151
|
Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol 2016; 61:5456-85. [PMID: 27383991 DOI: 10.1088/0031-9155/61/15/5456] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce quantitative WB images of the tracer influx rate K i as a complimentary metric to the semi-quantitative standardized uptake value (SUV). The resulting K i images may suffer from high noise due to the need for short acquisition frames. Meanwhile, a generalized Patlak (gPatlak) WB post-reconstruction method had been suggested to limit K i bias of sPatlak analysis at regions with non-negligible (18)F-FDG uptake reversibility; however, gPatlak analysis is non-linear and thus can further amplify noise. In the present study, we implemented, within the open-source software for tomographic image reconstruction platform, a clinically adoptable 4D WB reconstruction framework enabling efficient estimation of sPatlak and gPatlak images directly from dynamic multi-bed PET raw data with substantial noise reduction. Furthermore, we employed the optimization transfer methodology to accelerate 4D expectation-maximization (EM) convergence by nesting the fast image-based estimation of Patlak parameters within each iteration cycle of the slower projection-based estimation of dynamic PET images. The novel gPatlak 4D method was initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM convergence. Initially, realistic simulations were conducted utilizing published (18)F-FDG kinetic parameters coupled with the XCAT phantom. Quantitative analyses illustrated enhanced K i target-to-background ratio (TBR) and especially contrast-to-noise ratio (CNR) performance for the 4D versus the indirect methods and static SUV. Furthermore, considerable convergence acceleration was observed for the nested algorithms involving 10-20 sub-iterations. Moreover, systematic reduction in K i % bias and improved TBR were observed for gPatlak versus sPatlak. Finally, validation on clinical WB dynamic data demonstrated the clinical feasibility and superior K i CNR performance for the proposed 4D framework compared to indirect Patlak and SUV imaging.
Collapse
Affiliation(s)
- Nicolas A Karakatsanis
- Division of Nuclear Medicine and Molecular Imaging, School of Medicine, University of Geneva, Geneva, CH-1211, Switzerland
| | | | | | | | | |
Collapse
|
152
|
Bardania H, Shojaosadati SA, Kobarfard F, Dorkoosh F. Optimization of RGD-modified Nano-liposomes Encapsulating Eptifibatide. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:33-40. [PMID: 28959324 DOI: 10.15171/ijb.1399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eptifibatide (Integrilin) is an intravenous (IV) peptide drug that selectively inhibits ligand binding to the platelet GP IIb/IIIa receptor. It is an efficient peptide drug, however has a short half-life. Therefore, antithrombotic agents like eptifibatide are required to become improved with a protected and targeted delivery system such as using nano-liposomes to the site of thrombus. OBJECTIVES The goal in the present report was to optimize encapsulation efficiency of the eptifibatide into Arg-Gly-Asp (RGD)-modified nano-liposomes (RMNL). As well, it was intended to evaluate the effect of sodium lauryl sulfate (SLS) on drug release. MATERIALS AND METHODS The effect of five independent variables including number of freeze/thawing cycles, concentration of eptifibatide, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and dipalmitoyl-GRGDSPA peptide on drug entrapment efficiency (DEE) was investigated using response surface methodology (RSM). The effect of different concentrations of SLS on encapsulation and drug release from RMNL was also investigated. The size and morphology of RMNL were characterized using transmission electron microscopy (TEM). RESULTS The maximum DEE (38%) was obtained with 7 freeze/thawing cycles, 3.65 mmoL eptifibatide, 7 mM DSPC, 3 mM cholesterol, and 1 mM dipalmitoyl- GRGDSPA peptide. SLS has significantly increased the drug release from RMNL, although its effect on encapsulation efficiency was not significant. CONCLUSIONS The optimization of the formulations for valuable and expensive peptide drugs is essential to have the maximum encapsulation efficiency and the minimum experiments.
Collapse
Affiliation(s)
- Hassan Bardania
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Abbas Shojaosadati
- Department of Biotechnology Group Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medical Chemistry, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
153
|
Palekar RU, Jallouk AP, Lanza GM, Pan H, Wickline SA. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Nanomedicine (Lond) 2016; 10:1817-32. [PMID: 26080701 DOI: 10.2217/nnm.15.26] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As atherosclerosis remains one of the most prevalent causes of patient mortality, the ability to diagnose early signs of plaque rupture and thrombosis represents a significant clinical need. With recent advances in nanotechnology, it is now possible to image specific molecular processes noninvasively with MRI, using various types of nanoparticles as contrast agents. In the context of cardiovascular disease, it is possible to specifically deliver contrast agents to an epitope of interest for detecting vascular inflammatory processes, which serve as predecessors to atherosclerotic plaque development. Herein, we review various applications of nanotechnology in detecting atherosclerosis using MRI, with an emphasis on perfluorocarbon nanoparticles and fluorine imaging, along with theranostic prospects of nanotechnology in cardiovascular disease.
Collapse
Affiliation(s)
- Rohun U Palekar
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Andrew P Jallouk
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| |
Collapse
|
154
|
Qiao H, He Q, Chen Z, Xu D, Huang L, He L, Jiang L, Li R, Luo J, Yuan C, Zhao X. Identification of early atherosclerotic lesions in carotid arteries with quantitative characteristics measured by 3D MRI. J Magn Reson Imaging 2016; 44:1270-1276. [PMID: 27079951 DOI: 10.1002/jmri.25264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To evaluate the usefulness of quantitative characteristics of morphology and signal intensity of arterial wall measured by 3D multicontrast magnetic resonance vessel wall imaging (MRVWI) in identification of carotid early atherosclerosis (CEAS). MATERIALS AND METHODS In all, 61 older subjects (mean age 71.8 ± 5.6 years old; 25 males) without cardiovascular symptoms in the last 6 months were recruited. The carotid arteries without advanced plaque features on 3.0T MRI were included for analysis. Ultrasound imaging was used as a reference to identify CEAS. The morphological parameters including lumen area (LA), wall area (WA), wall thickness (WT), and normalized wall index (NWI = WA/[WA+LA] × 100%) and the signal intensity on 3.0T MR T2 -weighted images (T2 SI) of the carotid arterial wall were measured. Three regression models were built to identify CEAS with the following parameters: Model 1 with both morphological and T2 SI parameters; Model 2 with T2 SI parameters; and Model 3 with morphological parameters. All models were adjusted for age and sex. Area under the curve (AUC) was calculated to validate models. RESULTS Of the 86 carotid arteries without advanced plaques, 47 (54.7%) were found to have early plaques determined by ultrasound. Among three regression models, Model 1 showed the highest AUC values in identifying CEAS (left: AUC = 0.856, P < 0.001; right: AUC = 0.867, P < 0.001), followed by Model 2 (left: AUC = 0.843, P < 0.001; right: AUC = 0.798, P = 0.001), and Model 3 (left: AUC = 0.790, P = 0.002; right: AUC = 0.806, P < 0.001). CONCLUSION The combination of morphology and normalized T2 SI of arterial wall measured by MRVWI is more effective than each characteristic alone in identification of CEAS. J. Magn. Reson. Imaging 2016;44:1270-1276.
Collapse
Affiliation(s)
- Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Qiong He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Zhensen Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Dongxiang Xu
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai, China
| | - Le He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Li Jiang
- Philips Healthcare (Suzhou), Jiangsu, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Jianwen Luo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.,Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.
| |
Collapse
|
155
|
Li J, Chen Z. Integrated intravascular ultrasound and optical coherence tomography technology: a promising tool to identify vulnerable plaques [INVITED PAPER]. JOURNAL OF BIOMEDICAL PHOTONICS & ENGINEERING 2016; 1. [PMID: 28966987 DOI: 10.18287/jbpe-2015-1-4-209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Heart attack is mainly caused by the rupture of a vulnerable plaque. IVUS-OCT is a novel medical imaging modality that provides opportunities for accurate assessment of vulnerable plaques in vivo in patients. IVUS provides deep penetration to image the whole necrotic core while OCT enables accurate measurement of the fibrous cap of a plaque owing to its high resolution. In this paper, the authors describe the fundamentals, the technical designs and the applications of IVUS-OCT technology. Results from cadaver specimens are summarized, which indicated the complementary nature of OCT and IVUS for assessment of vulnerable plaques, plaque composition, and stent-tissue interactions. Furthermore, previously reported in vivo animal experiments are reviewed to assess the clinical adaptability of IVUS-OCT. Future directions for this technology are also discussed in this review.
Collapse
Affiliation(s)
- Jiawen Li
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| |
Collapse
|
156
|
Withofs N, Hustinx R. Integrin αvβ3 and RGD-based radiopharmaceuticals. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2016. [DOI: 10.1016/j.mednuc.2015.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
157
|
Li J, Ma T, Mohar D, Steward E, Yu M, Piao Z, He Y, Shung KK, Zhou Q, Patel PM, Chen Z. Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo. Sci Rep 2015; 5:18406. [PMID: 26678300 PMCID: PMC4683418 DOI: 10.1038/srep18406] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
Atherosclerotic coronary artery disease (CAD) is the number one cause of death worldwide. The majority of CAD-induced deaths are due to the rupture of vulnerable plaques. Accurate assessment of plaques is crucial to optimize treatment and prevent death in patients with CAD. Current diagnostic techniques are often limited by either spatial resolution or penetration depth. Several studies have proved that the combined use of optical and ultrasonic imaging techniques increase diagnostic accuracy of vulnerable plaques. Here, we introduce an ultrafast optical-ultrasonic dual-modality imaging system and flexible miniaturized catheter, which enables the translation of this technology into clinical practice. This system can perform simultaneous optical coherence tomography (OCT)-intravascular ultrasound (IVUS) imaging at 72 frames per second safely in vivo, i.e., visualizing a 72 mm-long artery in 4 seconds. Results obtained in atherosclerotic rabbits in vivo and human coronary artery segments show that this ultrafast technique can rapidly provide volumetric mapping of plaques and clearly identify vulnerable plaques. By providing ultrafast imaging of arteries with high resolution and deep penetration depth simultaneously, this hybrid IVUS-OCT technology opens new and safe opportunities to evaluate in real-time the risk posed by plaques, detect vulnerable plaques, and optimize treatment decisions.
