151
|
Agorastos A, Olff M. Traumatic stress and the circadian system: neurobiology, timing and treatment of posttraumatic chronodisruption. Eur J Psychotraumatol 2020; 11:1833644. [PMID: 33408808 PMCID: PMC7747941 DOI: 10.1080/20008198.2020.1833644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Humans have an evolutionary need for a well-preserved internal 'clock', adjusted to the 24-hour rotation period of our planet. This intrinsic circadian timing system enables the temporal organization of numerous physiologic processes, from gene expression to behaviour. The human circadian system is tightly and bidirectionally interconnected to the human stress system, as both systems regulate each other's activity along the anticipated diurnal challenges. The understanding of the temporal relationship between stressors and stress responses is critical in the molecular pathophysiology of stress-and trauma-related diseases, such as posttraumatic stress disorder (PTSD). Objectives/Methods: In this narrative review, we present the functional components of the stress and circadian system and their multilevel interactions and discuss how traumatic stress can affect the harmonious interplay between the two systems. Results: Circadian dysregulation after trauma exposure (posttraumatic chronodisruption) may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of traumatic stress through a loss of the temporal order at different organizational levels. Posttraumatic chronodisruption may, thus, affect fundamental properties of neuroendocrine, immune and autonomic systems, leading to a breakdown of biobehavioral adaptive mechanisms with increased stress sensitivity and vulnerability. Given that many traumatic events occur in the late evening or night hours, we also describe how the time of day of trauma exposure can differentially affect the stress system and, finally, discuss potential chronotherapeutic interventions. Conclusion: Understanding the stress-related mechanisms susceptible to chronodisruption and their role in PTSD could deliver new insights into stress pathophysiology, provide better psychochronobiological treatment alternatives and enhance preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA
| | - Miranda Olff
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.,ARQ Psychotrauma Expert Group, Diemen, The Netherlands
| |
Collapse
|
152
|
Herman JP, Nawreen N, Smail MA, Cotella EM. Brain mechanisms of HPA axis regulation: neurocircuitry and feedback in context Richard Kvetnansky lecture. Stress 2020; 23:617-632. [PMID: 33345670 PMCID: PMC8034599 DOI: 10.1080/10253890.2020.1859475] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Regulation of stress reactivity is a fundamental priority of all organisms. Stress responses are critical for survival, yet can also cause physical and psychological damage. This review provides a synopsis of brain mechanisms designed to control physiological responses to stress, focusing primarily on glucocorticoid secretion via the hypothalamo-pituitary-adrenocortical (HPA) axis. The literature provides strong support for multi-faceted control of HPA axis responses, involving both direct and indirect actions at paraventricular nucleus (PVN) corticotropin releasing hormone neurons driving the secretory cascade. The PVN is directly excited by afferents from brainstem and hypothalamic circuits, likely relaying information on homeostatic challenge. Amygdala subnuclei drive HPA axis responses indirectly via disinhibition, mediated by GABAergic relays onto PVN-projecting neurons in the hypothalamus and bed nucleus of the stria terminalis (BST). Inhibition of stressor-evoked HPA axis responses is mediated by an elaborate network of glucocorticoid receptor (GR)-containing circuits, providing a distributed negative feedback signal that inhibits PVN neurons. Prefrontal and hippocampal neurons play a major role in HPA axis inhibition, again mediated by hypothalamic and BST GABAergic relays to the PVN. The complexity of the regulatory process suggests that information on stressors is integrated across functional disparate brain circuits prior to accessing the PVN, with regions such as the BST in prime position to relay contextual information provided by these sources into appropriate HPA activation. Dysregulation of the HPA in disease is likely a product of inappropriate checks and balances between excitatory and inhibitory inputs ultimately impacting PVN output.
Collapse
Affiliation(s)
- James P Herman
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| | - Nawshaba Nawreen
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Marissa A Smail
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Evelin M Cotella
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| |
Collapse
|
153
|
Fonkoue IT, Michopoulos V, Park J. Sex differences in post-traumatic stress disorder risk: autonomic control and inflammation. Clin Auton Res 2020; 30:409-421. [PMID: 33021709 DOI: 10.1007/s10286-020-00729-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
AIM Over 7 million U.S. adults and about 20% of the military population have post-traumatic stress disorder (PTSD), a debilitating condition that is independently linked to a significantly greater risk of developing cardiovascular disease (CVD). Women have twice the probability of developing PTSD after experiencing a traumatic event compared to men. Existing literatures have reported higher inflammation and autonomic dysfunction including impaired baroreflex sensitivity, increased sympathetic reactivity and decreased parasympathetic activity in PTSD. However, most of these findings stem from studies conducted predominantly in males. METHODS We attempt in this narrative review to summarize the mixed literature available on sex differences in autonomic dysfunction and inflammation in PTSD, at rest and in response to stress in PTSD. RESULTS This review reveals that there is a paucity of research exploring autonomic function in females with PTSD. Recent studies have included female participants without probing for sex differences. A small number of studies have been conducted exclusively in women. Available data suggest that sympathetic nervous system output tends to be heightened, while parasympathetic activity and arterial baroreflex sensitivity appear more blunted in females with PTSD. Although few studies have investigated sex differences in inflammation in PTSD, data within females suggest chronic increases in inflammation with PTSD. This autonomic dysregulation and inflammation have also been described in males with PTSD. CONCLUSION In sum, given the inherent biological differences in CVD clinical presentation and characteristics between men and women, human and animal studies aiming at elucidating sex differences in the pathophysiology of PTSD are needed.
Collapse
Affiliation(s)
- Ida T Fonkoue
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, WMB 3300, Atlanta, GA, 30322, USA. .,Research Service Line, Atlanta VA Medical Center, Decatur, GA, USA.
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, WMB 3300, Atlanta, GA, 30322, USA.,Research Service Line, Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
154
|
Sheerin CM, Lind MJ, Bountress KE, Marraccini ME, Amstadter AB, Bacanu SA, Nugent NR. Meta-Analysis of Associations Between Hypothalamic-Pituitary-Adrenal Axis Genes and Risk of Posttraumatic Stress Disorder. J Trauma Stress 2020; 33:688-698. [PMID: 32216170 PMCID: PMC7529653 DOI: 10.1002/jts.22484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 01/03/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis has been of interest in attempts to identify genetic vulnerability for posttraumatic stress disorder (PTSD). Although numerous HPA-axis genes have been implicated in candidate gene studies, the findings are mixed and interpretation is limited by study design and methodological inconsistencies. To address these inconsistencies in the PTSD candidate gene literature, we conducted meta-analyses of HPA-related genes from both a traditional single nucleotide polymorphism (SNP)-level analysis and a gene-level analysis, using novel methods aggregating markers in the same gene. Database searches (PubMed and PsycINFO) identified 24 unique articles examining six HPA-axis genes in PTSD; analyses were conducted on four genes (ADCYAP1R1, CRHR1, FKBP5, NR3C1) that met study eligibility criteria (original research, human subjects, main effect association study of selected genes, PTSD as an outcome, trauma-exposed control group) and had sufficient data and number of studies for use in meta-analysis, within 20 unique articles. Findings from SNP-level analyses indicated that two variants (rs9296158 in FKBP5 and rs258747 in NR3C1) were nominally associated with PTSD, ps = .001 and .001, respectively, following multiple testing correction. At the gene level, significant relations between PTSD and both NR3C1 and FKBP5 were detected and robust to sensitivity analyses. Although study limitations exist (e.g., varied outcomes, inability to test moderators), taken together, these results provide support for FKBP5 and NR3C1 in risk for PTSD. Overall, this work highlights the utility of meta-analyses in resolving discrepancies in the literature and the value of adopting gene-level approaches to investigate the etiology of PTSD.
Collapse
Affiliation(s)
- Christina M. Sheerin
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mackenzie J. Lind
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kaitlin E. Bountress
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marisa E. Marraccini
- School of Education, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ananda B. Amstadter
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nicole R. Nugent
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA,Department of Pediatrics Alpert Medical School of Brown University, Providence, Rhode Island, USA,Bradley/Hasbro Children’s Research Center of Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
155
|
Gatta E, Saudagar V, Auta J, Grayson DR, Guidotti A. Epigenetic landscape of stress surfeit disorders: Key role for DNA methylation dynamics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:127-183. [PMID: 33461662 PMCID: PMC7942223 DOI: 10.1016/bs.irn.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic exposure to stress throughout lifespan alters brain structure and function, inducing a maladaptive response to environmental stimuli, that can contribute to the development of a pathological phenotype. Studies have shown that hypothalamic-pituitary-adrenal (HPA) axis dysfunction is associated with various neuropsychiatric disorders, including major depressive, alcohol use and post-traumatic stress disorders. Downstream actors of the HPA axis, glucocorticoids are critical mediators of the stress response and exert their function through specific receptors, i.e., the glucocorticoid receptor (GR), highly expressed in stress/reward-integrative pathways. GRs are ligand-activated transcription factors that recruit epigenetic actors to regulate gene expression via DNA methylation, altering chromatin structure and thus shaping the response to stress. The dynamic interplay between stress response and epigenetic modifiers suggest DNA methylation plays a key role in the development of stress surfeit disorders.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
156
|
Li H, Su P, Lai TK, Jiang A, Liu J, Zhai D, Campbell CT, Lee FH, Yong W, Pasricha S, Li S, Wong AH, Ressler KJ, Liu F. The glucocorticoid receptor-FKBP51 complex contributes to fear conditioning and posttraumatic stress disorder. J Clin Invest 2020; 130:877-889. [PMID: 31929189 DOI: 10.1172/jci130363] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) can develop after exposure to severe psychological trauma, leaving patients with disabling anxiety, nightmares, and flashbacks. Current treatments are only partially effective, and development of better treatments is hampered by limited knowledge of molecular mechanisms underlying PTSD. We have discovered that the glucocorticoid receptor (GR) and FK506 binding protein 51 (FKBP51) form a protein complex that is elevated in PTSD patients compared with unaffected control subjects, subjects exposed to trauma without PTSD, and patients with major depressive disorder (MDD). The GR-FKBP51 complex is also elevated in fear-conditioned mice, an aversive learning paradigm that models some aspects of PTSD. Both PTSD patients and fear-conditioned mice had decreased GR phosphorylation, decreased nuclear GR, and lower expression of 14-3-3ε, a gene regulated by GR. We created a peptide that disrupts GR-FKBP51 binding and reverses behavioral and molecular changes induced by fear conditioning. This peptide reduces freezing time and increases GR phosphorylation, GR-FKBP52 binding, GR nuclear translocation, and 14-3-3ε expression in fear-conditioned mice. These experiments demonstrate a molecular mechanism contributing to PTSD and suggest that the GR-FKBP51 complex may be a diagnostic biomarker and a potential therapeutic target for preventing or treating PTSD.
