151
|
Chen Y, Chen H, Li XC, Mi WL, Chu YX, Wang YQ, Mao-Ying QL. Neuronal toll like receptor 9 contributes to complete Freund’s adjuvant-induced inflammatory pain in mice. Front Mol Neurosci 2022; 15:1008203. [PMID: 36277489 PMCID: PMC9582929 DOI: 10.3389/fnmol.2022.1008203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Toll like receptor 9 (TLR9) is a critical sensor for danger-associated molecular patterns (DAMPs) and a crucial marker of non-sterile/sterile inflammation among all TLRs. However, the significance of TLR9 in inflammatory pain remains unclear. Here, we subcutaneously injected Complete Freund’s adjuvant (CFA) into the plantar surface of the hind paw, to established a mouse model of inflammatory pain, and we examined expression and distribution of TLR9 in this model. There was a significant increase of TLR9 mRNA and reduction of mechanical paw withdrawal threshold in mice intraplantar injected with CFA. By contrast, mechanical paw withdrawal threshold significantly increased in mice treated with TLR9 antagonist ODN2088. Furthermore, TLR9 is found predominantly distributed in the neurons by immunofluorescence experiment. Accordingly, neuronal TLR9 downregulation in the spinal cord prevented CFA-induced persistent hyperalgesia. Overall, these findings indicate that neuronal TLR9 in the spinal cord is closely related to CFA-induced inflammatory pain. It provides a potential treatment option for CFA-induced inflammatory pain by applying TLR9 antagonist.
Collapse
Affiliation(s)
- Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hui Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiao-Chen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- *Correspondence: Qi-Liang Mao-Ying,
| |
Collapse
|
152
|
Bikomeye JC, Terwoord JD, Santos JH, Beyer AM. Emerging mitochondrial signaling mechanisms in cardio-oncology: beyond oxidative stress. Am J Physiol Heart Circ Physiol 2022; 323:H702-H720. [PMID: 35930448 PMCID: PMC9529263 DOI: 10.1152/ajpheart.00231.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022]
Abstract
Many anticancer therapies (CTx) have cardiotoxic side effects that limit their therapeutic potential and cause long-term cardiovascular complications in cancer survivors. This has given rise to the field of cardio-oncology, which recognizes the need for basic, translational, and clinical research focused on understanding the complex signaling events that drive CTx-induced cardiovascular toxicity. Several CTx agents cause mitochondrial damage in the form of mitochondrial DNA deletions, mutations, and suppression of respiratory function and ATP production. In this review, we provide a brief overview of the cardiovascular complications of clinically used CTx agents and discuss current knowledge of local and systemic secondary signaling events that arise in response to mitochondrial stress/damage. Mitochondrial oxidative stress has long been recognized as a contributor to CTx-induced cardiotoxicity; thus, we focus on emerging roles for mitochondria in epigenetic regulation, innate immunity, and signaling via noncoding RNAs and mitochondrial hormones. Because data exploring mitochondrial secondary signaling in the context of cardio-oncology are limited, we also draw upon clinical and preclinical studies, which have examined these pathways in other relevant pathologies.
Collapse
Affiliation(s)
- Jean C Bikomeye
- Doctorate Program in Public and Community Health, Division of Epidemiology and Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Janée D Terwoord
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Sciences Department, Rocky Vista University, Ivins, Utah
| | - Janine H Santos
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
153
|
Yoshida K, Saku K, Jan Bogaard H, Abe K, Sunagawa K, Tsutsui H. Vagal nerve stimulation preserves right ventricular function in a rat model of right ventricular pressure overload. Pulm Circ 2022; 12:e12154. [PMID: 36419525 PMCID: PMC9677323 DOI: 10.1002/pul2.12154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Vagal nerve stimulation (VNS) ameliorates pulmonary vascular remodeling and improves survival in a rat model of pulmonary hypertension (PH). However, the direct impact of VNS on right ventricular (RV) function, which is the key predictor of PH patients, remains unknown. We evaluated the effect of VNS among the three groups: pulmonary artery banding (PAB) with sham stimulation (SS), PAB with VNS, and control (no PAB). We stimulated the right cervical vagal nerve with an implantable pulse generator, initiated VNS 2 weeks after PAB, and stimulated for 2 weeks. Compared to SS, VNS increased cardiac index (VNS: 130 ± 10 vs. SS: 93 ± 7 ml/min/kg; p < 0.05) and end-systolic elastance assessed by RV pressure-volume analysis (VNS: 1.1 ± 0.1 vs. SS: 0.7 ± 0.1 mmHg/μl; p < 0.01), but decreased RV end-diastolic pressure (VNS: 4.5 ± 0.7 vs. SS: 7.7 ± 1.0 mmHg; p < 0.05). Furthermore, VNS significantly attenuated RV fibrosis and CD68-positive cell migration. In PAB rats, VNS improved RV function, and attenuated fibrosis, and migration of inflammatory cells. These results provide a rationale for VNS therapy as a novel approach for RV dysfunction in PH patients.
Collapse
Affiliation(s)
- Keimei Yoshida
- Department of Cardiovascular Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Pulmonary Medicine, Amsterdam UMCVrije UniversiteitAmsterdamNetherlands
| | - Keita Saku
- Department of Cardiovascular DynamicsNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMCVrije UniversiteitAmsterdamNetherlands
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenji Sunagawa
- Circulatory System Research FoundationKyushu UniversityFukuokaJapan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
154
|
Luo J, Shen S, Xia J, Wang J, Gu Z. Mitochondria as the Essence of Yang Qi in the Human Body. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:336-348. [PMID: 36939762 PMCID: PMC9590506 DOI: 10.1007/s43657-022-00060-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
The concept of Yang Qi in Traditional Chinese Medicine (TCM) has many similarities with mitochondria in modern medicine. Both are indispensable to human beings and closely related to life and death. This article discusses the similarities in various aspects between mitochondria and Yang Qi, including body temperature, aging, newborns, circadian rhythm, immunity, and meridian. It is well-known that Yang Qi is vital for human health. Interestingly, decreased mitochondrial function is thought to be key to the development of various diseases. Here, we further explain diseases induced by Yang Qi deficiency, such as cancer, chronic fatigue syndrome, sleep disorder, senile dementia, and metabolic diseases, from the perspective of mitochondrial function. We aim to establish similarities and connections between two important concepts, and hope our essay can stimulate further discussion and investigation on unifying important concepts in western medicine and alternative medicine, especially TCM, and provide unique holistic insights into understanding human health.
Collapse
Affiliation(s)
- Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193 China
| | - Shiwei Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Jingjing Xia
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853 USA
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
155
|
Zhang T, Hou D, He J, Zeng X, Liu R, Liu L, Li T, Xiao Y, Ma R, Huang H, Duan C. Oxidative-Damaged Mitochondria Activate GABARAPL1-Induced NLRP3 Inflammasomes in an Autophagic-Exosome Manner after Acute Myocardial Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7958542. [PMID: 36238641 PMCID: PMC9553392 DOI: 10.1155/2022/7958542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022]
Abstract
Objective This study is aimed at identifying the potential diagnostic markers for circulating endothelial cells (CECs) for acute myocardial ischemia (AMI) and exploring the regulatory mechanisms of the selected biomarker in mitochondrial oxidative damage and vascular inflammation in AMI pathology. Methods Utilizing the Gene Expression Omnibus dataset GSE66360, we scanned for differentially expressed genes (DEGs) in 49 AMI patients and 50 healthy subjects. To discover possible biomarkers, LASSO regression and support vector machine recursive feature elimination examinations were conducted. Using the GSE60993 and GSE123342 datasets and AMI rat models, the expression levels and diagnostic accuracy of the biomarkers in AMI were thoroughly verified. CIBERSORT was employed to evaluate the compositional patterns of 22 distinct immunological cell percentages in AMI according to combined cohorts. The oxidative-damaged mitochondria were detected by confocal microscopy observation of MitoTracker, ROS-DCFH-DA, and mCherry-GFP-LC3B. Results In total, 122 genes were identified. The identified DEGs primarily contributed in arteriosclerosis, arteriosclerotic cardiovascular disorders, bacterial infectious disorder, coronary artery disease, and myocardial infarction. Nine features (NR4A2, GABARAPL1 (GEC1), CLEC4D, ITLN1, SNORD89, ZFP36, CH25H, CCR2, and EFEMP1) of the DEGs were shared by two algorithms, and GABARAPL1 (GEC1) was identified and verified as a diagnostic mitochondrial biomarker for AMI. Confocal results showed that there existed mitochondrial damage and oxidative stress in cardiac CMECs after AMI, and the blocked autophagy flux could be released by exosome burst in cardiac CMECs and blood CECs. Immune cell infiltration testing declared that elevated GEC1 expression in blood CECs was linked to the rise of monocytes and neutrophils. Functional tests revealed that high GEC1 expression in CMECs and CECs could activate the vascular inflammatory response by stimulating NLRP3 inflammasome production after AMI. Conclusion Oxidative-damaged mitochondria in cardiac CMECs activate GEC1-mediated autophagosomes but block autophagy flux after AMI. The exfoliated cardiac CMECs evolve into abnormal blood CECs, and the undegraded GEC1 autophagosomes produce a large number of NLRP3 inflammasomes by exosome burst, stimulating the increase in monocytes and neutrophils and ultimately triggering vascular inflammation after AMI. Therefore, GEC1 in blood CECs is a highly specific diagnostic mitochondrial biomarker for AMI.
