151
|
Vertebrate food products as a potential source of prion-like α-synuclein. NPJ PARKINSONS DISEASE 2017; 3:33. [PMID: 29184902 PMCID: PMC5701169 DOI: 10.1038/s41531-017-0035-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 02/08/2023]
Abstract
The aberrant aggregation of the protein α-synuclein is thought to be involved in Parkinson’s disease (PD). However, the factors that lead to initiation and propagation of α-synuclein aggregation are not clearly understood. Recently, the hypothesis that α-synuclein aggregation spreads via a prion-like mechanism originating in the gut has gained much scientific attention. If α-synuclein spreads via a prion-like mechanism, then an important question becomes, what are the origins of this prion-like species? Here we review the possibility that α-synuclein aggregation could be seeded via the ingestion of a prion-like α-synuclein species contained within food products originating from vertebrates. To do this, we highlight current evidence for the gut-to-brain hypothesis of PD, and put this in context of available routes of α-synuclein prion infectivity via the gastrointestinal (GI) tract. We then discuss meat as a ready exogenous source of α-synuclein and how certain risk factors, including inflammation, may allow for dietary α-synuclein to pass from the GI lumen into the host to induce pathology. Lastly, we review epidemiological evidence that dietary factors may be involved in PD. Overall, research to date has yet to directly test the contribution of dietary α-synuclein to the mechanism of initiation and progression of the disease. However, numerous experimental findings, including the potent seeding and spreading behavior of α-synuclein fibrils, seem to support, at least in part, the feasibility of an infection with a prion α-synuclein particle via the GI tract. Further studies are required to determine whether dietary α-synuclein contributes to seeding pathology in the gut.
Collapse
|
152
|
Effects of pre-weaning housing in a multi-suckling system on performance and carbohydrate absorption of relatively light and heavy piglets around weaning. Animal 2017; 12:802-809. [PMID: 28988556 DOI: 10.1017/s1751731117002257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The low feed intake and stress associated with abrupt weaning in conventional pig farming often result in poor post-weaning performance, which is related to impaired intestinal function. We investigated effects of housing conditions before weaning on performance around weaning of relatively light and heavy piglets. Before weaning, piglets were housed either with five sows and their litters in a multi-suckling (MS) system or in pens with individually housed sows in farrowing crates (FC). After weaning at 4 weeks of age (day 0), 16 groups of four piglets (two light and two heavy litter-mates) were housed under equal conditions in enriched pens. Mannitol (day -5 and day 5) and galactose (day 5) were orally administered as markers for gastrointestinal carbohydrate absorption, and after 20 min a blood sample was taken (sugar absorption test). In addition, BW, feed intake and faecal consistency as an indicator for diarrhoea, were assessed frequently during 2 weeks post-weaning. Pre-weaning housing, weight class and their interaction did not affect post-weaning faecal consistency scores. Weight gain over 2 weeks did not differ between pre-weaning housing treatments, but MS piglets gained more (0.67±0.12 kg) than FC piglets (0.39±0.16 kg) between days 2 and 5 post-weaning, P=0.02), particularly in the 'heavy' weight class (interaction, P=0.04), whereas feed intake was similar for both treatments. This indicates a better utilisation of the ingested feed of the MS piglets compared with the FC piglets in the early post-weaning period. Pre-weaning mannitol concentrations were unaffected by pre-weaning housing, weight class and their interaction. On day 5 post-weaning, however, MS piglets had a lower plasma concentration of mannitol (320 v. 592 nmol/ml, SEM=132, P=0.04) and galactose (91 v. 157 nmol/ml, SEM=20, P=0.04) than FC piglets, regardless of weight class. In conclusion, MS and FC piglets differed in aspects of post-weaning gastrointestinal carbohydrate absorption and in weight gain between days 2 and 5 after weaning, but pre-weaning housing did not affect feed intake, weight gain and measures of faecal consistency over the first 2 weeks after weaning.
Collapse
|
153
|
López-Posadas R, Stürzl M, Atreya I, Neurath MF, Britzen-Laurent N. Interplay of GTPases and Cytoskeleton in Cellular Barrier Defects during Gut Inflammation. Front Immunol 2017; 8:1240. [PMID: 29051760 PMCID: PMC5633683 DOI: 10.3389/fimmu.2017.01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022] Open
Abstract
An essential role of the intestine is to build and maintain a barrier preventing the luminal gut microbiota from invading the host. This involves two coordinated physical and immunological barriers formed by single layers of intestinal epithelial and endothelial cells, which avoid the activation of local immune responses or the systemic dissemination of microbial agents, and preserve tissue homeostasis. Accordingly, alterations of epithelial and endothelial barrier functions have been associated with gut inflammation, for example during inflammatory bowel disease (IBD). The discriminative control of nutriment uptake and sealing toward potentially pathological microorganisms requires a profound regulation of para- and transcellular permeability. On the subcellular level, the cytoskeleton exerts key regulatory functions in the maintenance of cellular barriers. Increased epithelial/endothelial permeability occurs primarily as a result of a reorganization of cytoskeletal–junctional complexes. Pro-inflammatory mediators such as cytokines can induce cytoskeletal rearrangements, causing inflammation-dependent defects in gut barrier function. In this context, small GTPases of the Rho family and large GTPases from the Dynamin superfamily appear as major cellular switches regulating the interaction between intercellular junctions and actomyosin complexes, and in turn cytoskeleton plasticity. Strikingly, some of these proteins, such as RhoA or guanylate-binding protein-1 (GBP-1) have been associated with gut inflammation and IBD. In this review, we will summarize the role of small and large GTPases for cytoskeleton plasticity and epithelial/endothelial barrier in the context of gut inflammation.
Collapse
Affiliation(s)
| | | | - Imke Atreya
- Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
154
|
Lozano-Ojalvo D, López-Fandiño R. Immunomodulating peptides for food allergy prevention and treatment. Crit Rev Food Sci Nutr 2017; 58:1629-1649. [PMID: 28102702 DOI: 10.1080/10408398.2016.1275519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the most promising strategies currently assayed against IgE-mediated allergic diseases stands the possibility of using immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. This review focuses on the beneficial effects of food derived immunomodulating peptides on food allergy, which can be directly exerted in the intestinal tract or once being absorbed through the intestinal epithelial barrier to interact with immune cells. Food peptides influence intestinal homeostasis by maintaining and reinforcing barrier function or affecting intestinal cell-signalling to nearby immune cells and mucus secretion. In addition, they can stimulate cells of the innate and adaptive immune system while supressing inflammatory responses. Peptides represent an attractive alternative to whole allergens to enhance the safety and efficacy of immunotherapy treatments. The conclusions drawn from curative and preventive experiments in murine models are promising, although there is a need for more pre-clinical studies to further explore the immunomodulating strategy and its mechanisms and for a deeper knowledge of the peptide sequence and structural requirements that determine the immunoregulatory function.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| | - Rosina López-Fandiño
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| |
Collapse
|
155
|
Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol 2017; 17:761-773. [PMID: 28869253 DOI: 10.1038/nri.2017.100] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune privilege is a complex process that protects organs from immune-mediated attack and damage. It is accomplished by a series of cellular barriers that both control immune cell entry and promote the development of tolerogenic immune cells. In this Review, we describe the vascular endothelial and epithelial barriers in organs that are commonly considered to be immune privileged, such as the brain and the eye. We compare these classical barriers with barriers in the intestine, which share features with barriers of immune-privileged organs, such as the capacity to induce tolerance and to protect from external insults. We suggest that when intestinal barriers break down, disruption of other barriers at distant sites can ensue, and this may underlie the development of various neurological, metabolic and intestinal disorders.
Collapse
Affiliation(s)
- Ilaria Spadoni
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Giulia Fornasa
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy.,Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
156
|
Abstract
The gastrointestinal mucosa constitutes a critical barrier where millions of microbes and environmental antigens come in close contact with the host immune system. Intestinal barrier defects have been associated with a broad range of diseases and therefore denote a new therapeutic target. Areas covered: This review is based on an extensive literature search in PubMed of how the intestinal barrier contributes to health and as a trigger for disease. It discusses the anatomy of the intestinal barrier and explains the available methods to evaluate its function. Also reviewed is the importance of diet and lifestyle factors on intestinal barrier function, and three prototypes of chronic diseases (inflammatory bowel disease, celiac disease and nonalcoholic fatty liver disease) that have been linked to barrier defects are discussed. Expert commentary: The intestinal barrier has been investigated by various methods, but correlation of results across studies is difficult, representing a major shortcoming in the field. New upcoming techniques and research on the effect of barrier-restoring therapeutics may improve our current understanding of the gut barrier, and provide a step forward towards personalised medicine.
Collapse
|
157
|
Food contact materials and gut health: Implications for toxicity assessment and relevance of high molecular weight migrants. Food Chem Toxicol 2017; 109:1-18. [PMID: 28830834 DOI: 10.1016/j.fct.2017.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 02/08/2023]
Abstract
Gut health is determined by an intact epithelial barrier and balanced gut microbiota, both involved in the regulation of immune responses in the gut. Disruption of this system contributes to the etiology of various non-communicable diseases, including intestinal, metabolic, and autoimmune disorders. Studies suggest that some direct food additives, but also some food contaminants, such as pesticide residues and substances migrating from food contact materials (FCMs), may adversely affect the gut barrier or gut microbiota. Here, we focus on gut-related effects of FCM-relevant substances (e.g. surfactants, N-ring containing substances, nanoparticles, and antimicrobials) and show that gut health is an underappreciated target in the toxicity assessment of FCMs. Understanding FCMs' impact on gut health requires more attention to ensure safety and prevent gut-related chronic diseases. Our review further points to the existence of large population subgroups with an increased intestinal permeability; this may lead to higher uptake of compounds of not only low (<1000 Da) but also high (>1000 Da) molecular weight. We discuss the potential toxicological relevance of high molecular weight compounds in the gut and suggest that the scientific justification for the application of a molecular weight-based cut-off in risk assessment of FCMs should be reevaluated.
