151
|
Abstract
Taurine is a natural amino acid present as free form in many mammalian tissues and in particular in skeletal muscle. Taurine exerts many physiological functions, including membrane stabilization, osmoregulation and cytoprotective effects, antioxidant and anti-inflammatory actions as well as modulation of intracellular calcium concentration and ion channel function. In addition taurine may control muscle metabolism and gene expression, through yet unclear mechanisms. This review summarizes the effects of taurine on specific muscle targets and pathways as well as its therapeutic potential to restore skeletal muscle function and performance in various pathological conditions. Evidences support the link between alteration of intracellular taurine level in skeletal muscle and different pathophysiological conditions, such as disuse-induced muscle atrophy, muscular dystrophy and/or senescence, reinforcing the interest towards its exogenous supplementation. In addition, taurine treatment can be beneficial to reduce sarcolemmal hyper-excitability in myotonia-related syndromes. Although further studies are necessary to fill the gaps between animals and humans, the benefit of the amino acid appears to be due to its multiple actions on cellular functions while toxicity seems relatively low. Human clinical trials using taurine in various pathologies such as diabetes, cardiovascular and neurological disorders have been performed and may represent a guide-line for designing specific studies in patients of neuromuscular diseases.
Collapse
Affiliation(s)
- Annamaria De Luca
- Sezione di Farmacologia, Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Sabata Pierno
- Sezione di Farmacologia, Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Diana Conte Camerino
- Sezione di Farmacologia, Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
152
|
Burr AR, Molkentin JD. Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy. Cell Death Differ 2015; 22:1402-12. [PMID: 26088163 PMCID: PMC4532779 DOI: 10.1038/cdd.2015.65] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/03/2015] [Accepted: 04/17/2015] [Indexed: 01/19/2023] Open
Abstract
Muscular dystrophy (MD) refers to a clinically and genetically heterogeneous group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. Although the primary defect underlying most forms of MD typically results from a loss of sarcolemmal integrity, the secondary molecular mechanisms leading to muscle degeneration and myofiber necrosis is debated. One hypothesis suggests that elevated or dysregulated cytosolic calcium is the common transducing event, resulting in myofiber necrosis in MD. Previous measurements of resting calcium levels in myofibers from dystrophic animal models or humans produced equivocal results. However, recent studies in genetically altered mouse models have largely solidified the calcium hypothesis of MD, such that models with artificially elevated calcium in skeletal muscle manifest fulminant dystrophic-like disease, whereas models with enhanced calcium clearance or inhibited calcium influx are resistant to myofiber death and MD. Here, we will review the field and the recent cadre of data from genetically altered mouse models, which we propose have collectively mostly proven the hypothesis that calcium is the primary effector of myofiber necrosis in MD. This new consensus on calcium should guide future selection of drugs to be evaluated in clinical trials as well as gene therapy-based approaches.
Collapse
Affiliation(s)
- A R Burr
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, USA
| | - J D Molkentin
- 1] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, USA [2] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Molecular Cardiovascular Biology, 240 Albert Sabin Way, Cincinnati, OH, USA
| |
Collapse
|
153
|
Ikeda K, Ito A, Sato M, Kanno S, Kawabe Y, Kamihira M. Effects of heat stimulation and l-ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs. J Tissue Eng Regen Med 2015; 11:1322-1331. [PMID: 26033935 DOI: 10.1002/term.2030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 01/19/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
Although skeletal muscle tissue engineering has been extensively studied, the physical forces produced by tissue-engineered skeletal muscles remain to be improved for potential clinical utility. In this study, we examined the effects of mild heat stimulation and supplementation of a l-ascorbic acid derivative, l-ascorbic acid 2-phosphate (AscP), on myoblast differentiation and physical force generation of tissue-engineered skeletal muscles. Compared with control cultures at 37°C, mouse C2C12 myoblast cells cultured at 39°C enhanced myotube diameter (skeletal muscle hypertrophy), whereas mild heat stimulation did not promote myotube formation (differentiation rate). Conversely, AscP supplementation resulted in an increased differentiation rate but did not induce skeletal muscle hypertrophy. Following combined treatment with mild heat stimulation and AscP supplementation, both skeletal muscle hypertrophy and differentiation rate were enhanced. Moreover, the active tension produced by the tissue-engineered skeletal muscles was improved following combined treatment. These findings indicate that tissue culture using mild heat stimulation and AscP supplementation is a promising approach to enhance the function of tissue-engineered skeletal muscles. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kazushi Ikeda
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Ito
- Department of Chemical Engineering, Kyushu University, Fukuoka, Japan
| | - Masanori Sato
- Department of Chemical Engineering, Kyushu University, Fukuoka, Japan
| | - Shota Kanno
- Department of Chemical Engineering, Kyushu University, Fukuoka, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Kyushu University, Fukuoka, Japan
| | - Masamichi Kamihira
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan.,Department of Chemical Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
154
|
Fajardo VA, Bombardier E, McMillan E, Tran K, Wadsworth BJ, Gamu D, Hopf A, Vigna C, Smith IC, Bellissimo C, Michel RN, Tarnopolsky MA, Quadrilatero J, Tupling AR. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech 2015; 8:999-1009. [PMID: 26035394 PMCID: PMC4527296 DOI: 10.1242/dmm.020859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022] Open
Abstract
Centronuclear myopathy (CNM) is a congenital myopathy that is histopathologically characterized by centrally located nuclei, central aggregation of oxidative activity, and type I fiber predominance and hypotrophy. Here, we obtained commercially available mice overexpressing phospholamban (PlnOE), a well-known inhibitor of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), in their slow-twitch type I skeletal muscle fibers to determine the effects on SERCA function. As expected with a 6- to 7-fold overexpression of phospholamban, SERCA dysfunction was evident in PlnOE muscles, with marked reductions in rates of Ca2+ uptake, maximal ATPase activity and the apparent affinity of SERCA for Ca2+. However, our most significant discovery was that the soleus and gluteus minimus muscles from the PlnOE mice displayed overt signs of myopathy: they histopathologically resembled human CNM, with centrally located nuclei, central aggregation of oxidative activity, type I fiber predominance and hypotrophy, progressive fibrosis and muscle weakness. This phenotype is associated with significant upregulation of muscle sarcolipin and dynamin 2, increased Ca2+-activated proteolysis, oxidative stress and protein nitrosylation. Moreover, in our assessment of muscle biopsies from three human CNM patients, we found a significant 53% reduction in SERCA activity and increases in both total and monomeric PLN content compared with five healthy subjects, thereby justifying future studies with more CNM patients. Altogether, our results suggest that the commercially available PlnOE mouse phenotypically resembles human CNM and could be used as a model to test potential mechanisms and therapeutic strategies. To date, there is no cure for CNM and our results suggest that targeting SERCA function, which has already been shown to be an effective therapeutic target for murine muscular dystrophy and human cardiomyopathy, might represent a novel therapeutic strategy to combat CNM. Summary: Phospholamban overexpression in mouse slow-twitch muscle impairs SERCA function and causes histopathological features associated with human centronuclear myopathy.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Elliott McMillan
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Khanh Tran
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brennan J Wadsworth
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew Hopf
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ian C Smith
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Catherine Bellissimo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Robin N Michel
- Department of Exercise Science, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Mark A Tarnopolsky
- Departement of Kinesiology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
155
|
NOH KYUNGKYUN, CHUNG KIWUNG, SUNG BOKYUNG, KIM MINJO, PARK CHANHUM, YOON CHANGSHIN, CHOI JAESUE, KIM MIKYUNG, KIM CHEOLMIN, KIM NAMDEUK, CHUNG HAEYOUNG. Loquat (Eriobotrya japonica) extract prevents dexamethasone-induced muscle atrophy by inhibiting the muscle degradation pathway in Sprague Dawley rats. Mol Med Rep 2015; 12:3607-3614. [DOI: 10.3892/mmr.2015.3821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 05/08/2015] [Indexed: 11/06/2022] Open
|
156
|
Peake JM, Markworth JF, Nosaka K, Raastad T, Wadley GD, Coffey VG. Modulating exercise-induced hormesis: Does less equal more? J Appl Physiol (1985) 2015; 119:172-89. [PMID: 25977451 DOI: 10.1152/japplphysiol.01055.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/07/2015] [Indexed: 12/21/2022] Open
Abstract
Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise.