Collapse
Affiliation(s)
- Jiawen Li
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd. Irvine, CA 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA
| | - Teng Ma
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Dilbahar Mohar
- School of Medicine, University of California, Irvine, 101 The City Drive South, Orange, CA, 92868, USA
| | - Earl Steward
- School of Medicine, University of California, Irvine, 101 The City Drive South, Orange, CA, 92868, USA
| | - Mingyue Yu
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhonglie Piao
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd. Irvine, CA 92617, USA
| | - Youmin He
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd. Irvine, CA 92617, USA
| | - K Kirk Shung
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Qifa Zhou
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Pranav M Patel
- School of Medicine, University of California, Irvine, 101 The City Drive South, Orange, CA, 92868, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd. Irvine, CA 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA
| |
Collapse
|
158
|
Differential response to endothelial epithelial sodium channel inhibition ex vivo correlates with arterial stiffness in humans. J Hypertens 2015; 33:2455-62. [DOI: 10.1097/hjh.0000000000000736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
159
|
Chung EJ, Tirrell M. Recent Advances in Targeted, Self-Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis. Adv Healthc Mater 2015; 4:2408-22. [PMID: 26085109 PMCID: PMC4760622 DOI: 10.1002/adhm.201500126] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/31/2015] [Indexed: 01/03/2023]
Abstract
Self-assembling nanoparticles functionalized with targeting moieties have significant potential for atherosclerosis nanomedicine. While self-assembly allows the easy construction (and degradation) of nanoparticles with therapeutic or diagnostic functionality, or both, the targeting agent can direct them to a specific molecular marker within a given stage of the disease. Therefore, supramolecular nanoparticles have been investigated in the last decade as molecular imaging agents or explored as nanocarriers that can decrease the systemic toxicity of drugs by producing accumulation predominantly in specific tissues of interest. In this Progress Report, the pathogenesis of atherosclerosis and the damage caused to vascular tissue are described, as well as the current diagnostic and treatment options. An overview of targeted strategies using self-assembling nanoparticles is provided, including liposomes, high density lipoproteins, protein cages, micelles, proticles, and perfluorocarbon nanoparticles. Finally, an overview is given of current challenges, limitations, and future applications for personalized medicine in the context of atherosclerosis of self-assembling nanoparticles.
Collapse
Affiliation(s)
- Eun Ji Chung
- Institute for Molecular Engineering, University of Chicago, 5747 S.
Ellis Ave., Chicago, IL, 60637, USA
| | - Matthew Tirrell
- Institute for Molecular Engineering, University of Chicago, 5747 S.
Ellis Ave., Chicago, IL, 60637, USA
| |
Collapse
|
160
|
Shen ZT, Zheng S, Gounis MJ, Sigalov AB. Diagnostic Magnetic Resonance Imaging of Atherosclerosis in Apolipoprotein E Knockout Mouse Model Using Macrophage-Targeted Gadolinium-Containing Synthetic Lipopeptide Nanoparticles. PLoS One 2015; 10:e0143453. [PMID: 26569115 PMCID: PMC4646679 DOI: 10.1371/journal.pone.0143453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/04/2015] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in Western cultures. The vast majority of cardiovascular events, including stroke and myocardial infarction, result from the rupture of vulnerable atherosclerotic plaques, which are characterized by high and active macrophage content. Current imaging modalities including magnetic resonance imaging (MRI) aim to characterize anatomic and structural features of plaques rather than their content. Previously, we reported that macrophage-targeted delivery of gadolinium (Gd)-based contrast agent (GBCA-HDL) using high density lipoproteins (HDL)-like particles significantly enhances the detection of plaques in an apolipoprotein (apo) E knockout (KO) mouse model, with an atherosclerotic wall/muscle normalized enhancement ratio (NER) of 120% achieved. These particles are comprised of lipids and synthetic peptide fragments of the major protein of HDL, apo A-I, that contain a naturally occurring modification which targets the particles to macrophages. Targeted delivery minimizes the Gd dose and thus reduces the adverse effects of Gd. The aims of the current study were to test whether varying the GBCA-HDL particle shape and composition can further enhance atherosclerotic plaque MRI and control organ clearance of these agents. We show that the optimized GBCA-HDL particles are efficiently delivered intracellularly to and uptaken by both J774 macrophages in vitro and more importantly, by intraplaque macrophages in vivo, as evidenced by NER up to 160% and higher. This suggests high diagnostic power of our GBCA-HDL particles in the detection of vulnerable atherosclerotic plaques. Further, in contrast to discoidal, spherical GBCA-HDL exhibit hepatic clearance, which could further diminish adverse renal effects of Gd. Finally, activated macrophages are reliable indicators of any inflamed tissues and are implicated in other areas of unmet clinical need such as rheumatoid arthritis, sepsis and cancer, suggesting the expanded diagnostic and prognostic use of this method.
Collapse
Affiliation(s)
- Zu T. Shen
- SignaBlok, Inc, Shrewsbury, Massachusetts, United States of America
| | - Shaokuan Zheng
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Matthew J. Gounis
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | |
Collapse
|
161
|
Doherty JR, Dahl JJ, Kranz PG, El Husseini N, Chang HC, Chen NK, Allen JD, Ham KL, Trahey GE. Comparison of Acoustic Radiation Force Impulse Imaging Derived Carotid Plaque Stiffness With Spatially Registered MRI Determined Composition. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:2354-65. [PMID: 25974933 PMCID: PMC4678151 DOI: 10.1109/tmi.2015.2432797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Measurements of plaque stiffness may provide important prognostic and diagnostic information to help clinicians distinguish vulnerable plaques containing soft lipid pools from more stable, stiffer plaques. In this preliminary study, we compare in vivo ultrasonic Acoustic Radiation Force Impulse (ARFI) imaging derived measures of carotid plaque stiffness with composition determined by spatially registered Magnetic Resonance Imaging (MRI) in five human subjects with stenosis > 50%. Ultrasound imaging was implemented on a commercial diagnostic scanner with custom pulse sequences to collect spatially registered 2D longitudinal B-mode and ARFI images. A standardized, multi-contrast weighted MRI sequence was used to obtain 3D Time of Flight (TOF), T1 weighted (T1W), T2 weighted (T2W), and Proton Density Weighted (PDW) transverse image stacks of volumetric data. The MRI data was segmented to identify lipid, calcium, and normal loose matrix components using commercially available software. 3D MRI segmented plaque models were rendered and spatially registered with 2D B-mode images to create fused ultrasound and MRI volumetric images for each subject. ARFI imaging displacements in regions of interest (ROIs) derived from MRI segmented contours of varying composition were compared. Regions of calcium and normal loose matrix components identified by MRI presented as homogeneously stiff regions of similarly low (typically ≈ 1 μm) displacement in ARFI imaging. MRI identified lipid pools > 2 mm(2), found in three out of five subjects, presented as softer regions of increased displacement that were on average 1.8 times greater than the displacements in adjacent regions of loose matrix components in spatially registered ARFI images. This work provides early evidence supporting the use of ARFI imaging to noninvasively identify lipid regions in carotid artery plaques in vivo that are believed to increase the propensity of a plaque to rupture. Additionally, the results provide early training data for future studies and aid in the interpretation and possible clinical utility of ARFI imaging for identifying the elusive vulnerable plaque.
Collapse
|
162
|
Abstract
Atherosclerosis is a systemic condition that eventually evolves into vulnerable plaques and cardiovascular events. Pathology studies reveal that rupture-prone atherosclerotic plaques have a distinct morphology, namely a thin, inflamed fibrous cap covering a large lipidic and necrotic core. With the fast development of imaging techniques in the last decades, detecting vulnerable plaques thereby identifying individuals at high risk for cardiovascular events has become of major interest. Yet, in current clinical practice, there is no routine use of any vascular imaging modality to assess plaque characteristics as each unique technique has its pros and cons. This review describes the techniques that may evolve into screening tool for the detection of the vulnerable plaque. Finally, it seems that plaque morphology has been changing in the last decades leading to a higher prevalence of 'stable' atherosclerotic plaques, possibly due to the implementation of primary prevention strategies or other approaches. Therefore, the nomenclature of vulnerable plaque lesions should be very carefully defined in all studies.
