151
|
Mullin AP, Gokhale A, Larimore J, Faundez V. Cell biology of the BLOC-1 complex subunit dysbindin, a schizophrenia susceptibility gene. Mol Neurobiol 2011; 44:53-64. [PMID: 21520000 PMCID: PMC3321231 DOI: 10.1007/s12035-011-8183-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/12/2011] [Indexed: 11/28/2022]
Abstract
There is growing interest in the biology of dysbindin and its genetic locus (DTNBP1) due to genetic variants associated with an increased risk of schizophrenia. Reduced levels of dysbindin mRNA and protein in the hippocampal formation of schizophrenia patients further support involvement of this locus in disease risk. Here, we discuss phylogenetically conserved dysbindin molecular interactions that define its contribution to the assembly of the biogenesis of lysosome-related organelles complex-1 (BLOC-1). We explore fundamental cellular processes where dysbindin and the dysbindin-containing BLOC-1 complex are implicated. We propose that cellular, tissue, and system neurological phenotypes from dysbindin deficiencies in model genetic organisms, and likely individuals affected with schizophrenia, emerge from abnormalities in few core cellular mechanisms controlled by BLOC-1-dysbindin-containing complex rather than from defects in dysbindin itself.
Collapse
Affiliation(s)
- Ariana P Mullin
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
152
|
Affiliation(s)
- Nigel J Robinson
- Biophysical Sciences Institute, Department of Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
153
|
Ghiani CA, Dell'Angelica EC. Dysbindin-containing complexes and their proposed functions in brain: from zero to (too) many in a decade. ASN Neuro 2011; 3:e00058. [PMID: 21504412 PMCID: PMC3155195 DOI: 10.1042/an20110010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023] Open
Abstract
Dysbindin (also known as dysbindin-1 or dystrobrevin-binding protein 1) was identified 10 years ago as a ubiquitously expressed protein of unknown function. In the following years, the protein and its encoding gene, DTNBP1, have become the focus of intensive research owing to genetic and histopathological evidence suggesting a potential role in the pathogenesis of schizophrenia. In this review, we discuss published results demonstrating that dysbindin function is required for normal physiology of the mammalian central nervous system. In tissues other than brain and in non-neuronal cell types, the protein has been characterized as a stable component of a multi-subunit complex, named BLOC-1 (biogenesis of lysosome-related organelles complex-1), which has been implicated in intracellular protein trafficking and the biogenesis of specialized organelles of the endosomal-lysosomal system. In the brain, however, dysbindin has been proposed to associate into multiple complexes with alternative binding partners, and to play a surprisingly wide variety of functions including transcriptional regulation, neurite and dendritic spine formation, synaptic vesicle biogenesis and exocytosis, and trafficking of glutamate and dopamine receptors. This puzzling array of molecular and functional properties ascribed to the dysbindin protein from brain underscores the need of further research aimed at ascertaining its biological significance in health and disease.
Collapse
Key Words
- biogenesis of lysosome-related organelles complex-1 (bloc-1)
- dtnbp1
- dysbindin
- dystrobrevin-binding protein
- schizophrenia
- ap-3, adaptor protein-3
- bloc, biogenesis of lysosome-related organelles complex
- coip, co-immunoprecipitation
- hek-293 cells, human embryonic kidney cells
- hps, hermansky–pudlak syndrome
- jnk, c-jun n-terminal kinase
- ms/ms, tandem mass spectrometry
- rnai, rna interference
- shrna, short-hairpin rna
- sirna, small-interfering rna
- wash, wiskott–aldrich syndrome protein and scar homologue
- vamp-7, vesicle-associated membrane protein 7
- wave, wasp (wiskott–aldrich syndrome protein) verprolin homologous
- y2h, yeast two-hybrid
Collapse
Affiliation(s)
- Cristina A Ghiani
- *Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
- †Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
| | - Esteban C Dell'Angelica
- *Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
- ‡Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
| |
Collapse
|
154
|
Qin Z, Toursarkissian B, Lai B. Synchrotron radiation X-ray fluorescence microscopy reveals a spatial association of copper on elastic laminae in rat aortic media. Metallomics 2011; 3:823-8. [PMID: 21589993 DOI: 10.1039/c1mt00033k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper, an essential trace metal in humans, plays an important role in elastic formation. However, little is known about the spatial association between copper, elastin, and elastin producing cells. The aorta is the largest artery; the aortic media is primarily composed of the elastic lamellae and vascular smooth muscle cells, which makes it a good model to address this issue. Synchrotron radiation X-ray fluorescence microscopy (SRXRF) is a new generation technique to investigate the spatial topography of trace metals in biological samples. Recently, we utilized this technique to determine the topography of copper as well as other trace elements in aortic media of Sprague Dawley rats. A standard rat diet was used to feed Sprague Dawley rats, which contains the normal dietary requirements of copper and zinc. Paraffin embedded segments (4 μm of thickness) of thoracic aorta were analyzed using a 10 keV incident monochromatic X-ray beam focusing on a spot size of 0.3 μm × 0.2 μm (horizontal × vertical). The X-ray spectrum was measured using an energy-dispersive silicon drift detector for elemental topography. Our results showed that phosphorus, sulfur, and zinc are predominately distributed in the vascular smooth muscle cells, whereas copper is dramatically accumulated in elastic laminae, indicating a preferential spatial association of copper on elastic laminae in aortic media. This finding sheds new light on the role of copper in elastic formation. Our studies also demonstrate that SRXRF allows for the visualization of trace elements in tissues and cells of rodent aorta with high spatial resolution and provides an opportunity to study the role of trace elements in vasculature.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
| | | | | |
Collapse
|
155
|
C-terminus glycans with critical functional role in the maturation of secretory glycoproteins. PLoS One 2011; 6:e19979. [PMID: 21625599 PMCID: PMC3097235 DOI: 10.1371/journal.pone.0019979] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/21/2011] [Indexed: 02/07/2023] Open
Abstract
The N-glycans of membrane glycoproteins are mainly exposed to the extracellular space. Human tyrosinase is a transmembrane glycoprotein with six or seven bulky N-glycans exposed towards the lumen of subcellular organelles. The central active site region of human tyrosinase is modeled here within less than 2.5 Å accuracy starting from Streptomyces castaneoglobisporus tyrosinase. The model accounts for the last five C-terminus glycosylation sites of which four are occupied and indicates that these cluster in two pairs--one in close vicinity to the active site and the other on the opposite side. We have analyzed and compared the roles of all tyrosinase N-glycans during tyrosinase processing with a special focus on the proximal to the active site N-glycans, s6:N337 and s7:N371, versus s3:N161 and s4:N230 which decorate the opposite side of the domain. To this end, we have constructed mutants of human tyrosinase in which its seven N-glycosylation sites were deleted. Ablation of the s6:N337 and s7:N371 sites arrests the post-translational productive folding process resulting in terminally misfolded mutants subjected to degradation through the mannosidase driven ERAD pathway. In contrast, single mutants of the other five N-glycans located either opposite to the active site or into the N-terminus Cys1 extension of tyrosinase are temperature-sensitive mutants and recover enzymatic activity at the permissive temperature of 31°C. Sites s3 and s4 display selective calreticulin binding properties. The C-terminus sites s7 and s6 are critical for the endoplasmic reticulum retention and intracellular disposal. Results herein suggest that individual N-glycan location is critical for the stability, regional folding control and secretion of human tyrosinase and explains some tyrosinase gene missense mutations associated with oculocutaneous albinism type I.