Collapse
Affiliation(s)
- Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Centre of Excellence for Applied Sports Science Research, Queensland Academy of Sport, Brisbane, Australia;
| | | | - Kazunori Nosaka
- School of Exercise and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, Australia
| | | | - Glenn D Wadley
- School of Exercise and Nutrition Sciences, Center for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - Vernon G Coffey
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; and Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| |
Collapse
|
157
|
Escribá PV, Busquets X, Inokuchi JI, Balogh G, Török Z, Horváth I, Harwood JL, Vígh L. Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog Lipid Res 2015; 59:38-53. [PMID: 25969421 DOI: 10.1016/j.plipres.2015.04.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 01/17/2023]
Abstract
Nowadays we understand cell membranes not as a simple double lipid layer but as a collection of complex and dynamic protein-lipid structures and microdomains that serve as functional platforms for interacting signaling lipids and proteins. Membrane lipids and lipid structures participate directly as messengers or regulators of signal transduction. In addition, protein-lipid interactions participate in the localization of signaling protein partners to specific membrane microdomains. Thus, lipid alterations change cell signaling that are associated with a variety of diseases including cancer, obesity, neurodegenerative disorders, cardiovascular pathologies, etc. This article reviews the newly emerging field of membrane lipid therapy which involves the pharmacological regulation of membrane lipid composition and structure for the treatment of diseases. Membrane lipid therapy proposes the use of new molecules specifically designed to modify membrane lipid structures and microdomains as pharmaceutical disease-modifying agents by reversing the malfunction or altering the expression of disease-specific protein or lipid signal cascades. Here, we provide an in-depth analysis of this emerging field, especially its molecular bases and its relevance to the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Pablo V Escribá
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Xavier Busquets
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
158
|
Wu LL, Russell DL, Wong SL, Chen M, Tsai TS, St John JC, Norman RJ, Febbraio MA, Carroll J, Robker RL. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 2015; 142:681-91. [PMID: 25670793 DOI: 10.1242/dev.114850] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over-nutrition in females causes altered fetal growth during pregnancy and permanently programs the metabolism of offspring; however, the temporal and mechanistic origins of these changes, and whether they are reversible, are unknown. We now show that, in obese female mice, cumulus-oocyte complexes exhibit endoplasmic reticulum (ER) stress, high levels of intracellular lipid, spindle abnormalities and reduced PTX3 extracellular matrix protein production. Ovulated oocytes from obese mice contain normal levels of mitochondrial (mt) DNA but have reduced mitochondrial membrane potential and high levels of autophagy compared with oocytes from lean mice. After in vitro fertilization, the oocytes of obese female mice demonstrate reduced developmental potential and form blastocysts with reduced levels of mtDNA. Blastocysts transferred to normal weight surrogates that were then analyzed at E14.5 showed that oocytes from obese mice gave rise to fetuses that were heavier than controls and had reduced liver and kidney mtDNA content per cell, indicating that maternal obesity before conception had altered the transmission of mitochondria to offspring. Treatment of the obese females with the ER stress inhibitor salubrinal or the chaperone inducer BGP-15 before ovulation increased the amount of the mitochondrial replication factors TFAM and DRP1, and mtDNA content in oocytes. Salubrinal and BGP-15 also completely restored oocyte quality, embryo development and the mtDNA content of fetal tissue to levels equivalent to those derived from lean mice. These results demonstrate that obesity before conception imparts a legacy of mitochondrial loss in offspring that is caused by ER stress and is reversible during the final stages of oocyte development and maturation.
Collapse
Affiliation(s)
- Linda L Wu
- School of Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Darryl L Russell
- School of Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Siew L Wong
- School of Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Miaoxin Chen
- School of Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Te-Sha Tsai
- Centre for Genetic Diseases, MIMR-PHI Institute of Medical Research, and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Justin C St John
- Centre for Genetic Diseases, MIMR-PHI Institute of Medical Research, and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Robert J Norman
- School of Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - John Carroll
- School of Biomedical Sciences, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Rebecca L Robker
- School of Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
159
|
Wiggs MP. Can endurance exercise preconditioning prevention disuse muscle atrophy? Front Physiol 2015; 6:63. [PMID: 25814955 PMCID: PMC4356230 DOI: 10.3389/fphys.2015.00063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggests that exercise training can provide a level of protection against disuse muscle atrophy. Endurance exercise training imposes oxidative, metabolic, and heat stress on skeletal muscle which activates a variety of cellular signaling pathways that ultimately leads to the increased expression of proteins that have been demonstrated to protect muscle from inactivity -induced atrophy. This review will highlight the effect of exercise-induced oxidative stress on endogenous enzymatic antioxidant capacity (i.e., superoxide dismutase, glutathione peroxidase, and catalase), the role of oxidative and metabolic stress on PGC1-α, and finally highlight the effect heat stress and HSP70 induction. Finally, this review will discuss the supporting scientific evidence that these proteins can attenuate muscle atrophy through exercise preconditioning.
Collapse
Affiliation(s)
- Michael P Wiggs
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida Gainesville, FL, USA
| |
Collapse
|
160
|
Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89:1401-38. [DOI: 10.1007/s00204-015-1477-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
|
161
|
Feeney SJ, McGrath MJ, Sriratana A, Gehrig SM, Lynch GS, D’Arcy CE, Price JT, McLean CA, Tupler R, Mitchell CA. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS One 2015; 10:e0117665. [PMID: 25695429 PMCID: PMC4335040 DOI: 10.1371/journal.pone.0117665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.
Collapse
Affiliation(s)
- Sandra J. Feeney
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Meagan J. McGrath
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Absorn Sriratana
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Stefan M. Gehrig
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Gordon S. Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Colleen E. D’Arcy
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - John T. Price
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Catriona A. McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria, 3004, Australia
- Department of Medicine, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
| | - Rossella Tupler
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, 01655, United States of America
- Dipartimento di Scienze della Vita, Universita di Modena e Reggio Emilia, 41125, Modena, Italy
| | - Christina A. Mitchell
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- * E-mail:
| |
Collapse
|
162
|
Mu X, Tang Y, Lu A, Takayama K, Usas A, Wang B, Weiss K, Huard J. The role of Notch signaling in muscle progenitor cell depletion and the rapid onset of histopathology in muscular dystrophy. Hum Mol Genet 2015; 24:2923-37. [PMID: 25678553 DOI: 10.1093/hmg/ddv055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Although it has been speculated that stem cell depletion plays a role in the rapid progression of the muscle histopathology associated with Duchenne Muscular Dystrophy (DMD), the molecular and cellular mechanisms responsible for stem cell depletion remain poorly understood. The rapid depletion of muscle stem cells has not been observed in the dystrophin-deficient model of DMD (mdx mouse), which may explain the relatively mild dystrophic phenotype observed in this animal model. In contrast, we have observed a rapid occurrence of stem cell depletion in the dystrophin/utrophin double knockout (dKO) mouse model, which exhibits histopathological features that more closely recapitulate the phenotype observed in DMD patients compared with the mdx mouse. Notch signaling has been found to be a key regulator of stem cell self-renewal and myogenesis in normal skeletal muscle; however, little is known about the role that Notch plays in the development of the dystrophic histopathology associated with DMD. Our results revealed an over-activation of Notch in the skeletal muscles of dKO mice, which correlated with sustained inflammation, impaired muscle regeneration and the rapid depletion and senescence of the muscle progenitor cells (MPCs, i.e. Pax7+ cells). Consequently, the repression of Notch in the skeletal muscle of dKO mice delayed/reduced the depletion and senescence of MPCs, and restored the myogenesis capacity while reducing inflammation and fibrosis. We suggest that the down-regulation of Notch could represent a viable approach to reduce the dystrophic histopathologies associated with DMD.
Collapse
Affiliation(s)
- Xiaodong Mu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ying Tang
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Koji Takayama
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Arvydas Usas
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bing Wang
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Kurt Weiss
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
163
|
Mázala DAG, Pratt SJP, Chen D, Molkentin JD, Lovering RM, Chin ER. SERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models. Am J Physiol Cell Physiol 2015; 308:C699-709. [PMID: 25652448 DOI: 10.1152/ajpcell.00341.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/01/2015] [Indexed: 02/04/2023]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting secondary to repeated muscle damage and inadequate repair. Elevations in intracellular free Ca²⁺ have been implicated in disease progression, and sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase 1 (SERCA1) overexpression has been shown to ameliorate the dystrophic phenotype in mdx mice. The purpose of this study was to assess the effects of SERCA1 overexpression in the more severe mdx/Utr(-/-) mouse model of DMD. Mice overexpressing SERCA1 were crossed with mdx/Utr ± mice to generate mdx/Utr(-/-)/+SERCA1 mice and compared with wild-type (WT), WT/+SERCA1, mdx/+SERCA1, and genotype controls. Mice were assessed at ∼12 wk of age for changes in Ca²⁺ handling, muscle mass, quadriceps torque, markers of muscle damage, and response to repeated eccentric contractions. SERCA1-overexpressing mice had a two- to threefold increase in maximal sarcoplasmic reticulum Ca²⁺-ATPase activity compared with WT which was associated with normalization in body mass for both mdx/+SERCA1 and mdx/Utr(-/-)/+SERCA1. Torque deficit in the quadriceps after eccentric injury was 2.7-fold greater in mdx/Utr(-/-) vs. WT mice, but only 1.5-fold greater in mdx/Utr(-/-)/+SERCA1 vs. WT mice, an attenuation of 44%. Markers of muscle damage (% centrally nucleated fibers, necrotic area, and serum creatine kinase levels) were higher in both mdx and mdx/Utr(-/-) vs. WT, and all were attenuated by overexpression of SERCA1. These data indicate that SERCA1 overexpression ameliorates functional impairments and cellular markers of damage in a more severe mouse model of DMD. These findings support targeting intracellular Ca²⁺ control as a therapeutic approach for DMD.
