151
|
miR-9 and miR-140-5p target FoxP2 and are regulated as a function of the social context of singing behavior in zebra finches. J Neurosci 2013; 33:16510-21. [PMID: 24133256 DOI: 10.1523/jneurosci.0838-13.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations in the FOXP2 gene cause speech and language impairments, accompanied by structural and functional abnormalities in brain regions underlying speech-related sensory-motor processing, including the striatum and cerebellum. The sequence and expression patterns of FOXP2 are highly conserved among higher vertebrates. In the zebra finch brain, FoxP2 is expressed in Area X, a striatal nucleus required for vocal learning, and reduced FoxP2 expression impairs dendritic development and vocal learning. The FoxP2 gene encodes a transcription factor that controls the expression of many downstream genes. However, how FOXP2 gene expression is regulated is not clearly understood. miRNAs regulate gene expression post-transcriptionally by targeting the 3'-untranslated regions (UTRs) of mRNAs, leading to translational suppression or mRNA degradation. In this study, we identified miR-9 and miR-140-5p as potential regulators of the FoxP2 gene. We show that both miR-9 and miR-140-5p target specific sequences in the FoxP2 3'-UTR and downregulate FoxP2 protein and mRNA expression in vitro. We also show that the expression of miR-9 and miR-140-5p in Area X of the zebra finch brain is regulated during song development in juvenile zebra finches. We further show that in adult zebra finches the expression of miR-9 and miR-140-5p in Area X is regulated as a function of the social context of song behavior in males singing undirected songs. Our findings reveal a post-transcriptional mechanism that regulates FoxP2 expression and suggest that social vocal behavior can influence the basal ganglia circuit controlling vocal learning via a miRNA-FoxP2 gene regulatory network.
Collapse
|
152
|
Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling important to song variability. Neuron 2013; 80:1464-76. [PMID: 24268418 DOI: 10.1016/j.neuron.2013.09.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 11/22/2022]
Abstract
Mutations of the FOXP2 gene impair speech and language development in humans and shRNA-mediated suppression of the avian ortholog FoxP2 disrupts song learning in juvenile zebra finches. How diminished FoxP2 levels affect vocal control and alter the function of neural circuits important to learned vocalizations remains unclear. Here we show that FoxP2 knockdown in the songbird striatum disrupts developmental and social modulation of song variability. Recordings in anesthetized birds show that FoxP2 knockdown interferes with D1R-dependent modulation of activity propagation in a corticostriatal pathway important to song variability, an effect that may be partly attributable to reduced D1R and DARPP-32 protein levels. Furthermore, recordings in singing birds reveal that FoxP2 knockdown prevents social modulation of singing-related activity in this pathway. These findings show that reduced FoxP2 levels interfere with the dopaminergic modulation of vocal variability, which may impede song and speech development by disrupting reinforcement learning mechanisms.
Collapse
|
153
|
Rubinstein M, de Souza FSJ. Evolution of transcriptional enhancers and animal diversity. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130017. [PMID: 24218630 DOI: 10.1098/rstb.2013.0017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Deciphering the genetic bases that drive animal diversity is one of the major challenges of modern biology. Although four decades ago it was proposed that animal evolution was mainly driven by changes in cis-regulatory DNA elements controlling gene expression rather than in protein-coding sequences, only now are powerful bioinformatics and experimental approaches available to accelerate studies into how the evolution of transcriptional enhancers contributes to novel forms and functions. In the introduction to this Theme Issue, we start by defining the general properties of transcriptional enhancers, such as modularity and the coexistence of tight sequence conservation with transcription factor-binding site shuffling as different mechanisms that maintain the enhancer grammar over evolutionary time. We discuss past and current methods used to identify cell-type-specific enhancers and provide examples of how enhancers originate de novo, change and are lost in particular lineages. We then focus in the central part of this Theme Issue on analysing examples of how the molecular evolution of enhancers may change form and function. Throughout this introduction, we present the main findings of the articles, reviews and perspectives contributed to this Theme Issue that together illustrate some of the great advances and current frontiers in the field.
Collapse
Affiliation(s)
- Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, , C1428ADN Buenos Aires, Argentina
| | | |
Collapse
|
154
|
Rudov A, Rocchi MBL, Accorsi A, Spada G, Procopio AD, Olivieri F, Rippo MR, Albertini MC. Putative miRNAs for the diagnosis of dyslexia, dyspraxia, and specific language impairment. Epigenetics 2013; 8:1023-9. [PMID: 23949389 DOI: 10.4161/epi.26026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Disorders of human communication abilities can be classified into speech and language disorders. Speech disorders (e.g., dyspraxia) affect the sound generation and sequencing, while language disorders (e.g., dyslexia and specific language impairment, or SLI) are deficits in the encoding and decoding of language according to its rules (reading, spelling, grammar). The diagnosis of such disorders is often complicated, especially when a patient presents more than one disorder at the same time. The present review focuses on these challenges. We have combined data available from the literature with an in silico approach in an attempt to identify putative miRNAs that may have a key role in dyspraxia, dyslexia and SLI. We suggest the use of new miRNAs, which could have an important impact on the three diseases. Further, we relate those miRNAs to the axon guidance pathway and discuss possible interactions and the role of likely deregulated proteins. In addition, we describe potential differences in expressional deregulation and its role in the improvement of diagnosis. We encourage experimental investigations to test the data obtained in silico.
Collapse
Affiliation(s)
- Alexander Rudov
- Department of Biomolecular Sciences; Urbino University ''Carlo Bo''; Urbino, Italy
| | | | - Augusto Accorsi
- Department of Biomolecular Sciences; Urbino University ''Carlo Bo''; Urbino, Italy
| | - Giorgio Spada
- Dipartimento di Scienze di Base e Fondamenti; Urbino University ''Carlo Bo''; Urbino, Italy
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Ancona, Italy
| | | |
Collapse
|
155
|
Nudel R, Newbury DF. FOXP2. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2013; 4:547-560. [PMID: 24765219 PMCID: PMC3992897 DOI: 10.1002/wcs.1247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/04/2013] [Accepted: 07/06/2013] [Indexed: 11/30/2022]
Abstract
The forkhead box P2 gene, designated FOXP2, is the first gene implicated in a speech and language disorder. Since its discovery, many studies have been carried out in an attempt to explain the mechanism by which it influences these characteristically human traits. This review presents the story of the discovery of the FOXP2 gene, including early studies of the phenotypic implications of a disruption in the gene. We then discuss recent investigations into the molecular function of the FOXP2 gene, including functional and gene expression studies. We conclude this review by presenting the fascinating results of recent studies of the FOXP2 ortholog in other species that are capable of vocal communication. WIREs Cogn Sci 2013, 4:547–560. doi: 10.1002/wcs.1247
Collapse
Affiliation(s)
- Ron Nudel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dianne F Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
156
|
Nazaryan L, Stefanou EG, Hansen C, Kosyakova N, Bak M, Sharkey FH, Mantziou T, Papanastasiou AD, Velissariou V, Liehr T, Syrrou M, Tommerup N. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur J Hum Genet 2013; 22:338-43. [PMID: 23860044 PMCID: PMC3925275 DOI: 10.1038/ejhg.2013.147] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 11/13/2022] Open
Abstract
Next-generation mate-pair sequencing (MPS) has revealed that many constitutional complex chromosomal rearrangements (CCRs) are associated with local shattering of chromosomal regions (chromothripsis). Although MPS promises to identify the molecular basis of the abnormal phenotypes associated with many CCRs, none of the reported mate-pair sequenced complex rearrangements have been simultaneously studied with state-of-the art molecular cytogenetic techniques. Here, we studied chromothripsis-associated CCR involving chromosomes 2, 5 and 7, associated with global developmental and psychomotor delay and severe speech disorder. We identified three truncated genes: CDH12, DGKB and FOXP2, confirming the role of FOXP2 in severe speech disorder, and suggestive roles of CDH12 and/or DGKB for the global developmental and psychomotor delay. Our study confirmes the power of MPS for detecting breakpoints and truncated genes at near nucleotide resolution in chromothripsis. However, only by combining MPS data with conventional G-banding and extensive fluorescence in situ hybridizations could we delineate the precise structure of the derivative chromosomes.