Collapse
|
156
|
Zhang Y, Gladyshev VN. Comparative genomics of trace element dependence in biology. J Biol Chem 2011; 286:23623-9. [PMID: 21566146 DOI: 10.1074/jbc.r110.172833] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biological trace elements are needed in small quantities but are used by all living organisms. A growing list of trace element-dependent proteins and trace element utilization pathways highlights the importance of these elements for life. In this minireview, we focus on recent advances in comparative genomics of trace elements and explore the evolutionary dynamics of the dependence of user proteins on these elements. Many zinc protein families evolved representatives that lack this metal, whereas selenocysteine in proteins is dynamically exchanged with cysteine. Several other elements, such as molybdenum and nickel, have a limited number of user protein families, but they are strictly dependent on these metals. Comparative genomics of trace elements provides a foundation for investigating the fundamental properties, functions, and evolutionary dynamics of trace element dependence in biology.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
157
|
Abstract
This Review summarizes recent advances in understanding copper-transporting ATPase 1 (ATP7A), and examines the neurological phenotypes associated with dysfunction of this protein. Involvement of ATP7A in axonal outgrowth, synapse integrity and neuronal activation underscores the fundamental importance of copper metabolism to neurological function. Defects in ATP7A cause Menkes disease, an infantile-onset, lethal condition. Neonatal diagnosis and early treatment with copper injections enhance survival in patients with this disease, and can normalize clinical outcomes if mutant ATP7A molecules retain small amounts of residual activity. Gene replacement rescues a mouse model of Menkes disease, suggesting a potential therapeutic approach for patients with complete loss-of-function ATP7A mutations. Remarkably, a newly discovered ATP7A disorder-isolated distal motor neuropathy-has none of the characteristic clinical or biochemical abnormalities of Menkes disease or its milder allelic variant occipital horn syndrome (OHS), instead resembling Charcot-Marie-Tooth disease type 2. These findings indicate that ATP7A has a crucial but previously unappreciated role in motor neuron maintenance, and that the mechanism underlying ATP7A-related distal motor neuropathy is distinct from Menkes disease and OHS pathophysiology. Collectively, these insights refine our knowledge of the neurology of ATP7A-related copper transport diseases and pave the way for further progress in understanding ATP7A function.
Collapse
|
158
|
Delevoye C, Giordano F, van Niel G, Raposo G. [Biogenesis of melanosomes - the chessboard of pigmentation]. Med Sci (Paris) 2011; 27:153-62. [PMID: 21382323 DOI: 10.1051/medsci/2011272153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Melanosomes are lysosome-related organelles in retinal pigment epithelial cells and epidermal melanocytes in which melanin pigments are synthesized and stored. Melanosomes are generated by multistep processes in which an immature unpigmented organelle forms and then subsequently matures. Such maturation requires inter-organellar transport of protein cargos required for pigment synthesis but also recruitment of effector proteins necessary for the correct transport of melanosomes to the cell periphery. Several studies have started to unravel the main pathways and mechanisms exploited by melanosomal proteins involved in melanosome structure and melanin synthesis. A major unexpected finding seen early in melanosome biogenesis showed the similarities between the fibrillar sheets of premelanosomes and amyloid fibrils. Late steps of melanosome formation are dependent on pathways regulated by proteins encoded by genes mutated in genetic diseases such as the Hermansky-Pudlak Syndrom (HPS) and different types of albinism. Altogether the findings from the past recent years have started to unravel how specialized cells integrate unique and ubiquitous molecular mechanisms in subverting the endosomal system to generate cell-type specific structures and their associated functions. Further dissection of the melanosomal system will likely shed light not only on the biogenesis of lysosome-related organelles but also on general aspects of vesicular transport in the endosomal system.
Collapse
Affiliation(s)
- Cédric Delevoye
- Institut Curie, Centre de recherche, CNRS UMR144, 26, rue d'Ulm, 75248 Paris, France.
| | | | | | | |
Collapse
|
159
|
Kondo T, Hearing VJ. Update on the regulation of mammalian melanocyte function and skin pigmentation. EXPERT REVIEW OF DERMATOLOGY 2011; 6:97-108. [PMID: 21572549 PMCID: PMC3093193 DOI: 10.1586/edm.10.70] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melanogenesis is the unique process of producing pigmented biopolymers that are sequestered within melanosomes, which provides color to the skin, hair and eyes of animals and, in the case of human skin, also protects the underlying tissues from UV damage. We review the current understanding of melanogenesis, focusing on factors important to the biochemistry of pigment synthesis, the biogenesis of melanosomes, signaling pathways and factors that regulate melanogenesis, intramelanosomal pH, transport and transfer of melanosomes, and pigmentary disorders related to the dysfunction of melanosome-related proteins. Although it has been known for some time that many of the factors that affect melanogenesis are derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells and nerves, a number of new factors that are involved in that regulation have recently been reported, such as factors that regulate melanosome pH and ion transport.
Collapse
Affiliation(s)
- Taisuke Kondo
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vincent J Hearing
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
160
|
Chen YH, Lin JS. A novel zebrafish mutant with wavy-notochord: an effective biological index for monitoring the copper pollution of water from natural resources. ENVIRONMENTAL TOXICOLOGY 2011; 26:103-109. [PMID: 19746408 DOI: 10.1002/tox.20534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We identified a novel zebrafish mutant that has wavy-notochord phenotypes, such as severely twisted notochord and posterior malformations, but has normal melanocytes. Histological evidences showed that proliferating vacuolar cells extended their growth to the muscle region, and consequently caused the wavy-notochord phenotypes. Interestingly, those malformations can be greatly reversed by exposure with copper, suggesting that copper plays an important role on wavy-notochord phenotypes. In addition, after long-term copper exposure, the surviving larvae derived from wavy-notochord mutants displayed bone malformations, such as twisted axial skeleton and osteophyte. These phenotypic changes and molecular evidences of wavy-notochord mutants are highly similar to those embryos whose lysyl oxidases activities have been inactivated. Taken together, we propose that (i) the putative mutated genes of this wavy-notochord mutant might be highly associated with the lysyl oxidase genes in zebrafish; and (ii) this fish model is an effective tool for monitoring copper pollution of water from natural resources.