Collapse
|
158
|
Jo H, Hwang D, Kim JK, Lim YH. Oxyresveratrol improves tight junction integrity through the PKC and MAPK signaling pathways in Caco-2 cells. Food Chem Toxicol 2017; 108:203-213. [PMID: 28780155 DOI: 10.1016/j.fct.2017.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/14/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
Abstract
Strengthening intestinal tight junctions (TJ) provides an effective barrier from the external environment and is important for recovery from inflammatory bowel disease. Oxyresveratrol (OXY), an isomer of hydroxylated resveratrol, is isolated from many plants. The aim of this study was to investigate the effect of OXY on intestinal TJ and to elucidate the mechanism underlying the OXY-mediated increase in TJ integrity in human intestinal Caco-2 cells. OXY-treated Caco-2 cell monolayers showed decreased monolayer permeability as evaluated by paracellular transport assay. The results showed that OXY significantly increased the levels of TJ-related genes and proteins (Claudin-1, Occludin and ZO-1) compared with those of the negative control. OXY activated protein kinase C (PKC) and increased expression levels of mitogen-activated protein kinase (MAPK) genes. OXY also increased gene and protein levels of the transcription factor Cdx-2. Expression levels of TJ, PKC and Cdx-2 proteins and transepithelial electrical resistance (TEER) value decreased in OXY-treated Caco-2 cells following treatment with a pan-PKC inhibitor compared with those of the untreated control. In conclusion, OXY strengthens the integrity of the intestinal TJ barrier via activation of the PKC and MAPK pathways.
Collapse
Affiliation(s)
- HyunA Jo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 136-701, Republic of Korea
| | - Dahyun Hwang
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Republic of Korea
| | - Jeong-Keun Kim
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, Shihung-si, Gyeonggi-do 429-793, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 136-701, Republic of Korea; Department of Public Health Science (Brain Korea 21 PLUS Program), Graduate School, Korea University, Seoul 136-701, Republic of Korea; Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 152-703, Republic of Korea.
| |
Collapse
|
159
|
He S, Simpson BK, Sun H, Ngadi MO, Ma Y, Huang T. Phaseolus vulgaris lectins: A systematic review of characteristics and health implications. Crit Rev Food Sci Nutr 2017; 58:70-83. [PMID: 26479307 DOI: 10.1080/10408398.2015.1096234] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Legume lectins are carbohydrate-binding proteins of non-immune origin. Significant amounts of lectins have been found in Phaseolus vulgaris beans as far back as in the last century; however, many questions about their potential biological roles still remain obscure. Studies have shown that lectins are anti-nutritional factors that can cause intestinal disorders. Owing to their ability to act as toxic allergens and hemagglutinins, the Phaseolus vulgaris lectins are of grave concern for human health and safety. Nonetheless, their potential beneficial health effects, such as anti-cancer, anti-human immunodeficiency virus (anti-HIV), anti-microbial infection, preventing mucosal atrophy, reducing type 2 diabetes and obesity, promoting nutrients absorption and targeting drugs, are of immense interest. The significance of Phaseolus vulgaris lectins in biological researches and the potential biomedical applications have placed tremendous emphasis on the development of purification strategies to obtain the protein in pure and stable forms. These purification strategies entail considerations such as effects of proteolysis, heating, gamma radiation, and high-hydrostatic-pressure that can have crucial outcomes in either eliminating or improving bioactivities of the lectins. Thus, up-to-date research findings of Phaseolus vulgaris lectins on different aspects such as anti-nutritional and health impacts, purification strategies and novel processing trends, are systematically reviewed.
Collapse
Affiliation(s)
- Shudong He
- a School of Biotechnology and Food Engineering , Hefei University of Technology , Hefei , Anhui , China.,b School of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China.,c Department of Food Science and Agricultural Chemistry , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Benjamin K Simpson
- c Department of Food Science and Agricultural Chemistry , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Hanju Sun
- a School of Biotechnology and Food Engineering , Hefei University of Technology , Hefei , Anhui , China
| | - Michael O Ngadi
- d Department of Bioresource Engineering , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Ying Ma
- b School of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| | - Tiemin Huang
- e Advanced Electrophoresis Solutions Ltd. , Cambridge , Ontario , Canada
| |
Collapse
|
160
|
Jamar G, Estadella D, Pisani LP. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors 2017; 43:507-516. [PMID: 28504479 DOI: 10.1002/biof.1365] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/15/2022]
Abstract
Obesity is characterized by low-grade inflammation and a number of metabolic disorders. Distal gut microbes' content (microbiota) is not yet fully understood but evidence shows that it is influenced by internal and external factors that modulate its composition and function. The evidence that gut microbiota composition can differ between healthy and obese individuals, as well as for those who maintain specific dietary habits, has led to the study of this environmental factor as a key link between the pathophysiology of obesity and gut microbiota. Data obtained about the role of anthocyanins (ACNs) in microbiota may lead to different strategies to manipulate bacterial populations and promote health. Anthocyanins have been identified as modulators of gut microbiota that contribute to obesity control and these bioactive compounds should be considered to have a prebiotic action. This review addresses the relevance of knowledge about the influence of anthocyanins-rich food consumption on microbiota, and their health-promoting potential in the pathophysiology of obesity. © 2017 BioFactors, 43(4):507-516, 2017.
Collapse
Affiliation(s)
- Giovana Jamar
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Débora Estadella
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | | |
Collapse
|
161
|
Age and Sex Normalization of Intestinal Permeability Measures for the Improved Assessment of Enteropathy in Infancy and Early Childhood: Results From the MAL-ED Study. J Pediatr Gastroenterol Nutr 2017. [PMID: 28644347 DOI: 10.1097/mpg.0000000000001610] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of the study was to describe changes in intestinal permeability in early childhood in diverse epidemiologic settings. METHODS In a birth cohort study, the lactulose:mannitol (L:M) test was administered to 1980 children at 4 time points in the first 24 months of life in 8 countries. Data from the Brazil site with an incidence of diarrhea similar to that seen in the United States and no growth faltering was used as an internal study reference to derive age- and sex-specific z scores for mannitol and lactulose recoveries and the L:M ratio. RESULTS A total of 6602 tests demonstrated mannitol recovery, lactulose recovery, and the L:M ratio were associated with country, sex, and age. There was heterogeneity in the recovery of both probes between sites with mean mannitol recovery ranging for 1.34% to 5.88%, lactulose recovery of 0.19% to 0.58%, and L:M ratios 0.10 to 0.17 in boys of 3 months of age across different sites. We observed strong sex-specific differences in both mannitol and lactulose recovery, with boys having higher recovery of both probes. Alterations in intestinal barrier function increased in most sites from 3 to 9 months of age and plateaued or diminished from 9 to 15 months of age. CONCLUSIONS Alterations in recovery of the probes differ markedly in different epidemiologic contexts in children living in the developing world. The rate of change in the L:M-z ratio was most rapid and consistently disparate from the reference standard in the period between 6 and 9 months of age, suggesting that this is a critical period of physiologic impact of enteropathy in these populations.
Collapse
|
162
|
Peters S, Edogawa S, Sundt W, Dyer R, Dalenberg D, Mazzone A, Singh R, Moses N, Weber C, Linden DR, MacNaughton WK, Turner JR, Camilleri M, Katzka D, Farrugia G, Grover M, Grover M. Constipation-Predominant Irritable Bowel Syndrome Females Have Normal Colonic Barrier and Secretory Function. Am J Gastroenterol 2017; 112:913-923. [PMID: 28323272 PMCID: PMC5502210 DOI: 10.1038/ajg.2017.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/02/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The objective of this study was to determine whether constipation-predominant irritable bowel syndrome (IBS-C) is associated with changes in intestinal barrier and secretory function. METHODS A total of 19 IBS-C patients and 18 healthy volunteers (all females) underwent saccharide excretion assay (0.1 g 13C mannitol and 1 g lactulose), measurements of duodenal and colonic mucosal barrier (transmucosal resistance (TMR), macromolecular and Escherichia coli Bio-Particle translocation), mucosal secretion (basal and acetylcholine (Ach)-evoked short-circuit current (Isc)), in vivo duodenal mucosal impedance, circulating endotoxins, and colonic tight junction gene expression. RESULTS There were no differences in the in vivo measurements of barrier function between IBS-C patients and healthy controls: cumulative excretion of 13C mannitol (0-2 h mean (s.e.m.); IBS-C: 12.1 (0.9) mg vs. healthy: 13.2 (0.8) mg) and lactulose (8-24 h; IBS-C: 0.9 (0.5) mg vs. healthy: 0.5 (0.2) mg); duodenal impedance IBS-C: 729 (65) Ω vs. healthy: 706 (43) Ω; plasma mean endotoxin activity level IBS-C: 0.36 (0.03) vs. healthy: 0.35 (0.02); and in colonic mRNA expression of occludin, zonula occludens (ZO) 1-3, and claudins 1-12 and 14-19. The ex vivo findings were consistent, with no group differences: duodenal TMR (IBS-C: 28.2 (1.9) Ω cm2 vs. healthy: 29.8 (1.9) Ω cm2) and colonic TMR (IBS-C: 19.1 (1.1) Ω cm2 vs. healthy: 17.6 (1.7) Ω cm2); fluorescein isothiocyanate (FITC)-dextran (4 kDa) and E. coli Bio-Particle flux. Colonic basal Isc was similar, but duodenal basal Isc was lower in IBS-C (43.5 (4.5) μA cm-2) vs. healthy (56.9 (4.9) μA cm-2), P=0.05. Ach-evoked ΔIsc was similar. CONCLUSIONS Females with IBS-C have normal colonic barrier and secretory function. Basal duodenal secretion is decreased in IBS-C.