Collapse
Affiliation(s)
- Haiyin Li
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Terence Ky Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Anlong Jiang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jing Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Dongxu Zhai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Charlie Tg Campbell
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Frankie Hf Lee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - WeiDong Yong
- Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Suvercha Pasricha
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry and
| | - Shupeng Li
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry and
| | - Albert Hc Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry and.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kerry J Ressler
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry and.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
157
|
Bremner JD, Gurel NZ, Wittbrodt MT, Shandhi MH, Rapaport MH, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Park J, Bikson M, Inan OT. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. J Pers Med 2020; 10:E119. [PMID: 32916852 PMCID: PMC7563188 DOI: 10.3390/jpm10030119] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation. METHODS New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans. nVNS has effects on autonomic tone, cardiovascular function, inflammatory responses, and central brain areas involved in modulation of emotion, all of which make it particularly applicable to patients with stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD) and depression, since dysregulation of these circuits and systems underlies the symptomatology of these disorders. RESULTS This paper reviewed the physiology of the vagus nerve and its relevance to modulating the stress response in the context of application of nVNS to stress-related psychiatric disorders. CONCLUSIONS nVNS has a favorable effect on stress physiology that is measurable using brain imaging, blood biomarkers of inflammation, and wearable sensing devices, and shows promise in the prevention and treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- James Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Mark H. Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Medicine, Renal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City University of New York, New York, NY 10010, USA;
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
158
|
Chiba Y, Ueda C, Kohno N, Yamashita M, Miyakawa Y, Ando Y, Suto W, Hirabayashi T, Takenoya F, Takasaki I, Kamei J, Sakai H, Shioda S. Attenuation of relaxing response induced by pituitary adenylate cyclase-activating polypeptide in bronchial smooth muscle of experimental asthma. Am J Physiol Lung Cell Mol Physiol 2020; 319:L786-L793. [PMID: 32877227 DOI: 10.1152/ajplung.00315.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bronchomotor tone is regulated by contraction and relaxation of airway smooth muscle (ASM). A weakened ASM relaxation might be a cause of airway hyperresponsiveness (AHR), a characteristic feature of bronchial asthma. Pituitary adenylyl cyclase-activating polypeptide (PACAP) is known as a mediator that causes ASM relaxation. To date, whether or not the PACAP responsiveness is changed in asthmatic ASM is unknown. The current study examined the hypothesis that relaxation induced by PACAP is reduced in bronchial smooth muscle (BSM) of allergic asthma. The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, the main bronchial smooth muscle (BSM) tissues were isolated. Tension study showed a BSM hyperresponsiveness to acetylcholine in the OA-challenged mice. Both quantitative RT-PCR and immunoblot analyses revealed a significant decrease in PAC1 receptor expression in BSMs of the diseased mice. Accordingly, in the antigen-challenged group, the PACAP-induced PAC1 receptor-mediated BSM relaxation was significantly attenuated, whereas the relaxation induced by vasoactive intestinal polypeptide was not changed. These findings suggest that the relaxation induced by PACAP is impaired in BSMs of experimental asthma due to a downregulation of its binding partner PAC1 receptor. Impaired BSM responsiveness to PACAP might contribute to the AHR in asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Chihiro Ueda
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Naoko Kohno
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Michio Yamashita
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yui Miyakawa
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yusuke Ando
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Wataru Suto
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Takahiro Hirabayashi
- Peptide Drug Innovation Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Fumiko Takenoya
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Seiji Shioda
- Peptide Drug Innovation Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
159
|
Jovanovic T, Stenson AF, Thompson N, Clifford A, Compton A, Minton S, van Rooij SJF, Stevens JS, Lori A, Nugent N, Gillespie CF, Bradley B, Ressler KJ. Impact of ADCYAP1R1 genotype on longitudinal fear conditioning in children: interaction with trauma and sex. Neuropsychopharmacology 2020; 45:1603-1608. [PMID: 32590837 PMCID: PMC7421882 DOI: 10.1038/s41386-020-0748-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated fear conditioned responses have been associated with PTSD in adults, with increased fear-potentiated startle (FPS) serving as a potential intermediate phenotype for PTSD risk. This phenotype has also been associated with stress-related ADCYAP1R1 gene variants in adult women. However, FPS and genotype have not yet been examined during development. The aim of this study was to examine developmental changes in fear conditioning, and to see whether these changes were impacted by genotype and trauma. Differential fear conditioning using FPS was tested in n = 63 children ages 8-13 at two visits (V1, V2) 1 year apart. Startle response was measured using electromyograph recordings of the eyeblink muscle. The rs2267735 SNP of the ADCYAP1R1 gene was extracted from genome-wide (GWAS) analyses. Trauma exposure was assessed using the Violence Exposure Scale-Revised (VEX-R). We found significant Visit by Genotype interactions, with CC genotype increasing FPS from V1 to V2. At V2 there was a Genotype by Violence interaction, with higher FPS in the CC vs G allele groups among those with higher violence exposure (F = 17.46, p = 0.0002). Females with the CC genotype had higher FPS compared to G allele females (F = 12.09, p = 0.002); there were no effects of genotype in males. This study showed Gene × Environment × Development and Gene × Sex effects of ADCYAP1R1 in a high-risk pediatric population. Those with the CC genotype and high levels of violence exposure, as well as females with the CC genotype, showed the greatest conditioned fear responses in adolescence.
Collapse
Affiliation(s)
- Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Anaïs F. Stenson
- grid.254444.70000 0001 1456 7807Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Nadia Thompson
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Aimee Clifford
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Alisha Compton
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Sean Minton
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Sanne J. F. van Rooij
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Jennifer S. Stevens
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Adriana Lori
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Nicole Nugent
- grid.40263.330000 0004 1936 9094Departments of Psychiatry and Pediatrics Brown Medical School, Providence, RI USA
| | - Charles F. Gillespie
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Bekh Bradley
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA ,grid.414026.50000 0004 0419 4084Atlanta VA Medical Center, Decatur, GA 30033 USA
| | - Kerry J. Ressler
- grid.38142.3c000000041936754XMcLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| |
Collapse
|
160
|
Sex-specific effects of the histone variant H2A.Z on fear memory, stress-enhanced fear learning and hypersensitivity to pain. Sci Rep 2020; 10:14331. [PMID: 32868857 PMCID: PMC7458907 DOI: 10.1038/s41598-020-71229-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023] Open
Abstract
Emerging evidence suggests that histone variants are novel epigenetic regulators of memory, whereby histone H2A.Z suppresses fear memory. However, it is not clear if altered fear memory can also modify risk for PTSD, and whether these effects differ in males and females. Using conditional-inducible H2A.Z knockout (cKO) mice, we showed that H2A.Z binding is higher in females and that H2A.Z cKO enhanced fear memory only in males. However, H2A.Z cKO improved memory on the non-aversive object-in-place task in both sexes, suggesting that H2A.Z suppresses non-stressful memory irrespective of sex. Given that risk for fear-related disorders, such as PTSD, is biased toward females, we examined whether H2A.Z cKO also has sex-specific effects on fear sensitization in the stress-enhanced fear learning (SEFL) model of PTSD, as well as associated changes in pain sensitivity. We found that H2A.Z cKO reduced stress-induced sensitization of fear learning and pain responses preferentially in female mice, indicating that the effects of H2A.Z depend on sex and the type of task, and are influenced by history of stress. These data suggest that H2A.Z may be a sex-specific epigenetic risk factor for PTSD susceptibility, with implications for developing sex-specific therapeutic interventions.
Collapse
|
161
|
Toth D, Veszpremi B, Koppan M, Tamas A, Szogyi D, Brubel R, Nemeth J, Shams M, Reglodi D. Investigation of pituitary adenylate cyclase activating polypeptide (PACAP) in human amniotic fluid samples. Reprod Biol 2020; 20:491-495. [PMID: 32859528 DOI: 10.1016/j.repbio.2020.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 01/14/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide acting as a hormone, a neuromodulator, a neurotransmitter, a trophic factor and is involved in a variety of developmental and regenerative processes. PACAP is present in several human tissues and biological fluids. In many pathological conditions, changes in PACAP levels have been described to reflect disease progression, therefore PACAP has diagnostic value as a potential biomarker. Since PACAP has been shown to play an important role in reproductive physiology and development, it was of interest to examine whether this neuropeptide occurs in the human amniotic fluid. Amniotic fluid samples were collected between the 15-19th weeks of gestation from volunteering pregnant women undergoing amniocentesis as a prenatal diagnostic tool due to maternal age. Pathological cases were excluded after prenatal karyotype analysis. PACAP-like immunoreactivity was measured by radioimmunoassay and could be detected in all samples. The present study provides evidence for the presence of PACAP in human amniotic fluid, but determination of the exact physiological or pathological significance awaits further investigation.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Bela Veszpremi
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Édesanyák útja 17, H-7624 Pécs, Hungary
| | - Miklos Koppan
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Édesanyák útja 17, H-7624 Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Donat Szogyi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Reka Brubel
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Jozsef Nemeth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Mahsa Shams
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| |
Collapse
|
162
|
Vismara M, Girone N, Cirnigliaro G, Fasciana F, Vanzetto S, Ferrara L, Priori A, D’Addario C, Viganò C, Dell’Osso B. Peripheral Biomarkers in DSM-5 Anxiety Disorders: An Updated Overview. Brain Sci 2020; 10:E564. [PMID: 32824625 PMCID: PMC7464377 DOI: 10.3390/brainsci10080564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Anxiety disorders are prevalent and highly disabling mental disorders. In recent years, intensive efforts focused on the search for potential neuroimaging, genetic, and peripheral biomarkers in order to better understand the pathophysiology of these disorders, support their diagnosis, and characterize the treatment response. Of note, peripheral blood biomarkers, as surrogates for the central nervous system, represent a promising instrument to characterize psychiatric disorders, although their role has not been extensively applied to clinical practice. In this report, the state of the art on peripheral biomarkers of DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, 5th edition) Anxiety Disorders is presented, in order to examine their role in the pathogenesis of these conditions and their potential application for diagnosis and treatment. Available data on the cerebrospinal fluid and blood-based biomarkers related to neurotransmitters, neuropeptides, the hypothalamic-pituitary-adrenal axis, neurotrophic factors, and the inflammation and immune system are reviewed. Despite the wide scientific literature and the promising results in the field, only a few of the proposed peripheral biomarkers have been defined as a specific diagnostic instrument or have been identified as a guide in the treatment response to DSM-5 Anxiety Disorders. Therefore, further investigations are needed to provide new biological insights into the pathogenesis of anxiety disorders, to help in their diagnosis, and to tailor a treatment.
Collapse
Affiliation(s)
- Matteo Vismara
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Nicolaja Girone
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Giovanna Cirnigliaro
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Federica Fasciana
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Simone Vanzetto
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Luca Ferrara
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Alberto Priori
- Department of Health Sciences, Aldo Ravelli Center for Neurotechnology and Brain Therapeutic, University of Milan, 20142 Milan, Italy;
| | - Claudio D’Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Caterina Viganò
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Bernardo Dell’Osso
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
- Department of Health Sciences, Aldo Ravelli Center for Neurotechnology and Brain Therapeutic, University of Milan, 20142 Milan, Italy;
- Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, Stanford, CA 94305, USA
- “Centro per lo studio dei meccanismi molecolari alla base delle patologie neuro-psico-geriatriche”, University of Milan, 20100 Milan, Italy
| |
Collapse
|
163
|
Single nucleotide polymorphisms in tinnitus patients exhibiting severe distress. Sci Rep 2020; 10:13023. [PMID: 32747715 PMCID: PMC7398919 DOI: 10.1038/s41598-020-69467-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/01/2020] [Indexed: 11/08/2022] Open
Abstract
The association between distress caused by tinnitus and psychological factors such as depression and anxiety has been examined and reported. However, prognostic factors remain poorly understood because there are only a few reports on genetic associations. We theorized there might be an association between the grade of tinnitus distress and the genetic background related to psychological factors which might lead us to identify prognostic markers. We enrolled 138 patients who had suffered from tinnitus for over 3 months. Using Tinnitus Handicap Inventory (THI) scores, we examined the association between tinnitus distress and a genetic background related to depression or anxiety. A significant association between single nucleotide polymorphism rs131702 of the Breakpoint Cluster Region (BCR) gene and the severe THI score was identified. In addition, there was an association with the severity of the State-Trait Anxiety Inventory, an index of state anxiety severity. No association was found with the Self-Rating Depression Scale, an index of depression severity. It is reported that rs131702 of BCR in Japanese patients are related to bipolar II depression characterized by fluctuation between abnormal mood states of mania and depression. Our results indicate that rs131702 of BCR is independent of depression in this study and is, therefore, a prognostic factor unique to tinnitus. We conclude that the severity of tinnitus is associated with genes related to depression.