Collapse
Affiliation(s)
- Tiechun Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Department of Rehabilitation, the Fifth People's Hospital of Chongqing, Chinese Academy of Sciences, Chongqing 400062, China
| | - Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianrong He
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xue Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Tao Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ruiyan Ma
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
156
|
Role of alarmins in poststroke inflammation and neuronal repair. Semin Immunopathol 2022:10.1007/s00281-022-00961-5. [PMID: 36161515 DOI: 10.1007/s00281-022-00961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Severe loss of cerebral blood flow causes hypoxia and glucose deprivation in the brain tissue, resulting in necrotic cell death in the ischemic brain. Several endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), are extracellularly released from the dead cells to activate pattern recognition receptors (PRRs) in immune cells that infiltrate into ischemic brain tissue following the disruption of the blood-brain barrier (BBB) after stroke onset. The activated immune cells produce various inflammatory cytokines and chemokines, triggering sterile cerebral inflammation in the ischemic brain that causes further neuronal cell death. Poststroke inflammation is resolved within several days after stroke onset, and neurological functions are restored to some extent as neural repair occurs around peri-infarct neurons. Clearance of DAMPs from the injured brain is necessary for the resolution of poststroke inflammation. Neurons and glial cells also express PRRs and receive DAMP signaling. Although the role of PRRs in neural cells in the ischemic brain has not yet been clarified, the signaling pathway is likely to be contribute to stroke pathology and neural repair after ischemic stroke. This review describes the molecular dynamics, signaling pathways, and functions of DAMPs in poststroke inflammation and its resolution.
Collapse
|
157
|
Gurfinkel Y, Polain N, Sonar K, Nice P, Mancera RL, Rea SL. Functional and structural consequences of TBK1 missense variants in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurobiol Dis 2022; 174:105859. [PMID: 36113750 DOI: 10.1016/j.nbd.2022.105859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Mutations in the Tank-binding kinase 1 (TBK1) gene were identified in 2015 in individuals with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). They account for ∼3-4% of cases. To date, over 100 distinct mutations, including missense, nonsense, deletion, insertion, duplication, and splice-site mutations have been reported. While nonsense mutations are predicted to cause disease via haploinsufficiency, the mechanisms underlying disease pathogenesis with missense mutations is not fully elucidated. TBK1 is a kinase involved in neuroinflammation, which is commonly observed in these diseases. TBK1 also phosphorylates key autophagy mediators, thereby regulating proteostasis, a pathway that is dysregulated in ALS-FTLD. Recently, several groups have characterised various missense mutations with respect to their effects on the phosphorylation of known TBK1 substrates, TBK1 homodimerization, interaction with optineurin, and the regulation of autophagy and neuroinflammatory pathways. Further, the effects of either global or conditional heterozygous knock-out of Tbk1, or the heterozygous or homozygous knock-in of ALS-FTLD associated mutations, alone or when crossed with the SOD1G93A classical ALS mouse model or a TDP-43 mouse model, have been reported. In this review we summarise the known functional effects of TBK1 missense mutations. We also present novel modelling data that predicts the structural effects of missense mutations and discuss how they correlate with the known functional effects of these mutations.
Collapse
Affiliation(s)
- Yuval Gurfinkel
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Ralph and Patricia Sarich Neuroscience Building, QEII Medical Centre, Ground floor RR Block, 8 Verdun St, Nedlands, Western Australia 6009, Australia.; UWA Medical School, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | - Nicole Polain
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, Western Australia, Australia
| | - Krushna Sonar
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| | - Penelope Nice
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Ralph and Patricia Sarich Neuroscience Building, QEII Medical Centre, Ground floor RR Block, 8 Verdun St, Nedlands, Western Australia 6009, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| | - Sarah Lyn Rea
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Ralph and Patricia Sarich Neuroscience Building, QEII Medical Centre, Ground floor RR Block, 8 Verdun St, Nedlands, Western Australia 6009, Australia..
| |
Collapse
|
158
|
Nishimoto S, Sata M, Fukuda D. Expanding role of deoxyribonucleic acid-sensing mechanism in the development of lifestyle-related diseases. Front Cardiovasc Med 2022; 9:881181. [PMID: 36176986 PMCID: PMC9513035 DOI: 10.3389/fcvm.2022.881181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
In lifestyle-related diseases, such as cardiovascular, metabolic, respiratory, and kidney diseases, chronic inflammation plays a causal role in their pathogenesis; however, underlying mechanisms of sterile chronic inflammation are not well-understood. Previous studies have confirmed the damage of cells in these organs in the presence of various risk factors such as diabetes, dyslipidemia, and cigarette smoking, releasing various endogenous ligands for pattern recognition receptors. These studies suggested that nucleic acids released from damaged tissues accumulate in these tissues, acting as an endogenous ligand. Undamaged DNA is an integral factor for the sustenance of life, whereas, DNA fragments, especially those from pathogens, are potent activators of the inflammatory response. Recent studies have indicated that inflammatory responses such as the production of type I interferon (IFN) induced by DNA-sensing mechanisms which contributes to self-defense system in innate immunity participates in the progression of inflammatory diseases by the recognition of nucleic acids derived from the host, including mitochondrial DNA (mtDNA). The body possesses several types of DNA sensors. Toll-like receptor 9 (TLR9) recognizes DNA fragments in the endosomes. In addition, the binding of DNA fragments in the cytosol activates cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS), resulting in the synthesis of the second messenger cyclic GMP-AMP (cGAMP). The binding of cGAMP to stimulator of interferon genes (STING) activates NF-κB and TBK-1 signaling and consequently the production of many inflammatory cytokines including IFNs. Numerous previous studies have demonstrated the role of DNA sensors in self-defense through the recognition of DNA fragments derived from pathogens. Beyond the canonical role of TLR9 and cGAS-STING, this review describes the role of these DNA-sensing mechanism in the inflammatory responses caused by endogenous DNA fragments, and in the pathogenesis of lifestyle-related diseases.
Collapse
Affiliation(s)
- Sachiko Nishimoto
- Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Japan
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University, Osaka, Japan
- *Correspondence: Daiju Fukuda, ,
| |
Collapse
|
159
|
Yang Y, Qi J, Zhang M, Chen P, Liu Y, Sun X, Chu L. The cardioprotective effects and mechanisms of naringenin in myocardial ischemia based on network pharmacology and experiment verification. Front Pharmacol 2022; 13:954555. [PMID: 36160433 PMCID: PMC9500410 DOI: 10.3389/fphar.2022.954555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Naringenin (Nar) is a natural flavonoid extracted from citrus fruits with abundant pharmacological properties against cardiac diseases, but existing studies are unsystematic and scattered. The present research systematically investigates the mechanism of action of Nar in the treatment of myocardial ischemia (MI). Network pharmacology was used to analyze the relevant targets of Nar against MI as well as the biological mechanisms. The protective effect of Nar was initially assessed in H9c2 cells induced by CoCl2. In acutely isolated rat cardiomyocytes, Nar was further explored for effects on L-type Ca2+ currents, cell contractility and Ca2+ transients by using patch-clamp technique and Ion Optix system. Network pharmacology analysis indicated that Nar improved apoptosis, mitochondrial energy metabolism, inflammation and oxidative stress. Experimental validation demonstrated that Nar decreased ROS and MDA levels and increased antioxidant activity (e.g., GSH-PX, SOD, and CAT), mitochondrial membrane potential, ATP and Ca2+-ATPase contents. Nar also markedly reduced inflammatory factor levels, apoptosis, and intracellular Ca2+ concentrations in H9c2 cells. Based on the experimental results, it is speculated that Ca2+ signals play an essential role in the process of Nar against MI. Thus, we further confirmed that Nar significantly inhibited the L-type Ca2+ currents, contractility and Ca2+ transients in acutely isolated cardiomyocytes. The inhibition of Ca2+ overload by Nar may be a novel cardioprotective mechanism. The present study may serve as a basis for future clinical research, and Nar as a Ca2+ channel inhibitor may provide new perspectives for the treatment of myocardial ischemic diseases.
