151
|
Fogo GM, Shuboni-Mulligan DD, Gall AJ. Melanopsin-Containing ipRGCs Are Resistant to Excitotoxic Injury and Maintain Functional Non-Image Forming Behaviors After Insult in a Diurnal Rodent Model. Neuroscience 2019; 412:105-115. [PMID: 31176702 DOI: 10.1016/j.neuroscience.2019.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for the light signaling properties of non-image forming vision. Melanopsin-expressing ipRGCs project to retinorecipient brain regions involved in modulating circadian rhythms. Melanopsin has been shown to play an important role in how animals respond to light, including photoentrainment, masking (i.e., acute behavioral responses to light), and the pupillary light reflex (PLR). Importantly, ipRGCs are resistant to various forms of damage, including ocular hypertension, optic nerve crush, and excitotoxicity via N-methyl-D-aspartic acid (NMDA) administration. Although these cells are resistant to various forms of injury, the question still remains whether or not these cells remain functional following injury. Here we tested the hypothesis that ipRGCs would be resistant to excitotoxic damage in a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus). In addition, we hypothesized that following insult, grass rats would maintain normal circadian entrainment and masking to light. In order to test these hypotheses, we injected NMDA intraocularly and examined its effect on the survivability of ipRGCs and RGCs, along with testing behavioral and functional consequences. Similar to findings in nocturnal rodents, ipRGCs were spared from significant damage but RGCs were not. Importantly, whereas image-forming vision was significantly impaired, non-image forming vision (i.e, photoentrainment, masking, and PLR) remained functional. The present study aims to characterize the resistance of ipRGCs to excitotoxicity in a diurnal rodent model.
Collapse
Affiliation(s)
- Garrett M Fogo
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Andrew J Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, USA.
| |
Collapse
|
152
|
Varadarajan SG, Huberman AD. Uniformity from Diversity: Vast-Range Light Sensing in a Single Neuron Type. Cell 2019; 171:738-740. [PMID: 29100070 DOI: 10.1016/j.cell.2017.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The brightness of our visual environment varies tremendously from day to night. In this issue of Cell, Milner and Do describe how the population of retinal neurons responsible for entrainment of the brain's circadian clock cooperate to encode irradiance across a wide range of ambient-light intensities.
Collapse
Affiliation(s)
- Supraja G Varadarajan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
153
|
Johnson KP, Zhao L, Kerschensteiner D. A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields. Cell Rep 2019; 22:1462-1472. [PMID: 29425502 PMCID: PMC5826572 DOI: 10.1016/j.celrep.2018.01.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
The spike trains of retinal ganglion cells (RGCs) are the only source of visual information to the brain. Here, we genetically identify an RGC type in mice that functions as a pixel encoder and increases firing to light increments (PixON-RGC). PixON-RGCs have medium-sized dendritic arbors and non-canonical center-surround receptive fields. From their receptive field center, PixON-RGCs receive only excitatory input, which encodes contrast and spatial information linearly. From their receptive field surround, PixON-RGCs receive only inhibitory input, which is temporally matched to the excitatory center input. As a result, the firing rate of PixON-RGCs linearly encodes local image contrast. Spatially offset (i.e., truly lateral) inhibition of PixON-RGCs arises from spiking GABAergic amacrine cells. The receptive field organization of PixON-RGCs is independent of stimulus wavelength (i.e., achromatic). PixON-RGCs project predominantly to the dorsal lateral geniculate nucleus (dLGN) of the thalamus and likely contribute to visual perception.
Collapse
Affiliation(s)
- Keith P Johnson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lei Zhao
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
154
|
Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, Karam CJ, Maywood ES, Stangherlin A, Chesham JE, Hayter EA, Rosenbrier-Ribeiro L, Newham P, Clevers H, Bechtold DA, O'Neill JS. Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell 2019; 177:896-909.e20. [PMID: 31030999 PMCID: PMC6506277 DOI: 10.1016/j.cell.2019.02.017] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/26/2018] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
In mammals, endogenous circadian clocks sense and respond to daily feeding and lighting cues, adjusting internal ∼24 h rhythms to resonate with, and anticipate, external cycles of day and night. The mechanism underlying circadian entrainment to feeding time is critical for understanding why mistimed feeding, as occurs during shift work, disrupts circadian physiology, a state that is associated with increased incidence of chronic diseases such as type 2 (T2) diabetes. We show that feeding-regulated hormones insulin and insulin-like growth factor 1 (IGF-1) reset circadian clocks in vivo and in vitro by induction of PERIOD proteins, and mistimed insulin signaling disrupts circadian organization of mouse behavior and clock gene expression. Insulin and IGF-1 receptor signaling is sufficient to determine essential circadian parameters, principally via increased PERIOD protein synthesis. This requires coincident mechanistic target of rapamycin (mTOR) activation, increased phosphoinositide signaling, and microRNA downregulation. Besides its well-known homeostatic functions, we propose insulin and IGF-1 are primary signals of feeding time to cellular clocks throughout the body. Insulin and IGF-1 are a systemic synchronizing cue for circadian rhythms in mammals Insulin and IGF-1 signaling rapidly upregulates translation of PERIOD clock proteins Coincident signaling facilitates selective induction of PERIOD synthesis Circadian disruption is recapitulated by mistimed insulin in cell and animal models
Collapse
Affiliation(s)
- Priya Crosby
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ryan Hamnett
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Marrit Putker
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | | | - Martin Reed
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | | | | | - Edward A Hayter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | | | - Peter Newham
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0FZ, UK
| | - Hans Clevers
- Hubrecht Institute, Utrecht 3584 CT, the Netherlands; Princess Máxima Centre, Utrecht 3584 CS, the Netherlands
| | - David A Bechtold
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
155
|
Off the Clock: From Circadian Disruption to Metabolic Disease. Int J Mol Sci 2019; 20:ijms20071597. [PMID: 30935034 PMCID: PMC6480015 DOI: 10.3390/ijms20071597] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian timekeeping allows appropriate temporal regulation of an organism’s internal metabolism to anticipate and respond to recurrent daily changes in the environment. Evidence from animal genetic models and from humans under circadian misalignment (such as shift work or jet lag) shows that disruption of circadian rhythms contributes to the development of obesity and metabolic disease. Inappropriate timing of food intake and high-fat feeding also lead to disruptions of the temporal coordination of metabolism and physiology and subsequently promote its pathogenesis. This review illustrates the impact of genetically or environmentally induced molecular clock disruption (at the level of the brain and peripheral tissues) and the interplay between the circadian system and metabolic processes. Here, we discuss some mechanisms responsible for diet-induced circadian desynchrony and consider the impact of nutritional cues in inter-organ communication, with a particular focus on the communication between peripheral organs and brain. Finally, we discuss the relay of environmental information by signal-dependent transcription factors to adjust the timing of gene oscillations. Collectively, a better knowledge of the mechanisms by which the circadian clock function can be compromised will lead to novel preventive and therapeutic strategies for obesity and other metabolic disorders arising from circadian desynchrony.
Collapse
|
156
|
Bierings RAJM, Gordijn MCM, Jansonius NM. Chronotyping glaucoma patients with the Munich ChronoType Questionnaire: A case-control study. PLoS One 2019; 14:e0214046. [PMID: 30921336 PMCID: PMC6438473 DOI: 10.1371/journal.pone.0214046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/19/2019] [Indexed: 01/12/2023] Open
Abstract
Purpose The circadian clock is entrained to light by the intrinsically photosensitive retinal ganglion cells. Loss of these cells in glaucoma, an eye disease with loss of retinal ganglion cells as its key feature, might thus result in a change in chronotype. We aimed to compare the chronotype between glaucoma patients and healthy subjects. Methods We sent the Munich ChronoType Questionnaire to 221 glaucoma patients (response rate 81%); controls (primary control group) were primarily their spouses. After exclusion of shift workers and participants who woke-up due to an alarm clock on days off, 159 glaucoma patients (88 early, 21 moderate, 23 severe) and 163 controls remained. We calculated chronotype as the mid-sleep on days off, corrected for workweek accumulated sleep debt (MSFsc). We compared means and variances between groups using Welch’s tests and F-tests, respectively. A secondary control group was recruited from participants in a citizen-science project (n = 17073) who completed an online questionnaire. A resampling method was applied to enable an age- and gender- matched comparison with the glaucoma patients. Results Compared to the primary control group, glaucoma did not affect the mean MSFsc (controls 3:47; early, moderate, and severe glaucoma 3:40, 3:45, and 3:33, respectively [P = 0.62]). Chronotype variability seemed to increase with increasing disease severity (severe glaucoma versus controls: P = 0.023). The mean MSFsc of the secondary control group was 3:50 (95% confidence interval 3:48 to 3:52); significantly later than that of the glaucoma patients (3:40; P = 0.024). Mean MSFsc did not differ significantly between the control groups (P = 0.42). Conclusions No clear changes were found in the chronotype as determined by sleep phase in patients with glaucoma, especially not in early and moderate glaucoma. In severe glaucoma, chronotype variability seems to increase, possibly alongside a small advancement.
Collapse
Affiliation(s)
- Ronald A J M Bierings
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marijke C M Gordijn
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.,Chrono@Work B.V., Groningen, the Netherlands
| | - Nomdo M Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
157
|
Abstract
Dynamic vision is crucial to not only animals’ hunting behaviors but also human activities, and yet little is known about how to enhance it, except for extensive trainings like athletics do. Exposure to blue light has been shown to enhance human alertness (Chellappa et al., 2011), perhaps through intrinsically photosensitive retinal ganglion cells (ipRGCs), which are sensitive to motion perception as revealed by animal studies. However, it remains unknown whether blue light can enhance human dynamic vision, a motion-related ability. We conducted five experiments under blue or orange light to test three important components of dynamic vision: eye pursuit accuracy (EPA, Experiment 1), kinetic visual acuity (KVA, Experiment 1 and 2), and dynamic visual acuity (DVA, Experiment 3–5). EPA was measured by the distance between the position of the fixation and the position of the target when participants tracked a target dot. In the KVA task, participants reported three central target numbers (randomly chosen from 0 to 9) moving toward participants in the depth plane, with speed threshold calculated by a staircase procedure. In the DVA task, three numbers were presented along the meridian line on the same depth plane, with motion direction (Experiment 3) and difficulty level (Experiment 4) manipulated, and a blue light filter lens was used to test the ipRGCs contribution (Experiment 5). Results showed that blue light enhanced EPA and DVA, but reduced KVA. Further, DVA enhancement was modulated by difficulty level: blue light enhancement effect was found only with hard task in the downward motion in Experiment 3 and with the low contrast target in Experiment 4. However, this blue light enhancement effect was not caused by mechanism of the ipRGCs, at least not in the range we tested. In this first study demonstrating the relationship between different components of dynamic vision and blue light, our findings that DVA can be enhanced under blue light with hard but not easy task indicate that blue light can enhance dynamic visual discrimination when needed.