Collapse
|
164
|
Robble MA, Holloway IL, Ridener E, Webber CJ, Caine SB, Meloni EG, Desai RI, Carlezon WA. Differential Effects of Nicotine and Nicotine Withdrawal on Fear Conditioning in Male Rats. Int J Neuropsychopharmacol 2020; 23:469-479. [PMID: 32242615 PMCID: PMC7387768 DOI: 10.1093/ijnp/pyaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tobacco use is prevalent in individuals who are routinely exposed to stress. However, little is known about how nicotine affects responses to trauma. We examined in rats how nicotine exposure affects fear conditioning, a procedure often used to study stress-related psychiatric illness. METHODS We examined 2 methods of nicotine exposure: self-administration, modeling voluntary use, and experimenter-programmed subcutaneous administration, modeling medicinal administration (nicotine patch). For self-administered nicotine, rats trained to self-administer nicotine i.v. were fear conditioned (via light cue preceding foot-shock) either immediately after a 12-hour self-administration session or 12 hours later during a period with somatic signs of nicotine withdrawal. For experimenter-delivered nicotine, rats were conditioned after 1-21 days of nicotine delivered by programmable (12 hours on) subcutaneous mini-pumps. Tests to evaluate acoustic startle responses to the conditioning environment (context-potentiated startle) and in the presence or absence of the light cue (fear-potentiated startle) occurred after a 10-day period. RESULTS Rats fear conditioned immediately after nicotine self-administration showed reduced responses to the shock-associated context, whereas those trained during nicotine withdrawal showed exaggerated responses. Experimenter-programmed nicotine produced effects qualitatively similar to those seen with self-administered nicotine. CONCLUSIONS Self-administration or experimenter-programmed delivery of nicotine immediately before exposure to aversive events can reduce conditioned fear responses. In contrast, exposure to aversive events during nicotine withdrawal exacerbates fear responses. These studies raise the possibility of developing safe and effective methods to deliver nicotine or related drugs to mitigate the effects of stress while also highlighting the importance of preventing withdrawal in nicotine-dependent individuals.
Collapse
Affiliation(s)
| | | | | | | | - S Barak Caine
- McLean Hospital, Harvard Medical School, Belmont, MA
| | | | | | | |
Collapse
|
165
|
Bertels Z, Pradhan AAA. Emerging Treatment Targets for Migraine and Other Headaches. Headache 2020; 59 Suppl 2:50-65. [PMID: 31291018 DOI: 10.1111/head.13585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Migraine is a complex disorder that is characterized by an assortment of neurological and systemic effects. While headache is the most prominent feature of migraine, a host of symptoms affecting many physiological functions are also observed before, during, and after an attack. Furthermore, migraineurs are heterogeneous and have a wide range of responses to migraine therapies. The recent approval of calcitonin gene-related-peptide based therapies has opened up the treatment of migraine and generated a renewed interest in migraine research and discovery. Ongoing advances in migraine research have identified a number of other promising therapeutic targets for this disorder. In this review, we highlight emergent treatments within the following biological systems: pituitary adenylate cyclase activating peptdie, 2 non-mu opioid receptors that have low abuse liability - the delta and kappa opioid receptors, orexin, and nitric oxide-based therapies. Multiple mechanisms have been identified in the induction and maintenance of migraine symptoms; and this divergent set of targets have highly distinct biological effects. Increasing the mechanistic diversity of the migraine tool box will lead to more treatment options and better patient care.
Collapse
Affiliation(s)
- Zachariah Bertels
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
166
|
Day HLL, Stevenson CW. The neurobiological basis of sex differences in learned fear and its inhibition. Eur J Neurosci 2020; 52:2466-2486. [PMID: 31631413 PMCID: PMC7496972 DOI: 10.1111/ejn.14602] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Learning that certain cues or environments predict threat enhances survival by promoting appropriate fear and the resulting defensive responses. Adapting to changing stimulus contingencies by learning that such cues no longer predict threat, or distinguishing between these threat-related and other innocuous stimuli, also enhances survival by limiting fear responding in an appropriate manner to conserve resources. Importantly, a failure to inhibit fear in response to harmless stimuli is a feature of certain anxiety and trauma-related disorders, which are also associated with dysfunction of the neural circuitry underlying learned fear and its inhibition. Interestingly, these disorders are up to twice as common in women, compared to men. Despite this striking sex difference in disease prevalence, the neurobiological factors involved remain poorly understood. This is due in part to the majority of relevant preclinical studies having neglected to include female subjects alongside males, which has greatly hindered progress in this field. However, more recent studies have begun to redress this imbalance and emerging evidence indicates that there are significant sex differences in the inhibition of learned fear and associated neural circuit function. This paper provides a narrative review on sex differences in learned fear and its inhibition through extinction and discrimination, along with the key gonadal hormone and brain mechanisms involved. Understanding the endocrine and neural basis of sex differences in learned fear inhibition may lead to novel insights on the neurobiological mechanisms underlying the enhanced vulnerability to develop anxiety-related disorders that are observed in women.
Collapse
Affiliation(s)
- Harriet L. L. Day
- School of BiosciencesUniversity of NottinghamLoughboroughUK
- Present address:
RenaSci LtdBioCity, Pennyfoot StreetNottinghamNG1 1GFUK
| | | |
Collapse
|
167
|
Genetic and Neuroimaging Approaches to Understanding Post-Traumatic Stress Disorder. Int J Mol Sci 2020; 21:ijms21124503. [PMID: 32599917 PMCID: PMC7352752 DOI: 10.3390/ijms21124503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a highly disabling condition, increasingly recognized as both a disorder of mental health and social burden, but also as an anxiety disorder characterized by fear, stress, and negative alterations in mood. PTSD is associated with structural, metabolic, and molecular changes in several brain regions and the neural circuitry. Brain areas implicated in the traumatic stress response include the amygdala, hippocampus, and prefrontal cortex, which play an essential role in memory function. Abnormalities in these brain areas are hypothesized to underlie symptoms of PTSD and other stress-related psychiatric disorders. Conventional methods of studying PTSD have proven to be insufficient for diagnosis, measurement of treatment efficacy, and monitoring disease progression, and currently, there is no diagnostic biomarker available for PTSD. A deep understanding of cutting-edge neuroimaging genetic approaches is necessary for the development of novel therapeutics and biomarkers to better diagnose and treat the disorder. A current goal is to understand the gene pathways that are associated with PTSD, and how those genes act on the fear/stress circuitry to mediate risk vs. resilience for PTSD. This review article explains the rationale and practical utility of neuroimaging genetics in PTSD and how the resulting information can aid the diagnosis and clinical management of patients with PTSD.
Collapse
|
168
|
Biran J, Gliksberg M, Shirat I, Swaminathan A, Levitas-Djerbi T, Appelbaum L, Levkowitz G. Splice-specific deficiency of the PTSD-associated gene PAC1 leads to a paradoxical age-dependent stress behavior. Sci Rep 2020; 10:9559. [PMID: 32533011 PMCID: PMC7292827 DOI: 10.1038/s41598-020-66447-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The pituitary adenylate cyclase-activating polypeptide receptor (PAC1, also known as ADCYAP1R1) is associated with post-traumatic stress disorder and modulation of stress response in general. Alternative splicing of PAC1 results in multiple gene products, which differ in their mode of signalling and tissue distribution. However, the roles of distinct splice variants in the regulation of stress behavior is poorly understood. Alternative splicing of a short exon, which is known as the "hop cassette", occurs during brain development and in response to stressful challenges. To examine the function of this variant, we generated a splice-specific zebrafish mutant lacking the hop cassette, which we designated 'hopless'. We show that hopless mutant larvae display increased anxiety-like behavior, including reduced dark exploration and impaired habituation to dark exposure. Conversely, adult hopless mutants displayed superior ability to rebound from an acute stressor, as they exhibited reduced anxiety-like responses to an ensuing novelty stress. We propose that the developmental loss of a specific PAC1 splice variant mimics prolonged mild stress exposure, which in the long term, predisposes the organism's stress response towards a resilient phenotype. Our study presents a unique genetic model demonstrating how early-life state of anxiety paradoxically correlates with reduced stress susceptibility in adulthood.
Collapse
Affiliation(s)
- Jakob Biran
- Department of Poultry and Aquaculture, Agricultural Research Organization, Rishon, Letziyon, 7528809, Israel.
| | - Michael Gliksberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Ido Shirat
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Amrutha Swaminathan
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Talia Levitas-Djerbi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel.
| |
Collapse
|
169
|
Biran J, Gliksberg M, Shirat I, Swaminathan A, Levitas-Djerbi T, Appelbaum L, Levkowitz G. Splice-specific deficiency of the PTSD-associated gene PAC1 leads to a paradoxical age-dependent stress behavior. Sci Rep 2020. [PMID: 32533011 DOI: 10.1038/s41598-020-66447-2.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The pituitary adenylate cyclase-activating polypeptide receptor (PAC1, also known as ADCYAP1R1) is associated with post-traumatic stress disorder and modulation of stress response in general. Alternative splicing of PAC1 results in multiple gene products, which differ in their mode of signalling and tissue distribution. However, the roles of distinct splice variants in the regulation of stress behavior is poorly understood. Alternative splicing of a short exon, which is known as the "hop cassette", occurs during brain development and in response to stressful challenges. To examine the function of this variant, we generated a splice-specific zebrafish mutant lacking the hop cassette, which we designated 'hopless'. We show that hopless mutant larvae display increased anxiety-like behavior, including reduced dark exploration and impaired habituation to dark exposure. Conversely, adult hopless mutants displayed superior ability to rebound from an acute stressor, as they exhibited reduced anxiety-like responses to an ensuing novelty stress. We propose that the developmental loss of a specific PAC1 splice variant mimics prolonged mild stress exposure, which in the long term, predisposes the organism's stress response towards a resilient phenotype. Our study presents a unique genetic model demonstrating how early-life state of anxiety paradoxically correlates with reduced stress susceptibility in adulthood.
Collapse
Affiliation(s)
- Jakob Biran
- Department of Poultry and Aquaculture, Agricultural Research Organization, Rishon, Letziyon, 7528809, Israel.
| | - Michael Gliksberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Ido Shirat
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Amrutha Swaminathan
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Talia Levitas-Djerbi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel.
| |
Collapse
|
170
|
Circulating PACAP peptide and PAC1R genotype as possible transdiagnostic biomarkers for anxiety disorders in women: a preliminary study. Neuropsychopharmacology 2020; 45:1125-1133. [PMID: 31910434 PMCID: PMC7235237 DOI: 10.1038/s41386-020-0604-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/30/2019] [Accepted: 12/30/2019] [Indexed: 01/04/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP, gene Adcyap1) is a neuropeptide and hormone thought to play a critical role in stress response (Stroth et al., Ann NY Acad Sci 1220:49-59, 2011; Hashimoto et al., Curr Pharm Des 17:985-989, 2011). Research in humans implicates PACAP as a useful biomarker for the severity of psychiatric symptoms in response to psychological stressors, and work in rodent models suggests that PACAP manipulation exerts downstream effects on peripheral hormones and behaviors linked to the stress response, providing a potential therapeutic target. Prior work has also suggested a potential sex difference in PACAP effects due to differential estrogen regulation of this pathway. Therefore, we examined serum PACAP and associated PAC1R genotype in a cohort of males and females with a primary diagnosis of generalized anxiety disorder (GAD) and nonpsychiatric controls. We found that, while circulating hormone levels were not associated with a GAD diagnosis overall (p = 0.19, g = 0.25), PACAP may be associated with GAD in females (p = 0.04, g = 0.33). Additionally, among patients with GAD, the risk genotype identified in the PTSD literature (rs2267735, CC genotype) was associated with higher somatic anxiety symptom severity in females but lower somatic anxiety symptom severity in males (-3.27, 95%CI [-5.76, -0.77], adjusted p = 0.03). Taken together, the associations between the risk genotype, circulating PACAP, and somatic anxiety severity were stronger among females than males. These results indicate a potential underlying biological etiology for sex differences in stress-related anxiety disorders that warrants further study.