Collapse
Affiliation(s)
- Davi A G Mázala
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryand
| | - Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryand; and
| | - Dapeng Chen
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryand
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryand; and
| | - Eva R Chin
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryand; Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryand; and Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
164
|
Ca(2+) permeation and/or binding to CaV1.1 fine-tunes skeletal muscle Ca(2+) signaling to sustain muscle function. Skelet Muscle 2015; 5:4. [PMID: 25717360 PMCID: PMC4340672 DOI: 10.1186/s13395-014-0027-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022] Open
Abstract
Background Ca2+ influx through CaV1.1 is not required for skeletal muscle excitation-contraction coupling, but whether Ca2+ permeation through CaV1.1 during sustained muscle activity plays a functional role in mammalian skeletal muscle has not been assessed. Methods We generated a mouse with a Ca2+ binding and/or permeation defect in the voltage-dependent Ca2+ channel, CaV1.1, and used Ca2+ imaging, western blotting, immunohistochemistry, proximity ligation assays, SUnSET analysis of protein synthesis, and Ca2+ imaging techniques to define pathways modulated by Ca2+ binding and/or permeation of CaV1.1. We also assessed fiber type distributions, cross-sectional area, and force frequency and fatigue in isolated muscles. Results Using mice with a pore mutation in CaV1.1 required for Ca2+ binding and/or permeation (E1014K, EK), we demonstrate that CaV1.1 opening is coupled to CaMKII activation and refilling of sarcoplasmic reticulum Ca2+ stores during sustained activity. Decreases in these Ca2+-dependent enzyme activities alter downstream signaling pathways (Ras/Erk/mTORC1) that lead to decreased muscle protein synthesis. The physiological consequences of the permeation and/or Ca2+ binding defect in CaV1.1 are increased fatigue, decreased fiber size, and increased Type IIb fibers. Conclusions While not essential for excitation-contraction coupling, Ca2+ binding and/or permeation via the CaV1.1 pore plays an important modulatory role in muscle performance. Electronic supplementary material The online version of this article (doi:10.1186/s13395-014-0027-1) contains supplementary material, which is available to authorized users.
Collapse
|
165
|
Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, Duhamel TA. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Can J Physiol Pharmacol 2015; 93:843-54. [PMID: 25730320 DOI: 10.1139/cjpp-2014-0463] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is responsible for transporting calcium (Ca(2+)) from the cytosol into the lumen of the sarcoplasmic reticulum (SR) following muscular contraction. The Ca(2+) sequestering activity of SERCA facilitates muscular relaxation in both cardiac and skeletal muscle. There are more than 10 distinct isoforms of SERCA expressed in different tissues. SERCA2a is the primary isoform expressed in cardiac tissue, whereas SERCA1a is the predominant isoform expressed in fast-twitch skeletal muscle. The Ca(2+) sequestering activity of SERCA is regulated at the level of protein content and is further modified by the endogenous proteins phospholamban (PLN) and sarcolipin (SLN). Additionally, several novel mechanisms, including post-translational modifications and microRNAs (miRNAs) are emerging as integral regulators of Ca(2+) transport activity. These regulatory mechanisms are clinically relevant, as dysregulated SERCA function has been implicated in the pathology of several disease states, including heart failure. Currently, several clinical trials are underway that utilize novel therapeutic approaches to restore SERCA2a activity in humans. The purpose of this review is to examine the regulatory mechanisms of the SERCA pump, with a particular emphasis on the influence of exercise in preventing the pathological conditions associated with impaired SERCA function.
Collapse
Affiliation(s)
- Andrew N Stammers
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Shanel E Susser
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, Faculty of Health Sciences, University of Manitoba
| | - Naomi C Hamm
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Michael W Hlynsky
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Dustin E Kimber
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - D Scott Kehler
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Todd A Duhamel
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, Faculty of Health Sciences, University of Manitoba
| |
Collapse
|
166
|
The small-molecule BGP-15 protects against heart failure and atrial fibrillation in mice. Nat Commun 2014; 5:5705. [DOI: 10.1038/ncomms6705] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022] Open
|
167
|
Gintjee TJJ, Magh ASH, Bertoni C. High throughput screening in duchenne muscular dystrophy: from drug discovery to functional genomics. BIOLOGY 2014; 3:752-80. [PMID: 25405319 PMCID: PMC4280510 DOI: 10.3390/biology3040752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/16/2023]
Abstract
Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD), the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS) technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.
Collapse
Affiliation(s)
- Thomas J J Gintjee
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Alvin S H Magh
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
168
|
Abstract
Muscular dystrophies are a group of diseases characterised by the primary wasting of skeletal muscle, which compromises patient mobility and in the most severe cases originate a complete paralysis and premature death. Existing evidence implicates calcium dysregulation as an underlying crucial event in the pathophysiology of several muscular dystrophies, such as dystrophinopathies, calpainopathies or myotonic dystrophy among others. Duchenne muscular dystrophy is the most frequent myopathy in childhood, and calpainopathy or LGMD2A is the most common form of limb-girdle muscular dystrophy, whereas myotonic dystrophy is the most frequent inherited muscle disease worldwide. In this review, we summarise recent advances in our understanding of calcium ion cycling through the sarcolemma, the sarcoplasmic reticulum and mitochondria, and its involvement in the pathogenesis of these dystrophies. We also discuss some of the clinical implications of recent findings regarding Ca2+ handling as well as novel approaches to treat muscular dystrophies targeting Ca2+ regulatory proteins.
Collapse
|
169
|
Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: Proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteomics Clin Appl 2014; 8:875-95. [DOI: 10.1002/prca.201400015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/24/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth Co. Kildare Ireland
| |
Collapse
|
170
|
Silverstein MG, Ordanes D, Wylie AT, Files DC, Milligan C, Presley TD, Kavanagh K. Inducing Muscle Heat Shock Protein 70 Improves Insulin Sensitivity and Muscular Performance in Aged Mice. J Gerontol A Biol Sci Med Sci 2014; 70:800-8. [PMID: 25123646 DOI: 10.1093/gerona/glu119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/21/2014] [Indexed: 01/14/2023] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones with roles in longevity and muscular preservation. We aimed to show elevating HSP70 improves indices of health span. Aged C57/BL6 mice acclimated to a western diet were randomized into: geranylgeranylacetone (GGA)-treated (100 mg/kg/d), biweekly heat therapy (HT), or control. The GGA and HT are well-known pharmacological and environmental inducers of HSP70, respectively. Assessments before and after 8 weeks of treatment included glycemic endpoints, body composition, and muscular endurance, power, and perfusion. An HT mice had more than threefold, and GGA mice had a twofold greater HSP70 compared with control. Despite comparable body compositions, both treatment groups had significantly better insulin sensitivity and insulin signaling capacity. Compared with baseline, HT mice ran 23% longer than at study start, which was significantly more than GGA or control. Hanging ability (muscular endurance) also tended to be best preserved in HT mice. Muscle power, contractile force, capillary perfusion, and innervation were not different. Heat treatment has a clear benefit on muscular endurance, whereas HT and GGA both improved insulin sensitivity. Different effects may relate to muscle HSP70 levels. An HSP induction could be a promising approach for improving health span in the aged mice.
Collapse
Affiliation(s)
| | | | | | - D Clark Files
- Internal Medicine-Pulmonary, Critical Care, Allergy and Immunology, and
| | - Carol Milligan
- Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | |
Collapse
|
171
|
Eroglu B, Kimbler DE, Pang J, Choi J, Moskophidis D, Yanasak N, Dhandapani KM, Mivechi NF. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury. J Neurochem 2014; 130:626-41. [PMID: 24903326 DOI: 10.1111/jnc.12781] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/09/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) induces severe harm and disability in many accident victims and combat-related activities. The heat-shock proteins Hsp70/Hsp110 protect cells against death and ischemic damage. In this study, we used mice deficient in Hsp110 or Hsp70 to examine their potential requirement following TBI. Data indicate that loss of Hsp110 or Hsp70 increases brain injury and death of neurons. One of the mechanisms underlying the increased cell death observed in the absence of Hsp110 and Hsp70 following TBI is the increased expression of reactive oxygen species-induced p53 target genes Pig1, Pig8, and Pig12. To examine whether drugs that increase the levels of Hsp70/Hsp110 can protect cells against TBI, we subjected mice to TBI and administered Celastrol or BGP-15. In contrast to Hsp110- or Hsp70i-deficient mice that were not protected following TBI and Celastrol treatment, there was a significant improvement of wild-type mice following administration of these drugs during the first week following TBI. In addition, assessment of neurological injury shows significant improvement in contextual and cued fear conditioning tests and beam balance in wild-type mice that were treated with Celastrol or BGP-15 following TBI compared to TBI-treated mice. These studies indicate a significant role of Hsp70/Hsp110 in neuronal survival following TBI and the beneficial effects of Hsp70/Hsp110 inducers toward reducing the pathological consequences of TBI. Our data indicate that loss of Hsp110 or Hsp70 in mice increases brain injury following TBI. (a) One of the mechanisms underlying the increased cell death observed in the absence of these Hsps following TBI is the increased expression of ROS-induced p53 target genes known as Pigs. In addition, (b) using drugs (Celastrol or BGP-15) to increase Hsp70/Hsp110 levels protect cells against TBI, suggesting the beneficial effects of Hsp70/Hsp110 inducers to reduce the pathological consequences of TBI.
