, Lanzhou, China
| | - Lei Shi
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiangli Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yong Zeng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minghua Wu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jingyu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
193
|
Fan Y, Dong W, Wang Y, Zhu S, Chai R, Xu Z, Zhang X, Yan Y, Yang L, Bian Y. Glycyrrhetinic acid regulates impaired macrophage autophagic flux in the treatment of non-alcoholic fatty liver disease. Front Immunol 2022; 13:959495. [PMID: 35967372 PMCID: PMC9365971 DOI: 10.3389/fimmu.2022.959495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages are involved in hepatocyte steatosis and necroinflammation and play an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Impaired autophagy function (decreased autophagy or blocked autophagic flow) leads to cell damage and death and promotes NAFLD progression. The experimental and clinical research of glycyrrhetinic acid (GA) in the treatment of NAFLD has gradually attracted attention with clear pharmacological activities such as immune regulation, antiviral, antitumor, antioxidant, liver protection, and anti-inflammatory. However, the effects of GA on the STAT3-HIF-1α pathway and autophagy in macrophages are still unclear, and its mechanism of action in the treatment of NAFLD remains to be further elucidated. We constructed a NAFLD mouse model through a high-fat and high-sugar diet to investigate the therapeutic effects of GA. The results showed that GA reduced weight, improved the pathological changes and hepatic lipid deposition of liver, and abnormally elevated the levels of serum biochemical (AST, ALT, TG, T-CHO, LDL-C, and HDL-C) and inflammatory indexes (IL-1β, IL-4, IL-6, MCP-1, and TNF-α) in NAFLD mice. Further examination revealed that GA ameliorates excessive hepatic macrophage infiltration and hepatocyte apoptosis. The results of the cell experiments further elaborated that GA modulated the PA-induced macrophage STAT3-HIF-1α pathway and ameliorated impaired autophagic flux (blockade of autophagosome–lysosome fusion) and overactivation of inflammation. Excessive hepatocyte apoptosis caused by the uncontrolled release of inflammatory cytokines was also suppressed by GA.ConclusionThis study demonstrated that GA could regulate the STAT3-HIF-1α pathway of macrophages, ameliorate the impaired autophagy flux, and reduce the excessive production of inflammatory cytokines to improve the excessive apoptosis of liver cells, thus playing a therapeutic role on NAFLD.
Collapse
Affiliation(s)
- Yadong Fan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjin Dong
- Department of Science and Education, Tianjin Union Medical Center, Tianjin, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Zhu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rundong Chai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyu Zhang
- The Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Long Yang, ; Yuhong bian,
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Long Yang, ; Yuhong bian,
| |
Collapse
|
194
|
Lee SJ, Kim YA, Park KK. Anti-Fibrotic Effect of Synthetic Noncoding Decoy ODNs for TFEB in an Animal Model of Chronic Kidney Disease. Int J Mol Sci 2022; 23:8138. [PMID: 35897713 PMCID: PMC9330689 DOI: 10.3390/ijms23158138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Despite emerging evidence suggesting that autophagy occurs during renal interstitial fibrosis, the role of autophagy activation in fibrosis and the mechanism by which autophagy influences fibrosis remain controversial. Transcription factor EB (TFEB) is a master regulator of autophagy-related gene transcription, lysosomal biogenesis, and autophagosome formation. In this study, we examined the preventive effects of TFEB suppression on renal fibrosis. We injected synthesized TFEB decoy oligonucleotides (ODNs) into the tail veins of unilateral ureteral obstruction (UUO) mice to explore the regulation of autophagy in UUO-induced renal fibrosis. The expression of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and collagen was decreased by TFEB decoy ODN. Additionally, TEFB ODN administration inhibited the expression of microtubule-associated protein light chain 3 (LC3), Beclin1, and hypoxia-inducible factor-1α (HIF-1α). We confirmed that TFEB decoy ODN inhibited fibrosis and autophagy in a UUO mouse model. The TFEB decoy ODNs also showed anti-inflammatory effects. Collectively, these results suggest that TFEB may be involved in the regulation of autophagy and fibrosis and that regulating TFEB activity may be a promising therapeutic strategy against kidney diseases.