Collapse
Affiliation(s)
- Lusine Nazaryan
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Eunice G Stefanou
- Laboratory of Medical Genetics, Cytogenetics Unit, Department of Pediatrics, University General Hospital of Patras, Patras, Greece
| | - Claus Hansen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Mads Bak
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Freddie H Sharkey
- Department of Molecular Genetics, Western General Hospital, Edinburgh, UK
| | - Theodora Mantziou
- Laboratory of General Biology, University of Ioannina, Ioannina, Greece
| | | | - Voula Velissariou
- Department of Genetics and Molecular Biology, 'Mitera' General Maternity/Gynecology and Children's Hospital, Hygeia Group, Athens, Greece
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Maria Syrrou
- Laboratory of General Biology, University of Ioannina, Ioannina, Greece
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
157
|
Potential role of human-specific genes, human-specific microRNAs and human-specific non-coding regulatory RNAs in the pathogenesis of systemic sclerosis and Sjögren's syndrome. Autoimmun Rev 2013; 12:1046-51. [PMID: 23684698 DOI: 10.1016/j.autrev.2013.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/24/2013] [Indexed: 12/20/2022]
Abstract
The etiology and pathogenesis of human autoimmune diseases remain unknown despite intensive investigations. Although remarkable progress has been accomplished through genome wide association studies in the identification of genetic factors that may predispose to their occurrence or modify their clinical presentation to date no specific gene abnormalities have been conclusively demonstrated to be responsible for these diseases. The completion of the human and chimpanzee genome sequencing has opened up novel opportunities to examine the possible contribution of human specific genes and other regulatory elements unique to the human genome, such as microRNAs and non-coding RNAs, towards the pathogenesis of a variety of human disorders. Thus, it is likely that these human specific genes and non-coding regulatory elements may be involved in the development or the pathogenesis of various disorders that do not occur in non-human primates including certain autoimmune diseases such as Systemic Sclerosis and Primary Sjögren's Syndrome. Here, we discuss recent evidence supporting the notion that human specific genes or human specific microRNA and other non-coding RNA regulatory elements unique to the human genome may participate in the development or in the pathogenesis of Systemic Sclerosis and Primary Sjögren's Syndrome.
Collapse
|
158
|
Sumoylated MEF2A coordinately eliminates orphan presynaptic sites and promotes maturation of presynaptic boutons. J Neurosci 2013; 33:4726-40. [PMID: 23486945 DOI: 10.1523/jneurosci.4191-12.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic differentiation of axons plays a fundamental role in the establishment of neuronal connectivity. However, the mechanisms that govern presynaptic differentiation in the brain remain largely to be elucidated. We report that knockdown of the transcription factor MEF2A in primary neurons and importantly in the rat cerebellar cortex in vivo robustly increases the density of orphan presynaptic sites. Remarkably, the sumoylated transcriptional repressor form of MEF2A drives the suppression of orphan presynaptic sites. We also identify the gene encoding synaptotagmin 1 (Syt1), which acts locally at presynaptic sites, as a direct repressed target gene of sumoylated MEF2A in neurons, and demonstrate that repression of Syt1 mediates MEF2A-dependent elimination of orphan presynaptic sites. Finally, we uncover a role for the MEF2A-induced elimination of orphan presynaptic sites in the accumulation of presynaptic material at large maturing presynaptic boutons. Collectively, these findings define sumoylated MEF2A and Syt1 as components of a novel cell-intrinsic mechanism that orchestrates presynaptic differentiation in the mammalian brain. Our study has important implications for understanding neuronal connectivity in brain development and disease.
Collapse
|
159
|
Abstract
The evolution of higher cognitive functions in humans is thought to be due, at least in part, to the molecular evolution of gene expression patterns specific to the human brain. In this article, we explore recent and past findings using comparative genomics in human and non-human primate brain to identify these novel human patterns. We suggest additional directions and lines of experimentation that should be taken to improve our understanding of these changes on the human lineage. Finally, we attempt to put into context these genomic changes with biological phenotypes and diseases in humans.
Collapse
Affiliation(s)
- Guang-Zhong Wang
- Department of Neuroscience; UT Southwestern Medical Center; Dallas, TX USA
| | | |
Collapse
|
160
|
Foxp2 mediates sex differences in ultrasonic vocalization by rat pups and directs order of maternal retrieval. J Neurosci 2013; 33:3276-83. [PMID: 23426656 DOI: 10.1523/jneurosci.0425-12.2013] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The FOXP2 gene is central to acquisition of speech and language in humans and vocal production in birds and mammals. Rodents communicate via ultrasonic vocalizations (USVs) and newborn pups emit distress USVs when separated from their dam, thereby facilitating their retrieval. We observed that isolated male rat pups emitted substantially more USV calls and these were characterized by a significantly lower frequency and amplitude compared with female rat pups. Moreover, the dam was more likely to first retrieve male pups back to the nest, then females. The amount of Foxp2 protein was significantly higher in multiple regions of the developing male brain compared with females and a reduction of brain Foxp2 by siRNA eliminated the sex differences in USVs and altered the order of pup retrieval. Our results implicate Foxp2 as a component of the neurobiological basis of sex differences in vocal communication in mammals. We extended these observations to humans, a species reported to have gender differences in language acquisition, and found the amount of FOXP2 protein in the left hemisphere cortex of 4-year-old boys was significantly lower than in age-matched girls.
Collapse
|
161
|
Abstract
The transcription factor FoxP2 has been associated with the development of human speech but the underlying cellular function of FoxP2 is still unclear. Here we provide evidence that FoxP2 regulates genesis of some intermediate progenitors and neurons in the mammalian cortex, one of the key centers for human speech. Specifically, knockdown of FoxP2 in embryonic cortical precursors inhibits neurogenesis, at least in part by inhibiting the transition from radial glial precursors to neurogenic intermediate progenitors. Moreover, overexpression of human, but not mouse, FoxP2 enhances the genesis of intermediate progenitors and neurons. In contrast, expression of a human FoxP2 mutant that causes vocalization deficits decreases neurogenesis, suggesting that in the murine system human FoxP2 acts as a gain-of-function protein, while a human FoxP2 mutant acts as a dominant-inhibitory protein. These results support the idea that FoxP2 regulates the transition from neural precursors to transit-amplifying progenitors and ultimately neurons, and shed light upon the molecular changes that might contribute to evolution of the mammalian cortex.