Collapse
Affiliation(s)
- Hung-Wen Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
158
|
Hastings MH, Maywood ES, Brancaccio M. The Mammalian Circadian Timing System and the Suprachiasmatic Nucleus as Its Pacemaker. BIOLOGY 2019; 8:E13. [PMID: 30862123 PMCID: PMC6466121 DOI: 10.3390/biology8010013] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
The past twenty years have witnessed the most remarkable breakthroughs in our understanding of the molecular and cellular mechanisms that underpin circadian (approximately one day) time-keeping. Across model organisms in diverse taxa: cyanobacteria (Synechococcus), fungi (Neurospora), higher plants (Arabidopsis), insects (Drosophila) and mammals (mouse and humans), a common mechanistic motif of delayed negative feedback has emerged as the Deus ex machina for the cellular definition of ca. 24 h cycles. This review will consider, briefly, comparative circadian clock biology and will then focus on the mammalian circadian system, considering its molecular genetic basis, the properties of the suprachiasmatic nucleus (SCN) as the principal circadian clock in mammals and its role in synchronising a distributed peripheral circadian clock network. Finally, it will consider new directions in analysing the cell-autonomous and circuit-level SCN clockwork and will highlight the surprising discovery of a central role for SCN astrocytes as well as SCN neurons in controlling circadian behaviour.
Collapse
Affiliation(s)
- Michael H Hastings
- MRC Laboratory of Molecular Biology, Division of Neurobiology, CB2 0QH Cambridge, UK.
| | - Elizabeth S Maywood
- MRC Laboratory of Molecular Biology, Division of Neurobiology, CB2 0QH Cambridge, UK.
| | - Marco Brancaccio
- UK Dementia Research Institute at Imperial College London, Division of Brain Sciences, Department of Medicine, W12 0NN London, UK.
| |
Collapse
|
159
|
Lin MS, Liao PY, Chen HM, Chang CP, Chen SK, Chern Y. Degeneration of ipRGCs in Mouse Models of Huntington's Disease Disrupts Non-Image-Forming Behaviors Before Motor Impairment. J Neurosci 2019; 39:1505-1524. [PMID: 30587542 PMCID: PMC6381252 DOI: 10.1523/jneurosci.0571-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 11/22/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs), which express the photopigment melanopsin, are photosensitive neurons in the retina and are essential for non-image-forming functions, circadian photoentrainment, and pupillary light reflexes. Five subtypes of ipRGCs (M1-M5) have been identified in mice. Although ipRGCs are spared in several forms of inherited blindness, they are affected in Alzheimer's disease and aging, which are associated with impaired circadian rhythms. Huntington's disease (HD) is an autosomal neurodegenerative disease caused by the expansion of a CAG repeat in the huntingtin gene. In addition to motor function impairment, HD mice also show impaired circadian rhythms and loss of ipRGC. Here, we found that, in HD mouse models (R6/2 and N171-82Q male mice), the expression of melanopsin was reduced before the onset of motor deficits. The expression of retinal T-box brain 2, a transcription factor essential for ipRGCs, was associated with the survival of ipRGCs. The number of M1 ipRGCs in R6/2 male mice was reduced due to apoptosis, whereas non-M1 ipRGCs were relatively resilient to HD progression. Most importantly, the reduced innervations of M1 ipRGCs, which was assessed by X-gal staining in R6/2-OPN4Lacz/+ male mice, contributed to the diminished light-induced c-fos and vasoactive intestinal peptide in the suprachiasmatic nuclei (SCN), which may explain the impaired circadian photoentrainment in HD mice. Collectively, our results show that M1 ipRGCs were susceptible to the toxicity caused by mutant Huntingtin. The resultant impairment of M1 ipRGCs contributed to the early degeneration of the ipRGC-SCN pathway and disrupted circadian regulation during HD progression.SIGNIFICANCE STATEMENT Circadian disruption is a common nonmotor symptom of Huntington's disease (HD). In addition to the molecular defects in the suprachiasmatic nuclei (SCN), the cause of circadian disruption in HD remains to be further explored. We hypothesized that ipRGCs, by integrating light input to the SCN, participate in the circadian regulation in HD mice. We report early reductions in melanopsin in two mouse models of HD, R6/2, and N171-82Q. Suppression of retinal T-box brain 2, a transcription factor essential for ipRGCs, by mutant Huntingtin might mediate the reduced number of ipRGCs. Importantly, M1 ipRGCs showed higher susceptibility than non-M1 ipRGCs in R6/2 mice. The resultant impairment of M1 ipRGCs contributed to the early degeneration of the ipRGC-SCN pathway and the circadian abnormality during HD progression.
Collapse
Affiliation(s)
- Meng-Syuan Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 115, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Po-Yu Liao
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| |
Collapse
|
160
|
Rukmini AV, Milea D, Gooley JJ. Chromatic Pupillometry Methods for Assessing Photoreceptor Health in Retinal and Optic Nerve Diseases. Front Neurol 2019; 10:76. [PMID: 30809186 PMCID: PMC6379484 DOI: 10.3389/fneur.2019.00076] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The pupillary light reflex is mediated by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs), which also receive input from rods and cones. Melanopsin-dependent pupillary light responses are short-wavelength sensitive, have a higher threshold of activation, and are much slower to activate and de-activate compared with rod/cone-mediated responses. Given that rod/cone photoreceptors and melanopsin differ in their response properties, light stimuli can be designed to stimulate preferentially each of the different photoreceptor types, providing a read-out of their function. This has given rise to chromatic pupillometry methods that aim to assess the health of outer retinal photoreceptors and ipRGCs by measuring pupillary responses to blue or red light stimuli. Here, we review different types of chromatic pupillometry protocols that have been tested in patients with retinal or optic nerve disease, including approaches that use short-duration light exposures or continuous exposure to light. Across different protocols, patients with outer retinal disease (e.g., retinitis pigmentosa or Leber congenital amaurosis) show reduced or absent pupillary responses to dim blue-light stimuli used to assess rod function, and reduced responses to moderately-bright red-light stimuli used to assess cone function. By comparison, patients with optic nerve disease (e.g., glaucoma or ischemic optic neuropathy, but not mitochondrial disease) show impaired pupillary responses during continuous exposure to bright blue-light stimuli, and a reduced post-illumination pupillary response after light offset, used to assess melanopsin function. These proof-of-concept studies demonstrate that chromatic pupillometry methods can be used to assess damage to rod/cone photoreceptors and ipRGCs. In future studies, it will be important to determine whether chromatic pupillometry methods can be used for screening and early detection of retinal and optic nerve diseases. Such methods may also prove useful for objectively evaluating the degree of recovery to ipRGC function in blind patients who undergo gene therapy or other treatments to restore vision.
Collapse
Affiliation(s)
- A V Rukmini
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| | - Dan Milea
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology and Visual Sciences Academic Clinical Programme (EYE-ACP), SingHealth and Duke-NUS, Singapore, Singapore
| | - Joshua J Gooley
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
161
|
La Morgia C, Carelli V, Carbonelli M. Melanopsin Retinal Ganglion Cells and Pupil: Clinical Implications for Neuro-Ophthalmology. Front Neurol 2018; 9:1047. [PMID: 30581410 PMCID: PMC6292931 DOI: 10.3389/fneur.2018.01047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023] Open
Abstract
Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs that mediate many relevant non-image forming functions of the eye, including the pupillary light reflex, through the projections to the olivary pretectal nucleus. In particular, the post-illumination pupil response (PIPR), as evaluated by chromatic pupillometry, can be used as a reliable marker of mRGC function in vivo. In the last years, pupillometry has become a promising tool to assess mRGC dysfunction in various neurological and neuro-ophthalmological conditions. In this review we will present the most relevant findings of pupillometric studies in glaucoma, hereditary optic neuropathies, ischemic optic neuropathies, idiopathic intracranial hypertension, multiple sclerosis, Parkinson's disease, and mood disorders. The use of PIPR as a marker for mRGC function is also proposed for other neurodegenerative disorders in which circadian dysfunction is documented.
Collapse
Affiliation(s)
- Chiara La Morgia
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Valerio Carelli
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Michele Carbonelli
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| |
Collapse
|
162
|
Lee ES, Lee JY, Kim GH, Jeon CJ. Identification of calretinin-expressing retinal ganglion cells projecting to the mouse superior colliculus. Cell Tissue Res 2018; 376:153-163. [PMID: 30506393 DOI: 10.1007/s00441-018-2964-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022]
Abstract
In mice, retinal ganglion cells (RGCs), which consist of around 30 subtypes, exclusively transmit retinal information to the relevant brain systems through parallel visual pathways. The superior colliculus (SC) receives the vast majority of this information from several RGC subtypes. The objective of the current study is to identify the types of calretinin (CR)-expressing RGCs that project to the SC in mice. To label RGCs, we performed CR immunoreactivity in the mouse retina after injections of fluorescent dye, dextran into mouse SC. Subsequently, the neurons double-labeled for dextran and CR were iontophoretically injected with the lipophilic dye, DiI, to characterize the detailed morphological properties of these cells. The analysis of various morphological parameters, including dendritic arborization, dendritic field size and stratification, indicated that, of the ten different types of CR-expressing RGCs in the retina, the double-labeled cells consisted of at least eight types of RGCs that projected to the SC. These cells tended to have small-medium field sizes. However, except for dendritic field size, the cells did not exhibit consistent characteristics for the other morphometric parameters examined. The combination of a tracer and single-cell injections after immunohistochemistry for a particular molecule provided valuable data that confirmed the presence of distinct subtypes of RGCs within multiple-labeled RGCs that projected to specific brain regions.