Collapse
Affiliation(s)
- I Gonçalves
- Department of Cardiology and Clinical Sciences Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - H den Ruijter
- Laboratory of Experimental Cardiology and Research Laboratory Clinical Chemistry (LKCH), UMCU, Utrecht, the Netherlands
| | - M Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185Cambridge St., Boston, MA02114, USA
| | - G Pasterkamp
- Laboratory of Experimental Cardiology and Research Laboratory Clinical Chemistry (LKCH), UMCU, Utrecht, the Netherlands
| |
Collapse
|
163
|
Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, Rahmim A. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol 2015; 60:8643-73. [PMID: 26509251 DOI: 10.1088/0031-9155/60/22/8643] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake, ignoring the effect of FDG dephosphorylation, which has been suggested by a number of PET studies. In this work: (i) a non-linear generalized Patlak (gPatlak) model is utilized, including a net efflux rate constant kloss, and (ii) a hybrid (s/g)Patlak (hPatlak) imaging technique is introduced to enhance contrast to noise ratios (CNRs) of uptake rate Ki images. Representative set of kinetic parameter values and the XCAT phantom were employed to generate realistic 4D simulation PET data, and the proposed methods were additionally evaluated on 11 WB dynamic PET patient studies. Quantitative analysis on the simulated Ki images over 2 groups of regions-of-interest (ROIs), with low (ROI A) or high (ROI B) true kloss relative to Ki, suggested superior accuracy for gPatlak. Bias of sPatlak was found to be 16-18% and 20-40% poorer than gPatlak for ROIs A and B, respectively. By contrast, gPatlak exhibited, on average, 10% higher noise than sPatlak. Meanwhile, the bias and noise levels for hPatlak always ranged between the other two methods. In general, hPatlak was seen to outperform all methods in terms of target-to-background ratio (TBR) and CNR for all ROIs. Validation on patient datasets demonstrated clinical feasibility for all Patlak methods, while TBR and CNR evaluations confirmed our simulation findings, and suggested presence of non-negligible kloss reversibility in clinical data. As such, we recommend gPatlak for highly quantitative imaging tasks, while, for tasks emphasizing lesion detectability (e.g. TBR, CNR) over quantification, or for high levels of noise, hPatlak is instead preferred. Finally, gPatlak and hPatlak CNR was systematically higher compared to routine SUV values.
Collapse
Affiliation(s)
- Nicolas A Karakatsanis
- Division of Nuclear Medicine and Molecular Imaging, School of Medicine, University of Geneva, Geneva, CH-1211, Switzerland
| | | | | | | | | | | | | |
Collapse
|
164
|
Santos A, Fernández-Friera L, Villalba M, López-Melgar B, España S, Mateo J, Mota RA, Jiménez-Borreguero J, Ruiz-Cabello J. Cardiovascular imaging: what have we learned from animal models? Front Pharmacol 2015; 6:227. [PMID: 26539113 PMCID: PMC4612690 DOI: 10.3389/fphar.2015.00227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a non-destructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, (i) the technical development of different imaging tools, (ii) to test hypothesis generated from human studies and finally, (iii) to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function, and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models.
Collapse
Affiliation(s)
- Arnoldo Santos
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain ; Madrid-MIT M+Visión Consortium Madrid, Spain ; Department of Anesthesia, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Hospital Universitario HM Monteprincipe Madrid, Spain
| | - María Villalba
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain
| | - Beatriz López-Melgar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Hospital Universitario HM Monteprincipe Madrid, Spain
| | - Samuel España
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain ; Madrid-MIT M+Visión Consortium Madrid, Spain
| | - Jesús Mateo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain
| | - Ruben A Mota
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Charles River Barcelona, Spain
| | - Jesús Jiménez-Borreguero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Cardiac Imaging Department, Hospital de La Princesa Madrid, Spain
| | - Jesús Ruiz-Cabello
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain ; Universidad Complutense de Madrid Madrid, Spain
| |
Collapse
|
165
|
Nie S, Zhang J, Martinez-Zaguilan R, Sennoune S, Hossen MN, Lichtenstein AH, Cao J, Meyerrose GE, Paone R, Soontrapa S, Fan Z, Wang S. Detection of atherosclerotic lesions and intimal macrophages using CD36-targeted nanovesicles. J Control Release 2015; 220:61-70. [PMID: 26450668 DOI: 10.1016/j.jconrel.2015.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 10/23/2022]
Abstract
Current approaches to the diagnosis and therapy of atherosclerosis cannot target lesion-determinant cells in the artery wall. Intimal macrophage infiltration promotes atherosclerotic lesion development by facilitating the accumulation of oxidized low-density lipoproteins (oxLDL) and increasing inflammatory responses. The presence of these cells is positively associated with lesion progression, severity and destabilization. Hence, they are an important diagnostic and therapeutic target. The objective of this study was to noninvasively assess the distribution and accumulation of intimal macrophages using CD36-targeted nanovesicles. Soy phosphatidylcholine was used to synthesize liposome-like nanovesicles. 1-(Palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine was incorporated on their surface to target the CD36 receptor. All in vitro data demonstrate that these targeted nanovesicles had a high binding affinity for the oxLDL binding site of the CD36 receptor and participated in CD36-mediated recognition and uptake of nanovesicles by macrophages. Intravenous administration into LDL receptor null mice of targeted compared to non-targeted nanovesicles resulted in higher uptake in aortic lesions. The nanovesicles co-localized with macrophages and their CD36 receptors in aortic lesions. This molecular target approach may facilitate the in vivo noninvasive imaging of atherosclerotic lesions in terms of intimal macrophage accumulation and distribution and disclose lesion features related to inflammation and possibly vulnerability thereby facilitate early lesion detection and targeted delivery of therapeutic compounds to intimal macrophages.
Collapse
Affiliation(s)
- Shufang Nie
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jia Zhang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79416, USA
| | - Souad Sennoune
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79416, USA
| | - Md Nazir Hossen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Jun Cao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Gary E Meyerrose
- Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ralph Paone
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Suthipong Soontrapa
- Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Zhaoyang Fan
- Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
166
|
Winklhofer S, Peter S, Tischler V, Morsbach F, von Werdt M, Berens S, Modregger P, Buser L, Moch H, Stampanoni M, Thali M, Alkadhi H, Stolzmann P. Diagnostic Accuracy of Quantitative and Qualitative Phase-Contrast Imaging for the ex Vivo Characterization of Human Coronary Atherosclerotic Plaques. Radiology 2015; 277:64-72. [DOI: 10.1148/radiol.2015141614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
167
|
Chen B, Li J, Zhu H. AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-κB/LOX-1 pathway. Vascul Pharmacol 2015; 85:1-10. [PMID: 26297684 DOI: 10.1016/j.vph.2015.08.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/16/2015] [Accepted: 08/10/2015] [Indexed: 12/31/2022]
Abstract
The differentiation of macrophages into lipid-laden foam cells is a hallmark in early-stage atherosclerosis. The developmental role of adenosine monophosphate-activated protein kinase (AMPK) in a transformation of foam cells, especially in macrophage cholesterol uptake that remains undetermined. Here we demonstrate that AMPK activation in response to IMM-H007 or AICAR resulted in a decrease in macrophage cholesterol uptake and thus inhibited foam cell formation in macrophages mediated by oxidized low-density lipoprotein (oxLDL). This functional change was caused by a downregulation of mRNA and protein expression of LOX-1 but not other scavenger receptors, including scavenger receptor-A (SR-A), CD36 and scavenger receptor-BI (SR-BI). The expression of LOX-1 was regulated by AMPK activation induced decreased phosphorylation of nuclear transcription factor NF-κB, since siRNA interference or dominant negative AMPK overexpression significantly promotes Ser536 dephosphorylation of NF-κB p65 and thus increases LOX-1 expression. Moreover, pharmacological AMPK activation was shown to promote protein phosphatase 2A (PP2A) activity and the specific PP2A inhibitor, okadaic acid, could prevent the effects of IMM-H007 or AICAR on NF-κB and LOX-1. In vivo, pharmacological AMPK activation reduced the lesion size of atherosclerosis and the expression of LOX-1 in aortas in apolipoprotein E-deficient mice. Our current findings suggest a novel mechanism of LOX-1 regulation by AMPK to attenuate macrophage oxLDL uptake and atherosclerosis.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Nanwei Road A2, Beijing 100050, PR China; Beijing key laboratory of new drug mechanisms and pharmacological evaluation study, Nanwei Road A2, Beijing 100050, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanwei Road A2, Beijing 100050, PR China
| | - Jin Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Nanwei Road A2, Beijing 100050, PR China; Beijing key laboratory of new drug mechanisms and pharmacological evaluation study, Nanwei Road A2, Beijing 100050, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanwei Road A2, Beijing 100050, PR China; Institute of Food Science and Technology CAAS, Chinese Academy of Agricultural Sciences, No. 1 Nongda South Rd., Beijing 100193, PR China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Nanwei Road A2, Beijing 100050, PR China; Beijing key laboratory of new drug mechanisms and pharmacological evaluation study, Nanwei Road A2, Beijing 100050, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanwei Road A2, Beijing 100050, PR China.