Collapse
Affiliation(s)
- Yakun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiaying Qi
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Muqing Zhang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Pingping Chen
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yanshuang Liu
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- *Correspondence: Yanshuang Liu, ; Xiaorun Sun, ; Li Chu,
| | - Xiaorun Sun
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- *Correspondence: Yanshuang Liu, ; Xiaorun Sun, ; Li Chu,
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- *Correspondence: Yanshuang Liu, ; Xiaorun Sun, ; Li Chu,
| |
Collapse
|
160
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
161
|
Barbalata T, Scarlatescu AI, Sanda GM, Toma L, Stancu CS, Dorobantu M, Micheu MM, Sima AV, Niculescu LS. Mitochondrial DNA Together with miR-142-3p in Plasma Can Predict Unfavorable Outcomes in Patients after Acute Myocardial Infarction. Int J Mol Sci 2022; 23:ijms23179947. [PMID: 36077347 PMCID: PMC9456000 DOI: 10.3390/ijms23179947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/23/2022] Open
Abstract
Myocardial infarction is one of the leading causes of death worldwide, despite numerous efforts to find efficient prognostic biomarkers and treatment targets. In the present study, we aimed to assess the potential of six microRNAs known to be involved in cardiovascular diseases, cell-free DNA (cfDNA), and mitochondrial DNA (mtDNA) circulating in plasma to be used as prognostic tools for the occurrence of unfavorable outcomes such as major adverse cardiovascular events (MACE) after acute ST-segment elevation myocardial infarction (STEMI). Fifty STEMI patients were enrolled and monitored for 6 months for the occurrence of MACE. Plasma was collected at three time points: upon admission to hospital (T0), at discharge from hospital (T1), and 6 months post-STEMI (T6). Plasma levels of miR-223-3p, miR-142-3p, miR-155-5p, miR-486-5p, miR-125a-5p, and miR-146a-5p, as well as of cfDNA and mtDNA, were measured by RT-qPCR. Results showed that the levels of all measured miRNAs, as well as of cfDNA and mtDNA, were the most increased at T1, compared to the other two time points. In the plasma of STEMI patients with MACE compared to those without MACE, we determined increased levels of miRNAs, cfDNA, and mtDNA at T1. Hence, we used the levels of all measured parameters at T1 for further statistical analysis. Statistical analysis demonstrated that all six miRNAs and cfDNA plus mtDNA levels, respectively, were associated with MACE. The minimal statistical model that could predict MACE in STEMI patients was the combination of mtDNA and miR-142-3p levels, as evidenced by ROC analysis (AUC = 0.97, p < 0.001). In conclusion, the increased plasma levels of mtDNA, along with miR-142-3p, could be used to predict unfavorable outcomes in STEMI patients.
Collapse
Affiliation(s)
- Teodora Barbalata
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Alina I. Scarlatescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Gabriela M. Sanda
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Camelia S. Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Maria Dorobantu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Miruna M. Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Anca V. Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
- Correspondence: (A.V.S.); (L.S.N.)
| | - Loredan S. Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
- Correspondence: (A.V.S.); (L.S.N.)
| |
Collapse
|
162
|
Long G, Gong R, Wang Q, Zhang D, Huang C. Role of released mitochondrial DNA in acute lung injury. Front Immunol 2022; 13:973089. [PMID: 36059472 PMCID: PMC9433898 DOI: 10.3389/fimmu.2022.973089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a form of acute-onset hypoxemic respiratory failure characterised by an acute, diffuse, inflammatory lung injury, and increased alveolar-capillary permeability, which is caused by a variety of pulmonary or nonpulmonary insults. Recently, aberrant mitochondria and mitochondrial DNA(mtDNA) level are associated with the development of ALI/ARDS, and plasma mtDNA level shows the potential to be a promising biomarker for clinical diagnosis and evaluation of lung injury severity. In mechanism, the mtDNA and its oxidised form, which are released from impaired mitochondria, play a crucial role in the inflammatory response and histopathological changes in the lung. In this review, we discuss mitochondrial outer membrane permeabilisation (MOMP), mitochondrial permeability transition pore(mPTP), extracellular vesicles (EVs), extracellular traps (ETs), and passive release as the principal mechanisms for the release of mitochondrial DNA into the cytoplasm and extracellular compartments respectively. Further, we explain how the released mtDNA and its oxidised form can induce inflammatory cytokine production and aggravate lung injury through the Toll-like receptor 9(TLR9) signalling, cytosolic cGAS-stimulator of interferon genes (STING) signalling (cGAS-STING) pathway, and inflammasomes activation. Additionally, we propose targeting mtDNA-mediated inflammatory pathways as a novel therapeutic approach for treating ALI/ARDS.
Collapse
Affiliation(s)
- Gangyu Long
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Rui Gong
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qian Wang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Dingyu Zhang, ; Chaolin Huang,
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Dingyu Zhang, ; Chaolin Huang,
| |
Collapse
|
163
|
Liang Z, Zhang T, Liu H, Li Z, Peng L, Wang C, Wang T. Inflammaging: The ground for sarcopenia? Exp Gerontol 2022; 168:111931. [PMID: 35985553 DOI: 10.1016/j.exger.2022.111931] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Sarcopenia is a progressive skeletal muscle disease that occurs most commonly in the elderly population, contributing to increased costs and hospitalization. Exercise and nutritional therapy have been proven to be effective for sarcopenia, and some drugs can also alleviate declines in muscle mass and function due to sarcopenia. However, there is no specific pharmacological treatment for sarcopenia at present. This review will mainly discuss the relationship between inflammaging and sarcopenia. The increased secretion of proinflammatory cytokines with aging may be because of cellular senescence, immunosenescence, alterations in adipose tissue, damage-associated molecular patterns (DAMPs), and gut microbes due to aging. These sources of inflammaging can impact the sarcopenia process through direct or indirect pathways. Conversely, sarcopenia can also aggravate the process of inflammaging, creating a vicious cycle. Targeting sources of inflammaging can influence muscle function, which could be considered a therapeutic target for sarcopenia. Moreover, not only proinflammatory cytokines but also anti-inflammatory cytokines can influence muscle and inflammation and participate in the progression of sarcopenia. This review focuses on the effects of TNF-α, IL-6, and IL-10, which can be detected in plasma. Therefore, clearing chronic inflammation by targeting proinflammatory cytokines (TNF-α, IL-1, IL-6) and the inflammatory pathway (JAK/STAT, autophagy, NF-κB) may be effective in treating sarcopenia.
Collapse
Affiliation(s)
- Zejun Liang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tianxiao Zhang
- School of Healthcare Sciences, Cardiff University, Health Park, CF14 4XN Wales, UK
| | - Honghong Liu
- West China School of Nursing/West China Hospital, Sichuan University, NO.37 Alley, Chengdu 610041, Sichuan, PR China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lihong Peng
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, PR China
| | - Changyi Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
164
|
Xian H, Watari K, Sanchez-Lopez E, Offenberger J, Onyuru J, Sampath H, Ying W, Hoffman HM, Shadel GS, Karin M. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 2022; 55:1370-1385.e8. [PMID: 35835107 PMCID: PMC9378606 DOI: 10.1016/j.immuni.2022.06.007] [Citation(s) in RCA: 234] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 12/29/2022]
Abstract
Mitochondrial DNA (mtDNA) escaping stressed mitochondria provokes inflammation via cGAS-STING pathway activation and, when oxidized (Ox-mtDNA), it binds cytosolic NLRP3, thereby triggering inflammasome activation. However, it is unknown how and in which form Ox-mtDNA exits stressed mitochondria in non-apoptotic macrophages. We found that diverse NLRP3 inflammasome activators rapidly stimulated uniporter-mediated calcium uptake to open mitochondrial permeability transition pores (mPTP) and trigger VDAC oligomerization. This occurred independently of mtDNA or reactive oxygen species, which induce Ox-mtDNA generation. Within mitochondria, Ox-mtDNA was either repaired by DNA glycosylase OGG1 or cleaved by the endonuclease FEN1 to 500-650 bp fragments that exited mitochondria via mPTP- and VDAC-dependent channels to initiate cytosolic NLRP3 inflammasome activation. Ox-mtDNA fragments also activated cGAS-STING signaling and gave rise to pro-inflammatory extracellular DNA. Understanding this process will advance the development of potential treatments for chronic inflammatory diseases, exemplified by FEN1 inhibitors that suppressed interleukin-1β (IL-1β) production and mtDNA release in mice.