Collapse
|
162
|
Walters RG, Coin LJM, Ruokonen A, de Smith AJ, El-Sayed Moustafa JS, Jacquemont S, Elliott P, Esko T, Hartikainen AL, Laitinen J, Männik K, Martinet D, Meyre D, Nauck M, Schurmann C, Sladek R, Thorleifsson G, Thorsteinsdóttir U, Valsesia A, Waeber G, Zufferey F, Balkau B, Pattou F, Metspalu A, Völzke H, Vollenweider P, Stefansson K, Järvelin MR, Beckmann JS, Froguel P, Blakemore AIF. Rare genomic structural variants in complex disease: lessons from the replication of associations with obesity. PLoS One 2013; 8:e58048. [PMID: 23554873 PMCID: PMC3595275 DOI: 10.1371/journal.pone.0058048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 01/30/2013] [Indexed: 01/19/2023] Open
Abstract
The limited ability of common variants to account for the genetic contribution to complex disease has prompted searches for rare variants of large effect, to partly explain the 'missing heritability'. Analyses of genome-wide genotyping data have identified genomic structural variants (GSVs) as a source of such rare causal variants. Recent studies have reported multiple GSV loci associated with risk of obesity. We attempted to replicate these associations by similar analysis of two familial-obesity case-control cohorts and a population cohort, and detected GSVs at 11 out of 18 loci, at frequencies similar to those previously reported. Based on their reported frequencies and effect sizes (OR≥25), we had sufficient statistical power to detect the large majority (80%) of genuine associations at these loci. However, only one obesity association was replicated. Deletion of a 220 kb region on chromosome 16p11.2 has a carrier population frequency of 2×10(-4) (95% confidence interval [9.6×10(-5)-3.1×10(-4)]); accounts overall for 0.5% [0.19%-0.82%] of severe childhood obesity cases (P = 3.8×10(-10); odds ratio = 25.0 [9.9-60.6]); and results in a mean body mass index (BMI) increase of 5.8 kg.m(-2) [1.8-10.3] in adults from the general population. We also attempted replication using BMI as a quantitative trait in our population cohort; associations with BMI at or near nominal significance were detected at two further loci near KIF2B and within FOXP2, but these did not survive correction for multiple testing. These findings emphasise several issues of importance when conducting rare GSV association, including the need for careful cohort selection and replication strategy, accurate GSV identification, and appropriate correction for multiple testing and/or control of false discovery rate. Moreover, they highlight the potential difficulty in replicating rare CNV associations across different populations. Nevertheless, we show that such studies are potentially valuable for the identification of variants making an appreciable contribution to complex disease.
Collapse
Affiliation(s)
- Robin G. Walters
- Department of Genomics of Common Disease, Imperial College London, London, United Kingdom
- Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, United Kingdom
| | - Lachlan J. M. Coin
- Department of Genomics of Common Disease, Imperial College London, London, United Kingdom
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Aimo Ruokonen
- Institute of Diagnostics, Clinical Chemistry, University of Oulu, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| | - Adam J. de Smith
- Department of Genomics of Common Disease, Imperial College London, London, United Kingdom
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | | | - Sebastien Jacquemont
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- MRC Health Protection Agency (HPA) Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Tõnu Esko
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Anna-Liisa Hartikainen
- Institute of Clinical Sciences/Obstetrics and Gynecology, University of Oulu, Oulu, Finland
| | | | - Katrin Männik
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- The Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Danielle Martinet
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - David Meyre
- CNRS 8199-Institute of Biology, Pasteur Institute, Lille, France
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Claudia Schurmann
- Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Rob Sladek
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
- Department of Medicine and Human Genetics, McGill University, Montreal, Canada
| | | | - Unnur Thorsteinsdóttir
- deCODE Genetics, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Armand Valsesia
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Gerard Waeber
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Flore Zufferey
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Beverley Balkau
- INSERM, CESP Centre for Research in Epidemiology and Population Health, U1018, Villejuif, France
- University Paris Sud 11, UMRS 1018, Villejuif, France
| | - François Pattou
- INSERM U859, Lille, France
- Université Lille Nord de France, Centre Hospitalier Universitaire Lille, Lille, France
| | - Andres Metspalu
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Henry Völzke
- Institute for Community Medicine, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Peter Vollenweider
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Kári Stefansson
- deCODE Genetics, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- MRC Health Protection Agency (HPA) Centre for Environment and Health, Imperial College London, London, United Kingdom
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Lifecourse and Services, National Institute for Health and Welfare, Oulu, Finland
| | - Jacques S. Beckmann
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Philippe Froguel
- Department of Genomics of Common Disease, Imperial College London, London, United Kingdom
- CNRS 8199-Institute of Biology, Pasteur Institute, Lille, France
| | - Alexandra I. F. Blakemore
- Department of Genomics of Common Disease, Imperial College London, London, United Kingdom
- Section of Investigative Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
163
|
|
164
|
Graham SA, Fisher SE. Decoding the genetics of speech and language. Curr Opin Neurobiol 2013; 23:43-51. [PMID: 23228431 DOI: 10.1016/j.conb.2012.11.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 12/31/2022]
|
165
|
Abstract
What evolutionary events led to the emergence of human cognition? Although the genetic differences separating modern humans from both non-human primates (for example, chimpanzees) and archaic hominins (Neanderthals and Denisovans) are known, linking human-specific mutations to the cognitive phenotype remains a challenge. One strategy is to focus on human-specific changes at the level of intermediate phenotypes, such as gene expression and metabolism, in conjunction with evolutionary changes in gene regulation involving transcription factors, microRNA and proximal regulatory elements. In this Review we show how this strategy has yielded some of the first hints about the mechanisms of human cognition.
Collapse
|
166
|
Connecting signaling pathways underlying communication to ASD vulnerability. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:97-133. [PMID: 24290384 DOI: 10.1016/b978-0-12-418700-9.00004-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Language is a human-specific trait that likely facilitated the rapid increase in higher cognitive function in our species. A consequence of the selective pressures that have permitted language and cognition to flourish in humans is the unique vulnerability of humans to developing cognitive disorders such as autism. Therefore, progress in understanding the genetic and molecular mechanisms of language evolution should provide insight into such disorders. Here, we discuss the few genes that have been identified in both autism-related pathways and language. We also detail the use of animal models to uncover the function of these genes at a mechanistic and circuit level. Finally, we present the use of comparative genomics to identify novel genes and gene networks involved in autism. Together, all of these approaches will allow for a broader and deeper view of the molecular brain mechanisms involved in the evolution of language and the gene disruptions associated with autism.
Collapse
|
167
|
Kwan KY. Transcriptional dysregulation of neocortical circuit assembly in ASD. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:167-205. [PMID: 24290386 DOI: 10.1016/b978-0-12-418700-9.00006-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorders (ASDs) impair social cognition and communication, key higher-order functions centered in the human neocortex. The assembly of neocortical circuitry is a precisely regulated developmental process susceptible to genetic alterations that can ultimately affect cognitive abilities. Because ASD is an early onset neurodevelopmental disorder that disrupts functions executed by the neocortex, miswiring of neocortical circuits has been hypothesized to be an underlying mechanism of ASD. This possibility is supported by emerging genetic findings and data from imaging studies. Recent research on neocortical development has identified transcription factors as key determinants of neocortical circuit assembly, mediating diverse processes including neuronal specification, migration, and wiring. Many of these TFs (TBR1, SOX5, FEZF2, and SATB2) have been implicated in ASD. Here, I will discuss the functional roles of these transcriptional programs in neocortical circuit development and their neurobiological implications for the emerging etiology of ASD.