Collapse
Affiliation(s)
- Eun-Shil Lee
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, USF Health, University of South Florida, Tampa, FL, 33612, USA
| | - Gil Hyun Kim
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
163
|
Wienbar S, Schwartz GW. The dynamic receptive fields of retinal ganglion cells. Prog Retin Eye Res 2018; 67:102-117. [PMID: 29944919 PMCID: PMC6235744 DOI: 10.1016/j.preteyeres.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Retinal ganglion cells (RGCs) were one of the first classes of sensory neurons to be described in terms of a receptive field (RF). Over the last six decades, our understanding of the diversity of RGC types and the nuances of their response properties has grown exponentially. We will review the current understanding of RGC RFs mostly from studies in mammals, but including work from other vertebrates as well. We will argue for a new paradigm that embraces the fluidity of RGC RFs with an eye toward the neuroethology of vision. Specifically, we will focus on (1) different methods for measuring RGC RFs, (2) RF models, (3) feature selectivity and the distinction between fluid and stable RF properties, and (4) ideas about the future of understanding RGC RFs.
Collapse
Affiliation(s)
- Sophia Wienbar
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| |
Collapse
|
164
|
Pienaar A, Walmsley L, Hayter E, Howarth M, Brown TM. Commissural communication allows mouse intergeniculate leaflet and ventral lateral geniculate neurons to encode interocular differences in irradiance. J Physiol 2018; 596:5461-5481. [PMID: 30240498 PMCID: PMC6235944 DOI: 10.1113/jp276917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023] Open
Abstract
Key points Unlike other visual thalamic regions, the intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/vLGN) possess extensive reciprocal commissural connections, the functions of which are unknown. Using electrophysiological approaches, it is shown that commissural projecting IGL/vLGN cells are primarily activated by light increments to the contralateral eye while cells receiving commissural input typically exhibit antagonistic binocular responses. Across antagonistic cells, the nature of the commissural input (excitatory or inhibitory) corresponds to the presence of ipsilateral ON or OFF visual responses and in both cases antagonistic responses disappear following inactivation of the contralateral thalamus. The steady state firing rates of antagonistic cells uniquely encode interocular differences in irradiance. There is a pivotal role for IGL/vLGN commissural signalling in generating new sensory properties that are potentially useful for the proposed contributions of these nuclei to visuomotor/vestibular and circadian control.
Abstract The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/vLGN) are portions of the visual thalamus implicated in circadian and visuomotor/vestibular control. A defining feature of IGL/vLGN organisation is the presence of extensive reciprocal commissural connections, the functions of which are at present unknown. Here we use a combination of multielectrode recording, electrical microstimulation, thalamic inactivation and a range of visual stimuli in mice to address this deficit. Our data indicate that, like most IGL/vLGN cells, those that project commissurally primarily convey contralateral ON visual signals while most IGL/vLGN neurons that receive this input exhibit antagonistic binocular responses (i.e. excitatory responses driven by one eye and inhibitory responses driven by the other), enabling them to encode interocular differences in irradiance. We also confirm that this property derives from commissural input since, following inactivation of the contralateral visual thalamus, these cells instead display monocular contralateral‐driven ON responses. Our data thereby reveal a fundamental role for commissural signalling in generating new visual response properties at the level of the visual thalamus. Unlike other visual thalamic regions, the intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/vLGN) possess extensive reciprocal commissural connections, the functions of which are unknown. Using electrophysiological approaches, it is shown that commissural projecting IGL/vLGN cells are primarily activated by light increments to the contralateral eye while cells receiving commissural input typically exhibit antagonistic binocular responses. Across antagonistic cells, the nature of the commissural input (excitatory or inhibitory) corresponds to the presence of ipsilateral ON or OFF visual responses and in both cases antagonistic responses disappear following inactivation of the contralateral thalamus. The steady state firing rates of antagonistic cells uniquely encode interocular differences in irradiance. There is a pivotal role for IGL/vLGN commissural signalling in generating new sensory properties that are potentially useful for the proposed contributions of these nuclei to visuomotor/vestibular and circadian control.
Collapse
Affiliation(s)
- A Pienaar
- Faculty of Biology, Medicine and Health, School of Medicine, University of Manchester, Manchester, UK
| | - L Walmsley
- Faculty of Biology, Medicine and Health, School of Medicine, University of Manchester, Manchester, UK
| | - E Hayter
- Faculty of Biology, Medicine and Health, School of Medicine, University of Manchester, Manchester, UK
| | - M Howarth
- Faculty of Biology, Medicine and Health, School of Medicine, University of Manchester, Manchester, UK
| | - T M Brown
- Faculty of Biology, Medicine and Health, School of Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
165
|
Price K, Obrietan K. Modulation of learning and memory by the genetic disruption of circadian oscillator populations. Physiol Behav 2018; 194:387-393. [PMID: 29944860 PMCID: PMC7875063 DOI: 10.1016/j.physbeh.2018.06.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/03/2018] [Accepted: 06/22/2018] [Indexed: 11/23/2022]
Abstract
While a rich literature has documented that the efficiency of learning and memory varies across circadian time, a close survey of that literature reveals extensive heterogeneity in the time of day (TOD) when peak cognitive performance occurs. Moreover, most previous experiments in rodents have not focused on the question of discriminating which memory processes (e.g., working memory, memory acquisition, or retrieval) are modulated by the TOD. Here, we use assays of contextual fear conditioning and spontaneous alternation in WT (C57Bl/6 J) mice to survey circadian modulation of hippocampal-dependent memory at multiple timescales - including working memory (seconds to a few minutes), intermediate-term memory (a delay of thirty minutes), and acquisition and retrieval of long-term memory (a delay of two days). Further, in order to test the relative contributions of circadian timing mechanisms to the modulation of memory, a parallel set of studies were performed in mice lacking clock timing mechanisms. These transgenic mice lacked the essential circadian gene Bmal1, either globally (Bmal1 null) or locally (floxed Bmal1 mice, which lack Bmal1 in excitatory forebrain neurons, e.g. cortical and hippocampal neurons). Here, we show that in WT mice, retrieval (but not working memory, intermediate-term memory, or acquisition of long-term memory) is modulated by TOD. However, transgenic mouse models lacking Bmal1 - both globally, and only in forebrain excitatory neurons - show deficits regardless of the memory process tested (and lack circadian modulation of retrieval). These results provide new clarity regarding the impact of the TOD on hippocampal-dependent memory and support the key role of hippocampal and cortical circadian oscillations in circadian gating of cognition.
Collapse
Affiliation(s)
- Kaiden Price
- Department of Neuroscience, Ohio State University, 333 W 10(th) Ave, Columbus, OH, USA.
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, 333 W 10(th) Ave, Columbus, OH, USA
| |
Collapse
|
166
|
Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM, Severin D, Zhan J, Singer JH, Kirkwood A, Zhao H, Berson DM, Hattar S. Light Affects Mood and Learning through Distinct Retina-Brain Pathways. Cell 2018; 175:71-84.e18. [PMID: 30173913 PMCID: PMC6190605 DOI: 10.1016/j.cell.2018.08.004] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/03/2018] [Accepted: 08/02/2018] [Indexed: 01/25/2023]
Abstract
Light exerts a range of powerful biological effects beyond image vision, including mood and learning regulation. While the source of photic information affecting mood and cognitive functions is well established, viz. intrinsically photosensitive retinal ganglion cells (ipRGCs), the central mediators are unknown. Here, we reveal that the direct effects of light on learning and mood utilize distinct ipRGC output streams. ipRGCs that project to the suprachiasmatic nucleus (SCN) mediate the effects of light on learning, independently of the SCN's pacemaker function. Mood regulation by light, on the other hand, requires an SCN-independent pathway linking ipRGCs to a previously unrecognized thalamic region, termed perihabenular nucleus (PHb). The PHb is integrated in a distinctive circuitry with mood-regulating centers and is both necessary and sufficient for driving the effects of light on affective behavior. Together, these results provide new insights into the neural basis required for light to influence mood and learning.
Collapse
Affiliation(s)
| | | | | | - Michael B Thomsen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert M Layne
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Daniel Severin
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jesse Zhan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Alfredo Kirkwood
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
167
|
Feigl B, Ojha G, Hides L, Zele AJ. Melanopsin-Driven Pupil Response and Light Exposure in Non-seasonal Major Depressive Disorder. Front Neurol 2018; 9:764. [PMID: 30271376 PMCID: PMC6146094 DOI: 10.3389/fneur.2018.00764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Melanopsin-expressing intrinsically photosensitive Retinal Ganglion Cells (ipRGCs) signal non-imaging forming effects of environmental light for circadian phoentrainment, the pupil light reflex, and mood regulation. In seasonal affective disorder, ipRGC dysfunction is thought to cause abberant transmission of the external illumination for photoentrainment. It is not known if patients with non-seasonal depression have abnormal melanospin mediated signaling and/or irregular environmental light exposure. Methods: Twenty-one adults who live in a sub-tropical region, including eight patients with non-seasonal depression and thirteen age-matched healthy controls were recruited. The Mini International Neuropsychiatry Interview diagnosed the presence of a major depressive disorder. Light exposure was determined using actigraphy over a 2 week period. The melanopsin mediated post-illumination pupil response (PIPR) and outer retinal inputs to ipRGCs (transient pupil response and maximum pupil constriction amplitude) were measured in response to 1 s, short and long wavelength light with high and low melanopsin excitation. Results: The mean daylight exposure as a function of clock hours and total light exposure duration (mins) to illumination levels commonly recommended for depression therapy were not significantly different between groups. Out of 84 pupil measurements (42 each in the depression and control groups), the melanopsin-mediated PIPR amplitude, transient pupil response, and pupil constriction amplitude were not significantly different between groups. Conclusions: This report provides initial evidence of normal melanopsin function and environmental light exposures in patients with pre-dominately mid and moderate non-seasonal depression in a subtropical location in the southern hemisphere.