| |
Collapse
|
168
|
Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem Rev 2015; 115:10637-89. [PMID: 26250431 DOI: 10.1021/acs.chemrev.5b00112] [Citation(s) in RCA: 612] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University , Seoul 136-702, Korea
| | - Dongwon Yoo
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Daishun Ling
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea.,School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, PR China
| | - Mi Hyeon Cho
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea.,School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| |
Collapse
|
169
|
Sun Yoo J, Lee J, Ho Jung J, Seok Moon B, Kim S, Chul Lee B, Eun Kim S. SPECT/CT Imaging of High-Risk Atherosclerotic Plaques using Integrin-Binding RGD Dimer Peptides. Sci Rep 2015; 5:11752. [PMID: 26123253 PMCID: PMC4485237 DOI: 10.1038/srep11752] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/01/2015] [Indexed: 01/03/2023] Open
Abstract
Vulnerable atherosclerotic plaques with unique biological signatures are responsible for most major cardiovascular events including acute myocardial infarction and stroke. However, current clinical diagnostic approaches for atherosclerosis focus on anatomical measurements such as the degree of luminal stenosis and wall thickness. An abundance of neovessels with elevated expression of integrin αvβ3 is closely associated with an increased risk of plaque rupture. Herein we evaluated the potential of an αvβ3 integrin-targeting radiotracer, (99m)Tc-IDA-D-[c(RGDfK)]2, for SPECT/CT imaging of high-risk plaque in murine atherosclerosis models. In vivo uptake of (99m)Tc-IDA-D-[c(RGDfK)]2 was significantly higher in atherosclerotic aortas than in relatively normal aortas. Comparison with the negative-control peptide, (99m)Tc-IDA-D-[c(RADfK)]2, proved specific binding of (99m)Tc-IDA-D-[c(RGDfK)]2 for plaque lesions in in vivo SPECT/CT and ex vivo autoradiographic imaging. Histopathological characterization revealed that a prominent SPECT signal of (99m)Tc-IDA-D-[c(RGDfK)]2 corresponded to the presence of high-risk plaques with a large necrotic core, a thin fibrous cap, and vibrant neoangiogenic events. Notably, the RGD dimer based (99m)Tc-IDA-D-[c(RGDfK)]2 showed better imaging performance in comparison with the common monomeric RGD peptide probe (123)I-c(RGDyV) and fluorescence tissue assay corroborated this. Our preclinical data demonstrated that (99m)Tc-IDA-D-[c(RGDfK)]2 SPECT/CT is a sensitive tool to noninvasively gauge atherosclerosis beyond vascular anatomy by assessing culprit plaque neovascularization.
Collapse
Affiliation(s)
- Jung Sun Yoo
- Smart Humanity Convergence Center, Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 443-270, Republic of Korea
| | - Jonghwan Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary’s Hospital, Incheon 404-834, Republic of Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Soonhag Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary’s Hospital, Incheon 404-834, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 443-270, Republic of Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Smart Humanity Convergence Center, Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 443-270, Republic of Korea
| |
Collapse
|
170
|
de la Cuesta F, Mourino-Alvarez L, Baldan-Martin M, Moreno-Luna R, Barderas MG. Contribution of proteomics to the management of vascular disorders. TRANSLATIONAL PROTEOMICS 2015. [DOI: 10.1016/j.trprot.2014.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
171
|
van Engelen A, van Dijk AC, Truijman MTB, Van't Klooster R, van Opbroek A, van der Lugt A, Niessen WJ, Kooi ME, de Bruijne M. Multi-Center MRI Carotid Plaque Component Segmentation Using Feature Normalization and Transfer Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1294-1305. [PMID: 25532205 DOI: 10.1109/tmi.2014.2384733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Automated segmentation of plaque components in carotid artery magnetic resonance imaging (MRI) is important to enable large studies on plaque vulnerability, and for incorporating plaque composition as an imaging biomarker in clinical practice. Especially supervised classification techniques, which learn from labeled examples, have shown good performance. However, a disadvantage of supervised methods is their reduced performance on data different from the training data, for example on images acquired with different scanners. Reducing the amount of manual annotations required for each new dataset will facilitate widespread implementation of supervised methods. In this paper we segment carotid plaque components of clinical interest (fibrous tissue, lipid tissue, calcification and intraplaque hemorrhage) in a multi-center MRI study. We perform voxelwise tissue classification by traditional same-center training, and compare results with two approaches that use little or no annotated same-center data. These approaches additionally use an annotated set of different-center data. We evaluate 1) a nonlinear feature normalization approach, and 2) two transfer-learning algorithms that use same and different-center data with different weights. Results showed that the best results were obtained for a combination of feature normalization and transfer learning. While for the other approaches significant differences in voxelwise or mean volume errors were found compared with the reference same-center training, the proposed approach did not yield significant differences from that reference. We conclude that both extensive feature normalization and transfer learning can be valuable for the development of supervised methods that perform well on different types of datasets.
Collapse
|
172
|
Wang T, McElroy A, Halaney D, Vela D, Fung E, Hossain S, Phipps J, Wang B, Yin B, Feldman MD, Milner TE. Detection of plaque structure and composition using OCT combined with two-photon luminescence (TPL) imaging. Lasers Surg Med 2015; 47:485-94. [PMID: 26018531 DOI: 10.1002/lsm.22366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Atherosclerosis and plaque rupture leads to myocardial infarction and stroke. A novel hybrid optical coherence tomography (OCT) and two-photon luminescence (TPL) fiber-based imaging system was developed to characterize tissue constituents in the context of plaque morphology. STUDY DESIGN/MATERIALS AND METHODS Ex vivo coronary arteries (34 regions of interest) from three human hearts with atherosclerotic plaques were examined by OCT-TPL imaging. Histological sections (4 μm in thickness) were stained with Oil Red O for lipid, Von Kossa for calcium, and Verhoeff-Masson Tri-Elastic for collagen/elastin fibers and compared with imaging results. RESULTS Biochemical components in plaques including lipid, oxidized-LDL, and calcium, as well as a non-tissue component (metal) are distinguished by multi-channel TPL images with statistical significance (P < 0.001). TPL imaging provides complementary optical contrast to OCT (two-photon absorption/emission vs scattering). Merged OCT-TPL images demonstrate the distribution of lipid deposits in registration with detailed plaque surface profile. CONCLUSIONS Results suggest that multi-channel TPL imaging can effectively identify lipid sub-types and different plaque components. Furthermore, fiber-based hybrid OCT-TPL imaging simultaneously detects plaque structure and composition, improving the efficacy of vulnerable plaque detection and characterization.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - Austin McElroy
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - David Halaney
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas.,South Texas Veterans Health Care System, San Antonio, Texas
| | | | - Edmund Fung
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - Shafat Hossain
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - Jennifer Phipps
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas
| | - Bingqing Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - Biwei Yin
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - Marc D Feldman
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas.,South Texas Veterans Health Care System, San Antonio, Texas
| | - Thomas E Milner
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| |
Collapse
|
173
|
Kim B, Yang J, Lee YH, Kim MH, Heo D, Lee E, Suh JS, Haam S, Huh YM. Compensatory UTE/T2W Imaging of Inflammatory Vascular Wall in Hyperlipidemic Rabbits. PLoS One 2015; 10:e0124572. [PMID: 25978437 PMCID: PMC4433322 DOI: 10.1371/journal.pone.0124572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 03/10/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To obtain compensatory ultra-short echo time (UTE) imaging and T2-weighted (T2W) imaging of Watanabe heritable hyperlipidemic (WHHL) rabbits following dextran-coated magnetic nanocluster (DMNC) injection for the effective in vivo detection of inflammatory vascular wall. METHODS Magnetic nanoparticle was synthesized by thermal decomposition and encapsulated with dextran to prepare DMNC. The contrast enhancement efficiency of DMNC was investigated using UTE (repetition time [TR] = 5.58 and TE = 0.07 ms) and T2W (TR = 4000 and TE = 60 ms) imaging sequences. To confirm the internalization of DMNC into macrophages, DMNC-treated macrophages were visualized by cellular transmission electron microscope (TEM) and magnetic resonance (MR) imaging. WHHL rabbits expressing macrophage-rich plaques were subjected to UTE and T2W imaging before and after intravenous DMNC (120 μmol Fe/kg) treatment. Ex vivo MR imaging of plaques and immunostaining studies were also performed. RESULTS Positive and negative contrast enhancement of DMNC solutions with increasing Fe concentrations were observed in UTE and T2W imaging, respectively. The relative signal intensities of the DMNC solution containing 2.9 mM Fe were calculated as 3.53 and 0.99 in UTE and T2W imaging, respectively. DMNC uptake into the macrophage cytoplasm was visualized by electron microscopy. Cellular MR imaging of DMNC-treated macrophages revealed relative signals of 3.00 in UTE imaging and 0.98 in T2W imaging. In vivo MR images revealed significant brightening and darkening of plaque areas in the WHHL rabbit 24 h after DMNC injection in UTE and T2W imaging, respectively. Ex vivo MR imaging results agreed with these in vivo MR imaging results. Histological analysis showed that DMNCs were localized to areas of inflammatory vascular wall. CONCLUSIONS Using compensatory UTE and T2W imaging in conjunction with DMNC is an effective approach for the noninvasive in vivo imaging of atherosclerotic plaque.