Collapse
Affiliation(s)
- Binnur Eroglu
- Charlie Norwood VA Medical Center (CNVAMC), Augusta, Georgia, USA; Molecular Chaperone Biology, Georgia Regents University, Augusta, Georgia, USA; Cancer Center, Georgia Regents University, Augusta, Georgia, USA; Georgia Regents University (GRU) and Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Frankenberg NT, Lamb GD, Vissing K, Murphy RM. Subcellular fractionation reveals HSP72 does not associate with SERCA in human skeletal muscle following damaging eccentric and concentric exercise. J Appl Physiol (1985) 2014; 116:1503-11. [DOI: 10.1152/japplphysiol.00161.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Through its upregulation and/or translocation, heat shock protein 72 (HSP72) is involved in protection and repair of key proteins after physiological stress. In human skeletal muscle we investigated HSP72 protein after eccentric (ECC1) and concentric (CONC) exercise and repeated eccentric exercise (ECC2; 8 wk later) and whether it translocated from its normal cytosolic location to membranes/myofibrils. HSP72 protein increased ∼2-fold 24 h after ECC1, with no apparent change after CONC or ECC2. In resting (nonstressed) human skeletal muscle the total pool of HSP72 protein was present almost exclusively in the cytosolic fraction, and after each exercise protocol the distribution of HSP72 protein remained unaltered. Overall, the amount of HSP72 protein in the cytosol increased 24 h after ECC1, matching the fold increase that was measured in total HSP72 protein. To better ascertain the capabilities and limitations of HSP72, using quantitative Western blotting we determined the HSP72 protein content to be 11.4 μmol/kg wet weight in resting human vastus lateralis muscle, which is comprised of Type I (slow-twitch) and Type II (fast-twitch) fibers. HSP72 protein content was similar in individual Type I or II fiber segments. After physiological stress, HSP72 content can increase and, although the functional consequences of increased amounts of HSP72 protein are poorly understood, it has been shown to bind to and protect protein pumps like SERCA and Na+-K+-ATPase. Given no translocation of cytosolic HSP72, these findings suggest eccentric contractions, unlike other forms of stress such as heat, do not trigger tight binding of HSP72 to its primary membrane-bound target proteins, in particular SERCA.
Collapse
Affiliation(s)
- Noni T. Frankenberg
- Department of Zoology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Graham D. Lamb
- Department of Zoology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kristian Vissing
- Section of Sport Science, Dept. of Public Health, Aarhus University, DK-8000 Aarhus, Denmark
| | - Robyn M. Murphy
- Department of Zoology, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
173
|
Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A, Estevez E, Chung J, Watson N, Gardner T, Lee-Young RS, Connor T, Watt MJ, Carpenter K, Hargreaves M, McGee SL, Hevener AL, Febbraio MA. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes 2014; 63:1881-94. [PMID: 24430435 PMCID: PMC4030108 DOI: 10.2337/db13-0967] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/09/2014] [Indexed: 12/11/2022]
Abstract
Induction of heat shock protein (HSP)72 protects against obesity-induced insulin resistance, but the underlying mechanisms are unknown. Here, we show that HSP72 plays a pivotal role in increasing skeletal muscle mitochondrial number and oxidative metabolism. Mice overexpressing HSP72 in skeletal muscle (HSP72Tg) and control wild-type (WT) mice were fed either a chow or high-fat diet (HFD). Despite a similar energy intake when HSP72Tg mice were compared with WT mice, the HFD increased body weight, intramuscular lipid accumulation (triacylglycerol and diacylglycerol but not ceramide), and severe glucose intolerance in WT mice alone. Whole-body VO2, fatty acid oxidation, and endurance running capacity were markedly increased in HSP72Tg mice. Moreover, HSP72Tg mice exhibited an increase in mitochondrial number. In addition, the HSP72 coinducer BGP-15, currently in human clinical trials for type 2 diabetes, also increased mitochondrial number and insulin sensitivity in a rat model of type 2 diabetes. Together, these data identify a novel role for activation of HSP72 in skeletal muscle. Thus, the increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised.
Collapse
Affiliation(s)
- Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Clinton R Bruce
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, AustraliaDepartment of Physiology, Monash University, Clayton, Victoria, Australia
| | - Brian G Drew
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kálmán Tory
- N-Gene Research Laboratories, Inc., Budapest, Hungary
| | | | - Emma Estevez
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jason Chung
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Nadine Watson
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Timothy Gardner
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Robert S Lee-Young
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Timothy Connor
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Kevin Carpenter
- Department of Biochemical Genetics, Children's Hospital at Westmead and Disciplines of Genetic Medicine and Paediatrics and Child Health, University of Sydney, New South Wales, Australia
| | - Mark Hargreaves
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, AustraliaN-Gene Research Laboratories, Inc., Budapest, Hungary
| |
Collapse
|
174
|
Zhang FJ, Weng XG, Wang JF, Zhou D, Zhang W, Zhai CC, Hou YX, Zhu YH. Effects of temperature-humidity index and chromium supplementation on antioxidant capacity, heat shock protein 72, and cytokine responses of lactating cows. J Anim Sci 2014; 92:3026-34. [PMID: 24879765 DOI: 10.2527/jas.2013-6932] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heat stress adversely affects the productivity and immune status of dairy cows. The temperature-humidity index (THI) is commonly used to indicate the degree of heat stress on dairy cattle. We investigated the effects of different THI and Cr supplementation on the antioxidant capacity, the levels of heat shock protein 72 (Hsp72), and cytokine responses of lactating cows. The study used a total of 24 clinically healthy uniparous midlactation Holstein cows, which were randomly divided into 2 groups (n = 12 per group), and was conducted in 3 designated THI periods: low THI period (LTHI; THI = 56.4 ± 2.5), moderate THI period (MTHI; THI = 73.9 ± 1.7), and high THI period (HTHI; THI = 80.3 ± 1.0). The 2 groups of cows were fed corn and corn silage based basal diet supplemented chromium picolinate to provide 3.5 mg of Cr/cow daily (Cr+) or basal diet with no Cr (Cr-). The experiment was a 3 × 2 factorial design. The numbers of leukocytes (P < 0.05) and serum levels of glucose (P < 0.001) were lower; however, the serum levels of blood urea nitrogen (BUN; P < 0.001) and creatinine (P < 0.001) were greater in the MTHI and HTHI than in LTHI. The total antioxidant capacity in the serum was unaltered; an increase in superoxide dismutase activity (P < 0.001) and in serum malondialdehyde concentration (P < 0.001) was observed in the MTHI and HTHI compared with the LTHI. The high THI led to increases in serum concentrations of tumor necrosis factor-α (TNF-α; P < 0.001) and IL-10 (P < 0.05). Cows supplemented with Cr had lower (P = 0.009) serum concentrations of cholesterol but greater (P < 0.001, respectively) serum levels of Hsp72 and IL-10 compared with those without Cr supplementation in the HTHI. Western blot analysis revealed that cows supplemented with Cr had greater (P = 0.038) expression of the inhibitor of nuclear factor kappa B α (IκBα) in peripheral blood mononuclear cells (PBMC) compared with those without Cr supplementation in the HTHI, whereas the expression of Hsp72 in PBMC was unaltered. Data indicate that there is a decrease in glucose and increases in BUN and creatinine in the serum of midlactation cows under hot conditions during the summer and that these cows have a lowered oxidative capacity but an elevated antioxidant capacity. In addition, Cr may play an anti-inflammatory role in lactating cows by promoting the release of Hsp72, increasing the production of IL-10, and inhibiting the degradation of IκBα under hot conditions during the summer.
Collapse
Affiliation(s)
- F J Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China Beijing Vocational College of Agriculture, Beijing 102442, China
| | - X G Weng
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - J F Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - D Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - W Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - C C Zhai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Y X Hou
- Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Y H Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
175
|
Parfitt DA, Aguila M, McCulley CH, Bevilacqua D, Mendes HF, Athanasiou D, Novoselov SS, Kanuga N, Munro PM, Coffey PJ, Kalmar B, Greensmith L, Cheetham ME. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Cell Death Dis 2014; 5:e1236. [PMID: 24853414 PMCID: PMC4047904 DOI: 10.1038/cddis.2014.214] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023]
Abstract
Retinitis pigmentosa (RP) is a group of inherited diseases that cause blindness due to the progressive death of rod and cone photoreceptors in the retina. There are currently no effective treatments for RP. Inherited mutations in rhodopsin, the light-sensing protein of rod photoreceptor cells, are the most common cause of autosomal-dominant RP. The majority of mutations in rhodopsin, including the common P23H substitution, lead to protein misfolding, which is a feature in many neurodegenerative disorders. Previous studies have shown that upregulating molecular chaperone expression can delay disease progression in models of neurodegeneration. Here, we have explored the potential of the heat-shock protein co-inducer arimoclomol to ameliorate rhodopsin RP. In a cell model of P23H rod opsin RP, arimoclomol reduced P23H rod opsin aggregation and improved viability of mutant rhodopsin-expressing cells. In P23H rhodopsin transgenic rat models, pharmacological potentiation of the stress response with arimoclomol improved electroretinogram responses and prolonged photoreceptor survival, as assessed by measuring outer nuclear layer thickness in the retina. Furthermore, treated animal retinae showed improved photoreceptor outer segment structure and reduced rhodopsin aggregation compared with vehicle-treated controls. The heat-shock response (HSR) was activated in P23H retinae, and this was enhanced with arimoclomol treatment. Furthermore, the unfolded protein response (UPR), which is induced in P23H transgenic rats, was also enhanced in the retinae of arimoclomol-treated animals, suggesting that arimoclomol can potentiate the UPR as well as the HSR. These data suggest that pharmacological enhancement of cellular stress responses may be a potential treatment for rhodopsin RP and that arimoclomol could benefit diseases where ER stress is a factor.