Collapse
Affiliation(s)
- Beatrix Feigl
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Queensland Eye Institute, Brisbane, QLD, Australia
| | - Govinda Ojha
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Leanne Hides
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J Zele
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Optometry and Vision Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
168
|
Li JY, Schmidt TM. Divergent projection patterns of M1 ipRGC subtypes. J Comp Neurol 2018; 526:2010-2018. [PMID: 29888785 PMCID: PMC6158116 DOI: 10.1002/cne.24469] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 02/01/2023]
Abstract
In addition to its well-known role in pattern vision, light influences a wide range of non-image forming, subconscious visual behaviors including circadian photoentrainment, sleep, mood, learning, and the pupillary light reflex. Each of these behaviors is thought to require input from the M1 subtype of melanopsin-expressing, intrinsically photosensitive retinal ganglion cell (ipRGC). Recent work has demonstrated that the M1 subtype of ipRGC can be further subdivided based on expression of the transcription factor Brn3b. Brn3b-positive M1 ipRGCs project to the olivary pretectal nucleus and are necessary for the pupillary light reflex, while Brn3b-negative M1 ipRGCs project to the suprachiasmatic nucleus (SCN) and are sufficient for circadian photoentrainment. However, beyond the circadian and pupil systems, little is known about the projection patterns of M1 ipRGC subtypes. Here we show that Brn3b-positive M1 ipRGCs comprise the majority of sparse M1 ipRGC inputs to the thalamus, midbrain, and hypothalamus. Our data demonstrate that very few brain targets receive convergent input from both M1 ipRGC subpopulations, suggesting that each subpopulation drives a specific subset of light-driven behaviors.
Collapse
Affiliation(s)
- Jennifer Y. Li
- Department of Neurobiology, Northwestern University, Evanston, IL
60208
| | | |
Collapse
|
169
|
Rodgers J, Hughes S, Pothecary CA, Brown LA, Hickey DG, Peirson SN, Hankins MW. Defining the impact of melanopsin missense polymorphisms using in vivo functional rescue. Hum Mol Genet 2018; 27:2589-2603. [PMID: 29718372 PMCID: PMC6048994 DOI: 10.1093/hmg/ddy150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
Melanopsin (OPN4) is an opsin photopigment expressed within intrinsically photosensitive retinal ganglion cells (ipRGCs) that mediate non-image forming (NIF) responses to light. Two single-nucleotide polymorphisms (SNPs) in human melanopsin (hOPN4), Pro10Leu and Thr394Ile, have recently been associated with abnormal NIF responses to light, including seasonal affective disorder. It has been suggested these behavioural changes are due to altered melanopsin signalling. However, there is currently no direct evidence to support this. Here we have used ipRGC-specific delivery of hOPN4 wild-type (WT), Pro10Leu or Thr394Ile adeno-associated viruses (AAV) to determine the functional consequences of hOPN4 SNPs on melanopsin-driven light responses and associated behaviours. Immunohistochemistry confirmed hOPN4 AAVs exclusively transduced mouse ipRGCs. Behavioural phenotyping performed before and after AAV injection demonstrated that both hOPN4 Pro10Leu and Thr394Ile could functionally rescue pupillary light responses and circadian photoentrainment in Opn4-/- mice, with no differences in NIF behaviours detected for animals expressing either SNP compared to hOPN4 WT. Multi-electrode array recordings revealed that ipRGCs expressing hOPN4 Thr394Ile exhibit melanopsin-driven light responses with significantly attenuated response amplitude, decreased sensitivity and faster offset kinetics compared to hOPN4 WT. IpRGCs expressing hOpn4 Pro10Leu also showed reduced response amplitude. Collectively these data suggest Thr394Ile and Pro10Leu may be functionally significant SNPs, which result in altered melanopsin signalling. To our knowledge, this study provides the first direct evidence for the effects of hOPN4 polymorphisms on melanopsin-driven light responses and NIF behaviours in vivo, providing further insight into the role of these SNPs in melanopsin function and human physiology.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Steven Hughes
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carina A Pothecary
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Doron G Hickey
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mark W Hankins
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
170
|
Hayter EA, Brown TM. Additive contributions of melanopsin and both cone types provide broadband sensitivity to mouse pupil control. BMC Biol 2018; 16:83. [PMID: 30064443 PMCID: PMC6066930 DOI: 10.1186/s12915-018-0552-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/20/2018] [Indexed: 01/13/2023] Open
Abstract
Background Intrinsically photosensitive retinal ganglion cells (ipRGCs) drive an array of non-image-forming (NIF) visual responses including circadian photoentrainment and the pupil light reflex. ipRGCs integrate extrinsic (rod/cone) and intrinsic (melanopsin) photoreceptive signals, but the contribution of cones to ipRGC-dependent responses remains incompletely understood. Given recent data revealing that cone-derived colour signals influence mouse circadian timing and pupil responses in humans, here we set out to investigate the role of colour information in pupil control in mice. Results We first recorded electrophysiological activity from the pretectal olivary nucleus (PON) of anaesthetised mice with a red-shifted cone population (Opn1mwR) and mice lacking functional cones (Cnga3−/−) or melanopsin (Opn1mwR; Opn4−/−). Using multispectral stimuli to selectively modulate the activity of individual opsin classes, we show that PON cells which receive ipRGC input also exhibit robust S- and/or L-cone opsin-driven activity. This population includes many cells where the two cone opsins drive opponent responses (most commonly excitatory/ON responses to S-opsin stimulation and inhibitory/OFF responses to L-opsin stimulation). These cone inputs reliably tracked even slow (0.025 Hz) changes in illuminance/colour under photopic conditions with melanopsin contributions becoming increasingly dominant for higher-contrast/lower temporal frequency stimuli. We also evaluated consensual pupil responses in awake animals and show that, surprisingly, this aspect of physiology is insensitive to chromatic signals originating with cones. Instead, by contrast with the situation in humans, signals from melanopsin and both cone opsins combine in a purely additive manner to drive pupil constriction in mice. Conclusion Our data reveal a key difference in the sensory control of the mouse pupil relative to another major target of ipRGCs—the circadian clock. Whereas the latter uses colour information to help estimate time of day, the mouse pupil instead sums signals across cone opsin classes to provide broadband spectral sensitivity to changes in illumination. As such, while the widespread co-occurrence of chromatic responses and melanopsin input in the PON supports a close association between colour discrimination mechanisms and NIF visual processing, our data suggest that colour opponent PON cells in the mouse contribute to functions other than pupil control. Electronic supplementary material The online version of this article (10.1186/s12915-018-0552-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edward A Hayter
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Timothy M Brown
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
171
|
Sulli G, Manoogian ENC, Taub PR, Panda S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol Sci 2018; 39:812-827. [PMID: 30060890 DOI: 10.1016/j.tips.2018.07.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 12/09/2022]
Abstract
Daily rhythms in behavior, physiology, and metabolism are an integral part of homeostasis. These rhythms emerge from interactions between endogenous circadian clocks and ambient light-dark cycles, sleep-activity cycles, and eating-fasting cycles. Nearly the entire primate genome shows daily rhythms in expression in tissue- and locus-specific manners. These molecular rhythms modulate several key aspects of cellular and tissue function with profound implications in public health, disease prevention, and disease management. In modern societies light at night disrupts circadian rhythms, leading to further disruption of sleep-activity and eating-fasting cycles. While acute circadian disruption may cause transient discomfort or exacerbate chronic diseases, chronic circadian disruption can enhance risks for numerous diseases. The molecular understanding of circadian rhythms is opening new therapeutic frontiers placing the circadian clock in a central role. Here, we review recent advancements on how to enhance our circadian clock through behavioral interventions, timing of drug administration, and pharmacological targeting of circadian clock components that are already providing new preventive and therapeutic strategies for several diseases, including metabolic syndrome and cancer.
Collapse
Affiliation(s)
- Gabriele Sulli
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Pam R Taub
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| | | |
Collapse
|
172
|
Oliveira AF, Yonehara K. The Mouse Superior Colliculus as a Model System for Investigating Cell Type-Based Mechanisms of Visual Motor Transformation. Front Neural Circuits 2018; 12:59. [PMID: 30140205 PMCID: PMC6094993 DOI: 10.3389/fncir.2018.00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/03/2018] [Indexed: 11/13/2022] Open
Abstract
The mouse superior colliculus (SC) is a laminar midbrain structure involved in processing and transforming multimodal sensory stimuli into ethologically relevant behaviors such as escape, defense, and orienting movements. The SC is unique in that the sensory (visual, auditory, and somatosensory) and motor maps are overlaid. In the mouse, the SC receives inputs from more retinal ganglion cells than any other visual area. This makes the mouse SC an ideal model system for understanding how visual signals processed by retinal circuits are used to mediate visually guided behaviors. This Perspective provides an overview of the current understanding of visual motor transformations operated by the mouse SC and discusses the challenges to be overcome when investigating the input–output relationships in single collicular cell types.
Collapse
Affiliation(s)
- Ana F Oliveira
- DANDRITE - Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Keisuke Yonehara
- DANDRITE - Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
173
|
Fan SMY, Chang YT, Chen CL, Wang WH, Pan MK, Chen WP, Huang WY, Xu Z, Huang HE, Chen T, Plikus MV, Chen SK, Lin SJ. External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway. Proc Natl Acad Sci U S A 2018; 115:E6880-E6889. [PMID: 29959210 PMCID: PMC6055137 DOI: 10.1073/pnas.1719548115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Changes in external light patterns can alter cell activities in peripheral tissues through slow entrainment of the central clock in suprachiasmatic nucleus (SCN). It remains unclear whether cells in otherwise photo-insensitive tissues can achieve rapid responses to changes in external light. Here we show that light stimulation of animals' eyes results in rapid activation of hair follicle stem cells with prominent hair regeneration. Mechanistically, light signals are interpreted by M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs), which signal to the SCN via melanopsin. Subsequently, efferent sympathetic nerves are immediately activated. Increased norepinephrine release in skin promotes hedgehog signaling to activate hair follicle stem cells. Thus, external light can directly regulate tissue stem cells via an ipRGC-SCN autonomic nervous system circuit. Since activation of sympathetic nerves is not limited to skin, this circuit can also facilitate rapid adaptive responses to external light in other homeostatic tissues.