Collapse
Affiliation(s)
- S Peters
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - S Edogawa
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - W Sundt
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - R Dyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - D Dalenberg
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - A Mazzone
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - R Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - N Moses
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - C Weber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - DR Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - WK MacNaughton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - JR Turner
- Departments of Pathology and Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - M Camilleri
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - D Katzka
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - G Farrugia
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - M Grover
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
163
|
van Bilsen JHM, Sienkiewicz-Szłapka E, Lozano-Ojalvo D, Willemsen LEM, Antunes CM, Molina E, Smit JJ, Wróblewska B, Wichers HJ, Knol EF, Ladics GS, Pieters RHH, Denery-Papini S, Vissers YM, Bavaro SL, Larré C, Verhoeckx KCM, Roggen EL. Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins. Clin Transl Allergy 2017; 7:13. [PMID: 28507730 PMCID: PMC5429547 DOI: 10.1186/s13601-017-0152-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). MAIN BODY The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. CONCLUSION The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación, Madrid, Spain
| | | | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Harry J Wichers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Edward F Knol
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Simona L Bavaro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | | | | | | |
Collapse
|
164
|
Zhou Y, Xu X, Yu B, Yu G. Characterization of in vitro effects of microcystin-LR on intestinal epithelial cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1539-1547. [PMID: 27758031 DOI: 10.1002/tox.22375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
The intestinal epithelium is a single-cell layer that provides an important barrier against natural toxins. Microcystin-LR (MC-LR), a cyclic heptapeptide, is one of the best known toxins able to alter the functions of intestine. This study evaluated the toxic effects and the possible mechanisms of MC-LR on barrier function of the intestinal epithelial cells. Intestinal epithelial cells (IEC-6) were exposed to 0, 6.25, 12.5, 25 and 50 μM MC-LR. Cell viability significantly decreased, while the ratio of apoptotic cells increased after exposure to 12.5μM and higer concentration of MC-LR. As expected, the integrity of a polarized IEC-6 monolayer was affected by MC-LR exposure, as demonstrated by a decrease in the transepithelial electrical resistance (TEER) values, becoming most pronounced at 50μM, 24 h. No effects were detected on the protein expression levels of the tight junction protein claudin at 50μM. However, the expression of occludin and zonula occludens-1 (ZO-1) declined. Furthermore, MC-LR can immigrate into IEC-6 cells. The activity of protein phosphatases 2A (PP2A) decreased from the concentration of 12.5 μM, showing a dose-dependent decline. These results provide new information that strengthens the concept that the intestinal epithelium is important targets for toxic effects of water contaminants like MC-LR. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1539-1547, 2017.
Collapse
Affiliation(s)
- Yuan Zhou
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xiaoping Xu
- Zhejiang Prov Ctr Dis Prevent & Control, Hangzhou, Zhejiang, 310051, China
| | - Beibei Yu
- School of Foreign Languages, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Guang Yu
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
165
|
Freeland DMH, Manohar M, Andorf S, Hobson BD, Zhang W, Nadeau KC. Oral immunotherapy for food allergy. Semin Immunol 2017; 30:36-44. [PMID: 28865877 PMCID: PMC5776738 DOI: 10.1016/j.smim.2017.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/20/2023]
Abstract
Food allergy is a pathological, potentially deadly cascade of immune responses to molecules or molecular fragments that are normally innocuous when encountered in foods, such as milk, egg, or peanut. As the incidence and prevalence of food allergy rise, the standard of care is poised to advance beyond food allergen avoidance coupled with injectable epinephrine treatment of allergen-induced systemic reactions. Recent studies provide evidence that oral immunotherapy may effectively redirect the atopic immune responses of food allergy patients as they ingest small but gradually increasing allergen doses over many months, eliciting safer immune responses to these antigens. Research into the molecular and cellular bases of pathological and therapeutic immune responses, and into the possibilities for their safe and effective modulation, is generating tremendous interest in basic and clinical immunology. We synthesize developments, innovations, and key challenges in our understanding of the immune mechanisms associated with atopy and oral immunotherapy for food allergy.
Collapse
Affiliation(s)
- Deborah M Hussey Freeland
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford, CA 94305, USA; Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford, CA 94305, USA; Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sandra Andorf
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford, CA 94305, USA; Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Benjamin D Hobson
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wenming Zhang
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford, CA 94305, USA; Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford, CA 94305, USA; Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA; Division of Allergy, Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
166
|
Liehr M, Mereu A, Pastor JJ, Quintela JC, Staats S, Rimbach G, Ipharraguerre IR. Olive oil bioactives protect pigs against experimentally-induced chronic inflammation independently of alterations in gut microbiota. PLoS One 2017; 12:e0174239. [PMID: 28346507 PMCID: PMC5367713 DOI: 10.1371/journal.pone.0174239] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/06/2017] [Indexed: 01/16/2023] Open
Abstract
Subclinical chronic inflammation (SCI) is associated with impaired animal growth. Previous work has demonstrated that olive-derived plant bioactives exhibit anti-inflammatory properties that could possibly counteract the growth-depressing effects of SCI. To test this hypothesis and define the underlying mechanism, we conducted a 30-day study in which piglets fed an olive-oil bioactive extract (OBE) and their control counterparts (C+) were injected repeatedly during the last 10 days of the study with increasing doses of Escherichia coli lipopolysaccharides (LPS) to induce SCI. A third group of piglets remained untreated throughout the study and served as a negative control (C-). In C+ pigs, SCI increased the circulating concentration of interleukin 1 beta (p < 0.001) and decreased feed ingestion (p < 0.05) and weight gain (p < 0.05). These responses were not observed in OBE animals. Although intestinal inflammation and colonic microbial ecology was not altered by treatments, OBE enhanced ileal mRNA abundance of tight and adherens junctional proteins (p < 0.05) and plasma recovery of mannitol (p < 0.05) compared with C+ and C-. In line with these findings, OBE improved transepithelial electrical resistance (p < 0.01) in TNF-α-challenged Caco-2/TC-7 cells, and repressed the production of inflammatory cytokines (p < 0.05) in LPS-stimulated macrophages. In summary, this work demonstrates that OBE attenuates the suppressing effect of SCI on animal growth through a mechanism that appears to involve improvements in intestinal integrity unrelated to alterations in gut microbial ecology and function.
Collapse
Affiliation(s)
- Martin Liehr
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | | | | | - Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Ignacio Rodolfo Ipharraguerre
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
- Lucta S.A., Montornés del Vallés, Barcelona, Spain
- * E-mail:
| |
Collapse
|
167
|
Schumann M, Siegmund B, Schulzke JD, Fromm M. Celiac Disease: Role of the Epithelial Barrier. Cell Mol Gastroenterol Hepatol 2017; 3:150-162. [PMID: 28275682 PMCID: PMC5331784 DOI: 10.1016/j.jcmgh.2016.12.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
In celiac disease (CD) a T-cell-mediated response to gluten is mounted in genetically predisposed individuals, resulting in a malabsorptive enteropathy histologically highlighted by villous atrophy and crypt hyperplasia. Recent data point to the epithelial layer as an under-rated hot spot in celiac pathophysiology to date. This overview summarizes current functional and genetic evidence on the role of the epithelial barrier in CD, consisting of the cell membranes and the apical junctional complex comprising sealing as well as ion and water channel-forming tight junction proteins and the adherens junction. Moreover, the underlying mechanisms are discussed, including apoptosis of intestinal epithelial cells, biology of intestinal stem cells, alterations in the apical junctional complex, transcytotic uptake of gluten peptides, and possible implications of a defective epithelial polarity. Current research is directed toward new treatment options for CD that are alternatives or complementary therapeutics to a gluten-free diet. Thus, strategies to target an altered epithelial barrier therapeutically also are discussed.