Collapse
Affiliation(s)
- Kenneth Y Kwan
- Department of Human Genetics, Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
168
|
Rudie JD, Hernandez LM, Brown JA, Beck-Pancer D, Colich NL, Gorrindo P, Thompson PM, Geschwind DH, Bookheimer SY, Levitt P, Dapretto M. Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron 2012; 75:904-15. [PMID: 22958829 DOI: 10.1016/j.neuron.2012.07.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2012] [Indexed: 11/18/2022]
Abstract
As genes that confer increased risk for autism spectrum disorder (ASD) are identified, a crucial next step is to determine how these risk factors impact brain structure and function and contribute to disorder heterogeneity. With three converging lines of evidence, we show that a common, functional ASD risk variant in the Met Receptor Tyrosine Kinase (MET) gene is a potent modulator of key social brain circuitry in children and adolescents with and without ASD. MET risk genotype predicted atypical fMRI activation and deactivation patterns to social stimuli (i.e., emotional faces), as well as reduced functional and structural connectivity in temporo-parietal regions known to have high MET expression, particularly within the default mode network. Notably, these effects were more pronounced in individuals with ASD. These findings highlight how genetic stratification may reduce heterogeneity and help elucidate the biological basis of complex neuropsychiatric disorders such as ASD.
Collapse
Affiliation(s)
- Jeffrey D Rudie
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA 90095-7085, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Shulha HP, Crisci JL, Reshetov D, Tushir JS, Cheung I, Bharadwaj R, Chou HJ, Houston IB, Peter CJ, Mitchell AC, Yao WD, Myers RH, Chen JF, Preuss TM, Rogaev EI, Jensen JD, Weng Z, Akbarian S. Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. PLoS Biol 2012; 10:e1001427. [PMID: 23185133 PMCID: PMC3502543 DOI: 10.1371/journal.pbio.1001427] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/12/2012] [Indexed: 11/18/2022] Open
Abstract
Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5-1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans.
Collapse
Affiliation(s)
- Hennady P. Shulha
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jessica L. Crisci
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Denis Reshetov
- Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Moscow, Russian Federation
| | - Jogender S. Tushir
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Iris Cheung
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rahul Bharadwaj
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hsin-Jung Chou
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Isaac B. Houston
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cyril J. Peter
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Amanda C. Mitchell
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Wei-Dong Yao
- New England Primate Center, Southboro, Massachusetts, United States of America
| | - Richard H. Myers
- Department of Neurology, Boston University, Boston, Massachusetts, United States of America
| | - Jiang-fan Chen
- Department of Neurology, Boston University, Boston, Massachusetts, United States of America
| | - Todd M. Preuss
- Yerkes National Primate Research Center/Emory University, Atlanta, Georgia, United States of America
| | - Evgeny I. Rogaev
- Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Moscow, Russian Federation
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
| | - Jeffrey D. Jensen
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
170
|
Kim DS, Hahn Y. Gains of ubiquitylation sites in highly conserved proteins in the human lineage. BMC Bioinformatics 2012; 13:306. [PMID: 23157318 PMCID: PMC3561281 DOI: 10.1186/1471-2105-13-306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 11/14/2012] [Indexed: 01/03/2023] Open
Abstract
Background Post-translational modification of lysine residues of specific proteins by ubiquitin modulates the degradation, localization, and activity of these target proteins. Here, we identified gains of ubiquitylation sites in highly conserved regions of human proteins that occurred during human evolution. Results We analyzed human ubiquitylation site data and multiple alignments of orthologous mammalian proteins including those from humans, primates, other placental mammals, opossum, and platypus. In our analysis, we identified 281 ubiquitylation sites in 252 proteins that first appeared along the human lineage during primate evolution: one protein had four novel sites; four proteins had three sites each; 18 proteins had two sites each; and the remaining 229 proteins had one site each. PML, which is involved in neurodevelopment and neurodegeneration, acquired three sites, two of which have been reported to be involved in the degradation of PML. Thirteen human proteins, including ERCC2 (also known as XPD) and NBR1, gained human-specific ubiquitylated lysines after the human-chimpanzee divergence. ERCC2 has a Lys/Gln polymorphism, the derived (major) allele of which confers enhanced DNA repair capacity and reduced cancer risk compared with the ancestral (minor) allele. NBR1 and eight other proteins that are involved in the human autophagy protein interaction network gained a novel ubiquitylation site. Conclusions The gain of novel ubiquitylation sites could be involved in the evolution of protein degradation and other regulatory networks. Although gains of ubiquitylation sites do not necessarily equate to adaptive evolution, they are useful candidates for molecular functional analyses to identify novel advantageous genetic modifications and innovative phenotypes acquired during human evolution.
Collapse
Affiliation(s)
- Dong Seon Kim
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, 156-756, Korea.
| | | |
Collapse
|
171
|
Konopka G, Friedrich T, Davis-Turak J, Winden K, Oldham MC, Gao F, Chen L, Wang GZ, Luo R, Preuss TM, Geschwind DH. Human-specific transcriptional networks in the brain. Neuron 2012; 75:601-17. [PMID: 22920253 DOI: 10.1016/j.neuron.2012.05.034] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2012] [Indexed: 12/25/2022]
Abstract
Understanding human-specific patterns of brain gene expression and regulation can provide key insights into human brain evolution and speciation. Here, we use next-generation sequencing, and Illumina and Affymetrix microarray platforms, to compare the transcriptome of human, chimpanzee, and macaque telencephalon. Our analysis reveals a predominance of genes differentially expressed within human frontal lobe and a striking increase in transcriptional complexity specific to the human lineage in the frontal lobe. In contrast, caudate nucleus gene expression is highly conserved. We also identify gene coexpression signatures related to either neuronal processes or neuropsychiatric diseases, including a human-specific module with CLOCK as its hub gene and another module enriched for neuronal morphological processes and genes coexpressed with FOXP2, a gene important for language evolution. These data demonstrate that transcriptional networks have undergone evolutionary remodeling even within a given brain region, providing a window through which to view the foundation of uniquely human cognitive capacities.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Li J, Zhang Z. miRNA regulatory variation in human evolution. Trends Genet 2012; 29:116-24. [PMID: 23128010 DOI: 10.1016/j.tig.2012.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022]
Abstract
Recent advancements have revealed a complex post-transcriptional regulatory network in humans involving miRNAs. However, the contribution of miRNAs to human evolution, especially interindividual variation associated with miRNAs, is only beginning to be studied. In this article, we illustrate the extent of variation in miRNA-mediated post-transcriptional regulation in humans. Based on evidence from recent studies, we argue that the evolution of post-transcriptional control may be adaptive, and that it not only complements the primary transcriptional regulation by transcription factors (TFs), but also diversifies gene expression phenotypes, thereby generating genetic novelty on which natural selection subsequently acts. Given that current evolutionary analyses and genotype-phenotype mapping are primarily focused on protein-coding genes and TF-mediated regulations, comprehensive examination of post-transcriptional variations should be included in future studies to add a new dimension to understanding of human phenotypic evolution.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
173
|
Schlebusch CM, Skoglund P, Sjödin P, Gattepaille LM, Hernandez D, Jay F, Li S, De Jongh M, Singleton A, Blum MGB, Soodyall H, Jakobsson M. Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science 2012; 338:374-9. [PMID: 22997136 PMCID: PMC8978294 DOI: 10.1126/science.1227721] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The history of click-speaking Khoe-San, and African populations in general, remains poorly understood. We genotyped ~2.3 million single-nucleotide polymorphisms in 220 southern Africans and found that the Khoe-San diverged from other populations ≥100,000 years ago, but population structure within the Khoe-San dated back to about 35,000 years ago. Genetic variation in various sub-Saharan populations did not localize the origin of modern humans to a single geographic region within Africa; instead, it indicated a history of admixture and stratification. We found evidence of adaptation targeting muscle function and immune response; potential adaptive introgression of protection from ultraviolet light; and selection predating modern human diversification, involving skeletal and neurological development. These new findings illustrate the importance of African genomic diversity in understanding human evolutionary history.