Collapse
Affiliation(s)
- D A Parfitt
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - M Aguila
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - C H McCulley
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Bevilacqua
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - H F Mendes
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Athanasiou
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - S S Novoselov
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - N Kanuga
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - P M Munro
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - P J Coffey
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - B Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - L Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| | - M E Cheetham
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
176
|
Ingemann L, Kirkegaard T. Lysosomal storage diseases and the heat shock response: convergences and therapeutic opportunities. J Lipid Res 2014; 55:2198-210. [PMID: 24837749 DOI: 10.1194/jlr.r048090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysosomes play a vital role in the maintenance of cellular homeostasis through the recycling of cell constituents, a key metabolic function which is highly dependent on the correct function of the lysosomal hydrolases and membrane proteins, as well as correct membrane lipid stoichiometry and composition. The critical role of lysosomal functionality is evident from the severity of the diseases in which the primary lesion is a genetically defined loss-of-function of lysosomal hydrolases or membrane proteins. This group of diseases, known as lysosomal storage diseases (LSDs), number more than 50 and are associated with severe neurodegeneration, systemic disease, and early death, with only a handful of the diseases having a therapeutic option. Another key homeostatic system is the metabolic stress response or heat shock response (HSR), which is induced in response to a number of physiological and pathological stresses, such as protein misfolding and aggregation, endoplasmic reticulum stress, oxidative stress, nutrient deprivation, elevated temperature, viral infections, and various acute traumas. Importantly, the HSR and its cardinal members of the heat shock protein 70 family has been shown to protect against a number of degenerative diseases, including severe diseases of the nervous system. The cytoprotective actions of the HSR also include processes involving the lysosomal system, such as cell death, autophagy, and protection against lysosomal membrane permeabilization, and have shown promise in a number of LSDs. This review seeks to describe the emerging understanding of the interplay between these two essential metabolic systems, the lysosomes and the HSR, with a particular focus on their potential as a therapeutic target for LSDs.
Collapse
|
177
|
Bi J, Wang W, Liu Z, Huang X, Jiang Q, Liu G, Wang Y, Huang X. Seipin promotes adipose tissue fat storage through the ER Ca²⁺-ATPase SERCA. Cell Metab 2014; 19:861-71. [PMID: 24807223 DOI: 10.1016/j.cmet.2014.03.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/23/2014] [Accepted: 03/10/2014] [Indexed: 02/01/2023]
Abstract
Adipose tissue is central to the regulation of lipid metabolism. Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), one of the most severe lipodystrophy diseases, is caused by mutation of the Seipin gene. Seipin plays an important role in adipocyte differentiation and lipid homeostasis, but its exact molecular functions are still unknown. Here, we show that Seipin physically interacts with the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) in both Drosophila and man. SERCA, an endoplasmic reticulum (ER) calcium pump, is solely responsible for transporting cytosolic calcium into the ER lumen. Like dSeipin, dSERCA cell-autonomously promotes lipid storage in Drosophila fat cells. dSeipin affects dSERCA activity and modulates intracellular calcium homeostasis. Adipose tissue-specific knockdown of the ER-to-cytosol calcium release channel ryanodine receptor (RyR) partially restores fat storage in dSeipin mutants. Our results reveal that Seipin promotes adipose tissue fat storage by regulating intracellular calcium homeostasis.
Collapse
Affiliation(s)
- Junfeng Bi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhonghua Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingqing Jiang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
178
|
Dystrophin is a tumor suppressor in human cancers with myogenic programs. Nat Genet 2014; 46:601-6. [PMID: 24793134 PMCID: PMC4225780 DOI: 10.1038/ng.2974] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/09/2014] [Indexed: 12/14/2022]
Abstract
Many common human mesenchymal tumors, including gastrointestinal stromal tumor (GIST), rhabdomyosarcoma (RMS) and leiomyosarcoma (LMS), feature myogenic differentiation. Here we report that intragenic deletion of the dystrophin-encoding and muscular dystrophy-associated DMD gene is a frequent mechanism by which myogenic tumors progress to high-grade, lethal sarcomas. Dystrophin is expressed in the non-neoplastic and benign counterparts of GIST, RMS and LMS tumors, and DMD deletions inactivate larger dystrophin isoforms, including 427-kDa dystrophin, while preserving the expression of an essential 71-kDa isoform. Dystrophin inhibits myogenic sarcoma cell migration, invasion, anchorage independence and invadopodia formation, and dystrophin inactivation was found in 96%, 100% and 62% of metastatic GIST, embryonal RMS and LMS samples, respectively. These findings validate dystrophin as a tumor suppressor and likely anti-metastatic factor, suggesting that therapies in development for muscular dystrophies may also have relevance in the treatment of cancer.
Collapse
|
179
|
Wright CR, Brown EL, Della-Gatta PA, Ward AC, Lynch GS, Russell AP. G-CSF does not influence C2C12 myogenesis despite receptor expression in healthy and dystrophic skeletal muscle. Front Physiol 2014; 5:170. [PMID: 24822049 PMCID: PMC4013466 DOI: 10.3389/fphys.2014.00170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/11/2014] [Indexed: 02/01/2023] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) increases recovery of rodent skeletal muscles after injury, and increases muscle function in rodent models of neuromuscular disease. However, the mechanisms by which G-CSF mediates these effects are poorly understood. G-CSF acts by binding to the membrane spanning G-CSFR and activating multiple intracellular signaling pathways. Expression of the G-CSFR within the haematopoietic system is well known, but more recently it has been demonstrated to be expressed in other tissues. However, comprehensive characterization of G-CSFR expression in healthy and diseased skeletal muscle, imperative before implementing G-CSF as a therapeutic agent for skeletal muscle conditions, has been lacking. Here we show that the G-CSFR is expressed in proliferating C2C12 myoblasts, differentiated C2C12 myotubes, human primary skeletal muscle cell cultures and in mouse and human skeletal muscle. In mdx mice, a model of human Duchenne muscular dystrophy (DMD), G-CSF mRNA and protein was down-regulated in limb and diaphragm muscle, but circulating G-CSF ligand levels were elevated. G-CSFR mRNA in the muscles of mdx mice was up-regulated however steady-state levels of the protein were down-regulated. We show that G-CSF does not influence C2C12 myoblast proliferation, differentiation or phosphorylation of Akt, STAT3, and Erk1/2. Media change alone was sufficient to elicit increases in Akt, STAT3, and Erk1/2 phosphorylation in C2C12 muscle cells and suggest previous observations showing a G-CSF increase in phosphoprotein signaling be viewed with caution. These results suggest that the actions of G-CSF may require the interaction with other cytokines and growth factors in vivo, however these data provides preliminary evidence supporting the investigation of G-CSF for the management of muscular dystrophy.
Collapse
Affiliation(s)
- Craig R Wright
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Erin L Brown
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Paul A Della-Gatta
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Alister C Ward
- Molecular and Medical Research SRC, School of Medicine, Deakin University Waurn Ponds, VIC, Australia
| | - Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne VIC, Australia
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| |
Collapse
|
180
|
Cha JRC, St. Louis KJH, Tradewell ML, Gentil BJ, Minotti S, Jaffer ZM, Chen R, Rubenstein AE, Durham HD. A novel small molecule HSP90 inhibitor, NXD30001, differentially induces heat shock proteins in nervous tissue in culture and in vivo. Cell Stress Chaperones 2014; 19:421-35. [PMID: 24092395 PMCID: PMC3982033 DOI: 10.1007/s12192-013-0467-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 12/14/2022] Open
Abstract
Heat shock proteins (HSPs) are attractive therapeutic targets for neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), characterized by aberrant formation of protein aggregates. Although motor neurons have a high threshold for activation of HSP genes, HSP90 inhibitors are effective inducers. This study evaluated NXD30001, a novel, small molecule HSP90 inhibitor based on the radicicol backbone, for its ability to induce neuronal HSPs and for efficacy in an experimental model of ALS based on mutations in superoxide-dismutase 1 (SOD1). In motor neurons of dissociated murine spinal cord cultures, NXD30001-induced expression of HSP70/HSPA1 (iHSP70) and its co-chaperone HSP40/DNAJ through activation of HSF1 and exhibited a protective profile against SOD1(G93A) similar to geldanamycin, but with less toxicity. Treatment prevented protein aggregation, mitochondrial fragmentation, and motor neuron death, important features of mutant SOD1 toxicity, but did not effectively prevent aberrant intracellular Ca(2+) accumulation. NXD30001 distributed to brain and spinal cord of wild-type and SOD1(G93A) transgenic mice following intraperitoneal injection; however, unlike in culture, in vivo levels of SOD1 were not reduced. NXD30001-induced expression of iHSP70 in skeletal and cardiac muscle and, to a lesser extent, in kidney, but not in liver, spinal cord, or brain, with either single or repeated administration. NXD30001 is a very useful experimental tool in culture, but these data point to the complex nature of HSP gene regulation in vivo and the necessity for early evaluation of the efficacy of novel HSP inducers in target tissues in vivo.