Collapse
Key Words
- Bmp, bone morphogenetic protein
- CBC, crypt base columnar cell
- CD, celiac disease
- Celiac Sprue
- EGF, epidermal growth factor
- Epithelial Polarity
- GFD, gluten-free diet
- GI, gastrointestinal
- GWAS, genome-wide association studies
- Gluten-Sensitive Enteropathy
- IEC, intestinal epithelial cell
- IL, interleukin
- MIC-A, major histocompatibility complex class I chain–related gene-A
- Partitioning-Defective Proteins
- SNP, single-nucleotide polymorphism
- TJ, tight junction
- Tight Junction
- ZO, zonula occludens
- aPKC, atypical protein kinase C
- α-Gliadin 33mer
Collapse
Affiliation(s)
- Michael Schumann
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg D. Schulzke
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
168
|
Martino JV, Van Limbergen J, Cahill LE. The Role of Carrageenan and Carboxymethylcellulose in the Development of Intestinal Inflammation. Front Pediatr 2017; 5:96. [PMID: 28507982 PMCID: PMC5410598 DOI: 10.3389/fped.2017.00096] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
Although the exact pathophysiology remains unknown, the development of inflammatory bowel disease (IBD) is influenced by the interplay between genetics, the immune system, and environmental factors such as diet. The commonly used food additives, carrageenan and carboxymethylcellulose (CMC), are used to develop intestinal inflammation in animal models. These food additives are excluded from current dietary approaches to induce disease remission in Crohn's disease such as exclusive enteral nutrition (EEN) using a polymeric formula. By reviewing the existing scientific literature, this review aims to discuss the role that carrageenan and CMC may play in the development of IBD. Animal studies consistently report that carrageenan and CMC induce histopathological features that are typical of IBD while altering the microbiome, disrupting the intestinal epithelial barrier, inhibiting proteins that provide protection against microorganisms, and stimulating the elaboration of pro-inflammatory cytokines. Similar trials directly assessing the influence of carrageenan and CMC in humans are of course unethical to conduct, but recent studies of human epithelial cells and the human microbiome support the findings from animal studies. Carrageenan and CMC may trigger or magnify an inflammatory response in the human intestine but are unlikely to be identified as the sole environmental factor involved in the development of IBD or in disease recurrence after treatment. However, the widespread use of carrageenan and CMC in foods consumed by the pediatric population in a "Western" diet is on the rise alongside a corresponding increase in IBD incidence, and questions are being raised about the safety of frequent usage of these food additives. Therefore, further research is warranted to elucidate the role of carrageenan and CMC in intestinal inflammation, which may help identify novel nutritional strategies that hinder the development of the disease or prevent disease relapse post-EEN treatment.
Collapse
Affiliation(s)
- John Vincent Martino
- Pediatric Gastroenterology, Hepatology and Nutrition, IWK Health Centre, Halifax, NS, Canada
| | - Johan Van Limbergen
- Pediatric Gastroenterology, Hepatology and Nutrition, IWK Health Centre, Halifax, NS, Canada.,Medicine, Dalhousie University, Halifax, NS, Canada
| | - Leah E Cahill
- Medicine, Dalhousie University, Halifax, NS, Canada.,Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
169
|
Nakano S, Yamamoto S, Okada A, Nakajima T, Sato M, Takagi T, Tomooka Y. Role of extracellular vesicles in the interaction between epithelial and mesenchymal cells during oviductal ciliogenesis. Biochem Biophys Res Commun 2016; 483:245-251. [PMID: 28034753 DOI: 10.1016/j.bbrc.2016.12.158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/23/2016] [Indexed: 01/23/2023]
Abstract
Extracellular vesicles (EVs) have been shown to transport miRNA, mRNA and protein, suggesting that they are new communication mediators. Diffusible mesenchymal factors determine the fate of Műllerian epithelial cells into oviductal ciliated cells. In the present study, we investigated whether EVs mediate the communication in the epithelial-mesenchymal interaction during oviductal ciliogenesis. EVs were isolated from cells of oviductal mesenchymal cell line (S1 cells) and characterized by TEM and expression of exosomal marker CD81. CD81 protein was also detected in oviductal mesenchyme, suggesting that CD81-expressing exosomes may be secreted from oviductal mesenchyme, as well as S1 cells. β-actin, Gapdh and Vimentin mRNAs and miRNAs were detected in the exosomes. mRNA in S1 cells was able to be transported into cells of Műllerian epithelial cell line (E1 cells) via the exosomes. The effects of exosomes derived from S1 cells on ciliogenesis of E1 cells were analyzed by in vitro models. Culture with exosomes increased the number of ciliated cells in E1 cells. These results suggest that exosomes derived from mesenchymal cells modulate the oviductal ciliogenesis and open new avenues for developmental study of EVs.
Collapse
Affiliation(s)
- Shota Nakano
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Shohei Yamamoto
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Graduate Program in Bioscience, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Atsumasa Okada
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tadaaki Nakajima
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Mamiko Sato
- Department of Material and Biological Science, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyou-ku, Tokyo 112-8681, Japan
| | - Tomoko Takagi
- Department of Material and Biological Science, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyou-ku, Tokyo 112-8681, Japan
| | - Yasuhiro Tomooka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
170
|
Abstract
Food allergy is a pathological, potentially deadly, immune reaction triggered by normally innocuous food protein antigens. The prevalence of food allergies is rising and the standard of care is not optimal, consisting of food-allergen avoidance and treatment of allergen-induced systemic reactions with adrenaline. Thus, accurate diagnosis, prevention and treatment are pressing needs, research into which has been catalysed by technological advances that are enabling a mechanistic understanding of food allergy at the cellular and molecular levels. We discuss the diagnosis and treatment of IgE-mediated food allergy in the context of the immune mechanisms associated with healthy tolerance to common foods, the inflammatory response underlying most food allergies, and immunotherapy-induced desensitization. We highlight promising research advances, therapeutic innovations and the challenges that remain.
Collapse
Affiliation(s)
- Wong Yu
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California 94305, USA
| | - Deborah M Hussey Freeland
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
171
|
Guo H, Xu Y, Huang W, Zhou H, Zheng Z, Zhao Y, He B, Zhu T, Tang S, Zhu Q. Kuwanon G Preserves LPS-Induced Disruption of Gut Epithelial Barrier In Vitro. Molecules 2016; 21:molecules21111597. [PMID: 27879681 PMCID: PMC6272946 DOI: 10.3390/molecules21111597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/13/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
Defects in the gut epithelial barrier have now been recognized to be responsible for diabetic endotoxemia. In everyday life, Mulberry leaf tea is widely used in Asian nations due to its proposed benefits to health and control of diabetes. Evidence indicates the potential role of Kuwanon G (KWG), a component from Morus alba L., on blocking the gut epithelial barrier. In lipopolysaccharides (LPS)-damaged Caco-2 cells, it was found that KWG increased the viability of cells in a concentration-dependent manner. KWG administration significantly elevated the anti-oxidant abilities via increasing ratio of superoxidase dismutase (SOD)/malondialdehyde (MDA) and decreasing reactive oxygen species (ROS) within the cells. During KWG incubation, pro-inflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor (TNF)-α were significantly reduced, tight junction proteins including zonula occludens (ZO)-1, intercellular adhesion molecule (ICAM)-1 and Occludin were dramatically increased as detected by immunofluorescence assay, trans-epithelial electrical resistance was significantly increased and the transmission of albumin-fluorescein isothiocyanate (FITC) across the barrier was decreased. In conclusion, the present study demonstrated that KWG could ameliorate LPS-induced disruption of the gut epithelial barrier by increasing cell viability and tight junction between cells, and decreasing pro-inflammatory cytokines and oxidative damage.
Collapse
Affiliation(s)
- Hengli Guo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Wei Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Affiliated Hospital of Southwest Medical University, Luzhou 640000, China.
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Macau Institute for Applied Research in Medicine and Health, Avenida Wai Long, Taipa, Macao, China.
| | - Zhaoguang Zheng
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou 510760, China.
| | - Yonghua Zhao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Bao He
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou 510760, China.
| | - Tingting Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Affiliated Hospital of Southwest Medical University, Luzhou 640000, China.
| | - Shanshan Tang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Quan Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou 510760, China.
| |
Collapse
|
172
|
Meliopoulos VA, Marvin SA, Freiden P, Moser LA, Nighot P, Ali R, Blikslager A, Reddivari M, Heath RJ, Koci MD, Schultz-Cherry S. Oral Administration of Astrovirus Capsid Protein Is Sufficient To Induce Acute Diarrhea In Vivo. mBio 2016; 7:e01494-16. [PMID: 27803180 PMCID: PMC5090040 DOI: 10.1128/mbio.01494-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/03/2016] [Indexed: 12/27/2022] Open
Abstract
The disease mechanisms associated with the onset of astrovirus diarrhea are unknown. Unlike other enteric virus infections, astrovirus infection is not associated with an inflammatory response or cellular damage. In vitro studies in differentiated Caco-2 cells demonstrated that human astrovirus serotype 1 (HAstV-1) capsid protein alone disrupts the actin cytoskeleton and tight junction complex, leading to increased epithelial barrier permeability. In this study, we show that oral administration of purified recombinant turkey astrovirus 2 (TAstV-2) capsid protein results in acute diarrhea in a dose- and time-dependent manner in turkey poults. Similarly to that induced by infectious virus, TAstV-2 capsid-induced diarrhea was independent of inflammation or histological changes but was associated with increased intestinal barrier permeability, as well as redistribution of sodium hydrogen exchanger 3 (NHE3) from the membrane to the cytoplasm of the intestinal epithelium. Unlike other viral enterotoxins that have been identified, astrovirus capsid induces diarrhea after oral administration, reproducing the natural route of infection and demonstrating that ingestion of intact noninfectious capsid protein may be sufficient to provoke acute diarrhea. Based on these data, we hypothesize that the astrovirus capsid acts like an enterotoxin and induces intestinal epithelial barrier dysfunction. IMPORTANCE Acute gastroenteritis, with its sequela diarrhea, is one of the most important causes of childhood morbidity and mortality worldwide. A variety of infectious agents cause gastroenteritis, and in many cases, an enterotoxin produced by the agent is involved in disease manifestations. Although we commonly think of bacteria as a source of toxins, at least one enteric virus, rotavirus, produces a protein with enterotoxigenic activity during viral replication. In these studies, we demonstrate that oral administration of the turkey astrovirus 2 (TAstV-2) structural (capsid) protein induces acute diarrhea, increases barrier permeability, and causes relocalization of NHE3 in the small intestine, suggesting that rotavirus may not be alone in possessing enterotoxigenic activity.