Collapse
|
171
|
Tomasi J, Zai CC, Zai G, Herbert D, King N, Freeman N, Kennedy JL, Tiwari AK. The effect of polymorphisms in startle-related genes on anxiety symptom severity. J Psychiatr Res 2020; 125:144-151. [PMID: 32289651 DOI: 10.1016/j.jpsychires.2020.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 01/23/2023]
Abstract
Given the limited effectiveness of treatments for pathological anxiety, there is a pressing need to identify genetic markers that can aid the precise selection of treatments and optimize treatment response. Anxiety and startle response levels demonstrate a direct relationship, and previous literature suggests that exaggerated startle reactivity may serve as an endophenotype of pathological anxiety. In addition, genetic variants related to startle reactivity may play a role in the etiology of pathological anxiety. In the current study, we selected 22 single nucleotide polymorphisms (SNPs) related to startle reactivity in the literature, and examined their association with anxiety symptom severity across psychiatric disorders (n = 508), and in a subset of patients with an anxiety disorder (n = 298). Overall, none of the SNPs pass correction for multiple independent tests. However, across psychiatric patients, rs6323 from the monoamine oxidase A (MAOA) gene and rs324981 from the neuropeptide S receptor 1 (NPSR1) gene were nominally associated with baseline anxiety symptom severity (p = 0.017, 0.023). These preliminary findings provide support for investigating startle-related genetic variants to identify biomarkers of anxiety symptom severity.
Collapse
Affiliation(s)
- Julia Tomasi
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; General Adult Psychiatry and Health Systems Division, CAMH, Toronto, ON, Canada
| | - Deanna Herbert
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Nicole King
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Natalie Freeman
- Campbell Family Mental Health Research Institute and Krembil Centre for Neuroinformatics, CAMH, Toronto, ON, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
172
|
Pineles SL, Nillni YI, Pinna G, Webb A, Arditte Hall KA, Fonda JR, Irvine J, King MW, Hauger RL, Resick PA, Orr SP, Rasmusson AM. Associations between PTSD-Related extinction retention deficits in women and plasma steroids that modulate brain GABA A and NMDA receptor activity. Neurobiol Stress 2020; 13:100225. [PMID: 32490055 PMCID: PMC7256058 DOI: 10.1016/j.ynstr.2020.100225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/25/2022] Open
Abstract
Several studies have demonstrated poor retention of extinction learning among individuals with posttraumatic stress disorder (PTSD). Gonadal hormone signaling in brain appears to influence the retention of extinction learning differently in women with and without PTSD. Women with PTSD, compared to trauma-exposed women without PTSD, show relative deficits in extinction retention during the mid-luteal phase (mLP) of the menstrual cycle, compared to the early follicular phase (eFP). A PTSD-related reduction in conversion of progesterone to its GABAergic metabolites allopregnanolone (Allo) and pregnanolone (PA) may contribute to these findings. The current study in trauma-exposed women with (n = 9) and without (n = 9) PTSD investigated associations between extinction retention and plasma Allo + PA levels, as well as the ratio of Allo + PA to 5α-dihydroprogesterone (5α-DHP), the immediate steroid precursor for Allo. The study also investigated the relationship between extinction retention and the ratio of Allo + PA to dehydroepiandrosterone (DHEA), an adrenally-derived GABAA receptor antagonist. Study participants completed differential fear-conditioning during both the eFP and mLP of the menstrual cycle. Analyses revealed a strong positive relationship between resting plasma Allo + PA levels and extinction retention during the mLP in the women with, but not without, PTSD (e.g., diagnosis X Allo + PA interaction controlling for early extinction: β = −.0008, p = .003). A similar pattern emerged for the Allo + PA to 5α-DHP ratio (β = -.165, p = .071), consistent with a PTSD-related block in production of Allo and PA at the enzyme 3α-hydroxysteroid dehydrogenase. The ratio of Allo + PA to DHEA appeared to influence extinction retention only during the eFP when Allo + PA and DHEA levels are comparable and thus may compete for effects on GABAA receptor function. This study aligns with male rodent PTSD models linking experimental reductions in brain Allo levels to deficits in extinction retention and suggests that targeting PTSD-related deficits in GABAergic neurosteroid synthesis may be therapeutic.
Collapse
Affiliation(s)
- Suzanne L Pineles
- National Center for PTSD Women's Health Sciences Division at VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yael I Nillni
- National Center for PTSD Women's Health Sciences Division at VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Andrea Webb
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | | | - Jennifer R Fonda
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System Boston, MA, 02130, USA.,Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA
| | - John Irvine
- The MITRE Corporation, Bedford, MA, 01730, USA
| | - Matthew W King
- National Center for PTSD Women's Health Sciences Division at VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Richard L Hauger
- Center of Excellence for Stress and Mental Health, San Diego VA Healthcare System, San Diego, CA, 9216, USA.,Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Patricia A Resick
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27701, USA
| | - Scott P Orr
- Psychiatry Department, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ann M Rasmusson
- National Center for PTSD Women's Health Sciences Division at VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
173
|
Eiden LE, Gundlach AL, Grinevich V, Lee MR, Mecawi AS, Chen D, Buijs RM, Hernandez VS, Fajardo-Dolci G, Zhang L. Regulatory peptides and systems biology: A new era of translational and reverse-translational neuroendocrinology. J Neuroendocrinol 2020; 32:e12844. [PMID: 32307768 DOI: 10.1111/jne.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
Recently, there has been a resurgence in regulatory peptide science as a result of three converging trends. The first is the increasing population of the drug pipeline with peptide-based therapeutics, mainly in, but not restricted to, incretin-like molecules for treatment of metabolic disorders such as diabetes. The second is the development of genetic and optogenetic tools enabling new insights into how peptides actually function within brain and peripheral circuits to accomplish homeostatic and allostatic regulation. The third is the explosion in defined structures of the G-protein coupled receptors to which most regulatory peptides bind and exert their actions. These trends have closely wedded basic systems biology to drug discovery and development, creating a "two-way street" on which translational advances travel from basic research to the clinic, and, equally importantly, "reverse-translational" information is gathered, about the molecular, cellular and circuit-level mechanisms of action of regulatory peptides, comprising information required for the fine-tuning of drug development through testing in animal models. This review focuses on a small group of 'influential' peptides, including oxytocin, vasopressin, pituitary adenylate cyclase-activating polypeptide, ghrelin, relaxin-3 and glucagon-like peptide-1, and how basic discoveries and their application to therapeutics have intertwined over the past decade.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Heath-Intramural Research Program, NIH, Bethesda, MD, USA
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University Heidelberg, Mannheim, Germany
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, NIAAA and NIDA, NIH, Bethesda, MD, USA
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ruud M Buijs
- Department of Cell Biology and Physiology, Institute for Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Vito S Hernandez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Germán Fajardo-Dolci
- School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
174
|
Johnson GC, Parsons R, May V, Hammack SE. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Signaling in the Hippocampal Dentate Gyrus. Front Cell Neurosci 2020; 14:111. [PMID: 32425759 PMCID: PMC7203336 DOI: 10.3389/fncel.2020.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP, ADCYAP1) dysregulation has been associated with multiple stress-related psychopathologies that may be related to altered hippocampal function. In coherence, PACAP- and PAC1 receptor (ADCYAP1R1)-null mice demonstrate changes in hippocampal-dependent behavioral responses, implicating the PACAPergic system function in this structure. Within the hippocampus, the dentate gyrus (DG) may play an important role in discerning the differences between similar contexts, and DG granule cells appear to both highly express PAC1 receptors and receive inputs from PACAP-expressing terminals. Here, we review the evidence from our laboratories and others that PACAP is an important regulator of activity within hippocampal circuits, particularly within the DG. These data are consistent with an increasing literature implicating PACAP circuits in stress-related pathologies such as post-traumatic stress disorder (PTSD) and implicate the hippocampus, and in particular the DG, as a critical site in which PACAP dysregulation can alter stress-related behaviors.
Collapse
Affiliation(s)
- Gregory C Johnson
- Department of Psychological Science, College of Arts and Sciences, University of Vermont, Burlington, VT, United States
| | - Rodney Parsons
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Victor May
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, College of Arts and Sciences, University of Vermont, Burlington, VT, United States
| |
Collapse
|
175
|
Cannabinoid exposure in rat adolescence reprograms the initial behavioral, molecular, and epigenetic response to cocaine. Proc Natl Acad Sci U S A 2020; 117:9991-10002. [PMID: 32312805 PMCID: PMC7211986 DOI: 10.1073/pnas.1920866117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The endocannabinoid system has a modulatory role in brain reward and cognitive processes. It has been hypothesized that repeated interference with endocannabinoid signaling (e.g., through abuse of cannabis or synthetic cannabinoids) can remodel the adolescent brain and make it respond differently to more addictive substances, such as cocaine. In the present study, we demonstrate that a history of synthetic cannabinoid exposure in adolescent animals results in distinct molecular and epigenetic changes following initial exposure to cocaine. These changes were pronounced in the prefrontal cortex and associated with an enhanced response to cocaine’s stimulatory effects. The prefrontal cortex is a brain region that still undergoes maturation in adolescence and its dysfunction contributes to the development of addictions. The initial response to an addictive substance can facilitate repeated use: That is, individuals experiencing more positive effects are more likely to use that drug again. Increasing evidence suggests that psychoactive cannabinoid use in adolescence enhances the behavioral effects of cocaine. However, despite the behavioral data, there is no neurobiological evidence demonstrating that cannabinoids can also alter the brain’s initial molecular and epigenetic response to cocaine. Here, we utilized a multiomics approach (epigenomics, transcriptomics, proteomics, and phosphoproteomics) to characterize how the rat brain responds to its first encounter with cocaine, with or without preexposure to the synthetic cannabinoid WIN 55,212-2 (WIN). We find that in adolescent (but not in adult) rats, preexposure to WIN results in cross-sensitization to cocaine, which correlates with histone hyperacetylation and decreased levels of HDAC6 in the prefrontal cortex (PFC). In the PFC, we also find that WIN preexposure blunts the typical mRNA response to cocaine and instead results in alternative splicing and chromatin accessibility events, involving genes such as Npas2. Moreover, preexposure to WIN enhances the effects of cocaine on protein phosphorylation, including ERK/MAPK-targets like gephyrin, and modulates the synaptic AMPAR/GluR composition both in the PFC and the nucleus accumbens (NAcc). PFC–NAcc gene network topological analyses, following cocaine exposure, reveal distinct top nodes in the WIN preexposed group, which include PACAP/ADCYAP1. These preclinical data demonstrate that adolescent cannabinoid exposure reprograms the initial behavioral, molecular, and epigenetic response to cocaine.
Collapse
|
176
|
Mehta D, Miller O, Bruenig D, David G, Shakespeare-Finch J. A Systematic Review of DNA Methylation and Gene Expression Studies in Posttraumatic Stress Disorder, Posttraumatic Growth, and Resilience. J Trauma Stress 2020; 33:171-180. [PMID: 31951051 DOI: 10.1002/jts.22472] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
Most people will experience a traumatic event within their lifetime. One commonly recognized response to trauma exposure is posttraumatic stress disorder (PTSD). The biological underpinnings of PTSD, including epigenetic mechanisms of DNA methylation and gene expression, have been studied intensively. However, psychological posttrauma responses vary widely and can include positive outcomes, such as posttraumatic growth (PTG) and, more commonly, resilience. The aim of this systematic review was to summarize the current DNA methylation and gene expression data with respect to three potential posttrauma responses: PTSD, PTG, and resilience. A literature search identified 486 studies, 51 of which were deemed eligible for inclusion (total N = 10,633). All included studies examined PTSD and consistently implicated DNA methylation and gene expression changes in hypothalamic-pituitary-adrenal axis and inflammatory genes. Ten studies acknowledged resilience as a posttrauma response, but only two studies examined epigenetics and gene expression using a scale to measure resilience. Low resilience was associated with gene expression patterns in immune and dopamine genes, and high resilience was associated with a blunted inflammatory response. No studies examined epigenetic or gene expression changes associated with PTG. These findings highlight a focus on pathogenic research, which has failed to adequately acknowledge and measure positive posttrauma outcomes of PTG and resilience. Future research should examine DNA methylation and gene expression changes associated with PTG and resilience in addition to PTSD in order to gain a more comprehensive picture of an individual's well-being following exposure to trauma.