Collapse
Affiliation(s)
- Jieun R. C. Cha
- />Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St, Montreal, QC Canada H3A 2B4
| | - Kyle J. H. St. Louis
- />Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St, Montreal, QC Canada H3A 2B4
| | - Miranda L. Tradewell
- />Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St, Montreal, QC Canada H3A 2B4
- />Miranda Writes Medical Communication, Toronto, ON Canada M6R 2B1
| | - Benoit J. Gentil
- />Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St, Montreal, QC Canada H3A 2B4
| | - Sandra Minotti
- />Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St, Montreal, QC Canada H3A 2B4
| | - Zahara M. Jaffer
- />NexGenix Pharmaceuticals Holdings, New York, NY 10019 USA
- />House Research Institute, Los Angeles, CA 90057 USA
| | - Ruihong Chen
- />NexGenix Pharmaceuticals Holdings, New York, NY 10019 USA
- />OncoSynergy, San Francisco, CA 94158 USA
| | - Allan E. Rubenstein
- />NexGenix Pharmaceuticals Holdings, New York, NY 10019 USA
- />NYU Langone Medical Center, New York, NY 10019 USA
| | - Heather D. Durham
- />Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St, Montreal, QC Canada H3A 2B4
| |
Collapse
|
181
|
Abstract
PURPOSE OF REVIEW The most encouraging recent advances regarding pharmacological agents for treating Duchenne muscular dystrophy (DMD) are summarized. Emphasis is given to compounds acting downstream of dystrophin, the protein lacking in DMD, on cellular pathways leading to pathological consequences. The author highlights the progress that may have the greatest potential for clinical use in DMD. RECENT FINDINGS Modifying the transcripts of the mutated gene by exon skipping has led to expression of shortened dystrophins in DMD patients. Currently, the most promising potential drugs are the exon-skipping agents eteplirsen and drisapersen. Biglycan and SMTC1100 upregulate utrophin. The steroid receptor modulating compounds VBP15 and tamoxifen, and specific antioxidants appear promising agents for symptomatic therapy. SUMMARY The past 18 months have seen a strong increase in the number of exciting reports on novel therapeutic agents for DMD. Exon-skipping agents have been fine-tuned to improve tissue delivery and stability. Impressive discoveries regarding pathogenic events in cellular signalling have revealed targets that were unknown in the context of DMD, thus enabling approaches that limit inflammation, fibrosis and necrosis. The targets are nuclear hormone receptors, NADPH-oxidases and Ca channels. Inhibition of NF-KB, transforming growth factor-alpha (TGF-α) and transforming growth factor-beta (TGF-β)/myostatin production or action are also promising routes in counteracting the complex pathogenesis of DMD.
Collapse
|
182
|
Gruber SJ, Cornea RL, Li J, Peterson KC, Schaaf TM, Gillispie GD, Dahl R, Zsebo KM, Robia SL, Thomas DD. Discovery of enzyme modulators via high-throughput time-resolved FRET in living cells. JOURNAL OF BIOMOLECULAR SCREENING 2014; 19:215-22. [PMID: 24436077 PMCID: PMC4013825 DOI: 10.1177/1087057113510740] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have used a "two-color" SERCA (sarco/endoplasmic reticulum calcium ATPase) biosensor and a unique high-throughput fluorescence lifetime plate reader (FLT-PR) to develop a high-precision live-cell assay designed to screen for small molecules that perturb SERCA structure. A SERCA construct, in which red fluorescent protein (RFP) was fused to the N terminus and green fluorescent protein (GFP) to an interior loop, was stably expressed in an HEK cell line that grows in monolayer or suspension. Fluorescence resonance energy transfer (FRET) from GFP to RFP was measured in the FLT-PR, which increases precision 30-fold over intensity-based plate readers without sacrificing throughput. FRET was highly sensitive to known SERCA modulators. We screened a small chemical library and identified 10 compounds that significantly affected two-color SERCA FLT. Three of these compounds reproducibly lowered FRET and inhibited SERCA in a dose-dependent manner. This assay is ready for large-scale HTS campaigns and is adaptable to many other targets.
Collapse
Affiliation(s)
- Simon J. Gruber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Razvan L. Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ji Li
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - Tory M. Schaaf
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gregory D. Gillispie
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Fluorescence Innovations Inc., Minneapolis, MN 55455
| | | | | | - Seth L. Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
183
|
Church JE, Trieu J, Chee A, Naim T, Gehrig SM, Lamon S, Angelini C, Russell AP, Lynch GS. Alterations in Notch signalling in skeletal muscles frommdxanddkodystrophic mice and patients with Duchenne muscular dystrophy. Exp Physiol 2014; 99:675-87. [DOI: 10.1113/expphysiol.2013.077255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jarrod E. Church
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Jennifer Trieu
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Annabel Chee
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Timur Naim
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Stefan M. Gehrig
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition Research; School of Exercise and Nutrition Sciences; Deakin University; Victoria Australia
| | - Corrado Angelini
- Neurosciences Department; IRCCS San Camillo Hospital; Lido Venice Italy
| | - Aaron P. Russell
- Centre for Physical Activity and Nutrition Research; School of Exercise and Nutrition Sciences; Deakin University; Victoria Australia
| | - Gordon S. Lynch
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| |
Collapse
|
184
|
Török Z, Crul T, Maresca B, Schütz GJ, Viana F, Dindia L, Piotto S, Brameshuber M, Balogh G, Péter M, Porta A, Trapani A, Gombos I, Glatz A, Gungor B, Peksel B, Vigh L, Csoboz B, Horváth I, Vijayan MM, Hooper PL, Harwood JL, Vigh L. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1594-618. [PMID: 24374314 DOI: 10.1016/j.bbamem.2013.12.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/09/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022]
Abstract
The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Zsolt Török
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bruno Maresca
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Felix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Laura Dindia
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Mario Brameshuber
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Alfonso Trapani
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Attila Glatz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Burcin Gungor
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Begüm Peksel
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mathilakath M Vijayan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Phillip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| |
Collapse
|
185
|
Senf SM. Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol 2013; 4:330. [PMID: 24273516 PMCID: PMC3822288 DOI: 10.3389/fphys.2013.00330] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022] Open
Abstract
The stress-inducible 70-kDa heat shock protein (HSP70) is a highly conserved protein with diverse intracellular and extracellular functions. In skeletal muscle, HSP70 is rapidly induced in response to both non-damaging and damaging stress stimuli including exercise and acute muscle injuries. This upregulation of HSP70 contributes to the maintenance of muscle fiber integrity and facilitates muscle regeneration and recovery. Conversely, HSP70 expression is decreased during muscle inactivity and aging, and evidence supports the loss of HSP70 as a key mechanism which may drive muscle atrophy, contractile dysfunction and reduced regenerative capacity associated with these conditions. To date, the therapeutic benefit of HSP70 upregulation in skeletal muscle has been established in rodent models of muscle injury, muscle atrophy, modified muscle use, aging, and muscular dystrophy, which highlights HSP70 as a key therapeutic target for the treatment of various conditions which negatively affect skeletal muscle mass and function. This article will review these important findings and provide perspective on the unanswered questions related to HSP70 and skeletal muscle plasticity which require further investigation.
Collapse
Affiliation(s)
- Sarah M Senf
- Department of Physical Therapy, University of Florida Gainesville, FL, USA
| |
Collapse
|
186
|
Abstract
Dystrophin deficiency causes contraction-induced injury and damage to the muscle fiber, resulting in sustained increase in intracellular calcium levels, activation of calcium-dependent proteases and cell death. It is known that the Ryanodine receptor (RyR1) on the sarcoplasmic reticular (SR) membrane controls calcium release. Dantrolene, an FDA approved skeletal muscle relaxant, inhibits the release of calcium from the SR during excitation-contraction and suppresses uncontrolled calcium release by directly acting on the RyR complex to limit its activation. This study examines whether Dantrolene can reduce the disease phenotype in the mdx mouse model of muscular dystrophy. We treated mdx mice (4 weeks old) with daily intraperitoneal injections of 40mg/kg of Dantrolene for 6 weeks and measured functional (grip strength, in vitro force contractions), behavioral (open field digiscan), imagining (optical imaging for inflammation), histological (H&E), and molecular (protein and RNA) endpoints in a blinded fashion. We found that treatment with Dantrolene resulted in decreased grip strength and open field behavioral activity in mdx mice. There was no significant difference in inflammation either by optical imaging analysis of cathepsin activity or histological (H&E) analysis. In vitro force contraction measures showed no changes in EDL muscle-specific force, lengthening-contraction force deficit, or fatigue resistance. We found Dantrolene treatment significantly reduces serum CK levels. Further, Dantrolene-treated mice showed decreased SERCA1 but not RyR1 expression in skeletal muscle. These results suggest that Dantrolene treatment alone has no significant beneficial effects at the tested doses in young mdx mice.