Collapse
Affiliation(s)
- Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shauna A Marvin
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lindsey A Moser
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Prashant Nighot
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rizwana Ali
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Anthony Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Muralidhar Reddivari
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Heath
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew D Koci
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
173
|
Løkka G, Koppang EO. Antigen sampling in the fish intestine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:138-149. [PMID: 26872546 DOI: 10.1016/j.dci.2016.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Antigen uptake in the gastrointestinal tract may induce tolerance, lead to an immune response and also to infection. In mammals, most pathogens gain access to the host though the gastrointestinal tract, and in fish as well, this route seems to be of significant importance. The epithelial surface faces a considerable challenge, functioning both as a barrier towards the external milieu but simultaneously being the site of absorption of nutrients and fluids. The mechanisms allowing antigen uptake over the epithelial barrier play a central role for maintaining the intestinal homeostasis and regulate appropriate immune responses. Such uptake has been widely studied in mammals, but also in fish, a number of experiments have been reported, seeking to reveal cells and mechanisms involved in antigen sampling. In this paper, we review these studies in addition to addressing our current knowledge of the intestinal barrier in fish and its anatomical construction.
Collapse
Affiliation(s)
- Guro Løkka
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway.
| | - Erling Olaf Koppang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway.
| |
Collapse
|
174
|
Brotons-Canto A, Martín-Arbella N, Gamazo C, Irache JM. New pharmaceutical approaches for the treatment of food allergies. Expert Opin Drug Deliv 2016; 15:675-686. [PMID: 27732129 DOI: 10.1080/17425247.2016.1247805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Allergic diseases constitute one of the most common causes of chronic illness in developed countries. The main mechanism determining allergy is an imbalance between Th1 and Th2 response towards Th2. AREAS COVERED This review describes the mechanisms underlying the natural tolerance to food components and the development of an allergic response in sensitized individuals. Furthermore, therapeutic approaches proposed to manage these abnormal immunologic responses food are also presented and discussed. EXPERT OPINION In the past, management of food allergies has consisted of the education of patients to avoid the ingestion of the culprit food and to initiate the therapy (e.g. self-injectable epinephrine) in case of accidental ingestion. In recent years, sublingual/oral immunotherapies based on the continuous administration of small amounts of the allergen have been developed. However, the long periods of time needed to obtain significant desensitization and the generation of adverse effects, limit their use. In order to solve these drawbacks, strategies to induce tolerance are being studied, such as the use of either adjuvant immunotherapy in order to facilitate the reversion of the Th2 response towards Th1 or the use of monoclonal antibodies to block the main immunogenic elements.
Collapse
Affiliation(s)
- Ana Brotons-Canto
- a Department of Pharmacy and Pharmaceutical Technology , University of Navarra , Pamplona , Spain
| | - Nekane Martín-Arbella
- a Department of Pharmacy and Pharmaceutical Technology , University of Navarra , Pamplona , Spain
| | - Carlos Gamazo
- b Department of Microbiology , University of Navarra , Pamplona , Spain
| | - Juan M Irache
- a Department of Pharmacy and Pharmaceutical Technology , University of Navarra , Pamplona , Spain
| |
Collapse
|
175
|
Picariello G, Ferranti P, Addeo F. Use of brush border membrane vesicles to simulate the human intestinal digestion. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
176
|
Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, Smith T, Neish AS, Li H, Tan S, Wu P, Liu X, Yu Y, Farris AB, Nusrat A, Parkos CA, Anania FA. Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. Gastroenterology 2016; 151:733-746.e12. [PMID: 27342212 PMCID: PMC5037035 DOI: 10.1053/j.gastro.2016.06.022] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 05/19/2016] [Accepted: 06/10/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH. METHODS Male C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy. RESULTS F11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation. CONCLUSIONS Mice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH.
Collapse
Affiliation(s)
- Khalidur Rahman
- Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia.
| | - Chirayu Desai
- P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Gujarat, India
| | - Smita S Iyer
- Microbiology and Immunology, Yerkes National Primate Center, Emory University, Atlanta, Georgia
| | - Natalie E Thorn
- Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
| | - Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
| | | | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengbo Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanjie Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
| | - Asma Nusrat
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
| | - Charles A Parkos
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia.
| |
Collapse
|
177
|
Springler A, Hessenberger S, Schatzmayr G, Mayer E. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network. Toxins (Basel) 2016; 8:E264. [PMID: 27618100 PMCID: PMC5037490 DOI: 10.3390/toxins8090264] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022] Open
Abstract
Deoxynivalenol (DON), produced by the plant pathogens Fusarium graminearum and Fusarium culmorum, is one of the most common mycotoxins, contaminating cereal and cereal-derived products. Although worldwide contamination of food and feed poses health threats to humans and animals, pigs are particularly susceptible to this mycotoxin. DON derivatives, such as deepoxy-deoxynivalenol (DOM-1), are produced by bacterial transformation of certain intestinal bacteria, which are naturally occurring or applied as feed additives. Intestinal epithelial cells are the initial barrier against these food- and feed-borne toxins. The present study confirms DON-induced activation of MAPK p44/42 and inhibition of p44/42 by MAPK-inhibitor U0126 monoethanolate. Influence of DON and DOM-1 on transepithelial electrical resistance (TEER), viability and expression of seven tight junction proteins (TJ), as well as the potential of U0126 to counteract DON-induced effects, was assessed. While DOM-1 showed no effect, DON significantly reduced TEER of differentiated IPEC-J2 and decreased expression of claudin-1 and -3, while leaving claudin-4; ZO-1, -2, and -3 and occludin unaffected. Inhibition of p44/42 counteracted DON-induced TEER decrease and restored claudin-3, but not claudin-1 expression. Therefore, effects of DON on TEER and claudin-3 are at least partially p44/42 mediated, while effects on viability and claudin-1 are likely mediated via alternative pathways.
Collapse
Affiliation(s)
| | | | - Gerd Schatzmayr
- Biomin Research Center, Technopark 1, 3430 Tulln an der Donau, Austria.
| | - Elisabeth Mayer
- Biomin Research Center, Technopark 1, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
178
|
Maestri E, Marmiroli M, Marmiroli N. Bioactive peptides in plant-derived foodstuffs. J Proteomics 2016; 147:140-155. [DOI: 10.1016/j.jprot.2016.03.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 01/07/2023]
|
179
|
Chinthrajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC. Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol 2016; 137:984-997. [PMID: 27059726 DOI: 10.1016/j.jaci.2016.02.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
Ingestion of innocuous antigens, including food proteins, normally results in local and systemic immune nonresponsiveness in a process termed oral tolerance. Oral tolerance to food proteins is likely to be intimately linked to mechanisms that are responsible for gastrointestinal tolerance to large numbers of commensal microbes. Here we review our current understanding of the immune mechanisms responsible for oral tolerance and how perturbations in these mechanisms might promote the loss of oral tolerance and development of food allergies. Roles for the commensal microbiome in promoting oral tolerance and the association of intestinal dysbiosis with food allergy are discussed. Growing evidence supports cutaneous sensitization to food antigens as one possible mechanism leading to the failure to develop or loss of oral tolerance. A goal of immunotherapy for food allergies is to induce sustained desensitization or even true long-term oral tolerance to food allergens through mechanisms that might in part overlap with those associated with the development of natural oral tolerance.
Collapse
Affiliation(s)
- R Sharon Chinthrajah
- Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Joseph D Hernandez
- Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Kari C Nadeau
- Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
180
|
Broecker F, Martin CE, Wegner E, Mattner J, Baek JY, Pereira CL, Anish C, Seeberger PH. Synthetic Lipoteichoic Acid Glycans Are Potential Vaccine Candidates to Protect from Clostridium difficile Infections. Cell Chem Biol 2016; 23:1014-1022. [PMID: 27524293 DOI: 10.1016/j.chembiol.2016.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
Infections with Clostridium difficile increasingly cause morbidity and mortality worldwide. Bacterial surface glycans including lipoteichoic acid (LTA) were identified as auspicious vaccine antigens to prevent colonization. Here, we report on the potential of synthetic LTA glycans as vaccine candidates. We identified LTA-specific antibodies in the blood of C. difficile patients. Therefore, we evaluated the immunogenicity of a semi-synthetic LTA-CRM197 glycoconjugate. The conjugate elicited LTA-specific antibodies in mice that recognized natural LTA epitopes on the surface of C. difficile bacteria and inhibited intestinal colonization of C. difficile in mice in vivo. Our findings underscore the promise of synthetic LTA glycans as C. difficile vaccine candidates.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christopher E Martin
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Erik Wegner
- Mikrobiologisches Institut ? Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut ? Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ju Yuel Baek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
181
|
Coch RA, Leube RE. Intermediate Filaments and Polarization in the Intestinal Epithelium. Cells 2016; 5:E32. [PMID: 27429003 PMCID: PMC5040974 DOI: 10.3390/cells5030032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
The cytoplasmic intermediate filament cytoskeleton provides a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. This is particularly apparent in the intestinal epithelium, in which the intermediate filament network is localized below the apical terminal web region and is anchored to the apical junction complex. This arrangement is conserved from the nematode Caenorhabditis elegans to humans. The review summarizes compositional, morphological and functional features of the polarized intermediate filament cytoskeleton in intestinal cells of nematodes and mammals. We emphasize the cross talk of intermediate filaments with the actin- and tubulin-based cytoskeleton. Possible links of the intermediate filament system to the distribution of apical membrane proteins and the cell polarity complex are highlighted. Finally, we discuss how these properties relate to the establishment and maintenance of polarity in the intestine.