Collapse
Affiliation(s)
- Yau-Hung Chen
- Graduate Institute of Life Sciences, Tamkang University, Tamsui, Taiwan.
| | | |
Collapse
|
161
|
Hoyle DJ, Rodriguez-Fernandez IA, Dell'angelica EC. Functional interactions between OCA2 and the protein complexes BLOC-1, BLOC-2, and AP-3 inferred from epistatic analyses of mouse coat pigmentation. Pigment Cell Melanoma Res 2010; 24:275-81. [PMID: 21392365 DOI: 10.1111/j.1755-148x.2010.00815.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The biogenesis of melanosomes is a multistage process that requires the function of cell-type-specific and ubiquitously expressed proteins. OCA2, the product of the gene defective in oculocutaneous albinism type 2, is a melanosomal membrane protein with restricted expression pattern and a potential role in the trafficking of other proteins to melanosomes. The ubiquitous protein complexes AP-3, BLOC-1, and BLOC-2, which contain as subunits the products of genes defective in various types of Hermansky-Pudlak syndrome, have been likewise implicated in trafficking to melanosomes. We have tested for genetic interactions between mutant alleles causing deficiency in OCA2 (pink-eyed dilution unstable), AP-3 (pearl), BLOC-1 (pallid), and BLOC-2 (cocoa) in C57BL/6J mice. The pallid allele was epistatic to pink-eyed dilution, and the latter behaved as a semi-dominant phenotypic enhancer of cocoa and, to a lesser extent, of pearl. These observations suggest functional links between OCA2 and these three protein complexes involved in melanosome biogenesis.
Collapse
Affiliation(s)
- Diego J Hoyle
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
162
|
Hida T, Sohma H, Kokai Y, Kawakami A, Hirosaki K, Okura M, Tosa N, Yamashita T, Jimbow K. Rab7 is a critical mediator in vesicular transport of tyrosinase-related protein 1 in melanocytes. J Dermatol 2010; 38:432-41. [PMID: 21352276 DOI: 10.1111/j.1346-8138.2010.01004.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How melanosomal proteins such as enzymic proteins (tyrosinase and tyrosinase-related proteins, Tyrps) and structural protein (gp100) are transported from Golgi to melanosomal compartments is not yet fully understood. A number of small GTPases have been found to be associated with melanosomes and we have identified one of them, Rab7, a regulator of vesicular transport, organelle motility, phospholipid signaling and cytosolic degradative machinery, as being involved in the transport of Tyrp1 from Golgi to stage I melanosomes. This study further characterizes the role of Rab7 as a regulator of differential sorting of melanosomal proteins in this process. Murine melanocytes were transiently transfected with a plasmid encoding either wild-type (Rab7WT), constitutively active (Rab7Q67L) or dominant-negative (Rab7N125I and Rab7T22N) Rab7. Through immunocytostaining and confocal laser scanning microscopy, we quantitatively compared the bio-distribution of melanosomal proteins between Rab7WT-expressing cells and mutant Rab7-expressing cells. We also characterized their differential elimination from melanosomal compartments by Rab7 by utilizing a proteasome inhibitor, MG132. Our findings indicate that Rab7 plays an important role in differential sorting of tyrosinase, Tyrp1 and gp100 in early melanogenesis cascade, and that it is more specifically involved with Tyrp1 than tyrosinase and gp100 in the trafficking from Golgi to melanosomes and the specific exit from the degradative process.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Ishizaki H, Spitzer M, Wildenhain J, Anastasaki C, Zeng Z, Dolma S, Shaw M, Madsen E, Gitlin J, Marais R, Tyers M, Patton EE. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation. Dis Model Mech 2010; 3:639-51. [PMID: 20713646 DOI: 10.1242/dmm.005769] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.
Collapse
Affiliation(s)
- Hironori Ishizaki
- Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit and The University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Waldron KJ, Firbank SJ, Dainty SJ, Pérez-Rama M, Tottey S, Robinson NJ. Structure and metal loading of a soluble periplasm cuproprotein. J Biol Chem 2010; 285:32504-11. [PMID: 20702411 DOI: 10.1074/jbc.m110.153080] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A copper-trafficking pathway was found to enable Cu(2+) occupancy of a soluble periplasm protein, CucA, even when competing Zn(2+) is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu(2+), but not Zn(2+), quenches the fluorescence of Trp(165), which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn(2+) following exposure to equimolar Zn(2+) and Cu(2+). Cu(2+)-CucA is more thermodynamically stable than Zn(2+)-CucA but k((Zn→Cu)exchange) is slow, raising questions about how the periplasm contains solely the Cu(2+) form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu(2+)-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of ΔctaA cells, but the abundance of cucA transcripts was unaltered. Crucially, ΔctaA cells overaccumulate low M(r) copper complexes in the periplasm, and purified apoCucA can readily acquire Cu(2+) from ΔctaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm.
Collapse
Affiliation(s)
- Kevin J Waldron
- Institute for Cell and Molecular Biosciences, University of Newcastle Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | |
Collapse
|
165
|
Ashino T, Sudhahar V, Urao N, Oshikawa J, Chen GF, Wang H, Huo Y, Finney L, Vogt S, McKinney RD, Maryon EB, Kaplan JH, Ushio-Fukai M, Fukai T. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth muscle cell migration. Circ Res 2010; 107:787-99. [PMID: 20671235 DOI: 10.1161/circresaha.110.225334] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. OBJECTIVE To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. METHODS AND RESULTS Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. CONCLUSIONS These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.
Collapse
Affiliation(s)
- Takashi Ashino
- Department of Medicine, Section of Cardiology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Parkinson-Lawrence EJ, Shandala T, Prodoehl M, Plew R, Borlace GN, Brooks DA. Lysosomal storage disease: revealing lysosomal function and physiology. Physiology (Bethesda) 2010; 25:102-15. [PMID: 20430954 DOI: 10.1152/physiol.00041.2009] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The discovery over five decades ago of the lysosome, as a degradative organelle and its dysfunction in lysosomal storage disorder patients, was both insightful and simple in concept. Here, we review some of the history and pathophysiology of lysosomal storage disorders to show how they have impacted on our knowledge of lysosomal biology. Although a significant amount of information has been accrued on the molecular genetics and biochemistry of lysosomal storage disorders, we still do not fully understand the mechanistic link between the storage material and disease pathogenesis. However, the accumulation of undegraded substrate(s) can disrupt other lysosomal degradation processes, vesicular traffic, and lysosomal biogenesis to evoke the diverse pathophysiology that is evident in this complex set of disorders.
Collapse
Affiliation(s)
- Emma J Parkinson-Lawrence
- Cell Biology of Disease Research Group, Sansom Institute for Health Research, Division of Health Science, University of South Australia, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
167
|
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
168
|
Southon A, Palstra N, Veldhuis N, Gaeth A, Robin C, Burke R, Camakaris J. Conservation of copper-transporting P(IB)-type ATPase function. Biometals 2010; 23:681-94. [PMID: 20372979 DOI: 10.1007/s10534-010-9332-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 03/25/2010] [Indexed: 12/27/2022]
Abstract
Copper-transporting P(IB)-type ATPases are highly conserved, and while unicellular eukaryotes and invertebrates have only one, a gene duplication has occurred during vertebrate evolution. Copper-induced trafficking of mammalian ATP7A and ATP7B from the trans-Golgi Network towards the plasma membrane is critical for their role in copper homeostasis. In polarized epithelial cells ATP7A and ATP7B traffic towards the basolateral and apical membranes respectively. We examined the localization and function of DmATP7, the single Drosophila melanogaster orthologue, in cultured D. melanogaster and mammalian cells to explore the conservation of P(IB)-type ATPase function. Comparative genomic analysis demonstrated motifs involved in basolateral targeting and retention of ATP7A were conserved in DmATP7, whereas ATP7B targeting motifs were not. DmATP7 expression was able to correct the copper hyper-accumulation phenotype of cultured fibroblasts from a Menkes disease patient expressing a null ATP7A allele. DmATP7 was able to transport copper to the cupro-enzyme tyrosinase and under elevated copper conditions DmATP7 was able to traffic towards the plasma membrane and efflux copper, essentially phenocopying ATP7A. When expressed in polarized Madin-Darby Canine Kidney cells, DmATP7 translocated towards the basolateral membrane when exposed to elevated copper, similar to ATP7A. These results demonstrate DmATP7 is able to functionally compensate for the absence of ATP7A, with important trafficking motifs conserved in these distantly related orthologues.