Collapse
Affiliation(s)
| | | | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Korea; (S.-J.L.); (Y.-A.K.)
| |
Collapse
|
195
|
Wang CH, Lin RC, Hsu HY, Tseng YT. Hormone replacement therapy is associated with reduced hepatocellular carcinoma risk and improved survival in postmenopausal women with hepatitis B: A nationwide long-term population-based cohort study. PLoS One 2022; 17:e0271790. [PMID: 35862398 PMCID: PMC9302748 DOI: 10.1371/journal.pone.0271790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/07/2022] [Indexed: 11/19/2022] Open
Abstract
Postmenopausal women with hepatitis B virus (HBV) infection are more likely to have accelerated liver fibrosis, eventually advancing to liver cirrhosis or hepatocellular carcinoma (HCC). The association between sex hormones and HBV-related HCC risk is unclear. We investigated whether hormone replacement therapy (HRT) is beneficial to postmenopausal women with HBV infection. This retrospective study selected the data of 44,465patients with HBV infection between January 2000 and December 2018 from Taiwan’s National Health Insurance Research Database. After excluding patients with preexisting liver diseases, liver cirrhosis, or liver malignancies, we grouped the remaining 10,474 patients by whether they had undergone HRT for at least 3 months (n = 5,638) and whether they had not received HRT (n = 4,836). After propensity score matching, we assigned 3080 patients to an HRT cohort and matched them (1:1) with those in a non-HRT cohort. The incidence of HCC (P < 0.022) and all-cause mortality rate (P < 0.001) were lower in the HRT cohort than in the non-HRT cohort. The liver cirrhosis risk was not significantly higher in the HRT cohort (P = 0.355). HRT is associated with reduced HCC risk and improved survival outcomes but is unrelated to liver cirrhosis development in postmenopausal women.
Collapse
Affiliation(s)
- Chun-Hsiang Wang
- Department of Hepatogastroenterology, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Optometry, Chung Hwa Medical University, Tainan, Taiwan
| | - Ruey-Chang Lin
- Department of Hepatogastroenterology, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
| | - Hua-Yin Hsu
- Departments of Nursing, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan City, Taiwan
| | - Yuan-Tsung Tseng
- Committee of Medical Research, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- * E-mail:
| |
Collapse
|
196
|
Liu Q, Huang L, Cui Z, Qiao B, Li F, Wang C. FumDSB can alleviate the inflammatory response induced by fumonisin B 1 in growing pigs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1619-1633. [PMID: 35858108 DOI: 10.1080/19440049.2022.2100490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fumonisin B1 (FB1) has the highest natural contamination rate among all fumonisin analogs and can inhibit food intake and weight gain of pigs. Under laboratory conditions, carboxylesterase FumDSB has a high FB1 degradation rate and excellent pH and thermal stability. The present study sought to estimate the effects of FumDSB on growing pigs from the perspective of a brain-intestinal axis. Twenty-four growing pigs of similar weight were divided into Control, FB1 (5 mg FB1/kg feed), and FumDSB (5 mg FB1/kg and 0.1% FumDSB in the feed) groups. After 42 days of feeding, hypothalamus and jejunum samples were collected for quantitative real-time fluorescence, western blotting, and immunohistochemistry. The results showed that FB1 consumption can destruct the tissue structure of hypothalamus and jejunum, affect the expression and distribution of several appetite-related neuropeptides and inflammatory cytokines, thereby inducing neuroinflammatory responses and affecting food intake and weight gain. However, these anorexia effects and inflammatory responses are alleviated when FumDSB is added to the feed. In short, FumDSB can alleviate the inflammatory response induced by FB1 in growing pigs.
Collapse
Affiliation(s)
- Quancheng Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Zhiwei Cui
- Animal Husbandry Development Centre of Zhucheng, Zhucheng, China
| | - Bin Qiao
- Comprehensive Administrative Law Enforcement Brigade in Zhucheng, Zhucheng, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Chunyang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
197
|
Shih CH, Chang YC, Lai YC, Chiou HY. Investigating the role of signal transducer and activator of transcription 3 in feline injection site sarcoma. BMC Vet Res 2022; 18:276. [PMID: 35836213 PMCID: PMC9281114 DOI: 10.1186/s12917-022-03352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Feline injection-site sarcomas (FISSs) are malignant mesenchymal tumors of different histotypes. The pathogenesis of FISS has been correlated with chronic inflammation, resulting in neoplastic transformation. Activation of the Janus kinase-signal transducer and activator of transcription 3 (STAT3) have been demonstrated to play a critical role in tumor development by regulating signaling pathways involved in cell proliferation, survival, metastasis, and angiogenesis in human medicine. To characterize the role of STAT3 in FISS, we first detected STAT3 and phosphorylated STAT3 in formalin-fixed and paraffin-embedded (FFPE) FISS tissues using immunohistochemical staining. RESULTS STAT3 was detected in 88.9% (40/45) of FISS cases, and phosphorylated STAT3 was detected in 53.3% (24/45) of cases. However, the expression levels of both forms of STAT3 were not correlated with tumor grade. To study the role of STAT3 in tumor survival, two primary cells derived from FISSs of two cats exhibiting consistent immunophenotypes with their parental FFPE tissues were established. A dose-dependent inhibitory effect on cell proliferation was observed in both primary FISS cells treated with the STAT3 inhibitor, 5-hydroxy-9,10-dioxo-9,10-dihydroanthracene-1-sulfonamide. CONCLUSIONS The STAT 3 may play an important role in the tumorigenesis of FISS and be a potential molecular therapeutic target for FISS.