Collapse
Affiliation(s)
- Richard A Coch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany.
| |
Collapse
|
182
|
Galipeau HJ, Verdu EF. The complex task of measuring intestinal permeability in basic and clinical science. Neurogastroenterol Motil 2016; 28:957-65. [PMID: 27339216 DOI: 10.1111/nmo.12871] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 12/27/2022]
Abstract
Intestinal permeability is a key feature of intestinal barrier function. Altered intestinal permeability is described in many chronic diseases and may be a risk factor for disease development and a target for emerging therapeutics. Thus, reliable and sensitive methods to measure intestinal permeability in both the clinical and preclinical setting are needed. There is currently a large array of tests to choose from, each with advantages and disadvantages. When possible, a combination of methods should be used. The choice of tests should be based on a deep understanding of intestinal barrier physiology and the recognition of their limitations. This mini-review will highlight the advantages and limitations associated with intestinal permeability tests and will identify current problems in the field and how they can be addressed in the future.
Collapse
Affiliation(s)
- H J Galipeau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - E F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
183
|
Oral delivery of macromolecular drugs: Where we are after almost 100years of attempts. Adv Drug Deliv Rev 2016; 101:108-121. [PMID: 26826437 DOI: 10.1016/j.addr.2016.01.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/11/2016] [Accepted: 01/18/2016] [Indexed: 02/08/2023]
Abstract
Since the first attempt to administer insulin orally in humans more than 90years ago, the oral delivery of macromolecular drugs (>1000g/mol) has been rather disappointing. Although several clinical pilot studies have demonstrated that the oral absorption of macromolecules is possible, the bioavailability remains generally low and variable. This article reviews the formulations and biopharmaceutical aspects of orally administered biomacromolecules on the market and in clinical development for local and systemic delivery. The most successful approaches for systemic delivery often involve a combination of enteric coating, protease inhibitors and permeation enhancers in relatively high amounts. However, some of these excipients have induced local or systemic adverse reactions in preclinical and clinical studies, and long-term studies are often missing. Therefore, strategies aimed at increasing the oral absorption of macromolecular drugs should carefully take into account the benefit-risk ratio. In the absence of specific uptake pathways, small and potent peptides that are resistant to degradation and that present a large therapeutic window certainly represent the best candidates for systemic absorption. While we acknowledge the need for systemically delivering biomacromolecules, it is our opinion that the oral delivery to local gastrointestinal targets is currently more promising because of their accessibility and the lacking requirement for intestinal permeability enhancement.
Collapse
|
184
|
Genser L, Poitou C, Brot-Laroche É, Rousset M, Vaillant JC, Clément K, Thenet S, Leturque A. [Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity?]. Med Sci (Paris) 2016; 32:461-469. [PMID: 27225918 DOI: 10.1051/medsci/20163205012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023] Open
Abstract
The increasing incidence of obesity and associated metabolic complications is a worldwide public health issue. The role of the gut in the pathophysiology of obesity, with an important part for microbiota, is becoming obvious. In rodent models of diet-induced obesity, the modifications of gut microbiota are associated with an alteration of the intestinal permeability increasing the passage of food or bacterial antigens, which contribute to low-grade inflammation and insulin resistance. In human obesity, intestinal permeability modification, and its role in the crosstalk between gut microbiota changes and inflammation at systemic and tissular levels, are still poorly documented. Hence, further characterization of the triggering mechanisms of such inflammatory responses in obese subjects could enable the development of personalized intervention strategies that will help to reduce the risk of obesity-associated diseases.
Collapse
Affiliation(s)
- Laurent Genser
- Institut de cardiométabolisme et nutrition, ICAN, hôpital Pitié-Salpêtrière, F-75013, Paris, France - Sorbonne universités, université Paris 06, UMR-S 1166, Nutriomics Team, F-75013 Paris, France - Inserm, UMRS 1166, Nutriomics, F-75013 5Paris, France
| | - Christine Poitou
- Institut de cardiométabolisme et nutrition, ICAN, hôpital Pitié-Salpêtrière, F-75013, Paris, France - Sorbonne universités, université Paris 06, UMR-S 1166, Nutriomics Team, F-75013 Paris, France - Inserm, UMRS 1166, Nutriomics, F-75013 5Paris, France - Assistance-Publique Hôpitaux de Paris, groupe hospitalier Pitié-Salpêtrière, service de nutrition, 47-83, boulevard de l'Hôpital, F-75013 Paris, France
| | - Édith Brot-Laroche
- Institut de cardiométabolisme et nutrition, ICAN, hôpital Pitié-Salpêtrière, F-75013, Paris, France - Centre de recherche des Cordeliers, Inserm, UMPC université Paris 6, université Paris Descartes Paris 5, CNRS, EPHE laboratoire de pharmacologie cellulaire et moléculaire, 75006 Paris, France
| | - Monique Rousset
- Institut de cardiométabolisme et nutrition, ICAN, hôpital Pitié-Salpêtrière, F-75013, Paris, France - Centre de recherche des Cordeliers, Inserm, UMPC université Paris 6, université Paris Descartes Paris 5, CNRS, EPHE laboratoire de pharmacologie cellulaire et moléculaire, 75006 Paris, France
| | - Jean-Christophe Vaillant
- Assistance-Publique Hôpitaux de Paris, groupe hospitalier Pitié-Salpêtrière, service de chirurgie digestive, hépato-bilio-pancréatique, transplantation hépatique, F-75013 Paris, France
| | - Karine Clément
- Institut de cardiométabolisme et nutrition, ICAN, hôpital Pitié-Salpêtrière, F-75013, Paris, France - Sorbonne universités, université Paris 06, UMR-S 1166, Nutriomics Team, F-75013 Paris, France - Inserm, UMRS 1166, Nutriomics, F-75013 5Paris, France - Assistance-Publique Hôpitaux de Paris, groupe hospitalier Pitié-Salpêtrière, service de nutrition, 47-83, boulevard de l'Hôpital, F-75013 Paris, France
| | - Sophie Thenet
- Institut de cardiométabolisme et nutrition, ICAN, hôpital Pitié-Salpêtrière, F-75013, Paris, France - Centre de recherche des Cordeliers, Inserm, UMPC université Paris 6, université Paris Descartes Paris 5, CNRS, EPHE laboratoire de pharmacologie cellulaire et moléculaire, 75006 Paris, France
| | - Armelle Leturque
- Institut de cardiométabolisme et nutrition, ICAN, hôpital Pitié-Salpêtrière, F-75013, Paris, France - Centre de recherche des Cordeliers, Inserm, UMPC université Paris 6, université Paris Descartes Paris 5, CNRS, EPHE laboratoire de pharmacologie cellulaire et moléculaire, 75006 Paris, France
| |
Collapse
|
185
|
Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutr Res Rev 2016; 29:40-59. [DOI: 10.1017/s0954422416000019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe intestinal epithelium of adult humans acts as a differentially permeable barrier that separates the potentially harmful contents of the lumen from the underlying tissues. Any dysfunction of this boundary layer that disturbs the homeostatic equilibrium between the internal and external environments may initiate and sustain a biochemical cascade that results in inflammation of the intestine. Key to such dysfunction are genetic, microbial and other environmental factors that, singularly or in combination, result in chronic inflammation that is symptomatic of inflammatory bowel disease (IBD). The aim of the present review is to assess the scientific evidence to support the hypothesis that defective transepithelial transport mechanisms and the heightened absorption of intact antigenic proinflammatory oligopeptides are important contributing factors in the pathogenesis of IBD.
Collapse
|
186
|
Berni Canani R, Gilbert JA, Nagler CR. The role of the commensal microbiota in the regulation of tolerance to dietary allergens. Curr Opin Allergy Clin Immunol 2016; 15:243-9. [PMID: 25827065 DOI: 10.1097/aci.0000000000000157] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW We review the evidence that environmental stimuli that perturb naturally selected host-microbe interactions are driving the increasing prevalence of food allergy and examine the mechanisms by which commensal bacteria regulate tolerance to dietary allergens. RECENT FINDINGS Antibiotic use and the consumption of a high-fat/low-fiber diet have a major and rapid impact on gut bacterial populations, with long-term consequences for both overall microbial community structure and the regulation of host immunity. Recent work emphasizes the role of mucosa-associated commensal bacteria in eliciting a barrier-protective response critical to preventing allergic sensitization to food. Murine model studies are informing the development of novel live biotherapeutic approaches as an adjunctive therapy to enhance antigen-specific oral desensitization and to promote lasting tolerance in patients with food allergy. SUMMARY Strategies based on modulating the composition and/or functionality of the gut microbiome hold promise for the treatment of food allergy.
Collapse
Affiliation(s)
- Roberto Berni Canani
- aDepartment of Translational Medical Science and European Laboratory for The Investigation of Food Induced Diseases and CEINGE Advanced Biotechnologies, University of Naples 'Federico II', Naples, Italy bInstitute for Genomic and Systems Biology, Biosciences Department, Argonne National Laboratory, Argonne cDepartment of Ecology and Evolution dDepartment of Surgery, University of Chicago, Chicago, Illinois eMarine Biological Laboratory, Woods Hole, Massachusetts, USA fCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China gCommittee on Immunology and Departments of Pathology, Medicine and The College, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
187
|
Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases. J Neurogastroenterol Motil 2016; 22:201-12. [PMID: 27032544 PMCID: PMC4819858 DOI: 10.5056/jnm15146] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/12/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.