Collapse
Affiliation(s)
- Adam Southon
- Department of Genetics, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
169
|
NADPH:quinone oxidoreductase-1 as a new regulatory enzyme that increases melanin synthesis. J Invest Dermatol 2010; 130:645-7. [PMID: 20145642 DOI: 10.1038/jid.2009.378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most hypopigmenting reagents target the inhibition of tyrosinase, the key enzyme involved in melanin synthesis. In this issue, Choi et al. report that NADPH:quinone oxidoreductase-1 (NQO1) increases melanin synthesis, probably via the suppression of tyrosinase degradation. Because NQO1 was identified by comparing normally pigmented melanocytes with hypopigmented acral lentiginous melanoma cells, these results suggest various hypotheses regarding the carcinogenic origin of the latter.
Collapse
|
170
|
Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem 2010. [PMID: 20205585 DOI: 10.1146/annurev-biochem-030409-143539]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
171
|
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
172
|
Hermansky-Pudlak protein complexes, AP-3 and BLOC-1, differentially regulate presynaptic composition in the striatum and hippocampus. J Neurosci 2010; 30:820-31. [PMID: 20089890 DOI: 10.1523/jneurosci.3400-09.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endosomal sorting mechanisms mediated by AP-3 and BLOC-1 are perturbed in Hermansky-Pudlak Syndrome, a human genetic condition characterized by albinism and prolonged bleeding (OMIM #203300). Additionally, mouse models defective in either one of these complexes possess defective synaptic vesicle biogenesis (Newell-Litwa et al., 2009). These synaptic vesicle phenotypes were presumed uniform throughout the brain. However, here we report that AP-3 and BLOC-1 differentially regulate the composition of presynaptic terminals in the striatum and dentate gyrus of the hippocampus. Quantitative immunoelectron microscopy demonstrated that the majority of AP-3 immunoreactivity in both wild-type striatum and hippocampus localizes to presynaptic axonal compartments, where it regulates synaptic vesicle size. In the striatum, loss of AP-3 (Ap3d(mh/mh)) resulted in decreased synaptic vesicle size. In contrast, loss of AP-3 in the dentate gyrus increased synaptic vesicle size, thus suggesting anatomically specific AP-3-regulatory mechanisms. Loss-of-function alleles of BLOC-1, Pldn(pa/pa), and Muted(mu/mu) revealed that this complex acts as a brain-region-specific regulator of AP-3. In fact, BLOC-1 deficiencies selectively reduced AP-3 and AP-3 cargo immunoreactivity in presynaptic compartments within the dentate gyrus both at the light and/or electron microscopy level. However, the striatum did not exhibit these BLOC-1-null phenotypes. Our results demonstrate that distinct brain regions differentially regulate AP-3-dependent synaptic vesicle biogenesis. We propose that anatomically restricted mechanisms within the brain diversify the biogenesis and composition of synaptic vesicles.
Collapse
|
173
|
The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Mol Psychiatry 2010; 15:115, 204-15. [PMID: 19546860 PMCID: PMC2811213 DOI: 10.1038/mp.2009.58] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous studies have implicated DTNBP1 as a schizophrenia susceptibility gene and its encoded protein, dysbindin, as a potential regulator of synaptic vesicle physiology. In this study, we found that endogenous levels of the dysbindin protein in the mouse brain are developmentally regulated, with higher levels observed during embryonic and early postnatal ages than in young adulthood. We obtained biochemical evidence indicating that the bulk of dysbindin from brain exists as a stable component of biogenesis of lysosome-related organelles complex-1 (BLOC-1), a multi-subunit protein complex involved in intracellular membrane trafficking and organelle biogenesis. Selective biochemical interaction between brain BLOC-1 and a few members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) superfamily of proteins that control membrane fusion, including SNAP-25 and syntaxin 13, was demonstrated. Furthermore, primary hippocampal neurons deficient in BLOC-1 displayed neurite outgrowth defects. Taken together, these observations suggest a novel role for the dysbindin-containing complex, BLOC-1, in neurodevelopment, and provide a framework for considering potential effects of allelic variants in DTNBP1--or in other genes encoding BLOC-1 subunits--in the context of the developmental model of schizophrenia pathogenesis.
Collapse
|
174
|
van den Berghe PVE, Klomp LWJ. New developments in the regulation of intestinal copper absorption. Nutr Rev 2010; 67:658-72. [PMID: 19906252 DOI: 10.1111/j.1753-4887.2009.00250.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transition metal copper is an essential trace element involved in many enzymatic processes that require redox-chemistry. The redox-activity of copper is potentially harmful. Severe imbalance of copper homeostasis can occur with some hereditary disorders of copper metabolism. Copper is acquired from the diet by intestinal absorption and is subsequently distributed throughout the body. The regulation of intestinal copper absorption to maintain whole-body copper homeostasis is currently poorly understood. This review evaluates novel findings regarding the molecular mechanism of intestinal copper uptake. The role of recently identified transporters in enterocyte copper uptake and excretion into the portal circulation is described, and the regulation of dietary copper uptake during physiological and pathophysiological conditions is discussed.
Collapse
Affiliation(s)
- Peter V E van den Berghe
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | | |
Collapse
|
175
|
Cheli VT, Daniels RW, Godoy R, Hoyle DJ, Kandachar V, Starcevic M, Martinez-Agosto JA, Poole S, DiAntonio A, Lloyd VK, Chang HC, Krantz DE, Dell'Angelica EC. Genetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency. Hum Mol Genet 2009; 19:861-78. [PMID: 20015953 DOI: 10.1093/hmg/ddp555] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biogenesis of lysosome-related organelles complex 1 (BLOC-1) is a protein complex formed by the products of eight distinct genes. Loss-of-function mutations in two of these genes, DTNBP1 and BLOC1S3, cause Hermansky-Pudlak syndrome, a human disorder characterized by defective biogenesis of lysosome-related organelles. In addition, haplotype variants within the same two genes have been postulated to increase the risk of developing schizophrenia. However, the molecular function of BLOC-1 remains unknown. Here, we have generated a fly model of BLOC-1 deficiency. Mutant flies lacking the conserved Blos1 subunit displayed eye pigmentation defects due to abnormal pigment granules, which are lysosome-related organelles, as well as abnormal glutamatergic transmission and behavior. Epistatic analyses revealed that BLOC-1 function in pigment granule biogenesis requires the activities of BLOC-2 and a putative Rab guanine-nucleotide-exchange factor named Claret. The eye pigmentation phenotype was modified by misexpression of proteins involved in intracellular protein trafficking; in particular, the phenotype was partially ameliorated by Rab11 and strongly enhanced by the clathrin-disassembly factor, Auxilin. These observations validate Drosophila melanogaster as a powerful model for the study of BLOC-1 function and its interactions with modifier genes.