Collapse
Affiliation(s)
- Bongjune Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, Republic of Korea
| | - Young Han Lee
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, Republic of Korea
| | - Myeong-Hoon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dan Heo
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Nanomedical National Core Research Center, Yonsei University, Seoul, Republic of Korea
| | - Eugene Lee
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Nanomedical National Core Research Center, Yonsei University, Seoul, Republic of Korea
| | - Jin-Suck Suh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Nanomedical National Core Research Center, Yonsei University, Seoul, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
- * E-mail: (SH); (YMH)
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- * E-mail: (SH); (YMH)
| |
Collapse
|
174
|
Wang T, McElroy A, Halaney D, Vela D, Fung E, Hossain S, Phipps J, Wang B, Yin B, Feldman MD, Milner TE. Dual-modality fiber-based OCT-TPL imaging system for simultaneous microstructural and molecular analysis of atherosclerotic plaques. BIOMEDICAL OPTICS EXPRESS 2015; 6:1665-78. [PMID: 26137371 PMCID: PMC4467709 DOI: 10.1364/boe.6.001665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 05/25/2023]
Abstract
New optical imaging techniques that provide contrast to study both the anatomy and composition of atherosclerotic plaques can be utilized to better understand the formation, progression and clinical complications of human coronary artery disease. We present a dual-modality fiber-based optical imaging system for simultaneous microstructural and molecular analysis of atherosclerotic plaques that combines optical coherence tomography (OCT) and two-photon luminescence (TPL) imaging. Experimental results from ex vivo human coronary arteries show that OCT and TPL optical contrast in recorded OCT-TPL images is complimentary and in agreement with histological analysis. Molecular composition (e.g., lipid and oxidized-LDL) detected by TPL imaging can be overlaid onto plaque microstructure depicted by OCT, providing new opportunities for atherosclerotic plaque identification and characterization.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Austin McElroy
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - David Halaney
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA ; South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Deborah Vela
- Texas Heart Institute, Houston, Texas 77030, USA
| | - Edmund Fung
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Shafat Hossain
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Jennifer Phipps
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Bingqing Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Biwei Yin
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Marc D Feldman
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA ; South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Thomas E Milner
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| |
Collapse
|
175
|
Ishai A, Tawakol A. Imaging Plaque Inflammation in Higher-Risk Patients: What Do We Know and What Are We Looking For? CURRENT CARDIOVASCULAR RISK REPORTS 2015. [DOI: 10.1007/s12170-015-0459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
176
|
|
177
|
Nahrendorf M, Frantz S, Swirski FK, Mulder WJM, Randolph G, Ertl G, Ntziachristos V, Piek JJ, Stroes ES, Schwaiger M, Mann DL, Fayad ZA. Imaging systemic inflammatory networks in ischemic heart disease. J Am Coll Cardiol 2015; 65:1583-91. [PMID: 25881940 PMCID: PMC4401833 DOI: 10.1016/j.jacc.2015.02.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/17/2015] [Accepted: 02/21/2015] [Indexed: 12/24/2022]
Abstract
While acute myocardial infarction mortality declines, patients continue to face reinfarction and/or heart failure. The immune system, which intimately interacts with healthy and diseased tissues through resident and recruited leukocytes, is a central interface for a global host response to ischemia. Pathways that enhance the systemic leukocyte supply may be potential therapeutic targets. Pre-clinically, imaging helps to identify immunity's decision nodes, which may serve as such targets. In translating the rapidly-expanding pre-clinical data on immune activity, the difficulty of obtaining multiple clinical tissue samples from involved organs is an obstacle that whole-body imaging can help overcome. In patients, molecular and cellular imaging can be integrated with blood-based diagnostics to assess the translatability of discoveries, including the activation of hematopoietic tissues after myocardial infarction, and serve as an endpoint in clinical trials. In this review, we discuss these concepts while focusing on imaging immune activity in organs involved in ischemic heart disease.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Stefan Frantz
- Comprehensive Heart Failure Center, Universitätsklinikum Würzburg, Würzburg, Germany; Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gwendalyn Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Georg Ertl
- Comprehensive Heart Failure Center, Universitätsklinikum Würzburg, Würzburg, Germany; Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Neuherberg, Germany
| | - Jan J Piek
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Erik S Stroes
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Douglas L Mann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
178
|
Kilroy JP, Dhanaliwala AH, Klibanov AL, Bowles DK, Wamhoff BR, Hossack JA. Reducing Neointima Formation in a Swine Model with IVUS and Sirolimus Microbubbles. Ann Biomed Eng 2015; 43:2642-51. [PMID: 25893508 DOI: 10.1007/s10439-015-1315-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
Potent therapeutic compounds with dose dependent side effects require more efficient and selective drug delivery to reduce systemic drug doses. Here, we demonstrate a new platform that combines intravascular ultrasound (IVUS) and drug-loaded microbubbles to enhance and localize drug delivery, while enabling versatility of drug type and dosing. Localization and degree of delivery with IVUS and microbubbles was assessed using fluorophore-loaded microbubbles and different IVUS parameters in ex vivo swine arteries. Using a swine model of neointimal hyperplasia, reduction of neointima formation following balloon injury was evaluated when using the combination of IVUS and sirolimus-loaded microbubbles. IVUS and microbubble enhanced fluorophore delivery was greatest when applying low amplitude pulses in the ex vivo model. In the in vivo model, neointima formation was reduced by 50% after treatment with IVUS and the sirolimus-loaded microbubbles. This reduction was achieved with a sirolimus whole blood concentration comparable to a commercial drug-eluting stent (0.999 ng/mL). We anticipate this therapy will find clinical use localizing drug delivery for numerous other diseases in addition to serving as an adjunct to stents in treating atherosclerosis.
Collapse
Affiliation(s)
- Joseph P Kilroy
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ali H Dhanaliwala
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Alexander L Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.,School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Douglas K Bowles
- Department of Veterinary Sciences, University of Missouri, Columbia, MO, USA
| | | | - John A Hossack
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
179
|
Mathews MJ, Liebenberg L, Mathews EH. The mechanism by which moderate alcohol consumption influences coronary heart disease. Nutr J 2015; 14:33. [PMID: 25889723 PMCID: PMC4389579 DOI: 10.1186/s12937-015-0011-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Moderate alcohol consumption is associated with a lower risk for coronary heart disease (CHD). A suitably integrated view of the CHD pathogenesis pathway will help to elucidate how moderate alcohol consumption could reduce CHD risk. Methods A comprehensive literature review was conducted focusing on the pathogenesis of CHD. Biomarker data were further systematically analysed from 294 cohort studies, comprising 1 161 560 subjects. From the above a suitably integrated CHD pathogenetic system for the purpose of this study was developed. Results The resulting integrated system now provides insight into the integrated higher-order interactions underlying CHD and moderate alcohol consumption. A novel ‘connection graph’ further simplifies these interactions by illustrating the relationship between moderate alcohol consumption and the relative risks (RR) attributed to various measureable CHD serological biomarkers. Thus, the possible reasons for the reduced RR for CHD with moderate alcohol consumption become clear at a glance. Conclusions An integrated high-level model of CHD, its pathogenesis, biomarkers, and moderate alcohol consumption provides a summary of the evidence that a causal relationship between CHD risk and moderate alcohol consumption may exist. It also shows the importance of each CHD pathway that moderate alcohol consumption influences.
Collapse
Affiliation(s)
- Marc J Mathews
- CRCED, North-West University, and Consultants to TEMM International (Pty) Ltd, P.O. Box 11207, Silver Lakes, 0054, South Africa.
| | - Leon Liebenberg
- CRCED, North-West University, and Consultants to TEMM International (Pty) Ltd, P.O. Box 11207, Silver Lakes, 0054, South Africa.
| | - Edward H Mathews
- CRCED, North-West University, and Consultants to TEMM International (Pty) Ltd, P.O. Box 11207, Silver Lakes, 0054, South Africa.
| |
Collapse
|
180
|
Parolini C, Busnelli M, Ganzetti GS, Dellera F, Manzini S, Scanziani E, Johnson JL, Sirtori CR, Chiesa G. Magnetic resonance imaging visualization of vulnerable atherosclerotic plaques at the brachiocephalic artery of apolipoprotein E knockout mice by the blood-pool contrast agent B22956/1. Mol Imaging 2015; 13. [PMID: 24825406 DOI: 10.2310/7290.2014.00012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to identify, by magnetic resonance imaging (MRI), the ability of the blood-pool contrast agent B22956/1 to detect atherosclerotic plaques developing at the brachiocephalic artery of apolipoprotein E knockout (apoE-KO) mice and to possibly identify vulnerable atherosclerotic lesions. After high-fat feeding for 8 or 12 weeks, MRIs of brachiocephalic arteries were acquired before and after B22956/1 administration; then vessels were removed and analyzed by histology. B22956/1 injection caused a rapid increase in plaque signal enhancement and plaque to muscle contrast values, which remained stable up to 70 minutes. A linear correlation between signal enhancement and macrophage content was found 10 minutes after B22956/1 injection (p < .01). Signal enhancement and plaque to muscle contrast values correlated with macrophage content 40 minutes after contrast agent administration (p < .01). Finally, 70 minutes after B22956/1 infusion, plaque to muscle contrast significantly correlated with the percentage of stenosis (p < .005). B22956/1 administration to high fat-fed apoE-KO mice resulted in a rapid enhancement of atherosclerotic plaques and in a great ability to rapidly visualize vulnerable plaques, characterized by a high macrophage content. These results suggest that B22956/1 could represent an interesting tool for the identification of atherosclerotic plaques potentially leading to acute cardiovascular events.
Collapse
|
181
|
Mathews MJ, Liebenberg L, Mathews EH. How do high glycemic load diets influence coronary heart disease? Nutr Metab (Lond) 2015; 12:6. [PMID: 25774201 PMCID: PMC4359552 DOI: 10.1186/s12986-015-0001-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/30/2015] [Indexed: 12/14/2022] Open
Abstract
Background Diet has a significant relationship with the risk of coronary heart disease (CHD). Traditionally the effect of diet on CHD was measured with the biomarker for low-density lipoprotein (LDL) cholesterol. However, LDL is not the only or even the most important biomarker for CHD risk. A suitably integrated view of the mechanism by which diet influences the detailed CHD pathogenetic pathways is therefore needed in order to better understand CHD risk factors and help with better holistic CHD prevention and treatment decisions. Methods A systematic review of the existing literature was conducted. From this an integrated CHD pathogenetic pathway system was constructed. CHD biomarkers, which are found on these pathways, are the only measurable data to link diet with these CHD pathways. They were thus used to simplify the link between diet and the CHD mechanism. Data were systematically analysed from 294 cohort studies of CHD biomarkers constituting 1 187 350 patients. Results and discussion The resulting integrated analysis provides insight into the higher-order interactions underlying CHD and high-glycemic load (HGL) diets. A novel “connection graph” illustrates the measurable relationship between HGL diets and the relative risks attributed to the important CHD serological biomarkers. The “connection graph” vividly shows that HGL diets not only influence the lipid and metabolic biomarkers, but also the inflammation, coagulation and vascular function biomarkers in an important way. Conclusion A focus primarily on the low density lipoprotein cholesterol biomarker for CHD risk has led to the traditional guidelines of CHD dietary recommendations. This has however inadvertently led to HGL diets. The influence of HGL diets on the other CHD biomarkers is not always fully appreciated. Thus, new diets or other interventions which address the full integrated CHD impact, as shown in this paper, are required.