Collapse
Affiliation(s)
- Shadi S Yarandi
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel A Peterson
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Glen J Treisman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pankaj J Pasricha
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
188
|
A novel method for imaging sites of paracellular passage of macromolecules in epithelial sheets. J Control Release 2016; 229:70-79. [PMID: 26995760 DOI: 10.1016/j.jconrel.2016.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Understanding the dynamics of intestinal barrier function is key to elucidating oral delivery routes of therapeutics as well as to understanding various diseases that involve the mucosal immune system. Passage of macromolecules across barrier-forming epithelia is classically analyzed by means of various tracer flux measurements. This approach averages over contributions from many cells and lacks labeling of passage-sites. Thus, abundance and nature of involved cells have remained unidentified. We present a novel method that allowed for optical analysis of passage of various macromolecules on large-scale and single-cell level. To achieve tracking of passage loci in epithelia at submicrometer resolution we used biotinylated and fluorescent macromolecules that bind to basolateral membranes pre-labeled with cell-adherent avidin. We applied this method to epithelial cell lines and isolated mucosae in order to 3-dimensionally determine barrier leak properties over time. Tracer passage was found in all epithelia examined. However, it was infrequent, strikingly inhomogeneous, depended on culture duration and tightness of the monolayer. Stimulating passage with barrier-perturbing agents increased the number of leaks exposition time-dependently in cell lines and explanted mucosae. After stepwise opening of the paracellular passage pathway, integrated tracer-signal measured by our assay strictly correlated to simultaneously performed standard fluxes. Thus, our assay allows for the study of transepithelial macromolecule passage in various physiological and pathological conditions.
Collapse
|
189
|
Oral tolerance is inefficient in neonatal mice due to a physiological vitamin A deficiency. Mucosal Immunol 2016; 9:479-91. [PMID: 26530133 DOI: 10.1038/mi.2015.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/30/2015] [Indexed: 02/04/2023]
Abstract
Increased risk of allergy during early life indicates deficient immune regulation in this period of life. To date, the cause for inefficient neonatal immune regulation has never been elucidated. We aimed to define the ontogeny of oral tolerance and to identify necessary conditions specific for this stage of life. Ovalbumin (OVA) was administered orally to mice through breast milk and efficiency of systemic tolerance to OVA was assessed in adulthood using a model of allergic airway inflammation. Oral tolerance induction was fully efficient starting third week of life. Inefficiency in neonates was a consequence of abnormal antigen transfer across the gut barrier and retinaldehyde dehydrogenase expression by mesenteric lymph node CD103(+) neonatal dendritic cells, resulting in inefficient T-cell activation. Neonates' serum retinol levels were three times lower than in adult mice, and vitamin A supplementation was sufficient to rescue neonatal defects and allow tolerance induction from birth. The establishment of oral tolerance required the differentiation of Th1 lymphocytes in both vitamin A-supplemented neonates and 3-week-old unsupplemented mice. This knowledge should guide the design of interventions for allergy prevention that are adapted to the neonatal stage of life such as vitamin A supplementation.
Collapse
|
190
|
Abstract
PURPOSE OF REVIEW This article aims to review the evidence that breast milk can actively shape neonate gut immune system development toward a mature immune system capable of responding appropriately to encountered antigens. RECENT FINDINGS Recent findings in the adult have demonstrated the critical role of the interaction between diet, gut microbiota, gut epithelial cells and gut-associated lymphoid tissue in the development of immune responses. Here, we will review what is known in this field in the neonate, compare these data to those obtained in the adult and review how milk factors impact gut immune function in the short and long term. SUMMARY We propose that the neonate immune system and maternal milk represent an entity necessary to ensure not only appropriate function in early life but also long term immune homeostasis.
Collapse
|
191
|
Brahe LK, Astrup A, Larsen LH. Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota? Adv Nutr 2016; 7:90-101. [PMID: 26773017 PMCID: PMC4717895 DOI: 10.3945/an.115.010587] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity increases the risk of type 2 diabetes, cardiovascular diseases, and certain cancers, which are among the leading causes of death worldwide. Obesity and obesity-related metabolic diseases are characterized by specific alterations in the human gut microbiota. Experimental studies with gut microbiota transplantations in mice and in humans indicate that a specific gut microbiota composition can be the cause and not just the consequence of the obese state and metabolic disease, which suggests a potential for gut microbiota modulation in prevention and treatment of obesity-related metabolic diseases. In addition, dietary intervention studies have suggested that modulation of the gut microbiota can improve metabolic risk markers in humans, but a causal role of the gut microbiota in such studies has not yet been established. Here, we review and discuss the role of the gut microbiota in obesity-related metabolic diseases and the potential of dietary modulation of the gut microbiota in metabolic disease prevention and treatment.
Collapse
Affiliation(s)
- Lena K Brahe
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lesli H Larsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
192
|
Bruun SW, Josefsen K, Tanassi JT, Marek A, Pedersen MHF, Sidenius U, Haupt-Jorgensen M, Antvorskov JC, Larsen J, Heegaard NH, Buschard K. Large Gliadin Peptides Detected in the Pancreas of NOD and Healthy Mice following Oral Administration. J Diabetes Res 2016; 2016:2424306. [PMID: 27795959 PMCID: PMC5067331 DOI: 10.1155/2016/2424306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022] Open
Abstract
Gluten promotes type 1 diabetes in nonobese diabetic (NOD) mice and likely also in humans. In NOD mice and in non-diabetes-prone mice, it induces inflammation in the pancreatic lymph nodes, suggesting that gluten can initiate inflammation locally. Further, gliadin fragments stimulate insulin secretion from beta cells directly. We hypothesized that gluten fragments may cross the intestinal barrier to be distributed to organs other than the gut. If present in pancreas, gliadin could interact directly with the immune system and the beta cells to initiate diabetes development. We orally and intravenously administered 33-mer and 19-mer gliadin peptide to NOD, BALB/c, and C57BL/6 mice and found that the peptides readily crossed the intestinal barrier in all strains. Several degradation products were found in the pancreas by mass spectroscopy. Notably, the exocrine pancreas incorporated large amounts of radioactive label shortly after administration of the peptides. The study demonstrates that, even in normal animals, large gliadin fragments can reach the pancreas. If applicable to humans, the increased gut permeability in prediabetes and type 1 diabetes patients could expose beta cells directly to gliadin fragments. Here they could initiate inflammation and induce beta cell stress and thus contribute to the development of type 1 diabetes.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Chromatography, Liquid
- Diabetes Mellitus, Type 1/immunology
- Electrophoresis, Polyacrylamide Gel
- Gliadin/immunology
- Gliadin/pharmacokinetics
- Inflammation
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Intestinal Mucosa/metabolism
- Male
- Mass Spectrometry
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Pancreas/metabolism
- Pancreas, Exocrine/metabolism
- Peptide Fragments/pharmacokinetics
- Permeability
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
| | - Knud Josefsen
- The Bartholin Institute, Rigshospitalet, Copenhagen N, Denmark
- *Knud Josefsen:
| | - Julia T. Tanassi
- Clinical Biochemistry, Immunology & Genetics, Statens Serum Institut, Copenhagen S, Denmark
| | - Aleš Marek
- The Hevesy Laboratory, DTU Nutech, Technical University of Denmark, Roskilde, Denmark
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Martin H. F. Pedersen
- The Hevesy Laboratory, DTU Nutech, Technical University of Denmark, Roskilde, Denmark
| | - Ulrik Sidenius
- Enzyme Purification and Characterization, Novozymes A/S, Bagsværd, Denmark
| | | | | | - Jesper Larsen
- The Bartholin Institute, Rigshospitalet, Copenhagen N, Denmark
| | - Niels H. Heegaard
- Clinical Biochemistry, Immunology & Genetics, Statens Serum Institut, Copenhagen S, Denmark
| | | |
Collapse
|
193
|
Vitetta L, Hall S, Coulson S. Metabolic Interactions in the Gastrointestinal Tract (GIT): Host, Commensal, Probiotics, and Bacteriophage Influences. Microorganisms 2015; 3:913-32. [PMID: 27682125 PMCID: PMC5023274 DOI: 10.3390/microorganisms3040913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Life on this planet has been intricately associated with bacterial activity at all levels of evolution and bacteria represent the earliest form of autonomous existence. Plants such as those from the Leguminosae family that form root nodules while harboring nitrogen-fixing soil bacteria are a primordial example of symbiotic existence. Similarly, cooperative activities between bacteria and animals can also be observed in multiple domains, including the most inhospitable geographical regions of the planet such as Antarctica and the Lower Geyser Basin of Yellowstone National Park. In humans bacteria are often classified as either beneficial or pathogenic and in this regard we posit that this artificial nomenclature is overly simplistic and as such almost misinterprets the complex activities and inter-relationships that bacteria have with the environment as well as the human host and the plethora of biochemical activities that continue to be identified. We further suggest that in humans there are neither pathogenic nor beneficial bacteria, just bacteria embraced by those that tolerate the host and those that do not. The densest and most complex association exists in the human gastrointestinal tract, followed by the oral cavity, respiratory tract, and skin, where bacteria—pre- and post-birth—instruct the human cell in the fundamental language of molecular biology that normally leads to immunological tolerance over a lifetime. The overall effect of this complex output is the elaboration of a beneficial milieu, an environment that is of equal or greater importance than the bacterium in maintaining homeostasis.
Collapse
Affiliation(s)
- Luis Vitetta
- Medlab Clinical Ltd., Sydney 2015 Australia.