Collapse
Affiliation(s)
- Sabrina Mai-Yi Fan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 100 Taipei, Taiwan
| | - Yi-Ting Chang
- Department of Life Science, College of Life Science, National Taiwan University, 106 Taipei, Taiwan
| | - Chih-Lung Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 100 Taipei, Taiwan
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, 100 Taipei, Taiwan
| | - Wei-Hung Wang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 100 Taipei, Taiwan
| | - Ming-Kai Pan
- Department of Medical Research, National Taiwan University Hospital, 100 Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, 100 Taipei, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, 100 Taipei, Taiwan
| | - Wen-Yen Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 100 Taipei, Taiwan
| | - Zijian Xu
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Hai-En Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 100 Taipei, Taiwan
| | - Ting Chen
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Maksim V Plikus
- Center for Complex Biological Systems, University of California, Irvine, CA 92697
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697
| | - Shih-Kuo Chen
- Department of Life Science, College of Life Science, National Taiwan University, 106 Taipei, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 100 Taipei, Taiwan
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 100 Taipei, Taiwan;
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, 100 Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 100 Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, 100 Taipei, Taiwan
| |
Collapse
|
174
|
Stinchcombe AR, Mouland JW, Wong KY, Lucas RJ, Forger DB. Multiplexing Visual Signals in the Suprachiasmatic Nuclei. Cell Rep 2018; 21:1418-1425. [PMID: 29117548 DOI: 10.1016/j.celrep.2017.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 06/24/2017] [Accepted: 10/05/2017] [Indexed: 12/23/2022] Open
Abstract
The suprachiasmatic nuclei (SCN), the site of the mammalian circadian (daily) pacemaker, contains thousands of interconnected neurons, some of which receive direct retinal input. Here, we study the fast (<1 s) responses of SCN neurons to visual stimuli with a large-scale mathematical model tracking the ionic currents and voltage of all SCN neurons. We reconstruct the SCN network connectivity and reject 99.99% of theoretically possible SCN networks by requiring that the model reproduces experimentally determined receptive fields of SCN neurons. The model shows how the SCN neuronal network can enhance circadian entrainment by sensitizing a population of neurons in the ventral SCN to irradiance. This SCN network also increases the spatial acuity of neurons and increases the accuracy of a simulated subconscious spatial visual task. We hypothesize that much of the fast electrical activity within the SCN is related to the processing of spatial information.
Collapse
Affiliation(s)
- Adam R Stinchcombe
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA
| | - Joshua W Mouland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
175
|
Lin YS, Kuo KT, Chen SK, Huang HS. RBFOX3/NeuN is dispensable for visual function. PLoS One 2018; 13:e0192355. [PMID: 29401485 PMCID: PMC5798780 DOI: 10.1371/journal.pone.0192355] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022] Open
Abstract
RBFOX3/NeuN is a neuronal splicing regulator involved in neural circuitry balance, as well as neurogenesis and synaptogenesis. Rbfox3 is expressed in neurons; however, in the retina, expression is restricted to cells in the ganglion cell layer and some cells of the inner nuclear layer. Rbfox3 is expressed in a layer-specific manner in the retina, which implies a functional role, however, the role of RBFOX3 in the retina is unknown. Rbfox3 homozygous knockout (Rbfox3-/-) mice exhibit deficits in visual learning; therefore, understanding the role of RBFOX3 in the retina is critical for interpreting behavioral results. We found Rbfox3 expression was developmentally regulated in the retina and specifically expressed in ganglion cells, amacrine cells and horizontal cells of the retina. We demonstrate deletion of Rbfox3 resulted in a reduction in the thickness of the inner plexiform layer of the retina, where synapses are formed. Number of ganglion cells and amacrine cells is normal with loss of Rbfox3. Innervation of retinal ganglion cells into their targeted brain regions is normal in Rbfox3-/- mice. Importantly, Rbfox3-/- mice displayed normal non-image and image forming functions. Taken together, our results suggest RBFOX3 is dispensable for visual function.
Collapse
Affiliation(s)
- Yi-Sian Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Ting Kuo
- Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Neurodevelopmental Club in Taiwan, Taipei, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Neurodevelopmental Club in Taiwan, Taipei, Taiwan
| |
Collapse
|
176
|
The organization of melanopsin-immunoreactive cells in microbat retina. PLoS One 2018; 13:e0190435. [PMID: 29304147 PMCID: PMC5755760 DOI: 10.1371/journal.pone.0190435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light and play roles in non-image forming vision, such as circadian rhythms, pupil responses, and sleep regulation, or image forming vision, such as processing visual information and directing eye movements in response to visual clues. The purpose of the present study was to identify the distribution, types, and proportion of melanopsin-immunoreactive (IR) cells in the retina of a nocturnal animal, i.e., the microbat (Rhinolophus ferrumequinum). Three types of melanopsin-IR cells were observed in the present study. The M1 type had dendritic arbors that extended into the OFF sublayer of the inner plexiform layer (IPL). M1 soma locations were identified either in the ganglion cell layer (GCL, M1c; 21.00%) or in the inner nuclear layer (INL, M1d; 5.15%). The M2 type had monostratified dendrites in the ON sublayer of the IPL and their cell bodies lay in the GCL (M2; 5.79%). The M3 type was bistratified cells with dendrites in both the ON and OFF sublayers of the IPL. M3 soma locations were either in the GCL (M3c; 26.66%) or INL (M3d; 4.69%). Additionally, some M3c cells had curved dendrites leading up towards the OFF sublayer of the IPL and down to the ON sublayer of the IPL (M3c-crv; 7.67%). Melanopsin-IR cells displayed a medium soma size and medium dendritic field diameters. There were 2-5 primary dendrites and sparsely branched dendrites with varicosities. The total number of the neurons in the GCL was 12,254.17 ± 660.39 and that of the optic nerve axons was 5,179.04 ± 208.00 in the R. ferrumequinum retina. The total number of melanopsin-IR cells was 819.74 ± 52.03. The ipRGCs constituted approximately 15.83% of the total RGC population. This study demonstrated that the nocturnal microbat, R. ferrumequinum, has a much higher density of melanopsin-IR cells than documented in diurnal animals.
Collapse
|
177
|
Bertolesi GE, McFarlane S. Seeing the light to change colour: An evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Pigment Cell Melanoma Res 2018; 31:354-373. [PMID: 29239123 DOI: 10.1111/pcmr.12678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Abstract
Melanopsin photopigments, Opn4x and Opn4m, were evolutionary selected to "see the light" in systems that regulate skin colour change. In this review, we analyse the roles of melanopsins, and how critical evolutionary developments, including the requirement for thermoregulation and ultraviolet protection, the emergence of a background adaptation mechanism in land-dwelling amphibian ancestors and the loss of a photosensitive pineal gland in mammals, may have helped sculpt the mechanisms that regulate light-controlled skin pigmentation. These mechanisms include melanopsin in skin pigment cells directly inducing skin darkening for thermoregulation/ultraviolet protection; melanopsin-expressing eye cells controlling neuroendocrine circuits to mediate background adaptation in amphibians in response to surface-reflected light; and pineal gland secretion of melatonin phased to environmental illuminance to regulate circadian and seasonal variation in skin colour, a process initiated by melanopsin-expressing eye cells in mammals, and by as yet unknown non-visual opsins in the pineal gland of non-mammals.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
178
|
Lee SK, Schmidt TM. Morphological Identification of Melanopsin-Expressing Retinal Ganglion Cell Subtypes in Mice. Methods Mol Biol 2018; 1753:275-287. [PMID: 29564796 DOI: 10.1007/978-1-4939-7720-8_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of photoreceptor. ipRGCs can be subdivided into at least five subtypes (M1-M5), each of which has a distinct complement of morphological and physiological properties. ipRGC subtypes can be identified morphologically based on a combination of dendritic morphology and immunostaining for a cell-type specific marker. In this chapter, we describe methods for conclusively identifying each of the five ipRGC subtypes through a combination of patch clamp electrophysiology, Neurobiotin filling, visualization of ipRGC dendrites, and immunostaining for the marker SMI-32.
Collapse
Affiliation(s)
- Seul Ki Lee
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
179
|
Morioka E, Kanda Y, Koizumi H, Miyamoto T, Ikeda M. Histamine Regulates Molecular Clock Oscillations in Human Retinal Pigment Epithelial Cells via H 1 Receptors. Front Endocrinol (Lausanne) 2018; 9:108. [PMID: 29615980 PMCID: PMC5867311 DOI: 10.3389/fendo.2018.00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/05/2018] [Indexed: 12/02/2022] Open
Abstract
Vertebrate eyes are known to contain circadian clocks, but their regulatory mechanisms remain largely unknown. To address this, we used a cell line from human retinal pigment epithelium (hRPE-YC) with stable coexpression of reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). We observed concentration-dependent increases in cytosolic Ca2+ concentrations after treatment with histamine (1-100 µM) and complete suppression of histamine-induced Ca2+ mobilizations by H1 histamine receptor (H1R) antagonist d-chlorpheniramine (d-CPA) in hRPE-YC cells. Consistently, real-time RT-PCR assays revealed that H1R showed the highest expression among the four subtypes (H1-H4) of histamine receptors in hRPE-YC cells. Stimulation of hRPE-YC cells with histamine transiently increased nuclear localization of phosphorylated Ca2+/cAMP-response element-binding protein that regulates clock gene transcriptions. Administration of histamine also shifted the Bmal1-luciferase rhythms with a type-1 phase-response curve, similar to previous results with carbachol stimulations. Treatment of hRPE-YC cells with d-CPA or with more specific H1R antagonist, ketotifen, blocked the histamine-induced phase shifts. Furthermore, an H2 histamine receptor agonist, amthamine, had little effect on the Bmal1-luciferase rhythms. Although the function of the in vivo histaminergic system within the eye remains obscure, the present results suggest histaminergic control of the molecular clock via H1R in retinal pigment epithelial cells. Also, since d-CPA and ketotifen have been widely used (e.g., to treat allergy and inflammation) in our daily life and thus raise a possible cause for circadian rhythm disorders by improper use of antihistamines.
Collapse
Affiliation(s)
- Eri Morioka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Yuzuki Kanda
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Hayato Koizumi
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Tsubasa Miyamoto
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Masayuki Ikeda
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- *Correspondence: Masayuki Ikeda,
| |
Collapse
|
180
|
Abstract
Diurnal preference, or chronotype, determined partly by genetics and modified by age, activity, and the environment, defines the time of day at which one feels at his/her best, when one feels sleepy, and when one would prefer to start his/her day. Chronotype affects the phase relationship of an individual's circadian clock with the environment such that morning types have earlier-phased circadian rhythms than evening types. The phases of circadian rhythms are synchronized to the environment on a daily basis, undergoing minor adjustments of phase each day. Light is the most potent time cue for phase-shifting circadian rhythms, but the timing and amount of solar irradiation vary dynamically with season, especially with increasing distance from the equator. There is evidence that chronotype is modified by seasonal change, most likely due to the changes in the light environment, but interindividual differences in photoperiod responsiveness mean that some people are more affected than others. Differences in circadian light sensitivity due to endogenous biological reasons and/or previous light history are responsible for the natural variation in photoperiod responsiveness. Modern lifestyles that include access to artificial light at night, temperature-controlled environments, and spending much less time outdoors offer a buffer to the environmental changes of the seasons and may contribute to humans becoming less responsive to seasons.