Collapse
|
187
|
Reduced IGF signaling prevents muscle cell death in a Caenorhabditis elegans model of muscular dystrophy. Proc Natl Acad Sci U S A 2013; 110:19024-9. [PMID: 24191049 DOI: 10.1073/pnas.1308866110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy, a fatal degenerative muscle disease, is caused by mutations in the dystrophin gene. Loss of dystrophin in the muscle cell membrane causes muscle fiber necrosis. Previously, loss-of-function mutations in dys-1, the Caenorhabditis elegans dystrophin ortholog, were shown to cause a contractile defect and mild fiber degeneration in striated body wall muscle. Here, we show that loss of dystrophin function in C. elegans results in a shorter lifespan and stochastic, age-dependent muscle-cell death. Reduction of dystrophin function also accelerated age-dependent protein aggregation in muscle cells, suggesting a defect in proteostasis. Both muscle cell death and protein aggregation showed wide variability among the muscle cells. These observations suggest that muscle cell death in dys-1 mutants is greatly influenced by cellular environments. Thus, the manipulation of the cellular environment may provide an opportunity to thwart the cell death initiated by the loss of dystrophin. We found that reduced insulin-like growth factor (IGF) signaling, which rejuvenates the cellular environment to protect cells from a variety of age-dependent pathologies, prevented muscle cell death in the dys-1 mutants in a daf-16-dependent manner. Our study suggests that manipulation of the IGF signaling pathways in muscle cells could be a potent intervention for muscular dystrophy.
Collapse
|
188
|
D'Arcy CE, Feeney SJ, McLean CA, Gehrig SM, Lynch GS, Smith JE, Cowling BS, Mitchell CA, McGrath MJ. Identification of FHL1 as a therapeutic target for Duchenne muscular dystrophy. Hum Mol Genet 2013; 23:618-36. [PMID: 24087791 DOI: 10.1093/hmg/ddt449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Utrophin is a potential therapeutic target for the fatal muscle disease, Duchenne muscular dystrophy (DMD). In adult skeletal muscle, utrophin is restricted to the neuromuscular and myotendinous junctions and can compensate for dystrophin loss in mdx mice, a mouse model of DMD, but requires sarcolemmal localization. NFATc1-mediated transcription regulates utrophin expression and the LIM protein, FHL1 which promotes muscle hypertrophy, is a transcriptional activator of NFATc1. By generating mdx/FHL1-transgenic mice, we demonstrate that FHL1 potentiates NFATc1 activation of utrophin to ameliorate the dystrophic pathology. Transgenic FHL1 expression increased sarcolemmal membrane stability, reduced muscle degeneration, decreased inflammation and conferred protection from contraction-induced injury in mdx mice. Significantly, FHL1 expression also reduced progressive muscle degeneration and fibrosis in the diaphragm of aged mdx mice. FHL1 enhanced NFATc1 activation of the utrophin promoter and increased sarcolemmal expression of utrophin in muscles of mdx mice, directing the assembly of a substitute utrophin-glycoprotein complex, and revealing a novel FHL1-NFATc1-utrophin signaling axis that can functionally compensate for dystrophin.
Collapse
Affiliation(s)
- Colleen E D'Arcy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Heier CR, Damsker JM, Yu Q, Dillingham BC, Huynh T, Van der Meulen JH, Sali A, Miller BK, Phadke A, Scheffer L, Quinn J, Tatem K, Jordan S, Dadgar S, Rodriguez OC, Albanese C, Calhoun M, Gordish-Dressman H, Jaiswal JK, Connor EM, McCall JM, Hoffman EP, Reeves EKM, Nagaraju K. VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med 2013; 5:1569-85. [PMID: 24014378 PMCID: PMC3799580 DOI: 10.1002/emmm.201302621] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 01/01/2023] Open
Abstract
Absence of dystrophin makes skeletal muscle more susceptible to injury, resulting in breaches of the plasma membrane and chronic inflammation in Duchenne muscular dystrophy (DMD). Current management by glucocorticoids has unclear molecular benefits and harsh side effects. It is uncertain whether therapies that avoid hormonal stunting of growth and development, and/or immunosuppression, would be more or less beneficial. Here, we discover an oral drug with mechanisms that provide efficacy through anti-inflammatory signaling and membrane-stabilizing pathways, independent of hormonal or immunosuppressive effects. We find VBP15 protects and promotes efficient repair of skeletal muscle cells upon laser injury, in opposition to prednisolone. Potent inhibition of NF-κB is mediated through protein interactions of the glucocorticoid receptor, however VBP15 shows significantly reduced hormonal receptor transcriptional activity. The translation of these drug mechanisms into DMD model mice improves muscle strength, live-imaging and pathology through both preventive and post-onset intervention regimens. These data demonstrate successful improvement of dystrophy independent of hormonal, growth, or immunosuppressive effects, indicating VBP15 merits clinical investigation for DMD and would benefit other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Christopher R Heier
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Kourtis N, Nikoletopoulou V, Tavernarakis N. Heat shock response and ionstasis: axis against neurodegeneration. Aging (Albany NY) 2013; 4:856-8. [PMID: 23257629 PMCID: PMC3615152 DOI: 10.18632/aging.100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
191
|
Rodino-Klapac LR, Mendell JR, Sahenk Z. Update on the treatment of Duchenne muscular dystrophy. Curr Neurol Neurosci Rep 2013; 13:332. [PMID: 23328943 DOI: 10.1007/s11910-012-0332-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy is the most severe childhood form of muscular dystrophy caused by mutations in the gene responsible for dystrophin production. There is no cure, and treatment is limited to glucocorticoids that prolong ambulation and drugs to treat the cardiomyopathy. Multiple treatment strategies are under investigation and have shown promise for Duchenne muscular dystrophy. Use of molecular-based therapies that replace or correct the missing or nonfunctional dystrophin protein has gained momentum. These strategies include gene replacement with adeno-associated virus, exon skipping with antisense oligonucleotides, and mutation suppression with compounds that "read through" stop codon mutations. Other strategies include cell therapy and surrogate gene products to compensate for the loss of dystrophin. All of these approaches are discussed in this review, with particular emphasis on the most recent advances made in each therapeutic discipline. The advantages of each approach and challenges in translation are outlined in detail. Individually or in combination, all of these therapeutic strategies hold great promise for treatment of this devastating childhood disease.
Collapse
Affiliation(s)
- Louise R Rodino-Klapac
- Department of Pediatrics, The Ohio State University, and Nationwide Children's Hospital, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
192
|
Selsby JT, Acosta P, Sleeper MM, Barton ER, Sweeney HL. Long-term wheel running compromises diaphragm function but improves cardiac and plantarflexor function in the mdx mouse. J Appl Physiol (1985) 2013; 115:660-6. [PMID: 23823150 DOI: 10.1152/japplphysiol.00252.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dystrophin-deficient muscles suffer from free radical injury, mitochondrial dysfunction, apoptosis, and inflammation, among other pathologies that contribute to muscle fiber injury and loss, leading to wheelchair confinement and death in the patient. For some time, it has been appreciated that endurance training has the potential to counter many of these contributing factors. Correspondingly, numerous investigations have shown improvements in limb muscle function following endurance training in mdx mice. However, the effect of long-term volitional wheel running on diaphragm and cardiac function is largely unknown. Our purpose was to determine the extent to which long-term endurance exercise affected dystrophic limb, diaphragm, and cardiac function. Diaphragm specific tension was reduced by 60% (P < 0.05) in mice that performed 1 yr of volitional wheel running compared with sedentary mdx mice. Dorsiflexor mass (extensor digitorum longus and tibialis anterior) and function (extensor digitorum longus) were not altered by endurance training. In mice that performed 1 yr of volitional wheel running, plantarflexor mass (soleus and gastrocnemius) was increased and soleus tetanic force was increased 36%, while specific tension was similar in wheel-running and sedentary groups. Cardiac mass was increased 15%, left ventricle chamber size was increased 20% (diastole) and 18% (systole), and stroke volume was increased twofold in wheel-running compared with sedentary mdx mice. These data suggest that the dystrophic heart may undergo positive exercise-induced remodeling and that limb muscle function is largely unaffected. Most importantly, however, as the diaphragm most closely recapitulates the human disease, these data raise the possibility of exercise-mediated injury in dystrophic skeletal muscle.