Collapse
Affiliation(s)
- Cheng-Hsin Shih
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Yun-Chiang Lai
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Hue-Ying Chiou
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 402, Taichung, Taiwan.
| |
Collapse
|
198
|
Panconesi R, Flores Carvalho M, Dondossola D, Muiesan P, Dutkowski P, Schlegel A. Impact of Machine Perfusion on the Immune Response After Liver Transplantation - A Primary Treatment or Just a Delivery Tool. Front Immunol 2022; 13:855263. [PMID: 35874758 PMCID: PMC9304705 DOI: 10.3389/fimmu.2022.855263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The frequent use of marginal livers forces transplant centres to explore novel technologies to improve organ quality and outcomes after implantation. Organ perfusion techniques are therefore frequently discussed with an ever-increasing number of experimental and clinical studies. Two main approaches, hypothermic and normothermic perfusion, are the leading strategies to be introduced in clinical practice in many western countries today. Despite this success, the number of studies, which provide robust data on the underlying mechanisms of protection conveyed through this technology remains scarce, particularly in context of different stages of ischemia-reperfusion-injury (IRI). Prior to a successful clinical implementation of machine perfusion, the concept of IRI and potential key molecules, which should be addressed to reduce IRI-associated inflammation, requires a better exploration. During ischemia, Krebs cycle metabolites, including succinate play a crucial role with their direct impact on the production of reactive oxygen species (ROS) at mitochondrial complex I upon reperfusion. Such features are even more pronounced under normothermic conditions and lead to even higher levels of downstream inflammation. The direct consequence appears with an activation of the innate immune system. The number of articles, which focus on the impact of machine perfusion with and without the use of specific perfusate additives to modulate the inflammatory cascade after transplantation is very small. This review describes first, the subcellular processes found in mitochondria, which instigate the IRI cascade together with proinflammatory downstream effects and their link to the innate immune system. Next, the impact of currently established machine perfusion strategies is described with a focus on protective mechanisms known for the different perfusion approaches. Finally, the role of such dynamic preservation techniques to deliver specific agents, which appear currently of interest to modulate this posttransplant inflammation, is discussed together with future aspects in this field.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della, Scienza di Torino, University of Turin, Turin, Italy
| | - Mauricio Flores Carvalho
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
| | - Paolo Muiesan
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
199
|
Bertolini A, Fiorotto R, Strazzabosco M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin Immunopathol 2022; 44:547-564. [PMID: 35415765 PMCID: PMC9256560 DOI: 10.1007/s00281-022-00935-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
Bile acids participate in the intestinal emulsion, digestion, and absorption of lipids and fat-soluble vitamins. When present in high concentrations, as in cholestatic liver diseases, bile acids can damage cells and cause inflammation. After the discovery of bile acids receptors about two decades ago, bile acids are considered signaling molecules. Besides regulating bile acid, xenobiotic, and nutrient metabolism, bile acids and their receptors have shown immunomodulatory properties and have been proposed as therapeutic targets for inflammatory diseases of the liver. This review focuses on bile acid-related signaling pathways that affect inflammation in the liver and provides an overview of the preclinical and clinical applications of modulators of these pathways for the treatment of cholestatic and autoimmune liver diseases.
Collapse
Affiliation(s)
- Anna Bertolini
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, The Netherlands
| | - Romina Fiorotto
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA.
| |
Collapse
|
200
|
Liu YC, Yang YD, Liu WQ, Du TT, Wang R, Ji M, Yang BB, Li L, Chen XG. Benzobis(imidazole) derivatives as STAT3 signal inhibitors with antitumor activity. Bioorg Med Chem 2022; 65:116757. [PMID: 35504209 DOI: 10.1016/j.bmc.2022.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Polycyclic aromatic systems have been considered good biological probes, but some may also be good scaffolds for drug development. In this study, a series of benzobis(imidazole) derivatives were identified as STAT3 signal inhibitors, among which compound 24 showed significant inhibition of IL-6 induced JAK/STAT3 signalling pathway activation. Moreover, 24 inhibited cancer cell growth and migration, and induced cell apoptosis as well as cycle arrest in human hepatocellular carcinoma cells (HepG2) and oesophageal carcinoma cells (EC109). Compound 24 also displayed obvious antitumor activity in a mouse HepG2 cell xenograft tumor model without affecting the body weight. These results confirmed that 24 was a potential STAT3 signal inhibitor with certain antitumor activity.
Collapse
Affiliation(s)
- Yi-Chen Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya-Dong Yang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Qiang Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ting-Ting Du
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ru Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xiao-Guang Chen
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|