Collapse
Affiliation(s)
- Carina M. Schlebusch
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Pontus Skoglund
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Per Sjödin
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Lucie M. Gattepaille
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Flora Jay
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Sen Li
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Michael De Jongh
- Department of Anthropology and Archaeology, University of South Africa, Pretoria, South Africa
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael G. B. Blum
- Laboratoire TIMC-IMAG UMR 5525, Université Joseph Fourier, Centre National de la Recherche Scientifique, Grenoble, France
| | - Himla Soodyall
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Mattias Jakobsson
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
174
|
Sherwood CC, Duka T. Now that we've got the map, where are we going? Moving from gene candidate lists to function in studies of brain evolution. BRAIN, BEHAVIOR AND EVOLUTION 2012; 80:167-9. [PMID: 23095366 DOI: 10.1159/000342300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, D.C., USA.
| | | |
Collapse
|
175
|
Abstract
The degree to which genes and environment determine variations in brain structure and function is fundamentally important to understanding normal and disease-related patterns of neural organization and activity. We studied genetic contributions to the midsagittal area of the corpus callosum (CC) in pedigreed baboons (68 males, 112 females) to replicate findings of high genetic contribution to that area of the CC reported in humans, and to determine if the heritability of the CC midsagittal area in adults was modulated by fetal development rate. Measurements of callosal area were obtained from high-resolution MRI scans. Heritability was estimated from pedigree-based maximum likelihood estimation of genetic and non-genetic variance components as implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR). Our analyses revealed significant heritability for the total area of the CC and all of its subdivisions, with h2 = .46 for the total CC, and h2 = .54, .37, .62, .56, and .29 for genu, anterior midbody, medial midbody, posterior midbody and splenium, respectively. Genetic correlation analysis demonstrated that the individual subdivisions shared between 41% and 98% of genetic variability. Combined with previous research reporting high heritability of other brain structures in baboons, these results reveal a consistent pattern of high heritability for brain morphometric measures in baboons.
Collapse
|
176
|
Zhang YE, Landback P, Vibranovski M, Long M. New genes expressed in human brains: implications for annotating evolving genomes. Bioessays 2012; 34:982-91. [PMID: 23001763 DOI: 10.1002/bies.201200008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New genes have frequently formed and spread to fixation in a wide variety of organisms, constituting abundant sets of lineage-specific genes. It was recently reported that an excess of primate-specific and human-specific genes were upregulated in the brains of fetuses and infants, and especially in the prefrontal cortex, which is involved in cognition. These findings reveal the prevalent addition of new genetic components to the transcriptome of the human brain. More generally, these findings suggest that genomes are continually evolving in both sequence and content, eroding the conservation endowed by common ancestry. Despite increasing recognition of the importance of new genes, we highlight here that these genes are still seriously under-characterized in functional studies and that new gene annotation is inconsistent in current practice. We propose an integrative approach to annotate new genes, taking advantage of functional and evolutionary genomic methods. We finally discuss how the refinement of new gene annotation will be important for the detection of evolutionary forces governing new gene origination.
Collapse
Affiliation(s)
- Yong E Zhang
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, P.R. China
| | | | | | | |
Collapse
|
177
|
|
178
|
Varieties of behavioral natural variation. Curr Opin Neurobiol 2012; 23:24-8. [PMID: 22889698 DOI: 10.1016/j.conb.2012.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 07/11/2012] [Accepted: 07/18/2012] [Indexed: 12/24/2022]
Abstract
Behavior is flexible at different timescales, modifiable by experience in the short term and by evolution in the long term. In order to understand how behavior evolves, we must both understand how trait differences between individuals are inherited and how a subset of these differences get fixed within a species' lineage. Work over the past few decades has shown that this will not be easy; the genetic basis of heritable behavioral differences between two individuals is typically complex, caused by multiple genetic variants of small effect. Here I describe how the underlying genetic networks impact the types of genetic variants that can be selected for by evolution.
Collapse
|
179
|
Igarashi K, Kitajima S, Aisaki KI, Tanemura K, Taquahashi Y, Moriyama N, Ikeno E, Matsuda N, Saga Y, Blumberg B, Kanno J. Development of humanized steroid and xenobiotic receptor mouse by homologous knock-in of the human steroid and xenobiotic receptor ligand binding domain sequence. J Toxicol Sci 2012; 37:373-80. [PMID: 22467028 DOI: 10.2131/jts.37.373] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The human steroid and xenobiotic receptor (SXR), (also known as pregnane X receptor PXR, and NR1I2) is a low affinity sensor that responds to a variety of endobiotic, nutritional and xenobiotic ligands. SXR activates transcription of Cytochrome P450, family 3, subfamily A (CYP3A) and other important metabolic enzymes to up-regulate catabolic pathways mediating xenobiotic elimination. One key feature that demarcates SXR from other nuclear receptors is that the human and rodent orthologues exhibit different ligand preference for a subset of toxicologically important chemicals. This difference leads to a profound problem for rodent studies to predict toxicity in humans. The objective of this study is to generate a new humanized mouse line, which responds systemically to human-specific ligands in order to better predict systemic toxicity in humans. For this purpose, the ligand binding domain (LBD) of the human SXR was homologously knocked-in to the murine gene replacing the endogenous LBD. The LBD-humanized chimeric gene was expressed in all ten organs examined, including liver, small intestine, stomach, kidney and lung in a pattern similar to the endogenous gene expressed in the wild-type (WT) mouse. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that the human-selective ligand, rifampicin induced Cyp3a11 and Carboxylesterase 6 (Ces6) mRNA expression in liver and intestine, whereas the murine-selective ligand, pregnenolone-16-carbonitrile did not. This new humanized mouse line should provide a useful tool for assessing whole body toxicity, whether acute, chronic or developmental, induced by human selective ligands themselves and subsequently generated metabolites that can trigger further toxic responses mediated secondarily by other receptors distributed body-wide.