Collapse
Affiliation(s)
- Nyambura Shawa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa,
| | - Dale E Rae
- Health through Physical Activity, Lifestyle and Sport Research Centre, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laura C Roden
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa,
| |
Collapse
|
181
|
Johnson EN, Westbrook T, Shayesteh R, Chen EL, Schumacher JW, Fitzpatrick D, Field GD. Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. J Comp Neurol 2017; 527:328-344. [PMID: 29238991 DOI: 10.1002/cne.24377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate the pupillary light reflex, circadian entrainment, and may contribute to luminance and color perception. The diversity of ipRGCs varies from rodents to primates, suggesting differences in their contributions to retinal output. To further understand the variability in their organization and diversity across species, we used immunohistochemical methods to examine ipRGCs in tree shrew (Tupaia belangeri). Tree shrews share membership in the same clade, or evolutionary branch, as rodents and primates. They are highly visual, diurnal animals with a cone-dominated retina and a geniculo-cortical organization resembling that of primates. We identified cells with morphological similarities to M1 and M2 cells described previously in rodents and primates. M1-like cells typically had somas in the ganglion cell layer, with 23% displaced to the inner nuclear layer (INL). However, unlike M1 cells, they had bistratified dendritic fields ramifying in S1 and S5 that collectively tiled space. M2-like cells had dendritic fields restricted to S5 that were smaller and more densely branching. A novel third type of melanopsin immunopositive cell was identified. These cells had somata exclusively in the INL and monostratified dendritic fields restricted to S1 that tiled space. Surprisingly, these cells immunolabeled for tyrosine hydroxylase, a key component in dopamine synthesis. These cells immunolabeled for an RGC marker, not amacrine cell markers, suggesting that they are dopaminergic ipRGCs. We found no evidence for M4 or M5 ipRGCs, described previously in rodents. These results identify some organizational features of the ipRGC system that are canonical versus species-specific.
Collapse
Affiliation(s)
- Elizabeth N Johnson
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina.,Wharton Neuroscience Initiative, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Teleza Westbrook
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| | - Rod Shayesteh
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| | - Emily L Chen
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| | | | | | - Greg D Field
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
182
|
Parmhans N, Sajgo S, Niu J, Luo W, Badea TC. Characterization of retinal ganglion cell, horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret. J Comp Neurol 2017; 526:742-766. [PMID: 29218725 DOI: 10.1002/cne.24367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 11/11/2022]
Abstract
We report the retinal expression pattern of Ret, a receptor tyrosine kinase for the glial derived neurotrophic factor (GDNF) family ligands (GFLs), during development and in the adult mouse. Ret is initially expressed in retinal ganglion cells (RGCs), followed by horizontal cells (HCs) and amacrine cells (ACs), beginning with the early stages of postmitotic development. Ret expression persists in all three classes of neurons in the adult. Using RNA sequencing, immunostaining and random sparse recombination, we show that Ret is expressed in at least three distinct types of ACs, and ten types of RGCs. Using intersectional genetics, we describe the dendritic arbor morphologies of RGC types expressing Ret in combination with each of the three members of the POU4f/Brn3 family of transcription factors. Ret expression overlaps with Brn3a in 4 RGC types, with Brn3b in 5 RGC types, and with Brn3c in one RGC type, respectively. Ret+ RGCs project to the lateral geniculate nucleus (LGN), pretectal area (PTA) and superior colliculus (SC), and avoid the suprachiasmatic nucleus and accessory optic system. Brn3a+ Ret+ and Brn3c+ Ret+ RGCs project preferentially to contralateral retinorecipient areas, while Brn3b+ Ret+ RGCs shows minor ipsilateral projections to the olivary pretectal nucleus and the LGN. Our findings establish intersectional genetic approaches for the anatomic and developmental characterization of individual Ret+ RGC types. In addition, they provide necessary information for addressing the potential interplay between GDNF neurotrophic signaling and transcriptional regulation in RGC type specification.
Collapse
Affiliation(s)
- Nadia Parmhans
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Szilard Sajgo
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Jingwen Niu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tudor Constantin Badea
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| |
Collapse
|
183
|
Seabrook TA, Dhande OS, Ishiko N, Wooley VP, Nguyen PL, Huberman AD. Strict Independence of Parallel and Poly-synaptic Axon-Target Matching during Visual Reflex Circuit Assembly. Cell Rep 2017; 21:3049-3064. [PMID: 29241535 PMCID: PMC6333306 DOI: 10.1016/j.celrep.2017.11.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
The use of sensory information to drive specific behaviors relies on circuits spanning long distances that wire up through a range of axon-target recognition events. Mechanisms assembling poly-synaptic circuits and the extent to which parallel pathways can "cross-wire" to compensate for loss of one another remain unclear and are crucial to our understanding of brain development and models of regeneration. In the visual system, specific retinal ganglion cells (RGCs) project to designated midbrain targets connected to downstream circuits driving visuomotor reflexes. Here, we deleted RGCs connecting to pupillary light reflex (PLR) midbrain targets and discovered that axon-target matching is tightly regulated. RGC axons of the eye-reflex pathway avoided vacated PLR targets. Moreover, downstream PLR circuitry is maintained; hindbrain and peripheral components retained their proper connectivity and function. These findings point to a model in which poly-synaptic circuit development reflects independent, highly stringent wiring of each parallel pathway and downstream station.
Collapse
Affiliation(s)
- Tania A Seabrook
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Onkar S Dhande
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Nao Ishiko
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Victoria P Wooley
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Phong L Nguyen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA; Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94303, USA; Bio-X, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
184
|
Bollaerts I, Veys L, Geeraerts E, Andries L, De Groef L, Buyens T, Salinas-Navarro M, Moons L, Van Hove I. Complementary research models and methods to study axonal regeneration in the vertebrate retinofugal system. Brain Struct Funct 2017; 223:545-567. [DOI: 10.1007/s00429-017-1571-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/15/2017] [Indexed: 01/18/2023]
|
185
|
Keenan WT, Fernandez DC, Shumway LJ, Zhao H, Hattar S. Eye-Drops for Activation of DREADDs. Front Neural Circuits 2017; 11:93. [PMID: 29218003 PMCID: PMC5703865 DOI: 10.3389/fncir.2017.00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/09/2017] [Indexed: 11/13/2022] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are an important tool for modulating and understanding neural circuits. Depending on the DREADD system used, DREADD-targeted neurons can be activated or repressed in vivo following a dose of the DREADD agonist clozapine-N-oxide (CNO). Because DREADD experiments often involve behavioral assays, the method of CNO delivery is important. Currently, the most common delivery method is intraperitoneal (IP) injection. IP injection is both a fast and reliable technique, but it is painful and stressful particularly when many injections are required. We sought an alternative CNO delivery paradigm, which would retain the speed and reliability of IP injections without being as invasive. Here, we show that CNO can be effectively delivered topically via eye-drops. Eye-drops robustly activated DREADD-expressing neurons in the brain and peripheral tissues and does so at the same dosages as IP injection. Eye-drops provide an easier, less invasive and less stressful method for activating DREADDs in vivo.
Collapse
Affiliation(s)
- William T. Keenan
- Biology Department, Johns Hopkins University, Baltimore, MD, United States
| | - Diego C. Fernandez
- Biology Department, Johns Hopkins University, Baltimore, MD, United States
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lukas J. Shumway
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Haiqing Zhao
- Biology Department, Johns Hopkins University, Baltimore, MD, United States
| | - Samer Hattar
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
186
|
Xu GZ, Cui LJ, Liu AL, Zhou W, Gong X, Zhong YM, Yang XL, Weng SJ. Transgene is specifically and functionally expressed in retinal inhibitory interneurons in the VGAT-ChR2-EYFP mouse. Neuroscience 2017; 363:107-119. [PMID: 28918256 DOI: 10.1016/j.neuroscience.2017.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
Ectopic transgene expression in the retina has been reported in various transgenic mice, indicating the importance of characterizing retinal phenotypes. We examined transgene expression in the VGAT-ChR2-EYFP mouse retina by fluorescent immunohistochemistry and electrophysiology, with special emphasis on enhanced yellow fluorescent protein (EYFP) localization in retinal neuronal subtypes identified by specific markers. Strong EYFP signals were detected in both the inner and outer plexiform layers. In addition, the ChR2-EYFP fusion protein was also expressed in somata of the great majority of inhibitory interneurons, including horizontal cells and GABAergic and glycinergic amacrine cells. However, a small population of amacrine cells residing in the ganglion cell layer were not labeled by EYFP, and a part of them were cholinergic ones. In contrast, no EYFP signal was detected in the somata of retinal excitatory neurons: photoreceptors, bipolar and ganglion cells, as well as Müller glial cells. When glutamatergic transmission was blocked, bright blue light stimulation elicited inward photocurrents from amacrine cells, as well as post-synaptic inhibitory currents from ganglion cells, suggesting a functional ChR2 expression. The VGAT-ChR2-EYFP mouse therefore could be a useful animal model for dissecting retinal microcircuits when targeted labeling and/or optogenetic manipulation of retinal inhibitory neurons are required.
Collapse
Affiliation(s)
- Guo-Zhong Xu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Ling-Jie Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ai-Lin Liu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Zhou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xue Gong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
187
|
Milner ES, Do MTH. A Population Representation of Absolute Light Intensity in the Mammalian Retina. Cell 2017; 171:865-876.e16. [PMID: 28965762 PMCID: PMC6647834 DOI: 10.1016/j.cell.2017.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022]
Abstract
Environmental illumination spans many log units of intensity and is tracked for essential functions that include regulation of the circadian clock, arousal state, and hormone levels. Little is known about the neural representation of light intensity and how it covers the necessary range. This question became accessible with the discovery of mammalian photoreceptors that are required for intensity-driven functions, the M1 ipRGCs. The spike outputs of M1s are thought to uniformly track intensity over a wide range. We provide a different understanding: individual cells operate over a narrow range, but the population covers irradiances from moonlight to full daylight. The range of most M1s is limited by depolarization block, which is generally considered pathological but is produced intrinsically by these cells. The dynamics of block allow the population to code stimulus intensity with flexibility and efficiency. Moreover, although spikes are distorted by block, they are regularized during axonal propagation.