Collapse
Affiliation(s)
- Divya Mehta
- School of Psychology and Counselling and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Olivia Miller
- School of Psychology and Counselling and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Dagmar Bruenig
- School of Psychology and Counselling and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Georgina David
- School of Psychology and Counselling and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Jane Shakespeare-Finch
- School of Psychology and Counselling and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| |
Collapse
|
177
|
Johnson GC, Parsons RL, May V, Hammack SE. Pituitary adenylate cyclase-activating polypeptide-induced PAC1 receptor internalization and recruitment of MEK/ERK signaling enhance excitability of dentate gyrus granule cells. Am J Physiol Cell Physiol 2020; 318:C870-C878. [PMID: 32186931 DOI: 10.1152/ajpcell.00065.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP; ADCYAP1) is a pleiotropic neuropeptide widely distributed in both the peripheral and central nervous systems. PACAP and its specific cognate PAC1 receptor (ADCYAP1R1) play critical roles in the homeostatic maintenance of multiple physiological and behavioral systems. Notably, maladaptations in the PACAPergic system have been associated with several psychopathologies related to fear and anxiety. PAC1 receptor transcripts are highly expressed in granule cells of the dentate gyrus (DG). Here, we examined the direct effects of PACAP on DG granule cells in brain slices using whole cell patch recordings in current clamp mode. PACAP significantly increased the intrinsic excitability of DG granule cells via PAC1 receptor activation. This increased excitability was not mediated by adenylyl cyclase/cAMP or phospholipase C/PKC activation, but instead via activation of an extracellular signal-regulated kinase (ERK) signaling pathway initiated through PAC1 receptor endocytosis/endosomal signaling. PACAP failed to increase excitability in DG granule cells pretreated with the persistent sodium current blocker riluzole, suggesting that the observed PACAP effects required this component of the inward sodium current.
Collapse
Affiliation(s)
- Gregory C Johnson
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Rodney L Parsons
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Victor May
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| |
Collapse
|
178
|
Logue MW, Miller MW, Wolf EJ, Huber BR, Morrison FG, Zhou Z, Zheng Y, Smith AK, Daskalakis NP, Ratanatharathorn A, Uddin M, Nievergelt CM, Ashley-Koch AE, Baker DG, Beckham JC, Garrett ME, Boks MP, Geuze E, Grant GA, Hauser MA, Kessler RC, Kimbrel NA, Maihofer AX, Marx CE, Qin XJ, Risbrough VB, Rutten BPF, Stein MB, Ursano RJ, Vermetten E, Vinkers CH, Ware EB, Stone A, Schichman SA, McGlinchey RE, Milberg WP, Hayes JP, Verfaellie M. An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci. Clin Epigenetics 2020; 12:46. [PMID: 32171335 PMCID: PMC7071645 DOI: 10.1186/s13148-020-0820-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Previous studies using candidate gene and genome-wide approaches have identified epigenetic changes in DNA methylation (DNAm) associated with posttraumatic stress disorder (PTSD). METHODS In this study, we performed an EWAS of PTSD in a cohort of Veterans (n = 378 lifetime PTSD cases and 135 controls) from the Translational Research Center for TBI and Stress Disorders (TRACTS) cohort assessed using the Illumina EPIC Methylation BeadChip which assesses DNAm at more than 850,000 sites throughout the genome. Our model included covariates for ancestry, cell heterogeneity, sex, age, and a smoking score based on DNAm at 39 smoking-associated CpGs. We also examined in EPIC-based DNAm data generated from pre-frontal cortex (PFC) tissue from the National PTSD Brain Bank (n = 72). RESULTS The analysis of blood samples yielded one genome-wide significant association with PTSD at cg19534438 in the gene G0S2 (p = 1.19 × 10-7, padj = 0.048). This association was replicated in an independent PGC-PTSD-EWAS consortium meta-analysis of military cohorts (p = 0.0024). We also observed association with the smoking-related locus cg05575921 in AHRR despite inclusion of a methylation-based smoking score covariate (p = 9.16 × 10-6), which replicates a previously observed PGC-PTSD-EWAS association (Smith et al. 2019), and yields evidence consistent with a smoking-independent effect. The top 100 EWAS loci were then examined in the PFC data. One of the blood-based PTSD loci, cg04130728 in CHST11, which was in the top 10 loci in blood, but which was not genome-wide significant, was significantly associated with PTSD in brain tissue (in blood p = 1.19 × 10-5, padj = 0.60, in brain, p = 0.00032 with the same direction of effect). Gene set enrichment analysis of the top 500 EWAS loci yielded several significant overlapping GO terms involved in pathogen response, including "Response to lipopolysaccharide" (p = 6.97 × 10-6, padj = 0.042). CONCLUSIONS The cross replication observed in independent cohorts is evidence that DNA methylation in peripheral tissue can yield consistent and replicable PTSD associations, and our results also suggest that that some PTSD associations observed in peripheral tissue may mirror associations in the brain.
Collapse
Affiliation(s)
- Mark W. Logue
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA ,grid.475010.70000 0004 0367 5222,Biomedical Genetics, Boston University School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Mark W. Miller
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Erika J. Wolf
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Bertrand Russ Huber
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Filomene G. Morrison
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Zhenwei Zhou
- grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Yuanchao Zheng
- grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Alicia K. Smith
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Nikolaos P. Daskalakis
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA ,grid.240206.20000 0000 8795 072XMcLean Hospital, Belmont, MA USA ,Cohen Veterans Bioscience, Cambridge, MA USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Andrew Ratanatharathorn
- grid.21729.3f0000000419368729Department of Epidemiology, Columbia University, New York, NY USA
| | - Monica Uddin
- grid.170693.a0000 0001 2353 285XGenomics Program, University of South Florida College of Public Health, Tampa, FL USA ,grid.170693.a0000 0001 2353 285X,Global Health and Infectious Disease Research Program, University of South Florida College of Public Health, Tampa, FL USA
| | - Caroline M. Nievergelt
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA USA ,grid.410371.00000 0004 0419 2708Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Allison E. Ashley-Koch
- grid.189509.c0000000100241216Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC USA
| | - Dewleen G. Baker
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA USA ,grid.410371.00000 0004 0419 2708Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Jean C. Beckham
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA ,grid.410332.70000 0004 0419 9846Research, Durham VA Medical Center, Durham, NC USA ,grid.281208.10000 0004 0419 3073Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Durham, NC USA
| | - Melanie E. Garrett
- grid.189509.c0000000100241216Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC USA
| | - Marco P. Boks
- grid.7692.a0000000090126352Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, Utrecht Netherlands
| | - Elbert Geuze
- grid.7692.a0000000090126352Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, Utrecht Netherlands ,Brain Research and Innovation Centre, Netherlands Ministry of Defence, Utrecht, Utrecht Netherlands
| | - Gerald A. Grant
- grid.240952.80000000087342732Department of Neurosurgery, Stanford University Medical Center, Stanford, CA USA
| | - Michael A. Hauser
- grid.189509.c0000000100241216Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC USA
| | - Ronald C. Kessler
- grid.38142.3c000000041936754XDepartment of Health Care Policy, Harvard Medical School, Boston, MA USA
| | - Nathan A. Kimbrel
- grid.410332.70000 0004 0419 9846Research, Durham VA Medical Center, Durham, NC USA ,grid.281208.10000 0004 0419 3073Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University, Durham, NC USA
| | - Adam X. Maihofer
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA USA ,grid.410371.00000 0004 0419 2708Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Christine E. Marx
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, PA USA ,grid.189509.c0000000100241216Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC USA
| | - Xue-Jun Qin
- grid.189509.c0000000100241216Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC USA
| | - Victoria B. Risbrough
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA USA ,grid.410371.00000 0004 0419 2708Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Bart P. F. Rutten
- grid.412966.e0000 0004 0480 1382School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht Universitair Medisch Centrum, Maastricht, Limburg Netherlands
| | - Murray B. Stein
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA USA ,grid.410371.00000 0004 0419 2708Million Veteran Program, Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Robert J. Ursano
- grid.265436.00000 0001 0421 5525Department of Psychiatry, Uniformed Services University, Bethesda, MD USA
| | - Eric Vermetten
- Arq, Psychotrauma Reseach Expert Group, Diemen, NH Netherlands ,grid.10419.3d0000000089452978Department of Psychiatry, Leiden University Medical Center, Leiden, ZH Netherlands ,Netherlands Defense Department, Research Center, Utrecht, UT Netherlands ,grid.137628.90000 0004 1936 8753Department of Psychiatry, New York University School of Medicine, New York, NY USA
| | - Christiaan H. Vinkers
- Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, Holland Netherlands ,Department of Psychiatry, Amsterdam UMC (location VUmc), Amsterdam, Holland Netherlands
| | - Erin B. Ware
- grid.214458.e0000000086837370Institute for Social Research, Survey Research Center, University of Michigan, Michigan, MI USA
| | - Annjanette Stone
- grid.413916.80000 0004 0419 1545Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AR USA
| | - Steven A. Schichman
- grid.413916.80000 0004 0419 1545Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AR USA
| | - Regina E. McGlinchey
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA ,grid.410370.10000 0004 4657 1992Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Health Care System, Boston, MA USA
| | - William P. Milberg
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA ,grid.410370.10000 0004 4657 1992Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Health Care System, Boston, MA USA
| | - Jasmeet P. Hayes
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA ,grid.261331.40000 0001 2285 7943Department of Psychology and Chronic Brain Injury Program, The Ohio State University, Columbus, OH USA
| | - Mieke Verfaellie
- grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA ,grid.475010.70000 0004 0367 5222Memory Disorders Research Center, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA USA
| | | |
Collapse
|
179
|
Cryo-EM structure of the human PAC1 receptor coupled to an engineered heterotrimeric G protein. Nat Struct Mol Biol 2020; 27:274-280. [PMID: 32157248 DOI: 10.1038/s41594-020-0386-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide hormone. The PACAP receptor PAC1R, which belongs to the class B G-protein-coupled receptors (GPCRs), is a drug target for mental disorders and dry eye syndrome. Here, we present a cryo-EM structure of human PAC1R bound to PACAP and an engineered Gs heterotrimer. The structure revealed that transmembrane helix TM1 plays an essential role in PACAP recognition. The extracellular domain (ECD) of PAC1R tilts by ~40° compared with that of the glucagon-like peptide-1 receptor (GLP-1R) and thus does not cover the peptide ligand. A functional analysis demonstrated that the PAC1R ECD functions as an affinity trap and is not required for receptor activation, whereas the GLP-1R ECD plays an indispensable role in receptor activation, illuminating the functional diversity of the ECDs in class B GPCRs. Our structural information will facilitate the design and improvement of better PAC1R agonists for clinical applications.