Collapse
Affiliation(s)
- Katsuhide Igarashi
- Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Klomp JA, Furge KA. Genome-wide matching of genes to cellular roles using guilt-by-association models derived from single sample analysis. BMC Res Notes 2012; 5:370. [PMID: 22824328 PMCID: PMC3599284 DOI: 10.1186/1756-0500-5-370] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background High-throughput methods that ascribe a cellular or physiological function for each gene product are useful to understand the roles of genes that have not been extensively characterized by molecular or genetic approaches. One method to infer gene function is "guilt-by-association", in which the expression pattern of a poorly characterized gene is shown to co-vary with the expression of better-characterized genes. The function of the poorly characterized gene is inferred from the known function(s) of the well-described genes. For example, genes co-expressed with transcripts that vary during the cell cycle, development, environmental stresses, and with oncogenesis have been implicated in those processes. Findings While examining the expression characteristics of several poorly characterized genes, we noted that we could associate each of the genes with a cellular phenotype by correlating individual gene expression changes with gene set enrichment scores from individual samples. We evaluated the effectiveness of this approach using a modest sized gene expression data set (expO) and a compendium of gene expression phenotypes (MSigDBv3.0). We found the transcripts that correlated best with enrichment in mitochondrial and lysosomal gene sets were mostly related to those processes (89/100 and 44/50, respectively). The reciprocal evaluation, ranking gene sets according to correlation of enrichment with an individual gene’s expression, also reflected known associations for prominent genes in the biomedical literature (16/19). In evaluating the model, we also found that 4% of the genome encodes proteins that are associated with small molecule and small peptide signal transduction gene sets, implicating a large number of genes in both internal and external environmental sensing. Conclusions Our results show that this approach is useful to infer functions of disparate sets of genes. This method mirrors the biological experimental approaches used by others to associate individual genes with defined gene expression changes. Moreover, the approach can be used beyond discovering genes related to a cellular process to discover meaningful expression phenotypes from a compendium that are associated with a given gene. The effectiveness, versatility, and breadth of this approach make possible its application in a variety of contexts and with a variety of downstream analyses.
Collapse
Affiliation(s)
- Jeff A Klomp
- Center for Cancer Genomics and Computational Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | | |
Collapse
|
181
|
Regulatory element copy number differences shape primate expression profiles. Proc Natl Acad Sci U S A 2012; 109:12656-61. [PMID: 22797897 DOI: 10.1073/pnas.1205199109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gene expression differences are shaped by selective pressures and contribute to phenotypic differences between species. We identified 964 copy number differences (CNDs) of conserved sequences across three primate species and examined their potential effects on gene expression profiles. Samples with copy number different genes had significantly different expression than samples with neutral copy number. Genes encoding regulatory molecules differed in copy number and were associated with significant expression differences. Additionally, we identified 127 CNDs that were processed pseudogenes and some of which were expressed. Furthermore, there were copy number-different regulatory regions such as ultraconserved elements and long intergenic noncoding RNAs with the potential to affect expression. We postulate that CNDs of these conserved sequences fine-tune developmental pathways by altering the levels of RNA.
Collapse
|
182
|
de Jong S, Boks MPM, Fuller TF, Strengman E, Janson E, de Kovel CGF, Ori APS, Vi N, Mulder F, Blom JD, Glenthøj B, Schubart CD, Cahn W, Kahn RS, Horvath S, Ophoff RA. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes. PLoS One 2012; 7:e39498. [PMID: 22761806 PMCID: PMC3384650 DOI: 10.1371/journal.pone.0039498] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 05/21/2012] [Indexed: 01/20/2023] Open
Abstract
Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network.
Collapse
Affiliation(s)
- Simone de Jong
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marco P. M. Boks
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tova F. Fuller
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eric Strengman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
| | - Esther Janson
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Anil P. S. Ori
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
| | - Nancy Vi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
| | - Flip Mulder
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Dirk Blom
- Parnassia Bravo Group, The Hague, The Netherlands
- Department of Psychiatry, University of Groningen, Groningen, The Netherlands
| | - Birte Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Psychiatric University Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Chris D. Schubart
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René S. Kahn
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Roel A. Ophoff
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
183
|
Bacon C, Rappold GA. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Hum Genet 2012; 131:1687-98. [PMID: 22736078 PMCID: PMC3470686 DOI: 10.1007/s00439-012-1193-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/11/2012] [Indexed: 12/15/2022]
Abstract
Rare disruptions of FOXP2 have been strongly implicated in deficits in language development. Research over the past decade has suggested a role in the formation of underlying neural circuits required for speech. Until recently no evidence existed to suggest that the closely related FOXP1 gene played a role in neurodevelopmental processes. However, in the last few years, novel rare disruptions in FOXP1 have been reported in multiple cases of cognitive dysfunction, including intellectual disability and autism spectrum disorder, together with language impairment. As FOXP1 and FOXP2 form heterodimers for transcriptional regulation, one may assume that they co-operate in common neurodevelopmental pathways through the co-regulation of common targets. Here we compare the phenotypic consequences of FOXP1 and FOXP2 impairment, drawing on well-known studies from the past as well as recent exciting findings and consider what these tell us regarding the functions of these two genes in neural development.
Collapse
Affiliation(s)
- Claire Bacon
- Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Gudrun A. Rappold
- Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| |
Collapse
|
184
|
Abstract
The rise of comparative genomics and related technologies has added important new dimensions to the study of human evolution. Our knowledge of the genes that underwent expression changes or were targets of positive selection in human evolution is rapidly increasing, as is our knowledge of gene duplications, translocations, and deletions. It is now clear that the genetic differences between humans and chimpanzees are far more extensive than previously thought; their genomes are not 98% or 99% identical. Despite the rapid growth in our understanding of the evolution of the human genome, our understanding of the relationship between genetic changes and phenotypic changes is tenuous. This is true even for the most intensively studied gene, FOXP2, which underwent positive selection in the human terminal lineage and is thought to have played an important role in the evolution of human speech and language. In part, the difficulty of connecting genes to phenotypes reflects our generally poor knowledge of human phenotypic specializations, as well as the difficulty of interpreting the consequences of genetic changes in species that are not amenable to invasive research. On the positive side, investigations of FOXP2, along with genomewide surveys of gene-expression changes and selection-driven sequence changes, offer the opportunity for "phenotype discovery," providing clues to human phenotypic specializations that were previously unsuspected. What is more, at least some of the specializations that have been proposed are amenable to testing with noninvasive experimental techniques appropriate for the study of humans and apes.