- Sydney Medical School, University of Sydney, Sydney 2006, Australia.
| | - Sean Hall
- Medlab Clinical Ltd., Sydney 2015 Australia.
| | - Samantha Coulson
- Medlab Clinical Ltd., Sydney 2015 Australia.
- Sydney Medical School, University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
194
|
De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional Keys for Intestinal Barrier Modulation. Front Immunol 2015; 6:612. [PMID: 26697008 PMCID: PMC4670985 DOI: 10.3389/fimmu.2015.00612] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/22/2015] [Indexed: 12/14/2022] Open
Abstract
The intestinal tract represents the largest interface between the external environment and the human body. Nutrient uptake mostly happens in the intestinal tract, where the epithelial surface is constantly exposed to dietary antigens. Since inflammatory response toward these antigens may be deleterious for the host, a plethora of protective mechanisms take place to avoid or attenuate local damage. For instance, the intestinal barrier is able to elicit a dynamic response that either promotes or impairs luminal antigens adhesion and crossing. Regulation of intestinal barrier is crucial to control intestinal permeability whose increase is associated with chronic inflammatory conditions. The cross talk among bacteria, immune, and dietary factors is able to modulate the mucosal barrier function, as well as the intestinal permeability. Several nutritional products have recently been proposed as regulators of the epithelial barrier, even if their effects are in part contradictory. At the same time, the metabolic function of the microbiota generates new products with different effects based on the dietary content. Besides conventional treatments, novel therapies based on complementary nutrients are now growing. Fecal therapy has been recently used for the clinical treatment of refractory Clostridium difficile infection instead of the classical antibiotic therapy. In the present review, we will outline the epithelial response to nutritional components derived from dietary intake and microbial fermentation focusing on the consequent effects on the integrity of the epithelial barrier.
Collapse
Affiliation(s)
- Stefania De Santis
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Elisabetta Cavalcanti
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Mauro Mastronardi
- Department of Gastroenterology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari , Bari , Italy
| | - Marcello Chieppa
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy ; Istituto Comprensivo Bregante-Volta , Monopoli , Italy
| |
Collapse
|
195
|
Morais CA, de Rosso VV, Estadella D, Pisani LP. Anthocyanins as inflammatory modulators and the role of the gut microbiota. J Nutr Biochem 2015; 33:1-7. [PMID: 27260462 DOI: 10.1016/j.jnutbio.2015.11.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022]
Abstract
The health benefits of consuming fruits that are rich in polyphenols, especially anthocyanins, have been the focus of recent in vitro and in vivo investigations. Thus, greater attention is being directed to the reduction of the inflammatory process associated with the intestinal microbiota and the mechanism underlying these effects because the microbiota has been closely associated with the metabolism of these compounds in the gastrointestinal tract. Further interest lies in the ability of these metabolites to modulate the growth of specific intestinal bacteria. Thus, this review examines studies involving the action of the anthocyanins that are present in many fruits and their effect in the modulating the inflammatory process associated with the interaction between the host and the gut microbiota. The findings of both in vitro and in vivo studies suggest a potential antiinflammatory effect of these compounds, which seem to inhibit activation of the signaling pathway mediated by the transcription factor NFκB. This effect is associated with modulation of a beneficial gut microbiota, particularly an increase in Bifidobacterium strains.
Collapse
Affiliation(s)
- Carina Almeida Morais
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Veridiana Vera de Rosso
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Débora Estadella
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Luciana Pellegrini Pisani
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| |
Collapse
|
196
|
Goldszmid RS, Dzutsev A, Viaud S, Zitvogel L, Restifo NP, Trinchieri G. Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunol Res 2015; 3:103-9. [PMID: 25660553 DOI: 10.1158/2326-6066.cir-14-0225] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myeloid cells represent a major component of the tumor microenvironment, where they play divergent dual roles. They can induce antitumor immune responses, but mostly they promote immune evasion, tumor progression, and metastasis formation. Thus, strategies aiming at reprogramming the tumor microenvironment represent a promising immunotherapy approach. Myeloid cells respond to environmental factors including signals derived from commensal microbes. In this Cancer Immunology at the Crossroads overview, we discuss recent advances on the effects of the commensal microbiota on myeloid-cell functions and how they affect the response to cancer therapy.
Collapse
Affiliation(s)
- Romina S Goldszmid
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Leidos Biomedical Research, Inc., Bethesda, Maryland
| | - Sophie Viaud
- Institut National de la Santé et de la Recherche Médicale, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud, Kremlin Bicêtre, France
| | - Laurence Zitvogel
- Institut National de la Santé et de la Recherche Médicale, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud, Kremlin Bicêtre, France
| | - Nicholas P Restifo
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
197
|
Zheng J, Wang J, Pouliot M, Authier S, Zhou D, Loose DS, Hauer-Jensen M. Gene expression profiling in non-human primate jejunum, ileum and colon after total-body irradiation: a comparative study of segment-specific molecular and cellular responses. BMC Genomics 2015; 16:984. [PMID: 26589571 PMCID: PMC4654820 DOI: 10.1186/s12864-015-2168-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022] Open
Abstract
Background Although extensive studies have investigated radiation-induced injuries in particular gastrointestinal (GI) segments, a systematic comparison among the different segments on the basis of mode, magnitude and mechanism has not been reported. Here, a comparative study of segment-specific molecular and cellular responses was performed on jejunum, ileum and colon obtained at three time points (4, 7 and 12 days after irradiation) from non-human primate (Rhesus macaque) models exposed to 6.7 Gy or 7.4 Gy total body irradiation (TBI). Results Pathway analysis on the gene expression profiles identified radiation-induced time-, dose- and segment-dependent activation of tumor necrosis factor α (TNFα) cascade, tight junction, apoptosis, cell cycle control/DNA damage repair and coagulation system signaling. Activation of these signaling pathways suggests that colon sustained the severest mucosal barrier disruption and inflammation, and jejunum the greatest DNA damage, apoptosis and endothelial dysfunction. These more pronounced alterations correlate with the high incidence of macroscopic pathologies that are observed in the colon after TBI. Compared to colon and jejunum, ileum was resistant to radiation injury. In addition to the identification a marked increase of TNFα cascade, this study also identified radiation induced strikingly up-regulated tight junction gene CLDN2 (196-fold after 7.4-Gy TBI), matrix degradation genes such as MMP7 (increased 11- and 41-fold after 6.7-Gy and 7.4-Gy TBI), and anoikis mediated gene EDA2R that mediate mucosal shedding and barrier disruption. Conclusions This is the first systematic comparative study of the molecular and cellular responses to radiation injury in jejunum, ileum and colon. The strongest activation of TNFα cascades and the striking up-regulation of its down-stream matrix-dissociated genes suggest that TNFα modulation could be a target for mitigating radiation-induced mucosal barrier disruption. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2168-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junying Zheng
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | - Junru Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | | | - Simon Authier
- CiToxLAB North America, Laval, Quebec, Canada, H7V 4B3.
| | - Daohong Zhou
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | - David S Loose
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX, 77030, USA.
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA. .,Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, 72205, USA.
| |
Collapse
|
198
|
Nagai Y, Shiraishi D, Tanaka Y, Nagasawa Y, Ohwada S, Shimauchi H, Aso H, Endo Y, Sugawara S. Transportation of sublingual antigens across sublingual ductal epithelial cells to the ductal antigen-presenting cells in mice. Clin Exp Allergy 2015; 45:677-86. [PMID: 24773115 DOI: 10.1111/cea.12329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/29/2013] [Accepted: 03/07/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Sublingual immunotherapy (SLIT) has proven to be safe and efficient for the treatment of type I allergies. However, the mechanisms underlying allergen transportation within the sublingual compartment, the localization of antigens, and the identities of the cells responsible for this immunization remain incompletely understood. OBJECTIVE In this study, we focused on the sublingual ductal system and analysed the localization and transportation of antigens after their sublingual application. METHODS In mice given adjuvant-free antigens sublingually, tissues were removed at 0, 0.5, 1, or 2 h after the application and subjected to immunohistochemistry. Cells isolated from the sublingual duct and mucosa were analysed by flow cytometry. RESULTS Substantial immunoreactivity to ovalbumin (OVA) was evident in sublingual ductal epithelial cells at 30 min and 1 h after sublingual administration of OVA, but it had disappeared at 2 h. The ductal epithelial cells incorporated not only OVA, but also particulate antigens such as latex or silica beads and microbes. MHC class II (MHCII)(+) antigen-presenting cells (APCs) were located around the sublingual ductal system, and MHCII(+) cells were co-localized with, and around, antigen-incorporated sublingual duct cells. CD11b(+) CD11c(-) cells were present among CD45(+) MHCII(+) cells at greater frequency in the sublingual duct than in the sublingual mucosa, and they were the main contributors to the incorporation of OVA in vitro. CONCLUSIONS AND CLINICAL RELEVANCE This study reveals that sublingual antigens can be transported across sublingual ductal epithelial cells to the ductal APCs. If the system is the same in humans as in mice, the ductal APCs may prove to be important target cells for SLIT.
Collapse
Affiliation(s)
- Y Nagai
- Division of Oral Immunology, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Morais CA, Oyama LM, de Moura Conrado R, de Rosso VV, do Nascimento CO, Pisani LP. Polyphenols-rich fruit in maternal diet modulates inflammatory markers and the gut microbiota and improves colonic expression of ZO-1 in offspring. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.06.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
200
|
Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov 2015; 14:781-803. [DOI: 10.1038/nrd4608] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|