Collapse
Affiliation(s)
- Marc J Mathews
- CRCED, North-West University, and consultants to TEMM International (Pty) Ltd, P.O. Box 11207, Silver Lakes, 0054 South Africa
| | - Leon Liebenberg
- CRCED, North-West University, and consultants to TEMM International (Pty) Ltd, P.O. Box 11207, Silver Lakes, 0054 South Africa
| | - Edward H Mathews
- CRCED, North-West University, and consultants to TEMM International (Pty) Ltd, P.O. Box 11207, Silver Lakes, 0054 South Africa
| |
Collapse
|
182
|
Mulder WJM, Jaffer FA, Fayad ZA, Nahrendorf M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci Transl Med 2015; 6:239sr1. [PMID: 24898749 DOI: 10.1126/scitranslmed.3005101] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioengineering provides unique opportunities to better understand and manage atherosclerotic disease. The field is entering a new era that merges the latest biological insights into inflammatory disease processes with targeted imaging and nanomedicine. Preclinical cardiovascular molecular imaging allows the in vivo study of targeted nanotherapeutics specifically directed toward immune system components that drive atherosclerotic plaque development and complication. The first multicenter trials highlight the potential contribution of multimodality imaging to more efficient drug development. This review describes how the integration of engineering, nanotechnology, and cardiovascular immunology may yield precision diagnostics and efficient therapeutics for atherosclerosis and its ischemic complications.
Collapse
Affiliation(s)
- Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA. Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Farouc A Jaffer
- Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
183
|
Wang Q, Chen S, Luo Q, Liu M, Zhou X. A europium–lipoprotein nanocomposite for highly-sensitive MR-fluorescence multimodal imaging. RSC Adv 2015. [DOI: 10.1039/c4ra12201a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel reconstituted high-density lipoprotein (rHDL) nanocomposite has been prepared for highly-sensitive PARACEST magnetic resonance (MR)-fluorescence multimodal imaging.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Qing Luo
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| |
Collapse
|
184
|
Mangge H, Almer G, Stelzer I, Reininghaus E, Prassl R. Laboratory medicine for molecular imaging of atherosclerosis. Clin Chim Acta 2014; 437:19-24. [DOI: 10.1016/j.cca.2014.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 12/30/2022]
|
185
|
Molecular imaging of plaques in coronary arteries with PET and SPECT. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2014; 11:259-73. [PMID: 25278976 PMCID: PMC4178519 DOI: 10.11909/j.issn.1671-5411.2014.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 01/26/2023]
Abstract
Coronary artery disease remains a major cause of mortality. Presence of atherosclerotic plaques in the coronary artery is responsible for lumen stenosis which is often used as an indicator for determining the severity of coronary artery disease. However, the degree of coronary lumen stenosis is not often related to compromising myocardial blood flow, as most of the cardiac events that are caused by atherosclerotic plaques are the result of vulnerable plaques which are prone to rupture. Thus, identification of vulnerable plaques in coronary arteries has become increasingly important to assist identify patients with high cardiovascular risks. Molecular imaging with use of positron emission tomography (PET) and single photon emission computed tomography (SPECT) has fulfilled this goal by providing functional information about plaque activity which enables accurate assessment of plaque stability. This review article provides an overview of diagnostic applications of molecular imaging techniques in the detection of plaques in coronary arteries with PET and SPECT. New radiopharmaceuticals used in the molecular imaging of coronary plaques and diagnostic applications of integrated PET/CT and PET/MRI in coronary plaques are also discussed.
Collapse
|
186
|
Curry T, Kopelman R, Shilo M, Popovtzer R. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:53-61. [PMID: 24470294 DOI: 10.1002/cmmi.1563] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles have emerged as some of the most extensively utilized nanoplatforms for the diagnosis, imaging, monitoring and treatment of malignant diseases. In particular, in computed tomography (CT) imaging and in therapy (PTT), the exploitation of the various, advantageous properties of gold nanoparticles have resulted in numerous advances in each of these fields. The purpose of this review is to assess the status of gold-nanoparticle mediated CT and PTT, highlight several promising outcomes and motivate the combination of these two functionalities in the same nanoparticle platform. The given examples of research based advances and the encouraging results of in vitro and in vivo studies provide much excitement and promise for future theranostic (therapy + diagnostic) clinical applications, as well as for image-guided therapy and/or surgery, and their monitoring.
Collapse
Affiliation(s)
- Taeyjuana Curry
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA, 48109
| | | | | | | |
Collapse
|
187
|
Almer G, Summers KL, Scheicher B, Kellner J, Stelzer I, Leitinger G, Gries A, Prassl R, Zimmer A, Mangge H. Interleukin 10-coated nanoparticle systems compared for molecular imaging of atherosclerotic lesions. Int J Nanomedicine 2014; 9:4211-22. [PMID: 25214785 PMCID: PMC4159402 DOI: 10.2147/ijn.s66830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis (AS) is one of the leading causes of mortality in high-income countries. Early diagnosis of vulnerable atherosclerotic lesions is one of the biggest challenges currently facing cardiovascular medicine. The present study focuses on developing targeted nanoparticles (NPs) in order to improve the detection of vulnerable atherosclerotic-plaques. Various biomarkers involved in the pathogenesis of atherosclerotic-plaques have been identified and one of these promising candidates for diagnostic targeting is interleukin 10 (IL10). IL10 has been shown to be a key anti-inflammatory responding cytokine in the early stages of atherogenesis, and has already been used for therapeutic interventions in humans and mice. IL10, the targeting sequence, was coupled to two different types of NPs: protamine-oligonucleotide NPs (proticles) and sterically stabilized liposomes in order to address the question of whether the recognition and detection of atherosclerotic-lesions is primarily determined by the targeting sequence itself, or whether it depends on the NP carrier system to which the biomarker is coupled. Each IL10-targeted NP was assessed based on its sensitivity and selectivity toward characterizing atherosclerotic-plaque lesions using an apolipoprotein E-deficient mouse as the model of atherosclerosis. Aortas from apolipoprotein E-deficient mice fed a high fat diet, were stained with either fluorescence-labeled IL10 or IL10-coupled NPs. Ex vivo imaging was performed using confocal laser-scanning microscopy. We found that IL10-targeted proticles generated a stronger signal by accumulating at the surface of atherosclerotic-plaques, while IL10-targeted, sterically stabilized liposomes showed a staining pattern deeper in the plaque compared to the fluorescence-labeled IL10 alone. Our results point to a promising route for enhanced in vivo imaging using IL10-targeted NPs. NPs allow a higher payload of signal emitting molecules to be delivered to the atherosclerotic-plaques, thus improving signal detection. Importantly, this allows for the opportunity to visualize different areas within the plaque scenario, depending on the nature of the applied nanocarrier.
Collapse
Affiliation(s)
- Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Kelli L Summers
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria ; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria
| | - Bernhard Scheicher
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria
| | - Josef Kellner
- Institute of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Ingeborg Stelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria ; Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Anna Gries
- Institute of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria ; BioTechMed, Graz, Austria
| |
Collapse
|
188
|
Ammirati E, Moroni F, Pedrotti P, Scotti I, Magnoni M, Bozzolo EP, Rimoldi OE, Camici PG. Non-invasive imaging of vascular inflammation. Front Immunol 2014; 5:399. [PMID: 25183963 PMCID: PMC4135304 DOI: 10.3389/fimmu.2014.00399] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/05/2014] [Indexed: 11/16/2022] Open
Abstract
In large-vessel vasculitides, inflammatory infiltrates may cause thickening of the involved arterial vessel wall leading to progressive stenosis and occlusion. Dilatation, aneurysm formation, and thrombosis may also ensue. Activated macrophages and T lymphocytes are fundamental elements in vascular inflammation. The amount and density of the inflammatory infiltrate is directly linked to local disease activity. Additionally, patients with autoimmune disorders have an increased cardiovascular (CV) risk compared with age-matched healthy individuals as a consequence of accelerated atherosclerosis. Molecular imaging techniques targeting activated macrophages, neovascularization, or increased cellular metabolic activity can represent effective means of non-invasive detection of vascular inflammation. In the present review, novel non-invasive imaging tools that have been successfully tested in humans will be presented. These include contrast-enhanced ultrasonography, which allows detection of neovessels within the wall of inflamed arteries; contrast-enhanced CV magnetic resonance that can detect increased thickness of the arterial wall, usually associated with edema, or mural enhancement using T2 and post-contrast T1-weighted sequences, respectively; and positron emission tomography associated with radio-tracers such as [18F]-fluorodeoxyglucose and the new [11C]-PK11195 in combination with computed tomography angiography to detect activated macrophages within the vessel wall. Imaging techniques are useful in the diagnostic work-up of large- and medium-vessel vasculitides, to monitor disease activity and the response to treatments. Finally, molecular imaging targets can provide new clues about the pathogenesis and evolution of immune-mediated disorders involving arterial vessels.