Collapse
Affiliation(s)
- Joshua T Selsby
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, Ames, Iowa
| | | | | | | | | |
Collapse
|
193
|
Schneider JS, Shanmugam M, Gonzalez JP, Lopez H, Gordan R, Fraidenraich D, Babu GJ. Increased sarcolipin expression and decreased sarco(endo)plasmic reticulum Ca2+ uptake in skeletal muscles of mouse models of Duchenne muscular dystrophy. J Muscle Res Cell Motil 2013; 34:349-56. [DOI: 10.1007/s10974-013-9350-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 05/27/2013] [Indexed: 02/02/2023]
|
194
|
Abstract
Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Manuel Serrano
- Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guido Kroemer
- INSERM, U848, Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
195
|
Marshall JL, Kwok Y, McMorran BJ, Baum LG, Crosbie-Watson RH. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy. FEBS J 2013; 280:4210-29. [PMID: 23601082 DOI: 10.1111/febs.12295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/12/2013] [Indexed: 12/23/2022]
Abstract
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
196
|
Senf SM, Howard TM, Ahn B, Ferreira LF, Judge AR. Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration. PLoS One 2013; 8:e62687. [PMID: 23626847 PMCID: PMC3633856 DOI: 10.1371/journal.pone.0062687] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 01/22/2023] Open
Abstract
Skeletal muscle regeneration following injury is a highly coordinated process that involves transient muscle inflammation, removal of necrotic cellular debris and subsequent replacement of damaged myofibers through secondary myogenesis. However, the molecular mechanisms which coordinate these events are only beginning to be defined. In the current study we demonstrate that Heat shock protein 70 (Hsp70) is increased following muscle injury, and is necessary for the normal sequence of events following severe injury induced by cardiotoxin, and physiological injury induced by modified muscle use. Indeed, Hsp70 ablated mice showed a significantly delayed inflammatory response to muscle injury induced by cardiotoxin, with nearly undetected levels of both neutrophil and macrophage markers 24 hours post-injury. At later time points, Hsp70 ablated mice showed sustained muscle inflammation and necrosis, calcium deposition and impaired fiber regeneration that persisted several weeks post-injury. Through rescue experiments reintroducing Hsp70 intracellular expression plasmids into muscles of Hsp70 ablated mice either prior to injury or post-injury, we confirm that Hsp70 optimally promotes muscle regeneration when expressed during both the inflammatory phase that predominates in the first four days following severe injury and the regenerative phase that predominates thereafter. Additional rescue experiments reintroducing Hsp70 protein into the extracellular microenvironment of injured muscles at the onset of injury provides further evidence that Hsp70 released from damaged muscle may drive the early inflammatory response to injury. Importantly, following induction of physiological injury through muscle reloading following a period of muscle disuse, reduced inflammation in 3-day reloaded muscles of Hsp70 ablated mice was associated with preservation of myofibers, and increased muscle force production at later time points compared to WT. Collectively our findings indicate that depending on the nature and severity of muscle injury, therapeutics which differentially target both intracellular and extracellular localized Hsp70 may optimally preserve muscle tissue and promote muscle functional recovery.
Collapse
Affiliation(s)
- Sarah M Senf
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | |
Collapse
|
197
|
Anker MS, von Haehling S, Springer J, Banach M, Anker SD. Highlights of mechanistic and therapeutic cachexia and sarcopenia research 2010 to 2012 and their relevance for cardiology. Arch Med Sci 2013; 9:166-71. [PMID: 23515589 PMCID: PMC3598129 DOI: 10.5114/aoms.2013.33356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia and cachexia are significant medical problems with a high disease-related burden in cardiovascular illness. Muscle wasting and weight loss are very frequent particularly in chronic heart failure and they relate to poor prognosis. Although clinically largely underestimated, the fields of cachexia and sarcopenia are of great relevance to cardiologists. In cachexia and sarcopenia a significant number of research publications related to basic science questions of muscle wasting and lipolysis were published between 2010 and 2012. Recently, the two processes of muscle wasting and lipolysis were found to be closely linked. Treatment research in pre-clinical models involves studies on a number of different therapeutic entities, including ghrelin, selective androgen receptor modulators (SARMs), as well as drugs targeting myostatin or melanocortin-4. In the human setting, studies using enobosarm (a SARM) and anamorelin (ghrelin) are in phase III. The last 3 years have seen significant efforts to define the field using consensus statements. In the future, these definitions should also be considered for guidelines and treatment trials in cardiovascular medicine. The current review aims to summarize important information and development in the fields of muscle wasting, sarcopenia and cachexia, focusing on findings in cardiovascular research, in order for cardiologists to have a better understanding of the progress in this still insufficiently known field.
Collapse
Affiliation(s)
- Markus S. Anker
- Center for Clinical and Basic Research, IRCCS San Raffaele, Rome, Italy
| | - Stephan von Haehling
- Applied Cachexia Research, Department of Cardiology, Charité, Campus Virchow-Klinikum, Berlin, Germany
| | - Jochen Springer
- Applied Cachexia Research, Center for Cardiovascular Research, Charité, Campus Mitte, Berlin, Germany
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Poland
| | - Stefan D. Anker
- Center for Clinical and Basic Research, IRCCS San Raffaele, Rome, Italy
- Applied Cachexia Research, Department of Cardiology, Charité, Campus Virchow-Klinikum, Berlin, Germany
| |
Collapse
|
198
|
Anker MS, von Haehling S, Springer J, Banach M, Anker SD. Highlights of the mechanistic and therapeutic cachexia and sarcopenia research 2010 to 2012 and their relevance for cardiology. Int J Cardiol 2013; 162:73-6. [DOI: 10.1016/j.ijcard.2012.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 12/25/2022]
|
199
|
Resenberger UK, Müller V, Munter LM, Baier M, Multhaup G, Wilson MR, Winklhofer KF, Tatzelt J. The heat shock response is modulated by and interferes with toxic effects of scrapie prion protein and amyloid β. J Biol Chem 2012; 287:43765-76. [PMID: 23115236 PMCID: PMC3527961 DOI: 10.1074/jbc.m112.389007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/27/2012] [Indexed: 12/19/2022] Open
Abstract
The heat shock response (HSR) is an evolutionarily conserved pathway designed to maintain proteostasis and to ameliorate toxic effects of aberrant protein folding. We have studied the modulation of the HSR by the scrapie prion protein (PrP(Sc)) and amyloid β peptide (Aβ) and investigated whether an activated HSR or the ectopic expression of individual chaperones can interfere with PrP(Sc)- or Aβ-induced toxicity. First, we observed different effects on the HSR under acute or chronic exposure of cells to PrP(Sc) or Aβ. In chronically exposed cells the threshold to mount a stress response was significantly increased, evidenced by a decreased expression of Hsp72 after stress, whereas an acute exposure lowered the threshold for stress-induced expression of Hsp72. Next, we employed models of PrP(Sc)- and Aβ-induced toxicity to demonstrate that the induction of the HSR ameliorates the toxic effects of both PrP(Sc) and Aβ. Similarly, the ectopic expression of cytosolic Hsp72 or the extracellular chaperone clusterin protected against PrP(Sc)- or Aβ-induced toxicity. However, toxic signaling induced by a pathogenic PrP mutant located at the plasma membrane was prevented by an activated HSR or Hsp72 but not by clusterin, indicating a distinct mode of action of this extracellular chaperone. Our study supports the notion that different pathological protein conformers mediate toxic effects via similar cellular pathways and emphasizes the possibility to exploit the heat shock response therapeutically.
Collapse
Affiliation(s)
- Ulrike K. Resenberger
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
| | - Veronika Müller
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
| | - Lisa M. Munter
- Institut für Chemie und Biochemie, Freie Universität, 14195 Berlin, Germany
- the Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3A0G4, Canada
| | | | - Gerd Multhaup
- Institut für Chemie und Biochemie, Freie Universität, 14195 Berlin, Germany
- the Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3A0G4, Canada
| | - Mark R. Wilson
- the School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia, and
| | - Konstanze F. Winklhofer
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
- the German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany
| | - Jörg Tatzelt
- From the Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
- the German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany
| |
Collapse
|
200
|
Perkins KJ, Davies KE. Recent advances in Duchenne muscular dystrophy. Degener Neurol Neuromuscul Dis 2012; 2:141-164. [PMID: 30890885 DOI: 10.2147/dnnd.s26637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), an allelic X-linked progressive muscle-wasting disease, is one of the most common single-gene disorders in the developed world. Despite knowledge of the underlying genetic causation and resultant pathophysiology from lack of dystrophin protein at the muscle sarcolemma, clinical intervention is currently restricted to symptom management. In recent years, however, unprecedented advances in strategies devised to correct the primary defect through gene- and cell-based therapeutics hold particular promise for treating dystrophic muscle. Conventional gene replacement and endogenous modification strategies have greatly benefited from continued improvements in encapsidation capacity, transduction efficiency, and systemic delivery. In particular, RNA-based modifying approaches such as exon skipping enable expression of a shorter but functional dystrophin protein and rapid progress toward clinical application. Emerging combined gene- and cell-therapy strategies also illustrate particular promise in enabling ex vivo genetic correction and autologous transplantation to circumvent a number of immune challenges. These approaches are complemented by a vast array of pharmacological approaches, in particular the successful identification of molecules that enable functional replacement or ameliorate secondary DMD pathology. Animal models have been instrumental in providing proof of principle for many of these strategies, leading to several recent trials that have investigated their efficacy in DMD patients. Although none has reached the point of clinical use, rapid improvements in experimental technology and design draw this goal ever closer. Here, we review therapeutic approaches to DMD, with particular emphasis on recent progress in strategic development, preclinical evaluation and establishment of clinical efficacy. Further, we discuss the numerous challenges faced and synergistic approaches being devised to combat dystrophic pathology effectively.
Collapse
Affiliation(s)
- Kelly J Perkins
- Sir William Dunn School of Pathology.,MRC Functional Genomics Unit, University of Oxford, Oxford, UK,
| | - Kay E Davies
- MRC Functional Genomics Unit, University of Oxford, Oxford, UK,
| |
Collapse
|