Collapse
Affiliation(s)
- Verónica T Cheli
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B: emerging roles. Int J Biochem Cell Biol 2009; 42:206-9. [PMID: 19922814 DOI: 10.1016/j.biocel.2009.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 12/20/2022]
Abstract
Copper (Cu) has a role in a diverse and increasing number of pathways, physiological and disease processes. These roles are testament to the fundamental importance of Cu in biology and the need to understand the mechanisms that regulate Cu homeostasis. The mammalian Cu-transporting P-type ATPases ATP7A and ATP7B are two key proteins that regulate the Cu status of the body. They transport Cu across cellular membranes for biosynthetic and protective functions, enabling Cu to fulfill its role as a catalytic and structural cofactor for many essential enzymes, and to prevent a toxic build-up of Cu inside cells. A variety of regulatory mechanisms operate at transcriptional and post-translational levels to ensure adequate Cu supplies for both physiological and pathophysiological processes. This review summarizes the recent literature that is revealing the emerging roles of the Cu-ATPases in health and disease.
Collapse
|
177
|
Delevoye C, Hurbain I, Tenza D, Sibarita JB, Uzan-Gafsou S, Ohno H, Geerts WJC, Verkleij AJ, Salamero J, Marks MS, Raposo G. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. ACTA ACUST UNITED AC 2009; 187:247-64. [PMID: 19841138 PMCID: PMC2768840 DOI: 10.1083/jcb.200907122] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type-specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1- and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type-specific positioning of endosomes that facilitate endosome-LRO contacts and are required for organelle maturation.
Collapse
Affiliation(s)
- Cédric Delevoye
- Structure and Membrane Compartments, Centre Nationale de la Recherche Scientifique, UMR 144 Institut Curie, Centre de Recherche, Paris F-75248, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
Genome-wide association studies have identified multiple genetic polymorphisms associated with schizophrenia. These polymorphisms conform to a polygenic disease model in which multiple alleles cumulatively increase the risk of developing disease. Two genes linked to schizophrenia, DTNBP1 and MUTED, encode proteins that belong to the endosome-localized Biogenesis of Lysosome-related Organelles Complex-1 (BLOC-1). BLOC-1 plays a key role in endosomal trafficking and as such has been found to regulate cell-surface abundance of the D2 dopamine receptor, the biogenesis and fusion of synaptic vesicles, and neurite outgrowth. These functions are pertinent to both neurodevelopment and synaptic transmission, processes tightly regulated by selective cell-surface delivery of membrane proteins to and from endosomes. We propose that cellular processes, such as endosomal trafficking, act as convergence points in which multiple small effects from polygenic genetic polymorphisms accumulate to promote the development of schizophrenia.
Collapse
Affiliation(s)
- Pearl V. Ryder
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322
| |
Collapse
|
179
|
van den Berghe PVE, Klomp LWJ. Posttranslational regulation of copper transporters. J Biol Inorg Chem 2009; 15:37-46. [DOI: 10.1007/s00775-009-0592-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/10/2009] [Indexed: 12/15/2022]
|
180
|
Affiliation(s)
- Aaron Atkinson
- Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132
| | - Dennis R. Winge
- Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132
| |
Collapse
|
181
|
Plonka PM, Passeron T, Brenner M, Tobin DJ, Shibahara S, Thomas A, Slominski A, Kadekaro AL, Hershkovitz D, Peters E, Nordlund JJ, Abdel-Malek Z, Takeda K, Paus R, Ortonne JP, Hearing VJ, Schallreuter KU. What are melanocytes really doing all day long...? Exp Dermatol 2009; 18:799-819. [PMID: 19659579 PMCID: PMC2792575 DOI: 10.1111/j.1600-0625.2009.00912.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Everyone knows and seems to agree that melanocytes are there to generate melanin - an intriguing, but underestimated multipurpose molecule that is capable of doing far more than providing pigment and UV protection to skin (1). What about the cell that generates melanin, then? Is this dendritic, neural crest-derived cell still serving useful (or even important) functions when no-one looks at the pigmentation of our skin and its appendages and when there is essentially no UV exposure? In other words, what do epidermal and hair follicle melanocytes do in their spare time - at night, under your bedcover? How much of the full portfolio of physiological melanocyte functions in mammalian skin has really been elucidated already? Does the presence or absence of melanocytes matter for normal epidermal and/or hair follicle functions (beyond pigmentation and UV protection), and for skin immune responses? Do melanocytes even deserve as much credit for UV protection as conventional wisdom attributes to them? In which interactions do these promiscuous cells engage with their immediate epithelial environment and who is controlling whom? What lessons might be distilled from looking at lower vertebrate melanophores and at extracutaneous melanocytes in the endeavour to reveal the 'secret identity' of melanocytes? The current Controversies feature explores these far too infrequently posed, biologically and clinically important questions. Complementing a companion viewpoint essay on malignant melanocytes (2), this critical re-examination of melanocyte biology provides a cornucopia of old, but under-appreciated concepts and novel ideas on the slowly emerging complexity of physiological melanocyte functions, and delineates important, thought-provoking questions that remain to be definitively answered by future research.
Collapse
Affiliation(s)
- P M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, PL-30-387 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Davis DE, Roh HC, Deshmukh K, Bruinsma JJ, Schneider DL, Guthrie J, Robertson JD, Kornfeld K. The cation diffusion facilitator gene cdf-2 mediates zinc metabolism in Caenorhabditis elegans. Genetics 2009; 182:1015-33. [PMID: 19448268 PMCID: PMC2728845 DOI: 10.1534/genetics.109.103614] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/12/2009] [Indexed: 12/11/2022] Open
Abstract
Zinc is essential for many cellular processes. To use Caenorhabditis elegans to study zinc metabolism, we developed culture conditions allowing full control of dietary zinc and methods to measure zinc content of animals. Dietary zinc dramatically affected growth and zinc content; wild-type worms survived from 7 microm to 1.3 mm dietary zinc, and zinc content varied 27-fold. We investigated cdf-2, which encodes a predicted zinc transporter in the cation diffusion facilitator family. cdf-2 mRNA levels were increased by high dietary zinc, suggesting cdf-2 promotes zinc homeostasis. CDF-2 protein was expressed in intestinal cells and localized to cytosolic vesicles. A cdf-2 loss-of-function mutant displayed impaired growth and reduced zinc content, indicating that CDF-2 stores zinc by transport into the lumen of vesicles. The relationships between three cdf genes, cdf-1, cdf-2, and sur-7, were analyzed in double and triple mutant animals. A cdf-1 mutant displayed increased zinc content, whereas a cdf-1 cdf-2 double mutant had intermediate zinc content, suggesting cdf-1 and cdf-2 have antagonistic functions. These studies advance C. elegans as a model of zinc metabolism and identify cdf-2 as a new gene that has a critical role in zinc storage.