Collapse
Affiliation(s)
- Hongxu Xian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Kosuke Watari
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Elsa Sanchez-Lopez
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA; Department of Orthopedic Surgery, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Joseph Offenberger
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Janset Onyuru
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California, San Diego, San Diego, CA, USA
| | - Harini Sampath
- Department of Nutritional Sciences and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Wei Ying
- Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hal M Hoffman
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California, San Diego, San Diego, CA, USA
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
165
|
Gasdermin D-dependent platelet pyroptosis exacerbates NET formation and inflammation in severe sepsis. NATURE CARDIOVASCULAR RESEARCH 2022; 1:732-747. [PMID: 35967457 PMCID: PMC9362711 DOI: 10.1038/s44161-022-00108-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 12/20/2022]
|
166
|
New Insights into the Functions of MicroRNAs in Cardiac Fibrosis: From Mechanisms to Therapeutic Strategies. Genes (Basel) 2022; 13:genes13081390. [PMID: 36011301 PMCID: PMC9407613 DOI: 10.3390/genes13081390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/16/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibrosis is a significant global health problem associated with almost all types of heart disease. Extensive cardiac fibrosis reduces tissue compliance and contributes to adverse outcomes, such as cardiomyocyte hypertrophy, cardiomyocyte apoptosis, and even heart failure. It is mainly associated with pathological myocardial remodeling, characterized by the excessive deposition of extracellular matrix (ECM) proteins in cardiac parenchymal tissues. In recent years, a growing body of evidence demonstrated that microRNAs (miRNAs) have a crucial role in the pathological development of cardiac fibrosis. More than sixty miRNAs have been associated with the progression of cardiac fibrosis. In this review, we summarized potential miRNAs and miRNAs-related regulatory mechanisms for cardiac fibrosis and discussed the potential clinical application of miRNAs in cardiac fibrosis.
Collapse
|
167
|
Dutta A, Das M, Ghosh A, Rana S. Molecular and cellular pathophysiology of circulating cardiomyocyte-specific cell free DNA (cfDNA): Biomarkers of heart failure and potential therapeutic targets. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
168
|
Anindya R. Cytoplasmic DNA in cancer cells: Several pathways that potentially limit DNase2 and TREX1 activities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119278. [PMID: 35489653 DOI: 10.1016/j.bbamcr.2022.119278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The presence of DNA in the cytoplasm of tumor cells induces the dendritic cell to produce type-I IFNs. Classically, the presence of foreign DNA in host cells' cytoplasm during viral infection elicits cGAS-STING mediated type-I IFN signaling and cytokine production. It is likely that cytosolic DNA leads to senescence and immune surveillance in transformed cells during the early stages of carcinogenesis. However, multiple factors, such as loss of cell-cycle checkpoint, mitochondrial damage and chromosomal instability, can lead to persistent accumulation of DNA in the cytoplasm of metastatic tumor cells. That is why aberrant activation of the type I IFN pathway is frequently associated with highly aggressive tumors. Intriguingly, two powerful intracellular deoxyribonucleases, DNase2 and TREX1, can target the cytoplasmic DNA for degradation. Yet the tumor cells consistently accumulate cytoplasmic DNA. This review highlights recent work connecting the lack of DNase2 and TREX1 function to innate immune signaling. It also summarizes the possible mechanisms that limit the activity of DNase2 and TREX1 in tumor cells and contributes to chronic inflammation.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India.
| |
Collapse
|
169
|
Scott JP, Tanem JM, Tomita-Mitchell A, Hoffman GM, Niebler RA, Liang HL, Simpson PM, Stamm KD, North PE, Mitchell ME. Elevated nuclear and mitochondrial cell-free deoxyribonucleic acid measurements are associated with death after infant cardiac surgery. J Thorac Cardiovasc Surg 2022; 164:367-375. [PMID: 35144816 DOI: 10.1016/j.jtcvs.2021.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Mortality rates following pediatric cardiac surgery with cardiopulmonary bypass have declined over decades, but have plateaued in recent years. This is in part attributable to persistent issues with postoperative global inflammation and myocardial dysfunction, commonly manifested by systemic inflammatory response syndrome and low cardiac output syndrome, respectively. Quantified cell-free DNA (cfDNA), of nuclear or mitochondrial origin, has emerged as a biomarker for both inflammation and myocardial injury. Recent data suggest that nuclear cfDNA (ncfDNA) may quantify inflammation, whereas mitochondrial cfDNA (mcfDNA) may correlate with the degree of myocardial injury. We hypothesize that threshold levels of ncfDNA and mcfDNA can be established that are sensitive and specific for postoperative mortality mediated through independent pathways, and that association will be enhanced with combined analysis. METHODS Prospective observational study of infants younger than age 1 year undergoing planned surgery with cardiopulmonary bypass. The study received institutional review board approval. Samples were drawn before skin incision, immediately after completion of cardiopulmonary bypass, and subsequently at predetermined intervals postoperatively. Association of early postoperative ncfDNA and mcfDNA levels with mortality were assessed by logistic regression with cut-points chosen by receiving operating characteristic curve exploration. RESULTS Data were available in 59 patients. Median age and weight were 122 days (interquartile range, 63-154 days) and 4.9 kg (interquartile range, 3.9-6.2 kg). Median STAT category was 3 (interquartile range, 1-4). The primary outcome of death was met in 3 out of 59 (5%). Combined analysis of ncfDNA and mcfDNA levels at 12 hours after the initiation of cardiopulmonary bypass with death at a threshold of 50 ng/mL ncfDNA and 17 copies/μL mcfDNA yielded 100% sensitivity and negative predictive value. The specificity (91%) and positive predictive value (38%) increased through combined analysis compared with univariate analysis. Combined analysis exhibited high specificity (93%) and negative predictive value (78%) for prolonged (>30 postoperative days) hospitalization. CONCLUSIONS Combined analysis of early postoperative ncfDNA and mcfDNA can stratify risk of mortality and prolonged hospitalization following infant cardiac surgery. Evaluation of both ncfDNA and mcfDNA to identify states of generalized inflammation and myocardial injury may allow for targeted interventions and improved outcomes.
Collapse
Affiliation(s)
- John P Scott
- Division of Pediatric Anesthesiology, Department of Anesthesiology, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis; Division of Pediatric Critical Medicine, Department of Pediatrics, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis.
| | - Justinn M Tanem
- Division of Pediatric Anesthesiology, Department of Anesthesiology, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis; Division of Pediatric Critical Medicine, Department of Pediatrics, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| | - Aoy Tomita-Mitchell
- Division of Pediatric Cardiothoracic Surgery, Department of Cardiothoracic Surgery, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| | - George M Hoffman
- Division of Pediatric Anesthesiology, Department of Anesthesiology, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis; Division of Pediatric Critical Medicine, Department of Pediatrics, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| | - Robert A Niebler
- Division of Pediatric Critical Medicine, Department of Pediatrics, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| | - Huan Ling Liang
- Division of Pediatric Cardiothoracic Surgery, Department of Cardiothoracic Surgery, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| | - Pippa M Simpson
- Division of Quantitative Health Sciences, Department of Pediatrics, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| | - Karl D Stamm
- Division of Pediatric Cardiothoracic Surgery, Department of Cardiothoracic Surgery, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| | - Paula E North
- Division of Pediatric Pathology, Department of Pathology, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| | - Michael E Mitchell
- Division of Pediatric Cardiothoracic Surgery, Department of Cardiothoracic Surgery, Herma Heart Institute, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| |
Collapse
|
170
|
Mekers VE, Kho VM, Ansems M, Adema GJ. cGAS/cGAMP/STING signal propagation in the tumor microenvironment: key role for myeloid cells in antitumor immunity. Radiother Oncol 2022; 174:158-167. [PMID: 35870728 DOI: 10.1016/j.radonc.2022.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/19/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS), second messenger 2'3'-cyclic GMP-AMP (cGAMP) and stimulator of interferon genes (STING) are fundamental for sensing cytoplasmic double stranded DNA. Radiotherapy treatment induces large amounts of nuclear and mitochondrial DNA damage and results in the presence of DNA fragments in the cytoplasm, activating the cGAS/STING pathway. Triggering of the cGAS/STING pathway in the tumor microenvironment (TME) results in the production of type I interferons (IFNs). Type I IFNs are crucial for an effective antitumor defense, with myeloid cells as key players. Many questions remain on how these myeloid cells are activated and in which cells (tumor versus myeloid) in the TME the signaling pathway is initiated. The significance of cGAS/STING signaling in the onco-immunology field is being recognized, emphasized by the frequent occurrence of mutations in or silencing of genes in this pathway. We here review several mechanisms of cGAS/STING signal propagation in the TME, focusing on tumor cells and myeloid cells. Cell-cell contact-dependent interactions facilitate the transfer of tumor-derived DNA and cGAMP. Alternatively, transport routes via the extracellular space such as extracellular vesicles, and channel-mediated cGAMP transfer to and from the extracellular space contribute to propagation of cGAS/STING signal mediators DNA and cGAMP. Finally, we discuss regulation of extracellular cGAMP. Altogether, we provide a comprehensive overview of cGAS/cGAMP/STING signal propagation from tumor to myeloid cells in the TME, revealing novel targets for combinatorial treatment approaches with conventional anticancer therapies like radiotherapy.