Collapse
Affiliation(s)
- Todd M Preuss
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
185
|
Fogel BL, Wexler E, Wahnich A, Friedrich T, Vijayendran C, Gao F, Parikshak N, Konopka G, Geschwind DH. RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum Mol Genet 2012; 21:4171-86. [PMID: 22730494 DOI: 10.1093/hmg/dds240] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA splicing plays a critical role in the programming of neuronal differentiation and, consequently, normal human neurodevelopment, and its disruption may underlie neurodevelopmental and neuropsychiatric disorders. The RNA-binding protein, fox-1 homolog (RBFOX1; also termed A2BP1 or FOX1), is a neuron-specific splicing factor predicted to regulate neuronal splicing networks clinically implicated in neurodevelopmental disease, including autism spectrum disorder (ASD), but only a few targets have been experimentally identified. We used RNA sequencing to identify the RBFOX1 splicing network at a genome-wide level in primary human neural stem cells during differentiation. We observe that RBFOX1 regulates a wide range of alternative splicing events implicated in neuronal development and maturation, including transcription factors, other splicing factors and synaptic proteins. Downstream alterations in gene expression define an additional transcriptional network regulated by RBFOX1 involved in neurodevelopmental pathways remarkably parallel to those affected by splicing. Several of these differentially expressed genes are further implicated in ASD and related neurodevelopmental diseases. Weighted gene co-expression network analysis demonstrates a high degree of connectivity among these disease-related genes, highlighting RBFOX1 as a key factor coordinating the regulation of both neurodevelopmentally important alternative splicing events and clinically relevant neuronal transcriptional programs in the development of human neurons.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Sherwood CC, Bauernfeind AL, Bianchi S, Raghanti MA, Hof PR. Human brain evolution writ large and small. PROGRESS IN BRAIN RESEARCH 2012; 195:237-54. [PMID: 22230630 DOI: 10.1016/b978-0-444-53860-4.00011-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human evolution was marked by an extraordinary increase in total brain size relative to body size. While it is certain that increased encephalization is an important factor contributing to the origin of our species-specific cognitive abilities, it is difficult to disentangle which aspects of human neural structure and function are correlated by-products of brain size expansion from those that are specifically related to particular psychological specializations, such as language and enhanced "mentalizing" abilities. In this chapter, we review evidence from allometric scaling studies demonstrating that much of human neocortical organization can be understood as a product of brain enlargement. Defining extra-allometric specializations in humans is often hampered by a severe lack of comparative data from the same neuroanatomical variables across a broad range of primates. When possible, we highlight evidence for features of human neocortical architecture and function that cannot be easily explained as correlates of brain size and, hence, might be more directly associated with the evolution of uniquely human cognitive capacities.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
187
|
Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, de Marchena J, Jin WL, Vanderhaeghen P, Ghosh A, Sassa T, Polleux F. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 2012; 149:923-35. [PMID: 22559944 DOI: 10.1016/j.cell.2012.03.034] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 12/28/2022]
Abstract
Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development.
Collapse
Affiliation(s)
- Cécile Charrier
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Benítez-Burraco A. Aspectos problemáticos del análisis genético de los trastornos específicos del lenguaje: FOXP2 como paradigma. Neurologia 2012; 27:225-33. [DOI: 10.1016/j.nrl.2011.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 01/05/2023] Open
|
189
|
Benítez-Burraco A. Problematic aspects of the genetic analysis of the specific disorders of the language: FOXP2 as paradigm. NEUROLOGÍA (ENGLISH EDITION) 2012. [DOI: 10.1016/j.nrleng.2012.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
190
|
Hilliard AT, Miller JE, Fraley ER, Horvath S, White SA. Molecular microcircuitry underlies functional specification in a basal ganglia circuit dedicated to vocal learning. Neuron 2012; 73:537-52. [PMID: 22325205 DOI: 10.1016/j.neuron.2012.01.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2012] [Indexed: 12/30/2022]
Abstract
Similarities between speech and birdsong make songbirds advantageous for investigating the neurogenetics of learned vocal communication--a complex phenotype probably supported by ensembles of interacting genes in cortico-basal ganglia pathways of both species. To date, only FoxP2 has been identified as critical to both speech and birdsong. We performed weighted gene coexpression network analysis on microarray data from singing zebra finches to discover gene ensembles regulated during vocal behavior. We found ∼2,000 singing-regulated genes comprising three coexpression groups unique to area X, the basal ganglia subregion dedicated to learned vocalizations. These contained known targets of human FOXP2 and potential avian targets. We validated biological pathways not previously implicated in vocalization. Higher-order gene coexpression patterns, rather than expression levels, molecularly distinguish area X from the ventral striato-pallidum during singing. The previously unknown structure of singing-driven networks enables prioritization of molecular interactors that probably bear on human motor disorders, especially those affecting speech.
Collapse
Affiliation(s)
- Austin T Hilliard
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
191
|
Ament SA, Wang Y, Chen CC, Blatti CA, Hong F, Liang ZS, Negre N, White KP, Rodriguez-Zas SL, Mizzen CA, Sinha S, Zhong S, Robinson GE. The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression. PLoS Genet 2012; 8:e1002596. [PMID: 22479195 PMCID: PMC3315457 DOI: 10.1371/journal.pgen.1002596] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 01/30/2012] [Indexed: 01/30/2023] Open
Abstract
Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues. Animals use behavior as one of the principal means of meeting their basic needs and responding flexibly to changes in their environment. An emerging insight is that changes in behavior are associated with massive changes in gene expression in the brain, but we know relatively little about how these changes are regulated. One important class of gene regulators are transcription factors (TF), proteins that orchestrate the expression of tens to thousands of genes. We discovered that ultraspiracle (USP), a TF previously known primarily for its role in development, regulates behavioral change in the honey bee; and we show that USP causes behaviorally related changes in gene expression by mediating responses to an endocrine regulator, juvenile hormone. We present evidence that these effects on gene expression occur through combinatorial interactions between USP and other TFs, and that these hormonally related transcriptional networks are preserved between two tissues with causal roles in behavioral plasticity: the brain and the fat body, a peripheral nutrient-sensing organ. These results suggest that behavior is subserved by complex interactions between genes and gene networks, occurring both in the brain and in peripheral tissues. More generally our results suggest that molecular systems biology is a promising paradigm by which to understand the mechanistic basis for behavior.
Collapse
Affiliation(s)
- Seth A. Ament
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ying Wang
- Department of Cellular and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Chieh-Chun Chen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Charles A. Blatti
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Feng Hong
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Zhengzheng S. Liang
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nicolas Negre
- Institute for Genomics and Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Kevin P. White
- Institute for Genomics and Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Craig A. Mizzen
- Department of Cellular and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sheng Zhong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gene E. Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Cellular and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
192
|
Bailey J. Lessons from chimpanzee-based research on human disease: the implications of genetic differences. Altern Lab Anim 2012; 39:527-40. [PMID: 22243397 DOI: 10.1177/026119291103900608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Assertions that the use of chimpanzees to investigate human diseases is valid scientifically are frequently based on a reported 98-99% genetic similarity between the species. Critical analyses of the relevance of chimpanzee studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for the chimpanzee to constitute a good model for research, and furthermore, that chimpanzee data do not translate well to progress in clinical practice for humans. Leading examples include the minimal citations of chimpanzee research that is relevant to human medicine, the highly different pathology of HIV/AIDS and hepatitis C virus infection in the two species, the lack of correlation in the efficacy of vaccines and treatments between chimpanzees and humans, and the fact that chimpanzees are not useful for research on human cancer. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and chimpanzee genetic sequences is of little consequence for biomedical research. The extrapolation of biomedical data from the chimpanzee to the human is therefore highly unreliable, and the use of the chimpanzee must be considered of little value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to science.