Collapse
Affiliation(s)
- Diana E Davis
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Veldhuis NA, Valova VA, Gaeth AP, Palstra N, Hannan KM, Michell BJ, Kelly LE, Jennings I, Kemp BE, Pearson RB, Robinson PJ, Camakaris J. Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase. Int J Biochem Cell Biol 2009; 41:2403-12. [PMID: 19576997 DOI: 10.1016/j.biocel.2009.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/25/2022]
Abstract
The Menkes copper-translocating P-type ATPase (ATP7A) is a critical copper transport protein functioning in systemic copper absorption and supply of copper to cuproenzymes in the secretory pathway. Mutations in ATP7A can lead to the usually lethal Menkes disease. ATP7A function is regulated by copper-responsive trafficking between the trans-Golgi Network and the plasma membrane. We have previously reported basal and copper-responsive kinase phosphorylation of ATP7A but the specific phosphorylation sites had not been identified. As copper stimulates both trafficking and phosphorylation of ATP7A we aimed to identify all the specific phosphosites and to determine whether trafficking and phosphorylation are linked. We identified twenty in vivo phosphorylation sites in the human ATP7A and eight in hamster, all clustered within the N- and C-terminal cytosolic domains. Eight sites were copper-responsive and hence candidates for regulating copper-responsive trafficking or catalytic activity. Mutagenesis of the copper-responsive phosphorylation site Serine-1469 resulted in mislocalization of ATP7A in the presence of added copper in both polarized (Madin Darby canine kidney) and non-polarized (Chinese Hamster Ovary) cells, strongly suggesting that phosphorylation of specific serine residues is required for copper-responsive ATP7A trafficking to the plasma membrane. A constitutively phosphorylated site, Serine-1432, when mutated to alanine also resulted in mislocalization in the presence of added copper in polarized Madin Darby kidney cells. These studies demonstrate that phosphorylation of specific serine residues in ATP7A regulates its sub-cellular localization and hence function and will facilitate identification of the kinases and signaling pathways involved in regulating this pivotal copper transporter.
Collapse
Affiliation(s)
- Nicholas A Veldhuis
- Genetics Department, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Dell'Angelica EC. AP-3-dependent trafficking and disease: the first decade. Curr Opin Cell Biol 2009; 21:552-9. [PMID: 19497727 DOI: 10.1016/j.ceb.2009.04.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
The adaptor protein (AP)-3 complex defines a pathway for the intracellular trafficking of membrane-associated proteins in most eukaryotic cells. Ten years ago, genetic defects in AP-3 were linked to a human Mendelian disease, named Hermansky-Pudlak syndrome, characterized by abnormal biogenesis and function of lysosome-related organelles such as melanosomes and platelet dense granules. During recent years, research on this trafficking pathway has significantly expanded its horizons to include evolutionarily divergent eukaryotic models and to embrace functional genomics and proteomics approaches. These studies have brought into focus ideas about the specific roles of this pathway in protein trafficking and organelle biogenesis within the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7088, USA.
| |
Collapse
|
185
|
Puig S, Peñarrubia L. Placing metal micronutrients in context: transport and distribution in plants. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:299-306. [PMID: 19481498 DOI: 10.1016/j.pbi.2009.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 04/23/2009] [Accepted: 04/23/2009] [Indexed: 05/04/2023]
Abstract
Plants have developed finely tuned mechanisms to efficiently acquire and balance the concentrations of essential metal micronutrients including iron, zinc, copper, and manganese, both at the cellular and systemic levels. The application of new emerging technologies to the study of Arabidopsis thaliana is providing a novel spatiotemporal view of plant metal homeostasis. These advances are uncovering unexpected links of metal homeostasis to central cellular processes, such as compartmentalization, daily redox oscillations, or transcriptional regulation. The intracellular compartmentalization of metals seems essential for optimizing the use of micronutrients during development and in response to deficiencies. Furthermore, recent discoveries indicate that protein metallation is highly sensitive to surrounding conditions, including metal redox state and concentration. Thus, some steps in metal delivery occur during protein folding at specific intracellular compartments. Finally, the daily nature in redox oscillations should be taken into account for a comprehensive understanding of global plant metal homeostasis.
Collapse
Affiliation(s)
- Sergi Puig
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain.
| | | |
Collapse
|
186
|
Zhang Y, Gladyshev VN. Comparative Genomics of Trace Elements: Emerging Dynamic View of Trace Element Utilization and Function. Chem Rev 2009; 109:4828-61. [DOI: 10.1021/cr800557s] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Zhang
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664
| | - Vadim N. Gladyshev
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664
| |
Collapse
|
187
|
White C, Kambe T, Fulcher YG, Sachdev SW, Bush AI, Fritsche K, Lee J, Quinn TP, Petris MJ. Copper transport into the secretory pathway is regulated by oxygen in macrophages. J Cell Sci 2009; 122:1315-21. [PMID: 19351718 PMCID: PMC2671928 DOI: 10.1242/jcs.043216] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Copper is an essential nutrient for a variety of biochemical processes; however, the redox properties of copper also make it potentially toxic in the free form. Consequently, the uptake and intracellular distribution of this metal is strictly regulated. This raises the issue of whether specific pathophysiological conditions can promote adaptive changes in intracellular copper distribution. In this study, we demonstrate that oxygen limitation promotes a series of striking alterations in copper homeostasis in RAW264.7 macrophage cells. Hypoxia was found to stimulate copper uptake and to increase the expression of the copper importer, CTR1. This resulted in increased copper delivery to the ATP7A copper transporter and copper-dependent trafficking of ATP7A to cytoplasmic vesicles. Significantly, the ATP7A protein was required to deliver copper into the secretory pathway to ceruloplasmin, a secreted copperdependent enzyme, the expression and activity of which were stimulated by hypoxia. However, the activities of the alternative targets of intracellular copper delivery, superoxide dismutase and cytochrome c oxidase, were markedly reduced in response to hypoxia. Collectively, these findings demonstrate that copper delivery into the biosynthetic secretory pathway is regulated by oxygen availability in macrophages by a selective increase in copper transport involving ATP7A.