Collapse
|
180
|
Chronic Stress Induces Maladaptive Behaviors by Activating Corticotropin-Releasing Hormone Signaling in the Mouse Oval Bed Nucleus of the Stria Terminalis. J Neurosci 2020; 40:2519-2537. [PMID: 32054675 DOI: 10.1523/jneurosci.2410-19.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a forebrain region highly responsive to stress that expresses corticotropin-releasing hormone (CRH) and is implicated in mood disorders, such as anxiety. However, the exact mechanism by which chronic stress induces CRH-mediated dysfunction in BNST and maladaptive behaviors remains unclear. Here, we first confirmed that selective acute optogenetic activation of the oval nucleus BNST (ovBNST) increases maladaptive avoidance behaviors in male mice. Next, we found that a 6 week chronic variable mild stress (CVMS) paradigm resulted in maladaptive behaviors and increased cellular excitability of ovBNST CRH neurons by potentiating mEPSC amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential) in ex vivo slices. CVMS also increased c-fos+ cells in ovBNST following handling. We next investigated potential molecular mechanism underlying the electrophysiological effects and observed that CVMS increased CRH+ and pituitary adenylate cyclase-activating polypeptide+ (PACAP; a CRH upstream regulator) cells but decreased striatal-enriched protein tyrosine phosphatase+ (a STEP CRH inhibitor) cells in ovBNST. Interestingly, the electrophysiological effects of CVMS were reversed by CRHR1-selective antagonist R121919 application. CVMS also activated protein kinase A (PKA) in BNST, and chronic infusion of the PKA-selective antagonist H89 into ovBNST reversed the effects of CVMS. Coadministration of the PKA agonist forskolin prevented the beneficial effects of R121919. Finally, CVMS induced an increase in surface expression of phosphorylated GluR1 (S845) in BNST. Collectively, these findings highlight a novel and indispensable stress-induced role for PKA-dependent CRHR1 signaling in activating BNST CRH neurons and mediating maladaptive behaviors.SIGNIFICANCE STATEMENT Chronic stress and acute activation of oval bed nucleus of the stria terminalis (ovBNST) induces maladaptive behaviors in rodents. However, the precise molecular and electrophysiological mechanisms underlying these effects remain unclear. Here, we demonstrate that chronic variable mild stress activates corticotropin-releasing hormone (CRH)-associated stress signaling and CRH neurons in ovBNST by potentiating mEPSC amplitude and decreasing M-current in male mice. These electrophysiological alterations and maladaptive behaviors were mediated by BNST protein kinase A-dependent CRHR1 signaling. Our results thus highlight the importance of BNST CRH dysfunction in chronic stress-induced disorders.
Collapse
|
181
|
Hone AJ, Rueda-Ruzafa L, Gordon TJ, Gajewiak J, Christensen S, Dyhring T, Albillos A, McIntosh JM. Expression of α3β2β4 nicotinic acetylcholine receptors by rat adrenal chromaffin cells determined using novel conopeptide antagonists. J Neurochem 2020; 154:158-176. [PMID: 31967330 DOI: 10.1111/jnc.14966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
Adrenal chromaffin cells release neurotransmitters in response to stress and may be involved in conditions such as post-traumatic stress and anxiety disorders. Neurotransmitter release is triggered, in part, by activation of nicotinic acetylcholine receptors (nAChRs). However, despite decades of use as a model system for studying exocytosis, the nAChR subtypes involved have not been pharmacologically identified. Quantitative real-time PCR of rat adrenal medulla revealed an abundance of mRNAs for α3, α7, β2, and β4 subunits. Whole-cell patch-clamp electrophysiology of chromaffin cells and subtype-selective ligands were used to probe for nAChRs derived from the mRNAs found in adrenal medulla. A novel conopeptide antagonist, PeIA-5469, was created that is highly selective for α3β2 over other nAChR subtypes heterologously expressed in Xenopus laevis oocytes. Experiments using PeIA-5469 and the α3β4-selective α-conotoxin TxID revealed that rat adrenal medulla contain two populations of chromaffin cells that express either α3β4 nAChRs alone or α3β4 together with the α3β2β4 subtype. Conclusions were derived from observations that acetylcholine-gated currents in some cells were sensitive to inhibition by PeIA-5469 and TxID, while in other cells, currents were sensitive only to TxID. Expression of functional α7 nAChRs was determined using three α7-selective ligands: the agonist PNU282987, the positive allosteric modulator PNU120596, and the antagonist α-conotoxin [V11L,V16D]ArIB. The results of these studies identify for the first time the expression of α3β2β4 nAChRs as well as functional α7 nAChRs by rat adrenal chromaffin cells.
Collapse
Affiliation(s)
- Arik J Hone
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA.,Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lola Rueda-Ruzafa
- Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Thomas J Gordon
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | - Joanna Gajewiak
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | - Sean Christensen
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | | | - Almudena Albillos
- Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA.,Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
182
|
The Neuroprotective and Biomarker Potential of PACAP in Human Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21030827. [PMID: 32012887 PMCID: PMC7037866 DOI: 10.3390/ijms21030827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury remains a growing public health concern and represents the greatest contributor to death and disability globally among all trauma-related injuries. There are limited clinical data regarding biomarkers in the diagnosis and outcome prediction of TBI. The lack of real effective treatment for recovery calls for research of TBI to be shifted into the area of prevention, treatment of secondary brain injury and neurorehabilitation. The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) has been reported to act as a hormone, a neuromodulator, a neurotransmitter and a trophic factor, and has been implicated in a variety of developmental and regenerative processes. The importance of PACAP in neuronal regeneration lies in the upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central nervous system injury. The aim of this minireview is to summarize both the therapeutic and biomarker potential of the neuropeptide PACAP, as a novel possible target molecule presently being investigated in several human conditions including TBI, and with encouraging results in animal models of TBI.
Collapse
|
183
|
Mehl-Madrona L, McFarlane P, Mainguy B. Epigenetics, Gender, and Sex in the Diagnosis of Depression. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2020. [DOI: 10.2174/2666082215666191029141418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background :
A marked sexual dimorphism exists in psychiatric diagnoses. Culture derived
gender bias in diagnostic criteria is one explanation. Adverse childhood events, including sexual
and physical abuse, are more reliable and consistent predictors of later psychiatric diagnoses,
including depression and post-traumatic stress disorder. Some interesting interactions between genes
and experience have been uncovered, but the primary effect appears to be epigenetic with life experience
altering gene expression and being transmitted to subsequent generations.
Objectives :
To determine if reconceptualizing depression as encompassing both internalizing and
externalizing strategies would eliminate gender differences in the diagnosis of depression
Methods :
We reviewed 74 life stories of patients, collected during a study of the effect of physicians’
knowing patients’ life stories on the quality of the doctor-patient relationship. Looking at
diagnoses, the prevalence of women to men was 2.9 to 1. We redefined depression as a response to
being in a seemingly hopeless situation accompanied by despair, either externalizing ((more often
diagnosed as substance use disorders, impulse control disorders, antisocial personality disorder, or
bipolar disorder) or internalizing (the more standard diagnosis of depression). Then we reviewed
these life stories from that perspective to determine how many would be diagnosed as depressed.
Results :
With this reconceptualization of depression, the sex ratio changed to 1.2 to 1.
Conclusions:
From this perspective, men and women are equally likely to respond to hopelessness,
though men are more socialized to externalize and women to internalize. Considering depression in
this way may help to better identify men at risk for suicide.
Collapse
Affiliation(s)
- Lewis Mehl-Madrona
- Eastern Maine Medical Center Family Medicine Residency, Bangor, ME 04401, United States
| | - Patrick McFarlane
- Eastern Maine Medical Center Family Medicine Residency, Bangor, ME 04401, United States
| | | |
Collapse
|
184
|
Swaab DF, Bao AM. Sex differences in stress-related disorders: Major depressive disorder, bipolar disorder, and posttraumatic stress disorder. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:335-358. [PMID: 33008536 DOI: 10.1016/b978-0-444-64123-6.00023-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stress-related disorders, such as mood disorders and posttraumatic stress disorder (PTSD), are more common in women than in men. This sex difference is at least partly due to the organizing effect of sex steroids during intrauterine development, while activating or inhibiting effects of circulating sex hormones in the postnatal period and adulthood also play a role. Such effects result in structural and functional changes in neuronal networks, neurotransmitters, and neuropeptides, which make the arousal- and stress-related brain systems more vulnerable to environmental stressful events in women. Certain brainstem nuclei, the amygdala, habenula, prefrontal cortex, and hypothalamus are important hubs in the stress-related neuronal network. Various hypothalamic nuclei play a central role in this sexually dimorphic network. This concerns not only the hypothalamus-pituitary-adrenal axis (HPA-axis), which integrates the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of mood disorders, such as disordered day-night rhythm, lack of reward feelings, disturbed eating and sex, and disturbed cognitive functions. The present chapter focuses on the structural and functional sex differences that are present in the stress-related brain systems in mood disorders and PTSD, placing the HPA-axis in the center. The individual differences in the vulnerability of the discussed systems, caused by genetic and epigenetic developmental factors warrant further research to develop tailor-made therapeutic strategies.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China; Key Laboratory of Mental Disorder Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
185
|
Rayman JB, Melas PA, Schalling M, Forsell Y, Kandel ER, Lavebratt C. Single-nucleotide polymorphism in the human TIA1 gene interacts with stressful life events to predict the development of pathological anxiety symptoms in a Swedish population. J Affect Disord 2020; 260:597-603. [PMID: 31541970 DOI: 10.1016/j.jad.2019.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/25/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The TIA1 gene encodes a prion-related RNA-binding protein that regulates stress-dependent synaptic plasticity and fear memory in mice. It is unknown whether genetic variation in human TIA1 is associated with differences in stress- and fear-related behavior in people. METHODS A longitudinal, population-based survey was conducted in Sweden to collect information on demographics, socioeconomic status, exposure to stressful life events and psychiatric symptoms. DNA samples were obtained from study participants to allow genotyping of single-nucleotide polymorphisms in the human TIA1 locus. RESULTS We identified a single-nucleotide polymorphism in the human TIA1 gene that interacts with exposure to previous-year stressful life events to predict the development of pathological anxiety symptoms in a non-clinical cohort. LIMITATIONS Sample population is limited in both size and scope, and we did not perform functional analysis of allelic variants of TIA1. CONCLUSIONS TIA1 may represent a susceptibility locus for stress-dependent psychopathology. These studies support an evolutionarily conserved role of TIA1 in the mammalian brain, and may provide molecular and genetic insight into the development of stress-related psychiatric conditions such as PTSD and anxiety.
Collapse
Affiliation(s)
- Joseph B Rayman
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Philippe A Melas
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska Universitetssjukhuset Solna (L8:00) 171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Yvonne Forsell
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Eric R Kandel
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Howard Hughes Medical Institute at Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Catharina Lavebratt
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska Universitetssjukhuset Solna (L8:00) 171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
186
|
Pleiotropic pituitary adenylate cyclase-activating polypeptide (PACAP): Novel insights into the role of PACAP in eating and drug intake. Brain Res 2019; 1729:146626. [PMID: 31883848 PMCID: PMC6953419 DOI: 10.1016/j.brainres.2019.146626] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 01/30/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was discovered thirty years ago, but its role in eating and drug use disorders has only recently begun to be investigated. The present review develops the hypothesis that, although PACAP normally functions to tightly regulate intake, inhibiting it through negative feedback, this relationship can become dysregulated with the development of dependence, such that PACAP instead acts through positive feedback to promote excessive intake. We propose that repeated exposure to palatable food and drugs of abuse can alter the downstream responses of specific populations of neurons to stimulation by PACAP, leading to the perpetuation of the addiction cycle. Thus, this review will first describe published literature on homeostatic food intake, which shows that PACAP suppresses food intake, while its levels are themselves increased by overfeeding. Next, it will present literature on palatable food, cocaine, alcohol, and nicotine, which overall demonstrates that PACAP in specific limbic brain regions can promote their seeking and intake and itself is stimulated by their intake. Then, it will present literature on affective behavior, which shows that chronic stress increases levels of PACAP, which then promotes anxiety and depression, factors that can trigger substance seeking. Finally, the review will address mechanisms through which chronic substance exposure may dysregulate the PACAP system, proposing that it alters expression of PACAP receptor splice variants. While many questions remain to be addressed, the current evidence suggests that PACAP could be a viable medication target for the treatment of binge eating and drug and alcohol use disorders.