Collapse
Affiliation(s)
- Elliott Scott Milner
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Michael Tri Hoang Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
188
|
Emanuel AJ, Kapur K, Do MTH. Biophysical Variation within the M1 Type of Ganglion Cell Photoreceptor. Cell Rep 2017; 21:1048-1062. [PMID: 29069587 PMCID: PMC5675019 DOI: 10.1016/j.celrep.2017.09.095] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/21/2017] [Accepted: 09/27/2017] [Indexed: 12/27/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells of the M1 type encode environmental irradiance for functions that include circadian and pupillary regulation. Their distinct role, morphology, and molecular markers indicate that they are stereotyped circuit elements, but their physiological uniformity has not been investigated in a systematic fashion. We have profiled the biophysical parameters of mouse M1s and found that extreme variation is their hallmark. Most parameters span 1-3 log units, and the full range is evident in M1s that innervate brain regions serving divergent functions. Biophysical profiles differ among cells possessing similar morphology and between neighboring M1s recorded simultaneously. Variation in each parameter is largely independent of that in others, allowing for flexible individualization. Accordingly, a common stimulus drives heterogeneous spike outputs across cells. By contrast, a population of directionally selective retinal ganglion cells appeared physiologically uniform under similar conditions. Thus, M1s lack biophysical constancy and send diverse signals downstream.
Collapse
Affiliation(s)
- Alan J Emanuel
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital and Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Tri H Do
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital and Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
189
|
Novotny P, Plischke H. Pupillary light reflex and circadian synchronization in the elderly. Psych J 2017; 6:292-293. [DOI: 10.1002/pchj.186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Philipp Novotny
- Department of Applied Sciences and Mechatronics; Munich University of Applied Sciences; Munich Germany
| | - Herbert Plischke
- Department of Applied Sciences and Mechatronics; Munich University of Applied Sciences; Munich Germany
| |
Collapse
|
190
|
Dong J, Xiong D. Applications of Light Emitting Diodes in Health Care. Ann Biomed Eng 2017; 45:2509-2523. [PMID: 28948402 DOI: 10.1007/s10439-017-1930-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/16/2017] [Indexed: 12/28/2022]
Abstract
Light emitting diodes (LEDs) have become the main light sources for general lighting, due to their high lumen efficiency and long life time. Moreover, their high bandwidth and the availability of diverse wavelength contents ranging from ultraviolet to infrared empower them with great controllability in tuning brightness, pulse durations and spectra. These parameters are the essential ingredients of the applications in medical imaging and therapies. Despite the fast advances in both LED technologies and their applications, few reviews have been seen to link the controllable emission properties of LEDs to these applications. The objective of this paper is to bridge this gap by reviewing the main control techniques of LEDs that enable creating enhanced lighting patterns for imaging and generating effective photon doses for photobiomodulation. This paper also provides the basic mechanisms behind the effective LED therapies in treating cutaneous and neurological diseases. The emerging field of optogenetics is also discussed with a focus on the application of LEDs. The multidisciplinary topics reviewed in this paper can help the researchers in LEDs, imaging, light therapy and optogenetics better understand the basic principles in each other's field; and hence to stimulate the application of LEDs in health care.
Collapse
Affiliation(s)
- Jianfei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Daxi Xiong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
191
|
Brown TM. Using light to tell the time of day: sensory coding in the mammalian circadian visual network. ACTA ACUST UNITED AC 2017; 219:1779-92. [PMID: 27307539 PMCID: PMC4920240 DOI: 10.1242/jeb.132167] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
Circadian clocks are a near-ubiquitous feature of biology, allowing organisms to optimise their physiology to make the most efficient use of resources and adjust behaviour to maximise survival over the solar day. To fulfil this role, circadian clocks require information about time in the external world. This is most reliably obtained by measuring the pronounced changes in illumination associated with the earth's rotation. In mammals, these changes are exclusively detected in the retina and are relayed by direct and indirect neural pathways to the master circadian clock in the hypothalamic suprachiasmatic nuclei. Recent work reveals a surprising level of complexity in this sensory control of the circadian system, including the participation of multiple photoreceptive pathways conveying distinct aspects of visual and/or time-of-day information. In this Review, I summarise these important recent advances, present hypotheses as to the functions and neural origins of these sensory signals, highlight key challenges for future research and discuss the implications of our current knowledge for animals and humans in the modern world.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
192
|
Robles E. The power of projectomes: genetic mosaic labeling in the larval zebrafish brain reveals organizing principles of sensory circuits. J Neurogenet 2017; 31:61-69. [PMID: 28797199 DOI: 10.1080/01677063.2017.1359834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In no vertebrate species do we possess an accurate, comprehensive tally of neuron types in the brain. This is in no small part due to the vast diversity of neuronal types that comprise complex vertebrate nervous systems. A fundamental goal of neuroscience is to construct comprehensive catalogs of cell types defined by structure, connectivity, and physiological response properties. This type of information will be invaluable for generating models of how assemblies of neurons encode and distribute sensory information and correspondingly alter behavior. This review summarizes recent efforts in the larval zebrafish to construct sensory projectomes, comprehensive analyses of axonal morphologies in sensory axon tracts. Focusing on the olfactory and optic tract, these studies revealed principles of sensory information processing in the olfactory and visual systems that could not have been directly quantified by other methods. In essence, these studies reconstructed the optic and olfactory tract in a virtual manner, providing insights into patterns of neuronal growth that underlie the formation of sensory axon tracts. Quantitative analysis of neuronal diversity revealed organizing principles that determine information flow through sensory systems in the zebrafish that are likely to be conserved across vertebrate species. The generation of comprehensive cell type classifications based on structural, physiological, and molecular features will lead to testable hypotheses on the functional role of individual sensory neuron subtypes in controlling specific sensory-evoked behaviors.
Collapse
Affiliation(s)
- Estuardo Robles
- a Department of Biological Sciences and Institute for Integrative Neuroscience , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
193
|
Abstract
Although much is known about the regenerative capacity of retinal ganglion cells, very significant barriers remain in our ability to restore visual function following traumatic injury or disease-induced degeneration. Here we summarize our current understanding of the factors regulating axon guidance and target engagement in regenerating axons, and review the state of the field of neural regeneration, focusing on the visual system and highlighting studies using other model systems that can inform analysis of visual system regeneration. This overview is motivated by a Society for Neuroscience Satellite meeting, "Reconnecting Neurons in the Visual System," held in October 2015 sponsored by the National Eye Institute as part of their "Audacious Goals Initiative" and co-organized by Carol Mason (Columbia University) and Michael Crair (Yale University). The collective wisdom of the conference participants pointed to important gaps in our knowledge and barriers to progress in promoting the restoration of visual system function. This article is thus a summary of our existing understanding of visual system regeneration and provides a blueprint for future progress in the field.
Collapse
|
194
|
Guo ZZ, Jiang SM, Zeng LP, Tang L, Li N, Xu ZP, Wei X. ipRGCs: possible causation accounts for the higher prevalence of sleep disorders in glaucoma patients. Int J Ophthalmol 2017; 10:1163-1167. [PMID: 28730123 DOI: 10.18240/ijo.2017.07.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/06/2017] [Indexed: 02/05/2023] Open
Abstract
Sleep accounts for a third of one's lifetime, partial or complete deprivation of sleep could elicit sever disorders of body function. Previous studies have reported the higher prevalence of sleep disorders in glaucoma patients, but the definite mechanism for this phenomenon is unknown. On the other hand, it is well known by us that the intrinsically photosensitive retinal ganglion cells (ipRGCs) serve additional ocular functions, called non-image-forming (NIF) functions, in the regulation of circadian rhythm, melatonin secretion, sleep, mood and others. Specifically, ipRGCs can directly or indirectly innervate the central areas such as suprachiasmatic nucleus (SCN), downstream pineal gland (the origin of melatonin), sleep and wake-inducing centers and mood regulation areas, making NIF functions of ipRGCs relate to sleep. The more interesting thing is that previous research showed glaucoma not only affected visual functions such as the degeneration of classical retinal ganglion cells (RGCs), but also affected ipRGCs. Therefore, we hypothesize that higher prevalence of sleep disorders in glaucoma patients maybe result from the underlying glaucomatous injuries of ipRGCs leading to the abnormalities of diverse NIF functions corresponding to sleep.
Collapse
Affiliation(s)
- Zhen-Zhen Guo
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Shan-Ming Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Ping Zeng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ni Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhu-Ping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
195
|
M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina. J Neurosci 2017; 36:7184-97. [PMID: 27383593 DOI: 10.1523/jneurosci.3500-15.2016] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/26/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs, with five subtypes named M1-M5) are a unique subclass of RGCs with axons that project directly to many brain nuclei involved in non-image-forming functions such as circadian photoentrainment and the pupillary light reflex. Recent evidence suggests that melanopsin-based signals also influence image-forming visual function, including light adaptation, but the mechanisms involved are unclear. Intriguingly, a small population of M1 ipRGCs have intraretinal axon collaterals that project toward the outer retina. Using genetic mouse models, we provide three lines of evidence showing that these axon collaterals make connections with upstream dopaminergic amacrine cells (DACs): (1) ipRGC signaling to DACs is blocked by tetrodotoxin both in vitro and in vivo, indicating that ipRGC-to-DAC transmission requires voltage-gated Na(+) channels; (2) this transmission is partly dependent on N-type Ca(2+) channels, which are possibly expressed in the axon collateral terminals of ipRGCs; and (3) fluorescence microscopy reveals that ipRGC axon collaterals make putative presynaptic contact with DACs. We further demonstrate that elimination of M1 ipRGCs attenuates light adaptation, as evidenced by an impaired electroretinogram b-wave from cones, whereas a dopamine receptor agonist can potentiate the cone-driven b-wave of retinas lacking M1 ipRGCs. Together, the results strongly suggest that ipRGCs transmit luminance signals retrogradely to the outer retina through the dopaminergic system and in turn influence retinal light adaptation. SIGNIFICANCE STATEMENT Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) comprise a third class of retinal photoreceptors that are known to mediate physiological responses such as circadian photoentrainment. However, investigation into whether and how ipRGCs contribute to vision has just begun. Here, we provide convergent anatomical and physiological evidence that axon collaterals of ipRGCs constitute a centrifugal pathway to DACs, conveying melanopsin-based signals from the innermost retina to the outer retina. We further demonstrate that retrograde signals likely influence visual processing because elimination of axon collateral-bearing ipRGCs impairs light adaptation by limiting dopamine-dependent facilitation of the cone pathway. Our findings strongly support the hypothesis that retrograde melanopsin-based signaling influences visual function locally within the retina, a notion that refutes the dogma that RGCs only provide physiological signals to the brain.