Collapse
Affiliation(s)
- Carine White
- Department of Nutritional Sciences, University of Missouri, Columbia, MO
65211, USA
| | - Taiho Kambe
- Department of Biochemistry, University of Missouri, Columbia, MO 65211,
USA
| | - Yan G. Fulcher
- Department of Nutritional Sciences, University of Missouri, Columbia, MO
65211, USA
| | - Sherri W. Sachdev
- Department of Biochemistry, University of Missouri, Columbia, MO 65211,
USA
| | - Ashley I. Bush
- Oxidation Biology Laboratory, Mental Health Research Institute of Victoria,
Melbourne, Victoria 3052, Australia
| | - Kevin Fritsche
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211,
USA
| | - Jaekwon Lee
- The Redox Biology Center, Department of Biochemistry, University of Nebraska,
Lincoln, NE 68588, USA
| | - Thomas P. Quinn
- Department of Biochemistry, University of Missouri, Columbia, MO 65211,
USA
| | - Michael J. Petris
- Department of Nutritional Sciences, University of Missouri, Columbia, MO
65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211,
USA
- Author for correspondence (e-mail:
)
| |
Collapse
|
188
|
Abstract
The genetic basis underlying normal variation in the pigmentary traits of skin, hair and eye colour has been the subject of intense research directed at understanding the diversity seen both between and within human populations. A combination of approaches have been used including comparative genomics of candidate genes and the identification of regions of the human genome under positive selection, together with genome-wide and specific allele association studies. Independent selection for different pigmentation gene sets has been found between Asian, European and African populations. Several genome-wide association studies for pigmentation have now been conducted and identified single nucleotide polymorphism (SNP) markers in known, TYR, TYRP1, OCA2, SLC45A2, SLC24A5, MC1R, ASIP, KITLG and previously unknown SLC24A4, IRF4, TPCN2, candidate genes. The contribution of SNP polymorphisms present in populations from South Asia have been tested and alleles found at TYR, SLC45A2 and SLC24A5 can largely account for differences between those of darkest and lightest skin reflectance using a simple additive model. Skin and hair colour associations in Europeans are found within a range of pigmentation gene alleles, whereas blue-brown eye colour can be explained by a single SNP proposed to regulate OCA2 expression. Functional testing of variant alleles has begun to connect phenotype correlations with biological differences. Variant MC1R alleles show direct correlations between the biochemical signalling properties of the encoded receptor and the red-hair fair skin pigmentation phenotype. Direct testing of a range of clonal melanocyte cultures derived from donor skin tissue characterized for three causal SNPs within SLC45A2, SLC24A5 and OCA2 has assessed their impact on melanin content and tyrosinase enzyme activity. From a culmination of genetic and functional studies, it is apparent that a number of genes impacting melanosome biogenesis or the melanin biosynthetic pathway are candidates to explain the diversity seen in human pigmentation.
Collapse
Affiliation(s)
- Richard A Sturm
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia.
| |
Collapse
|
189
|
Rodriguez-Fernandez IA, Dell'Angelica EC. A data-mining approach to rank candidate protein-binding partners-The case of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J Inherit Metab Dis 2009; 32:190-203. [PMID: 19083121 PMCID: PMC2756288 DOI: 10.1007/s10545-008-1014-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/19/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
The study of protein-protein interactions is a powerful approach to uncovering the molecular function of gene products associated with human disease. Protein-protein interaction data are accumulating at an unprecedented pace owing to interactomics projects, although it has been recognized that a significant fraction of these data likely represents false positives. During our studies of biogenesis of lysosome-related organelles complex-1 (BLOC-1), a protein complex involved in protein trafficking and containing the products of genes mutated in Hermansky-Pudlak syndrome, we faced the problem of having too many candidate binding partners to pursue experimentally. In this work, we have explored ways of efficiently gathering high-quality information about candidate binding partners and presenting the information in a visually friendly manner. We applied the approach to rank 70 candidate binding partners of human BLOC-1 and 102 candidates of its counterpart from Drosophila melanogaster. The top candidate for human BLOC-1 was the small GTPase encoded by the RAB11A gene, which is a paralogue of the Rab38 and Rab32 proteins in mammals and the lightoid gene product in flies. Interestingly, genetic analyses in D. melanogaster uncovered a synthetic sick/lethal interaction between Rab11 and lightoid. The data-mining approach described herein can be customized to study candidate binding partners for other proteins or possibly candidates derived from other types of 'omics' data.
Collapse
Affiliation(s)
- I A Rodriguez-Fernandez
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | |
Collapse
|
190
|
Newell-Litwa K, Salazar G, Smith Y, Faundez V. Roles of BLOC-1 and adaptor protein-3 complexes in cargo sorting to synaptic vesicles. Mol Biol Cell 2009; 20:1441-53. [PMID: 19144828 PMCID: PMC2649275 DOI: 10.1091/mbc.e08-05-0456] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 12/23/2008] [Accepted: 01/06/2009] [Indexed: 11/11/2022] Open
Abstract
Neuronal lysosomes and their biogenesis mechanisms are primarily thought to clear metabolites and proteins whose abnormal accumulation leads to neurodegenerative disease pathology. However, it remains unknown whether lysosomal sorting mechanisms regulate the levels of membrane proteins within synaptic vesicles. Using high-resolution deconvolution microscopy, we identified early endosomal compartments where both selected synaptic vesicle and lysosomal membrane proteins coexist with the adaptor protein complex 3 (AP-3) in neuronal cells. From these early endosomes, both synaptic vesicle membrane proteins and characteristic AP-3 lysosomal cargoes can be similarly sorted to brain synaptic vesicles and PC12 synaptic-like microvesicles. Mouse knockouts for two Hermansky-Pudlak complexes involved in lysosomal biogenesis from early endosomes, the ubiquitous isoform of AP-3 (Ap3b1(-/-)) and muted, defective in the biogenesis of lysosome-related organelles complex 1 (BLOC-1), increased the content of characteristic synaptic vesicle proteins and known AP-3 lysosomal proteins in isolated synaptic vesicle fractions. These phenotypes contrast with those of the mouse knockout for the neuronal AP-3 isoform involved in synaptic vesicle biogenesis (Ap3b2(-/-)), in which the content of select proteins was reduced in synaptic vesicles. Our results demonstrate that lysosomal and lysosome-related organelle biogenesis mechanisms regulate steady-state synaptic vesicle protein composition from shared early endosomes.
Collapse
Affiliation(s)
- Karen Newell-Litwa
- *Graduate Program in Biochemistry, Cell, and Developmental Biology
- Department of Cell Biology
| | | | - Yoland Smith
- Department of Neurology, Emory University, Atlanta, GA 30322
| | - Victor Faundez
- Department of Cell Biology
- Center for Neurodegenerative Diseases; and
| |
Collapse
|
191
|
Abstract
More than 150 genes have been identified that affect skin color either directly or indirectly, and we review current understanding of physiological factors that regulate skin pigmentation. We focus on melanosome biogenesis, transport and transfer, melanogenic regulators in melanocytes, and factors derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells, and nerves. Enzymatic components of melanosomes include tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase, which depend on the functions of OA1, P, MATP, ATP7A, and BLOC-1 to synthesize eumelanins and pheomelanins. The main structural component of melanosomes is Pmel17/gp100/Silv, whose sorting involves adaptor protein 1A (AP1A), AP1B, AP2, and spectrin, as well as a chaperone-like component, MART-1. During their maturation, melanosomes move from the perinuclear area toward the plasma membrane. Microtubules, dynein, kinesin, actin filaments, Rab27a, melanophilin, myosin Va, and Slp2-a are involved in melanosome transport. Foxn1 and p53 up-regulate skin pigmentation via bFGF and POMC derivatives including alpha-MSH and ACTH, respectively. Other critical factors that affect skin pigmentation include MC1R, CREB, ASP, MITF, PAX3, SOX9/10, LEF-1/TCF, PAR-2, DKK1, SCF, HGF, GM-CSF, endothelin-1, prostaglandins, leukotrienes, thromboxanes, neurotrophins, and neuropeptides. UV radiation up-regulates most factors that increase melanogenesis. Further studies will elucidate the currently unknown functions of many other pigment genes/proteins. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Yuji Yamaguchi
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | |
Collapse
|
192
|
Salazar G, Zlatic S, Craige B, Peden AA, Pohl J, Faundez V. Hermansky-Pudlak syndrome protein complexes associate with phosphatidylinositol 4-kinase type II alpha in neuronal and non-neuronal cells. J Biol Chem 2009; 284:1790-802. [PMID: 19010779 PMCID: PMC2615517 DOI: 10.1074/jbc.m805991200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/04/2008] [Indexed: 11/06/2022] Open
Abstract
The Hermansky-Pudlak syndrome is a disorder affecting endosome sorting. Disease is triggered by defects in any of 15 mouse gene products, which are part of five distinct cytosolic molecular complexes: AP-3, homotypic fusion and vacuole protein sorting, and BLOC-1, -2, and -3. To identify molecular associations of these complexes, we used in vivo cross-linking followed by purification of cross-linked AP-3 complexes and mass spectrometric identification of associated proteins. AP-3 was co-isolated with BLOC-1, BLOC-2, and homotypic fusion and vacuole protein sorting complex subunits; clathrin; and phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha). We previously reported that this membrane-anchored enzyme is a regulator of AP-3 recruitment to membranes and a cargo of AP-3 ( Craige, B., Salazar, G., and Faundez, V. (2008) Mol. Biol. Cell 19, 1415-1426 ). Using cells deficient in different Hermansky-Pudlak syndrome complexes, we identified that BLOC-1, but not BLOC-2 or BLOC-3, deficiencies affect PI4KIIalpha inclusion into AP-3 complexes. BLOC-1, PI4KIIalpha, and AP-3 belong to a tripartite complex, and down-regulation of either PI4KIIalpha, BLOC-1, or AP-3 complexes led to similar LAMP1 phenotypes. Our analysis indicates that BLOC-1 complex modulates the association of PI4KIIalpha with AP-3. These results suggest that AP-3 and BLOC-1 act, either in concert or sequentially, to specify sorting of PI4KIIalpha along the endocytic route.