Collapse
Affiliation(s)
- Vera E Mekers
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Vera M Kho
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
171
|
Cell Autophagy in NASH and NASH-Related Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23147734. [PMID: 35887082 PMCID: PMC9322157 DOI: 10.3390/ijms23147734] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/21/2022] Open
Abstract
Autophagy, a cellular self-digestion process, involves the degradation of targeted cell components such as damaged organelles, unfolded proteins, and intracellular pathogens by lysosomes. It is a major quality control system of the cell and plays an important role in cell differentiation, survival, development, and homeostasis. Alterations in the cell autophagic machinery have been implicated in several disease conditions, including neurodegeneration, autoimmunity, cancer, infection, inflammatory diseases, and aging. In non-alcoholic fatty liver disease, including its inflammatory form, non-alcoholic steatohepatitis (NASH), a decrease in cell autophagic activity, has been implicated in the initial development and progression of steatosis to NASH and hepatocellular carcinoma (HCC). We present an overview of autophagy as it occurs in mammalian cells with an insight into the emerging understanding of the role of autophagy in NASH and NASH-related HCC.
Collapse
|
172
|
Hancock-Cerutti W, Wu Z, Xu P, Yadavalli N, Leonzino M, Tharkeshwar AK, Ferguson SM, Shadel GS, De Camilli P. ER-lysosome lipid transfer protein VPS13C/PARK23 prevents aberrant mtDNA-dependent STING signaling. J Cell Biol 2022; 221:e202106046. [PMID: 35657605 PMCID: PMC9170524 DOI: 10.1083/jcb.202106046] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/03/2022] [Indexed: 02/03/2023] Open
Abstract
Mutations in VPS13C cause early-onset, autosomal recessive Parkinson's disease (PD). We have established that VPS13C encodes a lipid transfer protein localized to contact sites between the ER and late endosomes/lysosomes. In the current study, we demonstrate that depleting VPS13C in HeLa cells causes an accumulation of lysosomes with an altered lipid profile, including an accumulation of di-22:6-BMP, a biomarker of the PD-associated leucine-rich repeat kinase 2 (LRRK2) G2019S mutation. In addition, the DNA-sensing cGAS-STING pathway, which was recently implicated in PD pathogenesis, is activated in these cells. This activation results from a combination of elevated mitochondrial DNA in the cytosol and a defect in the degradation of activated STING, a lysosome-dependent process. These results suggest a link between ER-lysosome lipid transfer and innate immune activation in a model human cell line and place VPS13C in pathways relevant to PD pathogenesis.
Collapse
Affiliation(s)
- William Hancock-Cerutti
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT
- MD/PhD Program, Yale School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Zheng Wu
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Salk Institute for Biological Studies, La Jolla, CA
| | - Peng Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Narayana Yadavalli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Marianna Leonzino
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | | | - Shawn M. Ferguson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | | | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
173
|
Oliva A, Meroño C, Traba J. Mitochondrial function and dysfunction in innate immunity. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
174
|
Zhang F, Yu C, Xu W, Li X, Feng J, Shi H, Yang J, Sun Q, Cao X, Zhang L, Peng M. Identification of critical genes and molecular pathways in COVID-19 myocarditis and constructing gene regulatory networks by bioinformatic analysis. PLoS One 2022; 17:e0269386. [PMID: 35749386 PMCID: PMC9231758 DOI: 10.1371/journal.pone.0269386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There is growing evidence of a strong relationship between COVID-19 and myocarditis. However, there are few bioinformatics-based analyses of critical genes and the mechanisms related to COVID-19 Myocarditis. This study aimed to identify critical genes related to COVID-19 Myocarditis by bioinformatic methods, explore the biological mechanisms and gene regulatory networks, and probe related drugs. METHODS The gene expression data of GSE150392 and GSE167028 were obtained from the Gene Expression Omnibus (GEO), including cardiomyocytes derived from human induced pluripotent stem cells infected with SARS-CoV-2 in vitro and GSE150392 from patients with myocarditis infected with SARS-CoV-2 and the GSE167028 gene expression dataset. Differentially expressed genes (DEGs) (adjusted P-Value <0.01 and |Log2 Fold Change| ≥2) in GSE150392 were assessed by NetworkAnalyst 3.0. Meanwhile, significant modular genes in GSE167028 were identified by weighted gene correlation network analysis (WGCNA) and overlapped with DEGs to obtain common genes. Functional enrichment analyses were performed by using the "clusterProfiler" package in the R software, and protein-protein interaction (PPI) networks were constructed on the STRING website (https://cn.string-db.org/). Critical genes were identified by the CytoHubba plugin of Cytoscape by 5 algorithms. Transcription factor-gene (TF-gene) and Transcription factor-microRibonucleic acid (TF-miRNA) coregulatory networks construction were performed by NetworkAnalyst 3.0 and displayed in Cytoscape. Finally, Drug Signatures Database (DSigDB) was used to probe drugs associated with COVID-19 Myocarditis. RESULTS Totally 850 DEGs (including 449 up-regulated and 401 down-regulated genes) and 159 significant genes in turquoise modules were identified from GSE150392 and GSE167028, respectively. Functional enrichment analysis indicated that common genes were mainly enriched in biological processes such as cell cycle and ubiquitin-protein hydrolysis. 6 genes (CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) were identified as critical genes. TF-gene interactions and TF-miRNA coregulatory network were constructed successfully. A total of 10 drugs, (such as Etoposide, Methotrexate, Troglitazone, etc) were considered as target drugs for COVID-19 Myocarditis. CONCLUSIONS Through bioinformatics method analysis, this study provides a new perspective to explore the pathogenesis, gene regulatory networks and provide drug compounds as a reference for COVID-19 Myocarditis. It is worth highlighting that critical genes (CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) may be potential biomarkers and treatment targets of COVID-19 Myocarditis for future study.
Collapse
Affiliation(s)
- Fengjun Zhang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Cheng Yu
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Wenchang Xu
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Junchen Feng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongshuo Shi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingrong Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qinhua Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianyi Cao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhang
- Department of Clinical Pharmacy, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Min Peng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
175
|
Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis. Nat Commun 2022; 13:3275. [PMID: 35672400 PMCID: PMC9174232 DOI: 10.1038/s41467-022-30630-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/03/2022] [Indexed: 01/07/2023] Open
Abstract
Tissue fibrosis and organ dysfunction are hallmarks of age-related diseases including heart failure, but it remains elusive whether there is a common pathway to induce both events. Through single-cell RNA-seq, spatial transcriptomics, and genetic perturbation, we elucidate that high-temperature requirement A serine peptidase 3 (Htra3) is a critical regulator of cardiac fibrosis and heart failure by maintaining the identity of quiescent cardiac fibroblasts through degrading transforming growth factor-β (TGF-β). Pressure overload downregulates expression of Htra3 in cardiac fibroblasts and activated TGF-β signaling, which induces not only cardiac fibrosis but also heart failure through DNA damage accumulation and secretory phenotype induction in failing cardiomyocytes. Overexpression of Htra3 in the heart inhibits TGF-β signaling and ameliorates cardiac dysfunction after pressure overload. Htra3-regulated induction of spatio-temporal cardiac fibrosis and cardiomyocyte secretory phenotype are observed specifically in infarct regions after myocardial infarction. Integrative analyses of single-cardiomyocyte transcriptome and plasma proteome in human reveal that IGFBP7, which is a cytokine downstream of TGF-β and secreted from failing cardiomyocytes, is the most predictable marker of advanced heart failure. These findings highlight the roles of cardiac fibroblasts in regulating cardiomyocyte homeostasis and cardiac fibrosis through the Htra3-TGF-β-IGFBP7 pathway, which would be a therapeutic target for heart failure. Cardiac fibrosis is a hallmark of heart failure. Here the authors use single-cell RNA-sequencing, spatial transcriptomics, and genetic manipulations, to show that Htra3 regulates cardiac fibrosis by keeping fibroblasts quiescent and by degrading TGF-beta.