Collapse
Affiliation(s)
- Enrico Ammirati
- Cardiothoracic Department, San Raffaele Scientific Institute and University , Milan , Italy ; Cardiovascular and Thoracic Department, AO Ospedale Niguarda Ca' Granda , Milan , Italy
| | - Francesco Moroni
- Cardiothoracic Department, San Raffaele Scientific Institute and University , Milan , Italy
| | - Patrizia Pedrotti
- Cardiovascular and Thoracic Department, AO Ospedale Niguarda Ca' Granda , Milan , Italy
| | - Isabella Scotti
- Cardiothoracic Department, San Raffaele Scientific Institute and University , Milan , Italy
| | - Marco Magnoni
- Cardiothoracic Department, San Raffaele Scientific Institute and University , Milan , Italy
| | - Enrica P Bozzolo
- Unit of Medicine and Clinical Immunology, Department of Medicine, San Raffaele Scientific Institute and University , Milan , Italy
| | - Ornella E Rimoldi
- Cardiothoracic Department, San Raffaele Scientific Institute and University , Milan , Italy ; CNR Istituto di Bioimmagini e Fisiologia Molecolare , Segrate, Milan , Italy
| | - Paolo G Camici
- Cardiothoracic Department, San Raffaele Scientific Institute and University , Milan , Italy
| |
Collapse
|
189
|
Iwaki S, Hokamura K, Ogawa M, Takehara Y, Muramatsu Y, Yamane T, Hirabayashi K, Morimoto Y, Hagisawa K, Nakahara K, Mineno T, Terai T, Komatsu T, Ueno T, Tamura K, Adachi Y, Hirata Y, Arita M, Arai H, Umemura K, Nagano T, Hanaoka K. A design strategy for small molecule-based targeted MRI contrast agents: their application for detection of atherosclerotic plaques. Org Biomol Chem 2014; 12:8611-8. [DOI: 10.1039/c4ob01270d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
190
|
Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee YK. Photoluminescent graphene nanoparticles for cancer phototherapy and imaging. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12413-12421. [PMID: 25054687 DOI: 10.1021/am504071z] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Graphene-based nanomaterials are of great interest in a wide range of applications in electronics, the environment, and energy as well as in biomedical and bioengineering. Their unique properties make them generally applicable as prognostic, diagnostic, and therapeutic agents in cancer. In this work, we focused on photodynamic and photothermal therapeutic properties of our previously synthesized carboxylated photoluminescent graphene nanodots (cGdots). The cGdots are ∼5 nm in diameter and excited at 655 nm. Our findings reveal that, upon laser irradiation by near-infrared (wavelength 670 nm) sensitizer, electrons of the cGdots starts to vibrate and form electron clouds, thereby generating sufficient heat (>50 °C) to kill the cancer cells by thermal ablation. The generation of singlet oxygen also occurs due to irradiation, thus acting similarly to pheophorbide-A, a well-known photodynamic therapeutic agent. The cGdots kills MDA-MB231 cancer cells (more than 70%) through both photodynamic and photothermal effects. The cGdots were equally effective in the in vivo model of MDA-MB231 xenografted tumor-bearing mice also as observed for 21 days. The cGdot was intravenously injected, and the tumor was irradiated by laser, resulting in final volume of tumor was ∼70% smaller than that of saline-treated tumor. It indicates that the growth rate of cGdot-treated tumor was slower compared to saline-treated tumor. The synthesized cGdots could enable visualization of tumor tissue in mice, thereby illustrating their use as optical imaging agents for detecting cancer noninvasively in deep tissue/organ. Collectively, our findings reveal that multimodal cGdots can be used for phototherapy, through photothermal or photodynamic effects, and for noninvasive optical imaging of deep tissues and tumors simultaneously.
Collapse
Affiliation(s)
- Md Nurunnabi
- Department of Polymer Science and Engineering, ‡ Department of Green Bioengineering, §Department of Chemical and Biological Engineering, Korea National University of Transportation , Chungju, 380-702, Republic of Korea
| | | | | | | | | |
Collapse
|
191
|
Abstract
Coronary artery disease (CAD) is an inflammatory process that results in buildup of atherosclerosis, typically lipid-rich plaque in the arterial wall. Progressive narrowing of the vessel wall and subsequent plaque rupture can lead to myocardial infarction and death. Recent advances in intravascular fluorescence imaging techniques have provided exciting coronary artery-targeted platforms to further characterize the molecular changes that occur within the vascular wall as a result of atherosclerosis and following coronary stent-induced vascular injury. This review will summarize exciting recent developments in catheter-based imaging of coronary arterial-sized vessels; focusing on two-dimensional near-infrared fluorescence imaging (NIRF) molecular imaging technology as an approach to specifically identify inflammation and fibrin directly within coronary artery-sized vessels. Intravascular NIRF is anticipated to provide new insights into the in vivo biology underlying high-risk plaques, as well as high-risks stents prone to stent restenosis or stent thrombosis.
Collapse
|
192
|
Garcia-Garcia HM, Jang IK, Serruys PW, Kovacic JC, Narula J, Fayad ZA. Imaging plaques to predict and better manage patients with acute coronary events. Circ Res 2014; 114:1904-17. [PMID: 24902974 DOI: 10.1161/circresaha.114.302745] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Culprit lesions of patients, who have had an acute coronary syndrome commonly, are ruptured coronary plaques with superimposed thrombus. The precursor of such lesions is an inflamed thin-capped fibroatheroma. These plaques can be imaged by means of invasive techniques, such as intravascular ultrasound (and derived techniques), optical coherence tomography, and near-infrared spectroscopy. Often these patients exhibit similar (multiple) plaques beyond the culprit lesion. These remote plaques can be assessed noninvasively by computed tomographic angiography and MRI and also using invasive imaging. The detection of these remote plaques is not only feasible but also in natural history studies have been associated with clinical coronary events. Different systemic pharmacological treatments have been studied (mostly statins) with modest success and, therefore, newer approaches are being tested. Local treatment for such lesions is in its infancy and larger, prospective, and randomized trials are needed. This review will describe the pathological and imaging findings in culprit lesions of patients with acute coronary syndrome and the assessment of remote plaques. In addition, the pharmacological and local treatment options will be reviewed.
Collapse
Affiliation(s)
- Hector M Garcia-Garcia
- From the Department of Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, The Netherlands (H.M.G.-G., P.W.S.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Cardiology, Zena and Michael A. Wiener Cardiovascular Institute and Cardiovascular Research Center (J.C.K., J.N., Z.A.F.) and Department of Radiology, Translational and Molecular Imaging Institute (Z.A.F.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ik-Kyung Jang
- From the Department of Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, The Netherlands (H.M.G.-G., P.W.S.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Cardiology, Zena and Michael A. Wiener Cardiovascular Institute and Cardiovascular Research Center (J.C.K., J.N., Z.A.F.) and Department of Radiology, Translational and Molecular Imaging Institute (Z.A.F.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Patrick W Serruys
- From the Department of Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, The Netherlands (H.M.G.-G., P.W.S.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Cardiology, Zena and Michael A. Wiener Cardiovascular Institute and Cardiovascular Research Center (J.C.K., J.N., Z.A.F.) and Department of Radiology, Translational and Molecular Imaging Institute (Z.A.F.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jason C Kovacic
- From the Department of Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, The Netherlands (H.M.G.-G., P.W.S.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Cardiology, Zena and Michael A. Wiener Cardiovascular Institute and Cardiovascular Research Center (J.C.K., J.N., Z.A.F.) and Department of Radiology, Translational and Molecular Imaging Institute (Z.A.F.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jagat Narula
- From the Department of Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, The Netherlands (H.M.G.-G., P.W.S.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Cardiology, Zena and Michael A. Wiener Cardiovascular Institute and Cardiovascular Research Center (J.C.K., J.N., Z.A.F.) and Department of Radiology, Translational and Molecular Imaging Institute (Z.A.F.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zahi A Fayad
- From the Department of Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, The Netherlands (H.M.G.-G., P.W.S.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Cardiology, Zena and Michael A. Wiener Cardiovascular Institute and Cardiovascular Research Center (J.C.K., J.N., Z.A.F.) and Department of Radiology, Translational and Molecular Imaging Institute (Z.A.F.), Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
193
|
Bala G, Cosyns B. Recent Advances in Visualizing Vulnerable Plaque: Focus on Noninvasive Molecular Imaging. Curr Cardiol Rep 2014; 16:520. [DOI: 10.1007/s11886-014-0520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
194
|
Tortuosity of coronary bifurcation as a potential local risk factor for atherosclerosis: CFD steady state study based on in vivo dynamic CT measurements. Ann Biomed Eng 2014; 43:82-93. [PMID: 24986333 DOI: 10.1007/s10439-014-1056-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
The purpose of the present study was to determine whether in vivo bifurcation geometric factors would permit prediction of the risk of atherosclerosis. It is worldwide accepted that low or oscillatory wall shear stress (WSS) is a robust hemodynamic factor in the development of atherosclerotic plaque and has a strong correlation with the local site of plaque deposition. However, it still remains unclear how coronary bifurcation geometries are correlated with such hemodynamic forces. Computational fluid dynamics simulations were performed on left main (LM) coronary bifurcation geometries derived from CT of eight patients without significant atherosclerosis. WSS amplitudes were accurately quantified at two high risk zones of atherosclerosis, namely at proximal left anterior descending artery (LAD) and at proximal left circumflex artery (LCx), and also at three high WSS concentration sites near the bifurcation. Statistical analysis was used to highlight relationships between WSS amplitudes calculated at these five zones of interest and various geometric factors. The tortuosity index of the LM-LAD segment appears to be an emergent geometric factor in determining the low WSS amplitude at proximal LAD. Strong correlations were found between the high WSS amplitudes calculated at the endothelial regions close to the flow divider. This study not only demonstrated that CT imaging studies of local risk factor for atherosclerosis could be clinically performed, but also showed that tortuosity of LM-LAD coronary branch could be used as a surrogate marker for the onset of atherosclerosis.