Collapse
|
187
|
Seiglie MP, Huang L, Cottone P, Sabino V. Role of the PACAP system of the extended amygdala in the acoustic startle response in rats. Neuropharmacology 2019; 160:107761. [PMID: 31493466 PMCID: PMC6842120 DOI: 10.1016/j.neuropharm.2019.107761] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
Anxiety-related disorders are the most prevalent mental disorders in the world and they are characterized by abnormal responses to stressors. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide highly expressed in the extended amygdala, a brain macrostructure involved in the response to threat that includes the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST). The aim of this series of experiments was to systematically elucidate the role of the PACAP system of the CeA and BNST under both control, unstressed conditions and after the presentation of a stressor in rats. For this purpose, we used the acoustic startle response (ASR), an unconscious response to sudden acoustic stimuli sensitive to changes in stress which can be used as an operationalization of the hypervigilance present in anxiety- and trauma-related disorders. We found that infusion of PACAP, but not the related peptide vasoactive intestinal peptide (VIP), into either the CeA or the BNST causes a dose-dependent increase in ASR. In addition, while infusion of the antagonist PACAP(6-38) into either the CeA or the BNST does not affect ASR in non-stressed conditions, it prevents the sensitization of ASR induced by an acute footshock stress. Finally, we found that footshock stress induces a significant increase in PACAP, but not VIP, levels in both of these brain areas. Altogether, these data show that the PACAP system of the extended amygdala contributes to stress-induced hyperarousal and suggest it as a potential novel target for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Mariel P Seiglie
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Lillian Huang
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
188
|
Kilaru V, Knight AK, Katrinli S, Cobb D, Lori A, Gillespie CF, Maihofer AX, Nievergelt CM, Dunlop AL, Conneely KN, Smith AK. Critical evaluation of copy number variant calling methods using DNA methylation. Genet Epidemiol 2019; 44:148-158. [PMID: 31737926 PMCID: PMC7028453 DOI: 10.1002/gepi.22269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 12/21/2022]
Abstract
Recent technological and methodological developments have enabled the use of array-based DNA methylation data to call copy number variants (CNVs). ChAMP, Conumee, and cnAnalysis450k are popular methods currently used to call CNVs using methylation data. However, so far, no studies have analyzed the reliability of these methods using real samples. Data from a cohort of individuals with genotype and DNA methylation data generated using the HumanMethylation450 and MethylationEPIC BeadChips were used to assess the consistency between the CNV calls generated by methylation and genotype data. We also took advantage of repeated measures of methylation data collected from the same individuals to compare the reliability of CNVs called by ChAMP, Conumee, and cnAnalysis450k for both the methylation arrays. ChAMP identified more CNVs than Conumee and cnAnalysis450k for both the arrays and, as a consequence, had a higher overlap (~62%) with the calls from the genotype data. However, all methods had relatively low reliability. For the MethylationEPIC array, Conumee had the highest reliability (57.6%), whereas for the HumanMethylation450 array, cnAnalysis450k had the highest reliability (43.0%). Overall, the MethylationEPIC array provided significant gains in reliability for CNV calling over the HumanMethylation450 array but not for overlap with CNVs called using genotype data.
Collapse
Affiliation(s)
- Varun Kilaru
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Anna K Knight
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Dawayland Cobb
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Charles F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, San Diego, California.,Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, California.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Anne L Dunlop
- Nell Hodgson Woodruff School of Nursing, Emory University School of Medicine, Atlanta, Georgia.,Department of Family and Preventive Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
189
|
An alternative theory for hormone effects on sex differences in PTSD: The role of heightened sex hormones during trauma. Psychoneuroendocrinology 2019; 109:104416. [PMID: 31472433 DOI: 10.1016/j.psyneuen.2019.104416] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
Women are at least twice as susceptible to developing post-traumatic stress disorder (PTSD) compared to men. Although most research seeking to explain this discrepancy has focussed on the role of oestradiol during fear extinction learning, the role of progesterone has been overlooked, despite relatively consistent findings being reported concerning the role of progesterone during consolidation of emotional and intrusive memories. In this review article, we outline literature supporting the role of progesterone on memory formation, with particular emphasis on potential memory-enhancing properties of progesterone when subjects are placed under stress. It is possible that progesterone directly and indirectly exerts memory-enhancing effects at the time of trauma, which is an effect that may not be necessarily captured during non-stressful paradigms. We propose a model whereby progesterone's steroidogenic relationship to cortisol and brain-derived neurotrophic factor in combination with elevated oestradiol may enhance emotional memory consolidation during trauma and therefore present a specific vulnerability to PTSD formation in women, particularly during the mid-luteal phase of the menstrual cycle.
Collapse
|
190
|
Newman EL, Covington HE, Suh J, Bicakci MB, Ressler KJ, DeBold JF, Miczek KA. Fighting Females: Neural and Behavioral Consequences of Social Defeat Stress in Female Mice. Biol Psychiatry 2019; 86:657-668. [PMID: 31255250 PMCID: PMC6788975 DOI: 10.1016/j.biopsych.2019.05.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Despite the twofold higher prevalence of major depressive and posttraumatic stress disorders in women compared with men, most clinical and preclinical studies have focused on male subjects. We used an ethological murine model to study several cardinal symptoms of affective disorders in the female targets of female aggression. METHODS Intact Swiss Webster (CFW) female resident mice were housed with castrated male mice and tested for aggression toward female intruders. For 10 days, aggressive CFW female residents defeated C57BL/6J (B6) female intruders during 5-minute encounters. Measures of corticosterone, c-Fos activation in hypothalamic and limbic structures, and species-typical behaviors were collected from defeated and control females. Ketamine (20 mg/kg) was tested for its potential to reverse stress-induced social deficits. RESULTS Housed with a castrated male mouse, most intact resident CFW females readily attacked unfamiliar B6 female intruders, inflicting >40 bites in a 5-minute encounter. Compared with controls, defeated B6 females exhibited elevated plasma corticosterone and increased c-Fos activation in the medial amygdala, ventral lateral septum, ventromedial hypothalamus, and hypothalamic paraventricular nucleus. Chronically defeated females also showed vigilance-like behavior and deficits in social interactions, novel object investigation, and nesting. The duration of social interactions increased 24 hours after chronically defeated female mice received a systemic dose of ketamine. CONCLUSIONS These findings demonstrate that CFW female mice living with male conspecifics can be used as aggressive residents in an ethological model of female social defeat stress. These novel behavioral methods will encourage further studies of sex-specific neural, physiological, and behavioral adaptations to chronic stress and the biological bases for interfemale aggression.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Department, Tufts University, Medford, Massachusetts
| | | | - Junghyup Suh
- Division of Depression and Anxiety Disorders and Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | | | - Kerry J Ressler
- Division of Depression and Anxiety Disorders and Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Joseph F DeBold
- Psychology Department, Tufts University, Medford, Massachusetts
| | - Klaus A Miczek
- Psychology Department, Tufts University, Medford, Massachusetts; Department of Neuroscience, Tufts University, Boston, Massachusetts.
| |
Collapse
|
191
|
Liao C, de Molliens MP, Schneebeli ST, Brewer M, Song G, Chatenet D, Braas KM, May V, Li J. Targeting the PAC1 Receptor for Neurological and Metabolic Disorders. Curr Top Med Chem 2019; 19:1399-1417. [PMID: 31284862 PMCID: PMC6761004 DOI: 10.2174/1568026619666190709092647] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor (PAC1R, ADCYAP1R1) is a member of the vasoactive intestinal peptide (VIP)/secretin/glucagon family of G protein-coupled receptors (GPCRs). PAC1R has been shown to play crucial roles in the central and peripheral nervous systems. The activation of PAC1R initiates diverse downstream signal transduction pathways, including adenylyl cyclase, phospholipase C, MEK/ERK, and Akt pathways that regulate a number of physiological systems to maintain functional homeostasis. Accordingly, at times of tissue injury or insult, PACAP/PAC1R activation of these pathways can be trophic to blunt or delay apoptotic events and enhance cell survival. Enhancing PAC1R signaling under these conditions has the potential to mitigate cellular damages associated with cerebrovascular trauma (including stroke), neurodegeneration (such as Parkinson's and Alzheimer's disease), or peripheral organ insults. Conversely, maladaptive PACAP/PAC1R signaling has been implicated in a number of disorders, including stressrelated psychopathologies (i.e., depression, posttraumatic stress disorder, and related abnormalities), chronic pain and migraine, and metabolic diseases; abrogating PAC1R signaling under these pathological conditions represent opportunities for therapeutic intervention. Given the diverse PAC1R-mediated biological activities, the receptor has emerged as a relevant pharmaceutical target. In this review, we first describe the current knowledge regarding the molecular structure, dynamics, and function of PAC1R. Then, we discuss the roles of PACAP and PAC1R in the activation of a variety of signaling cascades related to the physiology and diseases of the nervous system. Lastly, we examine current drug design and development of peptides and small molecules targeting PAC1R based on a number of structure- activity relationship studies and key pharmacophore elements. At present, the rational design of PAC1R-selective peptide or small-molecule therapeutics is largely hindered by the lack of structural information regarding PAC1R activation mechanisms, the PACAP-PAC1R interface, and the core segments involved in receptor activation. Understanding the molecular basis governing the PACAP interactions with its different cognate receptors will undoubtedly provide a basis for the development and/or refinement of receptor-selective therapeutics.
Collapse
Affiliation(s)
- Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | | | - Severin T Schneebeli
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Matthias Brewer
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - David Chatenet
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| |
Collapse
|
192
|
Ramos PS. Epigenetics of scleroderma: Integrating genetic, ethnic, age, and environmental effects. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2019; 4:238-250. [PMID: 35382507 PMCID: PMC8922566 DOI: 10.1177/2397198319855872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/15/2019] [Indexed: 08/02/2023]
Abstract
Scleroderma or systemic sclerosis is thought to result from the interplay between environmental or non-genetic factors in a genetically susceptible individual. Epigenetic modifications are influenced by genetic variation and environmental exposures, and change with chronological age and between populations. Despite progress in identifying genetic, epigenetic, and environmental risk factors, the underlying mechanism of systemic sclerosis remains unclear. Since epigenetics provides the regulatory mechanism linking genetic and non-genetic factors to gene expression, understanding the role of epigenetic regulation in systemic sclerosis will elucidate how these factors interact to cause systemic sclerosis. Among the cell types under tight epigenetic control and susceptible to epigenetic dysregulation, immune cells are critically involved in early pathogenic events in the progression of fibrosis and systemic sclerosis. This review starts by summarizing the changes in DNA methylation, histone modification, and non-coding RNAs associated with systemic sclerosis. It then discusses the role of genetic, ethnic, age, and environmental effects on epigenetic regulation, with a focus on immune system dysregulation. Given the potential of epigenome editing technologies for cell reprogramming and as a therapeutic approach for durable gene regulation, this review concludes with a prospect on epigenetic editing. Although epigenomics in systemic sclerosis is in its infancy, future studies will help elucidate the regulatory mechanisms underpinning systemic sclerosis and inform the design of targeted epigenetic therapies to control its dysregulation.