Collapse
|
176
|
Zhan B, Shen J. Mitochondria and their potential role in acute lung injury (Review). Exp Ther Med 2022; 24:479. [PMID: 35761815 PMCID: PMC9214601 DOI: 10.3892/etm.2022.11406] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Biao Zhan
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Jie Shen
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
177
|
Hepokoski M, Singh P. Mitochondria as mediators of systemic inflammation and organ cross talk in acute kidney injury. Am J Physiol Renal Physiol 2022; 322:F589-F596. [PMID: 35379000 PMCID: PMC9054254 DOI: 10.1152/ajprenal.00372.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) is a systemic inflammatory disease that contributes to remote organ failures. Multiple organ failure is the leading cause of death due to AKI, and lack of understanding of the mechanisms involved has precluded the development of novel therapies. Mitochondrial injury in AKI leads to mitochondrial fragmentation and release of damage-associated molecular patterns, which are known to active innate immune pathways and systemic inflammation. This review presents current evidence suggesting that extracellular mitochondrial damage-associated molecular patterns are mediators of remote organ failures during AKI that have the potential to be modifiable.
Collapse
Affiliation(s)
- Mark Hepokoski
- 1Veterans Affairs San Diego Healthcare System, San Diego, California,2Division of Pulmonary and Critical Care Medicine, University of California, San Diego, California
| | - Prabhleen Singh
- 1Veterans Affairs San Diego Healthcare System, San Diego, California,3Division of Nephrology and Hypertension, University of California, San Diego, California
| |
Collapse
|
178
|
Mitochondrial DNA Is a Vital Driving Force in Ischemia-Reperfusion Injury in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6235747. [PMID: 35620580 PMCID: PMC9129988 DOI: 10.1155/2022/6235747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
According to the latest Global Burden of Disease Study, cardiovascular disease (CVD) is the leading cause of death, and ischemic heart disease and stroke are the cause of death in approximately half of CVD patients. In CVD, mitochondrial dysfunction following ischemia-reperfusion (I/R) injury results in heart failure. The proper functioning of oxidative phosphorylation (OXPHOS) and the mitochondrial life cycle in cardiac mitochondria are closely related to mitochondrial DNA (mtDNA). Following myocardial I/R injury, mitochondria activate multiple repair and clearance mechanisms to repair damaged mtDNA. When these repair mechanisms are insufficient to restore the structure and function of mtDNA, irreversible mtDNA damage occurs, leading to mtDNA mutations. Since mtDNA mutations aggravate OXPHOS dysfunction and affect mitophagy, mtDNA mutation accumulation leads to leakage of mtDNA and proteins outside the mitochondria, inducing an innate immune response, aggravating cardiovascular injury, and leading to the need for external interventions to stop or slow the disease course. On the other hand, mtDNA released into the circulation after cardiac injury can serve as a biomarker for CVD diagnosis and prognosis. This article reviews the pathogenic basis and related research findings of mtDNA oxidative damage and mtDNA leak-triggered innate immune response associated with I/R injury in CVD and summarizes therapeutic options that target mtDNA.
Collapse
|
179
|
Metabolic Reprogramming of Innate Immune Cells as a Possible Source of New Therapeutic Approaches in Autoimmunity. Cells 2022; 11:cells11101663. [PMID: 35626700 PMCID: PMC9140143 DOI: 10.3390/cells11101663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
Immune cells undergo different metabolic pathways or immunometabolisms to interact with various antigens. Immunometabolism links immunological and metabolic processes and is critical for innate and adaptive immunity. Although metabolic reprogramming is necessary for cell differentiation and proliferation, it may mediate the imbalance of immune homeostasis, leading to the pathogenesis and development of some diseases, such as autoimmune diseases. Here, we discuss the effects of metabolic changes in autoimmune diseases, exerted by the leading actors of innate immunity, and their role in autoimmunity pathogenesis, suggesting many immunotherapeutic approaches.
Collapse
|
180
|
Li A, Gao M, Liu B, Qin Y, Chen L, Liu H, Wu H, Gong G. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis 2022; 13:444. [PMID: 35534453 PMCID: PMC9085840 DOI: 10.1038/s41419-022-04906-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria are highly dynamic organelles that participate in ATP generation and involve calcium homeostasis, oxidative stress response, and apoptosis. Dysfunctional or damaged mitochondria could cause serious consequences even lead to cell death. Therefore, maintaining the homeostasis of mitochondria is critical for cellular functions. Mitophagy is a process of selectively degrading damaged mitochondria under mitochondrial toxicity conditions, which plays an essential role in mitochondrial quality control. The abnormal mitophagy that aggravates mitochondrial dysfunction is closely related to the pathogenesis of many diseases. As the myocardium is a highly oxidative metabolic tissue, mitochondria play a central role in maintaining optimal performance of the heart. Dysfunctional mitochondria accumulation is involved in the pathophysiology of cardiovascular diseases, such as myocardial infarction, cardiomyopathy and heart failure. This review discusses the most recent progress on mitophagy and its role in cardiovascular disease.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Huayan Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
181
|
Liu B, Zhang J, Liu G, Zhu L, Peng B. Expression of PINK1 and Parkin in human apical periodontitis. Int Endod J 2022; 55:870-881. [PMID: 35502680 DOI: 10.1111/iej.13760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
AIM PTEN-induced putative kinase 1 (PINK1) and Parkin E3 ubiquitin-protein ligase (Parkin) are critical for immune and inflammatory regulation in health and disease. PINK1 and Parkin have been confirmed to be involved in the progression of apical periodontitis by affecting mitophagy-related osteoblast apoptosis; however, the expression of PINK1 and Parkin in macrophages, one of the most important cells in apical periodontitis, remains unknown. This study aimed to investigate the expression of PINK1 and Parkin in human apical periodontitis lesions, as well as their possible localization in macrophages. METHODOLOGY Thirty-seven human periapical tissues, including periapical granulomas (PGs, n=12), radicular cysts (RCs, n=11), and healthy gingival tissues (n=14) were examined. The inflammatory infiltrates of lesions were evaluated by haemotoxylin staining, and the expression of PINK1 and Parkin was detected by immunohistochemistry. Double immunofluorescence was used to explore the colocalization of microtubule-associated protein 1 light chain 3 (LC3) and TOMM20, as well as the localization of PINK1 and Parkin, in macrophages of human apical periodontitis lesions. The ultrastructural morphology of mitochondria in human apical periodontitis lesions was visualized by transmission electron microscopy (TEM). Data were analyzed by one-way ANOVA with Student-Newman-Keul's test and Mann-Whitney test. P < 0.05 was considered statistically significant. RESULTS Immunohistochemistry demonstrated a significantly higher expression of PINK1 and Parkin proteins in human apical periodontitis lesions than in healthy gingival tissues (P < 0.0001), but no significant difference was demonstrated between PGs and RCs (P > 0.05). The higher expression of LC3 and the presence of more LC3-TOMM20 double-positive cells were also observed in human apical periodontitis. Double-labeling analysis of PINK1, Parkin, and LC3 with CD68 indicated that macrophage mitophagy might be present in the progression of human apical periodontitis. Finally, the results of TEM morphological analysis revealed the appearance of double-membraned mitophagosomes and vacuolated mitochondria in macrophage-like cells of apical periodontitis lesions. CONCLUSIONS Our findings indicated that PINK1 and Parkin proteins were highly expressed in clinical apical periodontitis lesions.