Collapse
|
195
|
Towards non-invasive imaging of vulnerable atherosclerotic plaques by targeting co-stimulatory molecules. Int J Cardiol 2014; 174:503-15. [DOI: 10.1016/j.ijcard.2014.04.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 11/21/2022]
|
196
|
Obermeyer AC, Capehart SL, Jarman JB, Francis MB. Multivalent viral capsids with internal cargo for fibrin imaging. PLoS One 2014; 9:e100678. [PMID: 24960118 PMCID: PMC4069081 DOI: 10.1371/journal.pone.0100678] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/30/2014] [Indexed: 12/25/2022] Open
Abstract
Thrombosis is the cause of many cardiovascular syndromes and is a significant contributor to life-threatening diseases, such as myocardial infarction and stroke. Thrombus targeted imaging agents have the capability to provide molecular information about pathological clots, potentially improving detection, risk stratification, and therapy of thrombosis-related diseases. Nanocarriers are a promising platform for the development of molecular imaging agents as they can be modified to have external targeting ligands and internal functional cargo. In this work, we report the synthesis and use of chemically functionalized bacteriophage MS2 capsids as biomolecule-based nanoparticles for fibrin imaging. The capsids were modified using an oxidative coupling reaction, conjugating ∼90 copies of a fibrin targeting peptide to the exterior of each protein shell. The ability of the multivalent, targeted capsids to bind fibrin was first demonstrated by determining the impact on thrombin-mediated clot formation. The modified capsids out-performed the free peptides and were shown to inhibit clot formation at effective concentrations over ten-fold lower than the monomeric peptide alone. The installation of near-infrared fluorophores on the interior surface of the capsids enabled optical detection of binding to fibrin clots. The targeted capsids bound to fibrin, exhibiting higher signal-to-background than control, non-targeted MS2-based nanoagents. The in vitro assessment of the capsids suggests that fibrin-targeted MS2 capsids could be used as delivery agents to thrombi for diagnostic or therapeutic applications.
Collapse
Affiliation(s)
- Allie C. Obermeyer
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Stacy L. Capehart
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - John B. Jarman
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
197
|
Herranz F, Salinas B, Groult H, Pellico J, Lechuga-Vieco AV, Bhavesh R, Ruiz-Cabello J. Superparamagnetic Nanoparticles for Atherosclerosis Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2014; 4:408-438. [PMID: 28344230 PMCID: PMC5304673 DOI: 10.3390/nano4020408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022]
Abstract
The production of magnetic nanoparticles of utmost quality for biomedical imaging requires several steps, from the synthesis of highly crystalline magnetic cores to the attachment of the different molecules on the surface. This last step probably plays the key role in the production of clinically useful nanomaterials. The attachment of the different biomolecules should be performed in a defined and controlled fashion, avoiding the random adsorption of the components that could lead to undesirable byproducts and ill-characterized surface composition. In this work, we review the process of creating new magnetic nanomaterials for imaging, particularly for the detection of atherosclerotic plaque, in vivo. Our focus will be in the different biofunctionalization techniques that we and several other groups have recently developed. Magnetic nanomaterial functionalization should be performed by chemoselective techniques. This approach will facilitate the application of these nanomaterials in the clinic, not as an exception, but as any other pharmacological compound.
Collapse
Affiliation(s)
- Fernando Herranz
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
| | - Beatriz Salinas
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
| | - Hugo Groult
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
| | - Juan Pellico
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
| | - Ana V Lechuga-Vieco
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
| | - Riju Bhavesh
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| | - J Ruiz-Cabello
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
- Department of Physicochemistry II, Faculty of Pharmacy, Complutense University Madrid (UCM), Plaza Ramón y Cajal s/n Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
198
|
Sannino A, Brevetti L, Giugliano G, Scudiero F, Toscano E, Mainolfi C, Cuocolo A, Perrino C, Stabile E, Trimarco B, Esposito G. Non-invasive vulnerable plaque imaging: how do we know that treatment works? Eur Heart J Cardiovasc Imaging 2014; 15:1194-202. [PMID: 24876097 DOI: 10.1093/ehjci/jeu097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Atherosclerosis is an inflammatory disorder that can evolve into an acute clinical event by plaque development, rupture, and thrombosis. Plaque vulnerability represents the susceptibility of a plaque to rupture and to result in an acute cardiovascular event. Nevertheless, plaque vulnerability is not an established medical diagnosis, but rather an evolving concept that has gained attention to improve risk prediction. The availability of high-resolution imaging modalities has significantly facilitated the possibility of performing in vivo regression studies and documenting serial changes in plaque stability. This review summarizes the currently available non-invasive methods to identify vulnerable plaques and to evaluate the effects of the current cardiovascular treatments on plaque evolution.
Collapse
Affiliation(s)
- Anna Sannino
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Linda Brevetti
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Giuseppe Giugliano
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Fernando Scudiero
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Evelina Toscano
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Ciro Mainolfi
- Nuclear Medicine, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Alberto Cuocolo
- Nuclear Medicine, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Cinzia Perrino
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Eugenio Stabile
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Bruno Trimarco
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Giovanni Esposito
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
199
|
Naczynski DJ, Tan MC, Riman RE, Moghe PV. Rare Earth Nanoprobes for Functional Biomolecular Imaging and Theranostics. J Mater Chem B 2014; 2:2958-2973. [PMID: 24921049 PMCID: PMC4048749 DOI: 10.1039/c4tb00094c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contrast agents designed to visualize the molecular mechanisms underlying cancer pathogenesis and progression have deepened our understanding of disease complexity and accelerated the development of enhanced drug strategies targeted to specific biochemical pathways. For the next generation probes and imaging systems to be viable, they must exhibit enhanced sensitivity and robust quantitation of morphologic and contrast features, while offering the ability to resolve the disease-specific molecular signatures that may be critical to reconstitute a more comprehensive portrait of pathobiology. This feature article provides an overview on the design and advancements of emerging biomedical optical probes in general and evaluates the promise of rare earth nanoprobes, in particular, for molecular imaging and theranostics. Combined with new breakthroughs in nanoscale probe configurations, and improved dopant compositions, and multimodal infrared optical imaging, rare-earth nanoprobes can be used to address a wide variety of biomedical challenges, including deep tissue imaging, real-time drug delivery tracking and multispectral molecular profiling.
Collapse
Affiliation(s)
- Dominik J. Naczynski
- Department of Radiation Oncology, Stanford University School of Medicine, California, USA
- Department of Biomedical Engineering, Department of Chemical & Biochemical Engineering, Rutgers University, New Jersey, USA
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore
- Department of Materials Science and Engineering, Rutgers University, New Jersey, USA
| | - Richard E. Riman
- Department of Materials Science and Engineering, Rutgers University, New Jersey, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Department of Chemical & Biochemical Engineering, Rutgers University, New Jersey, USA
| |
Collapse
|
200
|
Wong SK, Mobolaji-Iawal M, Arama L, Cambe J, Biso S, Alie N, Fayad ZA, Mani V. Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE. World J Radiol 2014; 6:192-202. [PMID: 24876923 PMCID: PMC4037545 DOI: 10.4329/wjr.v6.i5.192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/30/2014] [Accepted: 04/19/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare 3D Black Blood turbo spin echo (TSE) sampling perfection with application-optimized contrast using different flip angle evolution (SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascular territories.
METHODS: The carotid, aortic, and femoral arterial walls of 16 patients at risk for cardiovascular or atherosclerotic disease were studied using both 3D black blood magnetic resonance imaging SPACE and conventional 2D multi-contrast TSE sequences using a consolidated imaging approach in the same imaging session. Qualitative and quantitative analyses were performed on the images. Agreement of morphometric measurements between the two imaging sequences was assessed using a two-sample t-test, calculation of the intra-class correlation coefficient and by the method of linear regression and Bland-Altman analyses.
RESULTS: No statistically significant qualitative differences were found between the 3D SPACE and 2D TSE techniques for images of the carotids and aorta. For images of the femoral arteries, however, there were statistically significant differences in all four qualitative scores between the two techniques. Using the current approach, 3D SPACE is suboptimal for femoral imaging. However, this may be due to coils not being optimized for femoral imaging. Quantitatively, in our study, higher mean total vessel area measurements for the 3D SPACE technique across all three vascular beds were observed. No significant differences in lumen area for both the right and left carotids were observed between the two techniques. Overall, a significant-correlation existed between measures obtained between the two approaches.
CONCLUSION: Qualitative and quantitative measurements between 3D SPACE and 2D TSE techniques are comparable. 3D-SPACE may be a feasible approach in the evaluation of cardiovascular patients.
Collapse
|