Collapse
Affiliation(s)
- Paula S Ramos
- Paula S. Ramos, Division of Rheumatology and Immunology, Department of Medicine and Department of Public Health Sciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 816, MSC 637, Charleston, SC 29425, USA.
| |
Collapse
|
193
|
Ravi M, Stevens JS, Michopoulos V. Neuroendocrine pathways underlying risk and resilience to PTSD in women. Front Neuroendocrinol 2019; 55:100790. [PMID: 31542288 PMCID: PMC6876844 DOI: 10.1016/j.yfrne.2019.100790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/26/2019] [Accepted: 09/18/2019] [Indexed: 01/23/2023]
Abstract
Women are twice as likely than men to suffer from posttraumatic stress disorder (PTSD). While women have increased exposure to traumatic events of many types and have greater prevalence of comorbid psychiatric disorders compared to men, these differences do not account for the overall sex difference in the prevalence of PTSD. The current review summarizes significant findings that implicate the role of estradiol, progesterone, and allopregnanolone in female risk for PTSD symptoms and dysregulation of fear psychophysiology that is cardinal to PTSD. We also discuss how these steroid hormones influence the stress axis and neural substrates critical for the regulation of fear responses. Understanding the role of ovarian steroid hormones in risk and resilience for trauma-related adverse mental health outcomes across the lifespan in women has important translational, clinical, and intergenerational implications for mitigating the consequences of trauma exposure.
Collapse
Affiliation(s)
- Meghna Ravi
- Emory University Graduate Program in Neuroscience, Atlanta, GA, United States
| | - Jennifer S Stevens
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States
| | - Vasiliki Michopoulos
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States.
| |
Collapse
|
194
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
195
|
Sragovich S, Ziv Y, Vaisvaser S, Shomron N, Hendler T, Gozes I. The autism-mutated ADNP plays a key role in stress response. Transl Psychiatry 2019; 9:235. [PMID: 31534115 PMCID: PMC6751176 DOI: 10.1038/s41398-019-0569-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/01/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Activity-dependent neuroprotective protein (ADNP), discovered and first characterized in our laboratory (IG), is vital for mammalian brain formation and presents one of the leading genes mutated de novo causing an autistic syndrome, namely the ADNP syndrome. Furthermore, a unique mouse model of Adnp-haploinsufficiency was developed in the laboratory (IG), with mice exhibiting cognitive and social deficiencies. ADNP is regulated by vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP). In this respect, PACAP was independently identified as a sexual divergent master regulator of the stress response. Here, we sought to determine the impact of the Adnp genotype and the efficacy of PACAP pre-treatment when subjecting Adnp+/- mice to stressful conditions. Significant sex differences were observed with Adnp+/- males being more susceptible to stress in the object and social recognition tests, and the females more susceptible in the open field and elevated plus maze tests. Splenic Adnp expression and plasma cortisol levels in mice were correlated with cognition (male mice) and anxiety-related behavior. These findings were further translated to humans, with observed correlations between ADNP expression and stress/cortisol content in a young men cohort. Altogether, our current results may establish ADNP as a marker of stress response.
Collapse
Affiliation(s)
- Shlomo Sragovich
- 0000 0004 1937 0546grid.12136.37The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Yarden Ziv
- 0000 0004 1937 0546grid.12136.37The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Sharon Vaisvaser
- 0000 0001 0518 6922grid.413449.fFunctional Brain Center, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Shomron
- 0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Talma Hendler
- 0000 0001 0518 6922grid.413449.fFunctional Brain Center, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel ,0000 0004 1937 0546grid.12136.37School of Psychological Sciences, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
196
|
Ding J, da Silva MS, Lingeman J, Chen X, Shi Y, Han F, Meijer OC. Late glucocorticoid receptor antagonism changes the outcome of adult life stress. Psychoneuroendocrinology 2019; 107:169-178. [PMID: 31132569 DOI: 10.1016/j.psyneuen.2019.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/22/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Stressors activate a wide spectrum of interacting hormonal and neuronal systems resulting in behavioral and physiological responses, with consequences for the development of psychopathology. Several recent studies demonstrated that treatment with the glucocorticoid receptor (GR) antagonist RU486 during adulthood normalized effects of early life stress. We aimed to evaluate the potential of RU486 to reverse stress-induced changes in an animal model of adult stress. METHOD We employed the single-prolonged stress (SPS) model as a multimodal stress exposure protocol in male rats. SPS rats and unstressed controls were treated with RU486 on days 8, 9, 10 after stress exposure and the effects of treatment were evaluated after another 4 days. We determined body weight gain, corticosterone levels, behavioral reactivity in anxiety tests, and brain gene expression of c-fos, corticosteroid receptors, drivers of the stress response and genes (epi-)genitally linked to PTSD. RESULTS RU486 affected body weight gain, corticosterone levels and open field behavior only in SPS rats. RU486 had history-independent effects in reducing fear in the elevated plus maze and fear conditioning behavior. Gene expression analysis showed a diversity of in- and interdependent effects of stress and RU486. CONCLUSION The effects of RU486 applied 1 week after stress and measured 4 days after treatment demonstrate that in the state of post-SPS the GR-dependence of homeostatic processes has changed. This suggests that GR-mediated processes are part of allostatic regulation after adult stress. The normalization of a number of SPS-effects after RU486 treatment reinforces the potential of targeting GR for treatment of stress-related psychopathologies.
Collapse
Affiliation(s)
- Jinlan Ding
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, PR China
| | - Marcia Santos da Silva
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Department Translational Neuroscience, Brain Center Rudolf Magnus, Utrecht University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Jolanthe Lingeman
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Xinzhao Chen
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, PR China
| | - Yuxiu Shi
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, PR China
| | - Fang Han
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, PR China.
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
197
|
Varodayan FP, Minnig MA, Steinman MQ, Oleata CS, Riley MW, Sabino V, Roberto M. PACAP regulation of central amygdala GABAergic synapses is altered by restraint stress. Neuropharmacology 2019; 168:107752. [PMID: 31476352 DOI: 10.1016/j.neuropharm.2019.107752] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) system plays a central role in the brain's emotional response to psychological stress by activating cellular processes and circuits associated with threat exposure. The neuropeptide PACAP and its main receptor PAC1 are expressed in the rodent central amygdala (CeA), a brain region critical in negative emotional processing, and CeA PACAPergic signaling drives anxiogenic and stress coping behaviors. Despite this behavioral evidence, PACAP's effects on neuronal activity within the medial subdivision of the CeA (CeM, the major output nucleus for the entire amygdala complex) during basal conditions and after psychological stress remain unknown. Therefore, in the present study, male Wistar rats were subjected to either restraint stress or control conditions, and PACAPergic regulation of CeM cellular function was assessed using immunohistochemistry and whole-cell patch-clamp electrophysiology. Our results demonstrate that PACAP-38 potentiates GABA release in the CeM of naïve rats, via its actions at presynaptic PAC1. Basal PAC1 activity also enhances GABA release in an action potential-dependent manner. Notably, PACAP-38's facilitation of CeM GABA release was attenuated after a single restraint stress session, but after repeated sessions returned to the level observed in naïve animals. A single restraint session also significantly decreased PAC1 levels in the CeM, with repeated restraint sessions producing a slight recovery. Collectively our data reveal that PACAP/PAC1 signaling enhances inhibitory control of the CeM and that psychological stress can modulate this influence to potentially disinhibit downstream effector regions that mediate anxiety and stress-related behaviors. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- F P Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - M A Minnig
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - M Q Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - C S Oleata
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - M W Riley
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - V Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - M Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
198
|
Pace-Schott EF, Amole MC, Aue T, Balconi M, Bylsma LM, Critchley H, Demaree HA, Friedman BH, Gooding AEK, Gosseries O, Jovanovic T, Kirby LA, Kozlowska K, Laureys S, Lowe L, Magee K, Marin MF, Merner AR, Robinson JL, Smith RC, Spangler DP, Van Overveld M, VanElzakker MB. Physiological feelings. Neurosci Biobehav Rev 2019; 103:267-304. [DOI: 10.1016/j.neubiorev.2019.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
|
199
|
Parsons RL, May V. PACAP-Induced PAC1 Receptor Internalization and Recruitment of Endosomal Signaling Regulate Cardiac Neuron Excitability. J Mol Neurosci 2019; 68:340-347. [PMID: 30054797 PMCID: PMC6348136 DOI: 10.1007/s12031-018-1127-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 11/27/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP, Adcyap1) activation of PAC1 receptors (Adcyap1r1) significantly increases excitability of guinea pig cardiac neurons. This modulation of excitability is mediated in part by plasma membrane G protein-dependent activation of adenylyl cyclase and downstream signaling cascades, as well as by endosomal signaling mechanisms. PACAP/PAC1 receptor-mediated activation of plasma membrane adenylyl cyclase (AC) and the resulting increase in cellular cAMP enhances a hyperpolarization-induced nonselective cationic current Ih, which contributes to the PACAP-induced increase in cardiac neuron excitability. Further, PACAP-mediated AC/cAMP/PKA downstream signaling also appears to enhance cardiac neuron IT to facilitate the excitatory responses. PACAP activation of PAC1 receptors rapidly stimulates receptor internalization, and reducing ambient temperature or treatments with the clathrin inhibitor Pitstop2 or the dynamin I/II inhibitor dynasore to block endocytic events can suppress PACAP-enhanced neuronal excitability. Thus, endocytosis inhibitors essentially eliminate PACAP-enhanced excitability suggesting that endosomal platforms represent a primary signaling mechanism. Endosomal signaling is associated canonically with ERK activation and in accord, PACAP-enhanced cardiac neuron excitability is reduced by MEK inhibitor pretreatments. PACAP activation of MEK/ERK signaling can enhance currents through voltage-dependent Nav1.7 channels. Hence, PACAP-induced PAC1 receptor internalization/endosomal signaling, recruitment of MEK/ERK signaling, and modulation of Nav1.7 are implicated as key mechanisms contributing to the PACAP-enhanced neuronal excitability. PACAP/PAC1 receptor-mediated endosomal ERK signaling in central circuits can play key roles in development of chronic pain and anxiety-related responses; thus, PAC1 endosomal signaling likely participates in a variety of homeostatic responses within neuronal circuits in the CNS.
Collapse
Affiliation(s)
- Rodney L Parsons
- Departmental of Neurological Sciences, Robert Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Victor May
- Departmental of Neurological Sciences, Robert Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
200
|
Keynejad RC, Frodl T, Kanaan R, Pariante C, Reuber M, Nicholson TR. Stress and functional neurological disorders: mechanistic insights. J Neurol Neurosurg Psychiatry 2019; 90:813-821. [PMID: 30409887 DOI: 10.1136/jnnp-2018-318297] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 11/04/2022]
Abstract
At the interface between mind and body, psychiatry and neurology, functional neurological disorder (FND) remains poorly understood. Formerly dominant stress-related aetiological models have been increasingly challenged, in part due to cases without any history of past or recent trauma. In this perspective article, we review current evidence for such models, and how research into the role of traumatic stress in other disorders and the neurobiology of the stress response can inform our mechanistic understanding of FND. First, we discuss the association between stress and the onset or exacerbation of a variety of physical and mental health problems. Second, we review the role of hypothalamic-pituitary-adrenal axis dysfunction in the neurobiology of ill-health, alongside evidence for similar mechanisms in FND. Third, we advocate a stress-diathesis model, in which biological susceptibility interacts with early life adversity, where FND can be precipitated by traumatic events later in life and maintained by psychological responses. We hypothesise that greater biological susceptibility to FND is associated with less severe remote and recent stress, and that FND precipitated by more severe stress is associated with lower biological vulnerability. This would explain clinical experience of variable exposure to historical and recent traumatic stress among people with FND and requires empirical investigation. A testable, evidence-based stress-diathesis model can inform nuanced understanding of how biological and psychological factors interact at the individual level, with potential to inform personalised treatment pathways. Much-needed research to establish the aetiology of FND will enhance clinical care and communication, facilitate effective treatment and inform prevention strategies.
Collapse
Affiliation(s)
- Roxanne C Keynejad
- Section of Women's Mental Health, Health Service and Population Research Department, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Thomas Frodl
- Department and Hospital of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Richard Kanaan
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry Psychology & Neuroscience, King's College London, UK, London.,Department of Psychiatry, University of Melbourne, Austin Health, Austin, Heidelberg, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Carmine Pariante
- Stress Psychiatry and Immunology Lab, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Markus Reuber
- Academic Neurology Unit, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - Timothy R Nicholson
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|