Collapse
|
193
|
Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res 2012; 2012:302875. [PMID: 22536229 PMCID: PMC3318212 DOI: 10.1155/2012/302875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023] Open
Abstract
Compartmentalized redox faults are common to ageing diseases. Dietary constituents are catabolized to NAD(H) donating electrons producing proton-based bioenergy in coevolved, cross-species and cross-organ networks. Nicotinamide and NAD deficiency from poor diet or high expenditure causes pellagra, an ageing and dementing disorder with lost robustness to infection and stress. Nicotinamide and stress induce Nicotinamide-N-methyltransferase (NNMT) improving choline retention but consume methyl groups. High NNMT activity is linked to Parkinson's, cancers, and diseases of affluence. Optimising nicotinamide and choline/methyl group availability is important for brain development and increased during our evolution raising metabolic and methylome ceilings through dietary/metabolic symbiotic means but strict energy constraints remain and life-history tradeoffs are the rule. An optimal energy, NAD and methyl group supply, avoiding hypo and hyper-vitaminoses nicotinamide and choline, is important to healthy ageing and avoids utilising double-edged symbionts or uncontrolled autophagy or reversions to fermentation reactions in inflammatory and cancerous tissue that all redistribute NAD(P)(H), but incur high allostatic costs.
Collapse
|
194
|
Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions. J Neurosci 2012; 32:817-25. [PMID: 22262880 DOI: 10.1523/jneurosci.5996-10.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent advances have been made in the genetics of two human communication skills: speaking and reading. Mutations of the FOXP2 gene cause a severe form of language impairment and orofacial dyspraxia, while single-nucleotide polymorphisms (SNPs) located within a KIAA0319/TTRAP/THEM2 gene cluster and affecting the KIAA0319 gene expression are associated with reading disability. Neuroimaging studies of clinical populations point to partially distinct cerebral bases for language and reading impairments. However, alteration of FOXP2 and KIAA0319/TTRAP/THEM2 polymorphisms on typically developed language networks has never been explored. Here, we genotyped and scanned 94 healthy subjects using fMRI during a reading task. We studied the correlation of genetic polymorphisms with interindividual variability in brain activation and functional asymmetry in frontal and temporal cortices. In FOXP2, SNPs rs6980093 and rs7799109 were associated with variations of activation in the left frontal cortex. In the KIAA0319/TTRAP/THEM2 locus, rs17243157 was associated with asymmetry in functional activation of the superior temporal sulcus (STS). Interestingly, healthy subjects bearing the KIAA0319/TTRAP/THEM2 variants previously identified as enhancing the risk of dyslexia showed a reduced left-hemispheric asymmetry of the STS. Our results confirm that both FOXP2 and KIAA0319/TTRAP/THEM2 genes play an important role in human language development, but probably through different cerebral pathways. The observed cortical effects mirror previous fMRI results in developmental language and reading disorders, and suggest that a continuum may exist between these pathologies and normal interindividual variability.
Collapse
|
195
|
Konopka G. The Fetal Brain Provides a Raison d’être for the Evolution of New Human Genes. BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:213-4. [DOI: 10.1159/000336723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
196
|
Lalmansingh AS, Karmakar S, Jin Y, Nagaich AK. Multiple modes of chromatin remodeling by Forkhead box proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:707-15. [PMID: 22406422 DOI: 10.1016/j.bbagrm.2012.02.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Forkhead box (FOX) proteins represent a large family of transcriptional regulators unified by their DNA binding domain (DBD) known as a 'forkhead' or 'winged helix' domain. Over 40 FOX genes have been identified in the mammalian genome. FOX proteins share significant sequence similarities in the DBD which allow them to bind to a consensus DNA response element. However, their modes of action are quite diverse as they regulate gene expression by acting as pioneer factors, transcription factors, or both. This review focuses on the mechanisms of chromatin remodeling with an emphasis on three sub-classes-FOXA, FOXO, and FOXP members. FOXA proteins serve as pioneer factors to open up local chromatin structure and thereby increase accessibility of chromatin to factors regulating transcription. FOXP proteins, in contrast, function as classic transcription factors to recruit a variety of chromatin modifying enzymes to regulate gene expression. FOXO proteins represent a hybrid subclass having dual roles as pioneering factors and transcription factors. A subset of FOX proteins interacts with condensed mitotic chromatin and may function as 'bookmarking' agents to maintain transcriptional competence at specific genomic sites. The overall diversity in chromatin remodeling function by FOX proteins is related to unique structural motifs present within the DBD flanking regions that govern selective interactions with core histones and/or chromatin coregulatory proteins. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Avin S Lalmansingh
- Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Sciences, Center for Drug Evaluation and Research, Food and Drug administration, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
197
|
Chen S, Spletter M, Ni X, White KP, Luo L, Long M. Frequent recent origination of brain genes shaped the evolution of foraging behavior in Drosophila. Cell Rep 2012; 1:118-32. [PMID: 22832161 DOI: 10.1016/j.celrep.2011.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 11/07/2011] [Accepted: 12/21/2011] [Indexed: 10/28/2022] Open
Abstract
The evolution of the brain and behavior are coupled puzzles. The genetic bases for brain evolution are widely debated, yet whether newly evolved genes impact the evolution of the brain and behavior is vaguely understood. Here, we show that during recent evolution in Drosophila, new genes have frequently acquired neuronal expression, particularly in the mushroom bodies. Evolutionary signatures combined with expression profiling showed that natural selection influenced the evolution of young genes expressed in the brain, notably in mushroom bodies. Case analyses showed that two young retrogenes are expressed in the olfactory circuit and facilitate foraging behavior. Comparative behavioral analysis revealed divergence in foraging behavior between species. Our data suggest that during adaptive evolution, new genes gain expression in specific brain structures and evolve new functions in neural circuits, which might contribute to the phenotypic evolution of animal behavior.
Collapse
Affiliation(s)
- Sidi Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
198
|
Konopka G, Wexler E, Rosen E, Mukamel Z, Osborn GE, Chen L, Lu D, Gao F, Gao K, Lowe JK, Geschwind DH. Modeling the functional genomics of autism using human neurons. Mol Psychiatry 2012; 17:202-14. [PMID: 21647150 PMCID: PMC3170664 DOI: 10.1038/mp.2011.60] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD.
Collapse
|
199
|
Wexler EM, Rosen E, Lu D, Osborn GE, Martin E, Raybould H, Geschwind DH. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways. Sci Signal 2012; 4:ra65. [PMID: 21971039 DOI: 10.1126/scisignal.2002282] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.
Collapse
Affiliation(s)
- Eric M Wexler
- Department of Psychiatry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
Rodents and primates both show considerable variation in the overall size, the radial and tangential dimensions, folding and subdivisions into distinct areas of their cerebral cortex. Our current understanding of brain development is based on a handful of model systems. A detailed comparative analysis of the cellular and molecular mechanisms that regulate neural progenitor production, cell migration, and circuit assembly can provide much needed insights into the working of neocortical evolution. From the limited comparative data currently available, it is apparent that the emergence and variation of the neuronal progenitor cells have led to the production of increased neuronal populations and the evolution of the cortex. Further diversification and compartmentalization of the germinal zone together with changing proportions of radial glia in the ventricular zone and various intermediate progenitors in the subventricular zone may have been the driving force behind increased cell numbers in larger brains both in rodents and primates. Radial and tangential migratory patterns are both present in rodents and primates, but in different proportions. There are apparent differences between mouse and human in the generation and elaboration of the interneuronal subtypes and also in gene expression patterns associated with the appearance of distinct cortical areas. The increased cortical dimensions and the formation of a more elaborate cortical architecture in primates require a larger and more compartmentalized transient subplate zone during development. More comparative analysis in rodent and primate species with large, small, and smooth and folded brains is needed to reveal the biological significance of the alterations in these cortical developmental programs.
Collapse
|