Collapse
Affiliation(s)
- B Liu
- he State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J Zhang
- he State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G Liu
- he State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L Zhu
- he State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - B Peng
- he State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
182
|
Radiation-induced non-targeted effect of immunity provoked by mitochondrial DNA damage triggered cGAS/ AIM2 pathways. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
183
|
Chen E, Chang H, Gao R, Qiu Y, Chen H, Cheng X, Gan L, Ye-Lehmann S, Zhu T, Liu J, Chen G, Chen C. Poly(I:C) attenuates myocardial ischemia/reperfusion injury by restoring autophagic function. FASEB J 2022; 36:e22317. [PMID: 35438806 DOI: 10.1096/fj.202101220rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023]
Abstract
Polyinosinic-polycytidylic acid (poly(I:C)) is the agonist of Toll-like receptor 3 (TLR3), which participates in innate immune responses under the condition of myocardial ischemia/reperfusion injury (MIRI). It has been shown that poly(I:C) exhibited cardioprotective activities through the PI3K/Akt pathway, which is the main signal transduction pathway during autophagy. However, the precise mechanism by whether poly(I:C) regulates autophagy remains poorly understood. Thus, this study was designed to investigate the therapeutic effect of poly(I:C) against MIRI and the underlying pathway connection with autophagy. We demonstrated that 1.25 and 5 mg/kg poly(I:C) preconditioning significantly reduced myocardial infarct size and cardiac dysfunction. Moreover, poly(I:C) significantly promoted cell survival by restoring autophagy flux and then regulating it to an adequate level Increased autophagy protein Beclin1 and LC3II together with p62 degradation after additional chloroquine. In addition, mRFP-GFP-LC3 adenoviruses exhibited autophagy activity in neonatal rat cardiac myocytes (NRCMs). Mechanistically, poly(I:C) activated the PI3K/AKT/mTOR pathway to induce autophagy, which was abolished by LY294002 (PI3K antagonist), rapamycin (autophagy activator and mTOR inhibitor), or 3-methyladenine (autophagy inhibitor), suggesting either inhibition of the PI3K/Akt/mTOR pathway or autophagy activity interrupt the beneficial effect of poly(I:C) preconditioning. In conclusion, poly(I:C) promotes cardiomyocyte survival from ischemia/reperfusion injury by regulating autophagy via the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Erya Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, National Clinical Research Center for Geriatrics, Translational Neuroscience Center, The Research Units of West China, Chinese Academy of Medical Science, Chengdu, China
| | - Haiqing Chang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, National Clinical Research Center for Geriatrics, Translational Neuroscience Center, The Research Units of West China, Chinese Academy of Medical Science, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, National Clinical Research Center for Geriatrics, Translational Neuroscience Center, The Research Units of West China, Chinese Academy of Medical Science, Chengdu, China
| | - Yanhua Qiu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, National Clinical Research Center for Geriatrics, Translational Neuroscience Center, The Research Units of West China, Chinese Academy of Medical Science, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, National Clinical Research Center for Geriatrics, Translational Neuroscience Center, The Research Units of West China, Chinese Academy of Medical Science, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shixin Ye-Lehmann
- INSERM Tenured Researcher (CR)INSERM Research Unit U1195, Diseases and Hormones of the Nervous System, University of Paris-Scalay Bicêtre Hospital, Le Kremlin Bicêtre CEDEX, France
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, National Clinical Research Center for Geriatrics, Translational Neuroscience Center, The Research Units of West China, Chinese Academy of Medical Science, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, National Clinical Research Center for Geriatrics, Translational Neuroscience Center, The Research Units of West China, Chinese Academy of Medical Science, Chengdu, China
| | - Guo Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, National Clinical Research Center for Geriatrics, Translational Neuroscience Center, The Research Units of West China, Chinese Academy of Medical Science, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, National Clinical Research Center for Geriatrics, Translational Neuroscience Center, The Research Units of West China, Chinese Academy of Medical Science, Chengdu, China
| |
Collapse
|
184
|
Wang B, Zhou C, Wu Q, Lin P, Pu Q, Qin S, Gao P, Wang Z, Liu Y, Arel J, Chen Y, Chen T, Wu M. cGAS modulates cytokine secretion and bacterial burdens by altering the release of mitochondrial DNA in Pseudomonas pulmonary infection. Immunology 2022; 166:408-423. [PMID: 35420160 DOI: 10.1111/imm.13482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is essential for fighting against viruses and bacteria, but how cGAS is involved in host immune response remains largely elusive. Here, we uncover the crucial role of cGAS in host immunity based on a Pseudomonas aeruginosa pulmonary infection model. cGAS-/- mice showed more heavy bacterial burdens and serious lung injury accompanied with exorbitant proinflammatory cytokines than wild-type mice. cGAS deficiency caused an accumulation of mitochondrial DNA in cytoplasm, which in turn induced excessive secretion of proinflammatory factors by activating inflammasome and TLR9 signaling. Mechanistically, cGAS deficiency inhibited the recruitment of LC3 by reducing the binding capacity of TBK-1 to p62, leading to impaired mitophagy and augmented release of mitochondrial DNA. Importantly, cytoplasmic mitochondrial DNA also acted as a feedback signal that induced the activation of cGAS. Altogether, these findings identify protective and homeostasis functions of cGAS against Pseudomonas aeruginosa infection, adding significant insight into the pathogenesis of bacterial infectious diseases.
Collapse
Affiliation(s)
- Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China.,Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Chuanmin Zhou
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Wuhan University School of Health Sciences, Wuhan, Hubei Province, P. R. China
| | - Qun Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Shugang Qin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Pan Gao
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yingying Liu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Jacob Arel
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
185
|
Sivakumar B, Kurian GA. PM 2.5 Exposure Lowers Mitochondrial Endurance During Cardiac Recovery in a Rat Model of Myocardial Infarction. Cardiovasc Toxicol 2022; 22:545-557. [PMID: 35404004 DOI: 10.1007/s12012-022-09737-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
Many studies have reported the negative effect of PM2.5 exposure on heart function which is likely to impair postcardiac surgery rehabilitation that is involved in recovery and wound healing, yet the direct effects of PM2.5 from diesel exhaust (DPM) on cardiac recovery is unknown. To study the impact of DPM on cardiac recovery and repair, we utilized isoproterenol induced myocardial infarction (MI) model where female rats were exposed to DPM prior and after MI induction. The experimental groups comprise of normal, ISO control, DPM control (42 days of exposure), DPM exposed prior (21 days) and after (21 days) MI induction (D + I + D) and DPM exposed (21 days) after MI (I + D). Post-MI rat hearts from D + I + D group exhibited higher fibrosis, elevated cardiac injury and altered electrophysiology, where this pathology was also observed in I + D group animals which was mild. Loss of mitochondrial quality was evident in DPM exposed animals with and without MI, where severe mitochondrial damage persisted in D + I + D group. In addition, these animals showed striking decline in ETC enzyme activity, ATP levels, mitochondrial copy number and down regulation of PGC1-α, TFAM and POLG along with the genes involved in mitophagy and mitofusion. Besides, the MI associated inactivation of cardio protective signalling pathways like PI3K and Akt were persistent in D + I + D group. In fact, I + D group animals also showed a similar pattern of change, but in a mild form. Taken together, exposure to PM2.5 increases the risk, frequency or progression of MI by impairing the recovery potential of the myocardium.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India. .,School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
186
|
Liao S, Luo J, Kadier T, Ding K, Chen R, Meng Q. Mitochondrial DNA Release Contributes to Intestinal Ischemia/Reperfusion Injury. Front Pharmacol 2022; 13:854994. [PMID: 35370747 PMCID: PMC8966724 DOI: 10.3389/fphar.2022.854994] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria release many damage-associated molecular patterns (DAMPs) when cells are damaged or stressed, with mitochondrial DNA (mtDNA) being. MtDNA activates innate immune responses and induces inflammation through the TLR-9, NLRP3 inflammasome, and cGAS-STING signaling pathways. Released inflammatory factors cause damage to intestinal barrier function. Many bacteria and endotoxins migrate to the circulatory system and lymphatic system, leading to systemic inflammatory response syndrome (SIRS) and even damaging the function of multiple organs throughout the body. This process may ultimately lead to multiple organ dysfunction syndrome (MODS). Recent studies have shown that various factors, such as the release of mtDNA and the massive infiltration of inflammatory factors, can cause intestinal ischemia/reperfusion (I/R) injury. This destroys intestinal barrier function, induces an inflammatory storm, leads to SIRS, increases the vulnerability of organs, and develops into MODS. Mitophagy eliminates dysfunctional mitochondria to maintain cellular homeostasis. This review discusses mtDNA release during the pathogenesis of intestinal I/R and summarizes methods for the prevention or treatment of intestinal I/R. We also discuss the effects of inflammation and increased intestinal barrier permeability on drugs.