Collapse
Affiliation(s)
- Gloria Salazar
- Departments of Cell Biology and
Medicine, Division of Cardiology,
the Graduate Program in Biochemistry,
Cell, and Developmental Biology, the
Center for
Neurodegenerative Diseases, and the
Microchemical Facility, Emory University,
Atlanta, Georgia 30322 and the
Cambridge Institute for Medical
Research, University of Cambridge, Hills Road, Cambridge CB20XY, United
Kingdom
| | - Stephanie Zlatic
- Departments of Cell Biology and
Medicine, Division of Cardiology,
the Graduate Program in Biochemistry,
Cell, and Developmental Biology, the
Center for
Neurodegenerative Diseases, and the
Microchemical Facility, Emory University,
Atlanta, Georgia 30322 and the
Cambridge Institute for Medical
Research, University of Cambridge, Hills Road, Cambridge CB20XY, United
Kingdom
| | - Branch Craige
- Departments of Cell Biology and
Medicine, Division of Cardiology,
the Graduate Program in Biochemistry,
Cell, and Developmental Biology, the
Center for
Neurodegenerative Diseases, and the
Microchemical Facility, Emory University,
Atlanta, Georgia 30322 and the
Cambridge Institute for Medical
Research, University of Cambridge, Hills Road, Cambridge CB20XY, United
Kingdom
| | - Andrew A. Peden
- Departments of Cell Biology and
Medicine, Division of Cardiology,
the Graduate Program in Biochemistry,
Cell, and Developmental Biology, the
Center for
Neurodegenerative Diseases, and the
Microchemical Facility, Emory University,
Atlanta, Georgia 30322 and the
Cambridge Institute for Medical
Research, University of Cambridge, Hills Road, Cambridge CB20XY, United
Kingdom
| | - Jan Pohl
- Departments of Cell Biology and
Medicine, Division of Cardiology,
the Graduate Program in Biochemistry,
Cell, and Developmental Biology, the
Center for
Neurodegenerative Diseases, and the
Microchemical Facility, Emory University,
Atlanta, Georgia 30322 and the
Cambridge Institute for Medical
Research, University of Cambridge, Hills Road, Cambridge CB20XY, United
Kingdom
| | - Victor Faundez
- Departments of Cell Biology and
Medicine, Division of Cardiology,
the Graduate Program in Biochemistry,
Cell, and Developmental Biology, the
Center for
Neurodegenerative Diseases, and the
Microchemical Facility, Emory University,
Atlanta, Georgia 30322 and the
Cambridge Institute for Medical
Research, University of Cambridge, Hills Road, Cambridge CB20XY, United
Kingdom
| |
Collapse
|
193
|
The multi-layered regulation of copper translocating P-type ATPases. Biometals 2009; 22:177-90. [PMID: 19130269 DOI: 10.1007/s10534-008-9183-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/07/2008] [Indexed: 12/21/2022]
Abstract
The copper-translocating Menkes (ATP7A, MNK protein) and Wilson (ATP7B, WND protein) P-type ATPases are pivotal for copper (Cu) homeostasis, functioning in the biosynthetic incorporation of Cu into copper-dependent enzymes of the secretory pathway, Cu detoxification via Cu efflux, and specialized roles such as systemic Cu absorption (MNK) and Cu excretion (WND). Essential to these functions is their Cu and hormone-responsive distribution between the trans-Golgi network (TGN) and exocytic vesicles located at or proximal to the apical (WND) or basolateral (MNK) cell surface. Intriguingly, MNK and WND Cu-ATPases expressed in the same tissues perform distinct yet complementary roles. While intramolecular differences may specify their distinct roles, cellular signaling components are predicted to be critical for both differences and synergy between these enzymes. This review focuses on these mechanisms, including the cell signaling pathways that influence trafficking and bi-functionality of Cu-ATPases. Phosphorylation events are hypothesized to play a central role in Cu homeostasis, promoting multi-layered regulation and cross-talk between cuproenzymes and Cu-independent mechanisms.
Collapse
|
194
|
Electron tomography of early melanosomes: implications for melanogenesis and the generation of fibrillar amyloid sheets. Proc Natl Acad Sci U S A 2008; 105:19726-31. [PMID: 19033461 DOI: 10.1073/pnas.0803488105] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Melanosomes are lysosome-related organelles (LROs) in which melanins are synthesized and stored. Early stage melanosomes are characterized morphologically by intralumenal fibrils upon which melanins are deposited in later stages. The integral membrane protein Pmel17 is a component of the fibrils, can nucleate fibril formation in the absence of other pigment cell-specific proteins, and forms amyloid-like fibrils in vitro. Before fibril formation Pmel17 traffics through multivesicular endosomal compartments, but how these compartments participate in downstream events leading to fibril formation is not fully known. By using high-pressure freezing of MNT-1 melanoma cells and freeze substitution to optimize ultrastructural preservation followed by double tilt 3D electron tomography, we show that the amyloid-like fibrils begin to form in multivesicular compartments, where they radiate from the luminal side of intralumenal membrane vesicles. The fibrils in fully formed stage II premelanosomes organize into sheet-like arrays and exclude the remaining intralumenal vesicles, which are smaller and often in continuity with the limiting membrane. These observations indicate that premelanosome fibrils form in association with intralumenal endosomal membranes. We suggest that similar processes regulate amyloid formation in pathological models.
Collapse
|