Collapse
|
196
|
Gall AJ, Khacherian OS, Ledbetter B, Deats SP, Luck M, Smale L, Yan L, Nunez AA. Normal behavioral responses to light and darkness and the pupillary light reflex are dependent upon the olivary pretectal nucleus in the diurnal Nile grass rat. Neuroscience 2017; 355:225-237. [PMID: 28499968 PMCID: PMC5551906 DOI: 10.1016/j.neuroscience.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/19/2017] [Accepted: 05/01/2017] [Indexed: 11/26/2022]
Abstract
The olivary pretectal nucleus (OPT) is a midbrain structure that receives reciprocal bilateral retinal projections, is involved in the pupillary light reflex, and connects reciprocally with the intergeniculate leaflet (IGL), a retinorecipient brain region that mediates behavioral responses to light pulses (i.e., masking) in diurnal Nile grass rats. Here, we lesioned the OPT and evaluated behavioral responses in grass rats to various lighting conditions, as well as their anxiety-like responses to light exposure. While control grass rats remained diurnal, grass rats with OPT lesions exhibited a more night-active pattern under 12h:12h light-dark (LD) conditions. However, when placed in constant darkness, OPT-lesioned grass rats became more active during their subjective day, suggesting that an exaggerated masking response to light may be responsible for the effect of OPT lesions on locomotor activity in LD. To test this hypothesis, we presented dark and light pulses to controls and grass rats with OPT lesions; controls increased their activity in response to light, whereas those with OPT lesions significantly increased activity in response to darkness. Further, when placed in a 7-h ultradian LD cycle, animals with OPT lesions were more active during darkness than controls. OPT lesions also abolished the pupillary light reflex, but did not affect anxiety-like behaviors. Finally, in animals with OPT lesions, light did not induce Fos expression in the ventrolateral geniculate nucleus, as it did in controls. Altogether, these results suggest that masking responses to light and darkness are dependent upon nuclei within the subcortical visual shell in grass rats.
Collapse
Affiliation(s)
- Andrew J Gall
- Department of Psychology, Hope College, Holland, MI 49423, United States.
| | | | - Brandi Ledbetter
- Department of Psychology, Hope College, Holland, MI 49423, United States
| | - Sean P Deats
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, United States
| | - Megan Luck
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Laura Smale
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Lily Yan
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Antonio A Nunez
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
197
|
Corticothalamic Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal Lateral Geniculate Nucleus. J Neurosci 2017; 36:5252-63. [PMID: 27170123 DOI: 10.1523/jneurosci.4599-15.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/25/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Retinal ganglion cells (RGCs) relay information about the outside world to multiple subcortical targets within the brain. This information is either used to dictate reflexive behaviors or relayed to the visual cortex for further processing. Many subcortical visual nuclei also receive descending inputs from projection neurons in the visual cortex. Most areas receive inputs from layer 5 cortical neurons in the visual cortex but one exception is the dorsal lateral geniculate nucleus (dLGN), which receives layer 6 inputs and is also the only RGC target that sends direct projections to the cortex. Here we ask how visual system development and function changes in mice that develop without a cortex. We find that the development of a cortex is essential for RGC axons to terminate in the dLGN, but is not required for targeting RGC axons to other subcortical nuclei. RGC axons also fail to target to the dLGN in mice that specifically lack cortical layer 6 projections to the dLGN. Finally, we show that when mice develop without a cortex they can still perform a number of vision-dependent tasks. SIGNIFICANCE STATEMENT The dorsal lateral geniculate nucleus (dLGN) is a sensory thalamic relay area that receives feedforward inputs from retinal ganglion cells (RGCs) in the retina, and feed back inputs from layer 6 neurons in the visual cortex. In this study we examined genetically manipulated mice that develop without a cortex or without cortical layer 6 axonal projections, and find that RGC axons fail to project to the dLGN. Other RGC recipient areas, such as the superior colliculus and suprachiasmatic nucleus, are targeted normally. These results provide support for a new mechanism of target selection that may be specific to the thalamus, whereby descending cortical axons provide an activity that promotes feedforward targeting of RGC axons to the dLGN.
Collapse
|
198
|
Chew KS, Renna JM, McNeill DS, Fernandez DC, Keenan WT, Thomsen MB, Ecker JL, Loevinsohn GS, VanDunk C, Vicarel DC, Tufford A, Weng S, Gray PA, Cayouette M, Herzog ED, Zhao H, Berson DM, Hattar S. A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice. eLife 2017; 6:e22861. [PMID: 28617242 PMCID: PMC5513697 DOI: 10.7554/elife.22861] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/14/2017] [Indexed: 12/25/2022] Open
Abstract
The visual system consists of two major subsystems, image-forming circuits that drive conscious vision and non-image-forming circuits for behaviors such as circadian photoentrainment. While historically considered non-overlapping, recent evidence has uncovered crosstalk between these subsystems. Here, we investigated shared developmental mechanisms. We revealed an unprecedented role for light in the maturation of the circadian clock and discovered that intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for this refinement process. In addition, ipRGCs regulate retinal waves independent of light, and developmental ablation of a subset of ipRGCs disrupts eye-specific segregation of retinogeniculate projections. Specifically, a subset of ipRGCs, comprising ~200 cells and which project intraretinally and to circadian centers in the brain, are sufficient to mediate both of these developmental processes. Thus, this subset of ipRGCs constitute a shared node in the neural networks that mediate light-dependent maturation of the circadian clock and light-independent refinement of retinogeniculate projections.
Collapse
Affiliation(s)
- Kylie S Chew
- Department of Biology, Johns Hopkins University, Baltimore, United States
- Department of Biology, Stanford University, Stanford, United States
| | - Jordan M Renna
- Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron, United States
| | - David S McNeill
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Diego C Fernandez
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - William T Keenan
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Michael B Thomsen
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jennifer L Ecker
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | | | - Cassandra VanDunk
- Department of Anatomy and Neurobiology, Washington University, St. Louis, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Daniel C Vicarel
- Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron, United States
| | - Adele Tufford
- Cellular Neurobiology Research Unit, Institut De Recherches Cliniques De Montréal, Montreal, Canada
| | - Shijun Weng
- Department of Neuroscience, Brown University, Providence, United States
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, United States
- Indigo Agriculture, Charlestown, United States
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut De Recherches Cliniques De Montréal, Montreal, Canada
- Faculty of Medicine, Université De Montréal, Montreal, Canada
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, United States
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, United States
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
199
|
García-Ayuso D, Galindo-Romero C, Di Pierdomenico J, Vidal-Sanz M, Agudo-Barriuso M, Villegas Pérez MP. Light-induced retinal degeneration causes a transient downregulation of melanopsin in the rat retina. Exp Eye Res 2017; 161:10-16. [PMID: 28552384 DOI: 10.1016/j.exer.2017.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/16/2022]
Abstract
In this work we study the effects of an acute light-induced retinal degeneration on the population of melanopsin positive retinal ganglion cells (m+RGCs) and the expression of the melanopsin protein in the retina. The m+RGCs may be more resistant than other RGCs to lesion, but the effects of an acute light exposure in this population are unknown. Albino rats were exposed to white light (3000 lux) continuously for 48 h and processed 0, 3, 7 or 30 days after light exposure (ALE). Whole-mounted retinas were immunodetected with antibodies against melanopsin, Brn3a, and rhodopsin to study the populations of m+RGC, Brn3a+RGC and rods (which are the most abundant photoreceptors in the rat retina). Three days ALE there was substantial rod loss in an arciform area of the superior retina and with time this loss expanded in the form of rings all throughout the retina. Light exposure did not affect the number of Brn3a+RGCs but diminished the numbers of m+RGCs. Immediately ALE there was a significant decrease in the mean number of immunodetected m+RGCs that was more marked in the superior retina. Later, the number of m+RGCs increased progressively and reached normal values one month ALE. Western blot analysis showed that melanopsin expression down-regulates shortly ALE and recovers thereafter, in accordance with the anatomical data. This study demonstrates that there is a transient downregulation of melanopsin expression in the RGCs during the first month ALE. Further studies would be needed to clarify the long-term effect of light exposure on the m+RGC population.
Collapse
Affiliation(s)
- Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain.
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - María P Villegas Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain.
| |
Collapse
|
200
|
Molecular codes for cell type specification in Brn3 retinal ganglion cells. Proc Natl Acad Sci U S A 2017; 114:E3974-E3983. [PMID: 28465430 DOI: 10.1073/pnas.1618551114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visual information is conveyed from the eye to the brain by distinct types of retinal ganglion cells (RGCs). It is largely unknown how RGCs acquire their defining morphological and physiological features and connect to upstream and downstream synaptic partners. The three Brn3/Pou4f transcription factors (TFs) participate in a combinatorial code for RGC type specification, but their exact molecular roles are still unclear. We use deep sequencing to define (i) transcriptomes of Brn3a- and/or Brn3b-positive RGCs, (ii) Brn3a- and/or Brn3b-dependent RGC transcripts, and (iii) transcriptomes of retinorecipient areas of the brain at developmental stages relevant for axon guidance, dendrite formation, and synaptogenesis. We reveal a combinatorial code of TFs, cell surface molecules, and determinants of neuronal morphology that is differentially expressed in specific RGC populations and selectively regulated by Brn3a and/or Brn3b. This comprehensive molecular code provides a basis for understanding neuronal cell type specification in RGCs.
Collapse
|