Collapse
Affiliation(s)
- Shishi Liao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Luo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tulanisa Kadier
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
187
|
Li L, Cui YJ, Liu Y, Li HX, Su YD, Li SN, Wang LL, Zhao YW, Wang SX, Yan F, Dong B. ATP6AP2 knockdown in cardiomyocyte deteriorates heart function via compromising autophagic flux and NLRP3 inflammasome activation. Cell Death Dis 2022; 8:161. [PMID: 35379787 PMCID: PMC8980069 DOI: 10.1038/s41420-022-00967-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
Moderate autophagy can remove damaged proteins and organelles. In some inflammatory diseases, autophagy plays a protective role by inhibiting the NOD-like receptor family pyrin domain containing 3(NLRP3). (Pro)renin receptor (PRR, or ATP6AP2) is a critical component of the V-ATPase required for autophagy. It remains controversial about ATP6AP2 in the pathological process. The impact of ATP6AP2 on NLRP3 inflammasome and autophagic flux remains unknown under pressure overload stress. This research explores the potential link between ATP6AP2, autophagic flux, and NLRP3. There was upregulation of ATP6AP2 from 5-day post-TAC, and this expression remained at a high level until 8-weeks post-TAC in wild mice. Meanwhile, autophagic flux switched from early compensatory activation to blocking in the heart failure phase. NLRP3 activation can be seen at 8-week post-TAC. Adenovirus-mediated knockdown of ATP6AP2(shR-ATP6AP2) accelerated the progress of heart failure. After TAC was induced, shR-ATP6AP2 significantly deteriorated heart function and fibrosis compared with the shR-Scr group. Meanwhile, there was an elevated expression of NLRP3 and autophagic flux blockage. A transgenic mouse(Tg) with cardio-restricted ATP6AP2/(P)RR overexpression was constructed. Although high expression in cardiac tissue, there were no spontaneous functional abnormalities under the basal state. Cardiac function, fibrosis, hypertrophy remained identical to the control TAC group. However, SQSTM1/P62 was reduced, which indicated the relief of autophagic flux blockage. Further, Neonatal rat ventricular myocyte (NRVMs) transfected with shR-ATP6AP2 showed more susceptibility than sh-Scr NRVMs to phenylephrine-induced cell death. More reactive oxygen species (ROS) or mito-ROS accumulated in the shR-ATP6AP2 group when phenylephrine stimulation. Blocking NLRP3 activation in vivo partly rescued cardiac dysfunction and fibrosis. In conclusion, ATP6AP2 upregulation is a compensatory response to pressure overload. If not effectively compensated, it compromises autophagic flux, leads to dysfunctional mitochondria accumulation, further produces ROS to activate NLRP3, eventually accelerates heart failure.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Ya-Juan Cui
- Department of Cardiology, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 250012, Jinan, China
| | - Yu Liu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Hui-Xin Li
- Shandong University of Traditional Chinese Medicine, 250012, Jinan, China
| | - Yu-Dong Su
- Shandong University of Traditional Chinese Medicine, 250012, Jinan, China
| | - Sheng-Nan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Lan-Lan Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 250012, Jinan, China
| | - Yue-Wen Zhao
- Department of Cardiology, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 250012, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Feng Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China. .,Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China. .,Department of Cardiology, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 250012, Jinan, China.
| |
Collapse
|
188
|
Fedele G, Loh SHY, Celardo I, Leal NS, Lehmann S, Costa AC, Martins LM. Suppression of intestinal dysfunction in a Drosophila model of Parkinson's disease is neuroprotective. NATURE AGING 2022; 2:317-331. [PMID: 37117744 DOI: 10.1038/s43587-022-00194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/16/2022] [Indexed: 04/30/2023]
Abstract
The innate immune response mounts a defense against foreign invaders and declines with age. An inappropriate induction of this response can cause diseases. Previous studies showed that mitochondria can be repurposed to promote inflammatory signaling. Damaged mitochondria can also trigger inflammation and promote diseases. Mutations in pink1, a gene required for mitochondrial health, cause Parkinson's disease, and Drosophila melanogaster pink1 mutants accumulate damaged mitochondria. Here, we show that defective mitochondria in pink1 mutants activate Relish targets and demonstrate that inflammatory signaling causes age-dependent intestinal dysfunction in pink1-mutant flies. These effects result in the death of intestinal cells, metabolic reprogramming and neurotoxicity. We found that Relish signaling is activated downstream of a pathway stimulated by cytosolic DNA. Suppression of Relish in the intestinal midgut of pink1-mutant flies restores mitochondrial function and is neuroprotective. We thus conclude that gut-brain communication modulates neurotoxicity in a fly model of Parkinson's disease through a mechanism involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giorgio Fedele
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Susann Lehmann
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Ana C Costa
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
189
|
Yi YS. Potential benefits of ginseng against COVID-19 by targeting inflammasomes. J Ginseng Res 2022; 46:722-730. [PMID: 35399195 PMCID: PMC8979607 DOI: 10.1016/j.jgr.2022.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogenic virus that causes coronavirus disease 2019 (COVID-19), with major symptoms including hyper-inflammation and cytokine storm, which consequently impairs the respiratory system and multiple organs, or even cause death. SARS-CoV-2 activates inflammasomes and inflammasome-mediated inflammatory signaling pathways, which are key determinants of hyperinflammation and cytokine storm in COVID-19 patients. Additionally, SARS-CoV-2 inhibits inflammasome activation to evade the host's antiviral immunity. Therefore, regulating inflammasome initiation has received increasing attention as a preventive measure in COVID-19 patients. Ginseng and its major active constituents, ginsenosides and saponins, improve the immune system and exert anti-inflammatory effects by targeting inflammasome stimulation. Therefore, this review discussed the potential preventive and therapeutic roles of ginseng in COVID-19 based on its regulatory role in inflammasome initiation and the host's antiviral immunity.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, 16227, Republic of Korea.
| |
Collapse
|
190
|
Penna C, Comità S, Tullio F, Alloatti G, Pagliaro P. Challenges facing the clinical translation of cardioprotection: 35 years after the discovery of ischemic preconditioning. Vascul Pharmacol 2022; 144:106995. [DOI: 10.1016/j.vph.2022.106995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 12/19/2022]
|
191
|
Irazoki A, Martinez‐Vicente M, Aparicio P, Aris C, Alibakhshi E, Rubio‐Valera M, Castellanos J, Lores L, Palacín M, Gumà A, Zorzano A, Sebastián D. Coordination of mitochondrial and lysosomal homeostasis mitigates inflammation and muscle atrophy during aging. Aging Cell 2022; 21:e13583. [PMID: 35263007 PMCID: PMC9009131 DOI: 10.1111/acel.13583] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia is one of the main factors contributing to the disability of aged people. Among the possible molecular determinants of sarcopenia, increasing evidences suggest that chronic inflammation contributes to its development. However, a key unresolved question is the nature of the factors that drive inflammation during aging and that participate in the development of sarcopenia. In this regard, mitochondrial dysfunction and alterations in mitophagy induce inflammatory responses in a wide range of cells and tissues. However, whether accumulation of damaged mitochondria (MIT) in muscle could trigger inflammation in the context of aging is still unknown. Here, we demonstrate that BCL2 interacting protein 3 (BNIP3) plays a key role in the control of mitochondrial and lysosomal homeostasis, and mitigates muscle inflammation and atrophy during aging. We show that muscle BNIP3 expression increases during aging in mice and in some humans. BNIP3 deficiency alters mitochondrial function, decreases mitophagic flux and, surprisingly, induces lysosomal dysfunction, leading to an upregulation of Toll‐like receptor 9 (TLR9)‐dependent inflammation and activation of the NLRP3 (nucleotide‐binding oligomerization domain (NOD)‐, leucine‐rich repeat (LRR)‐, and pyrin domain‐containing protein 3) inflammasome in muscle cells and mouse muscle. Importantly, downregulation of muscle BNIP3 in aged mice exacerbates inflammation and muscle atrophy, and high BNIP3 expression in aged human subjects associates with a low inflammatory profile, suggesting a protective role for BNIP3 against age‐induced muscle inflammation in mice and humans. Taken together, our data allow us to propose a new adaptive mechanism involving the mitophagy protein BNIP3, which links mitochondrial and lysosomal homeostasis with inflammation and is key to maintaining muscle health during aging.
Collapse
Affiliation(s)
- Andrea Irazoki
- Institute for Research in Biomedicine (IRB Barcelona) The Barcelona Institute of Science and Technology Barcelona Spain
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Barcelona Spain
| | - Marta Martinez‐Vicente
- Neurodegenerative Diseases Research Group Vall d’Hebron Research Institute‐Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) Barcelona Spain
| | - Pilar Aparicio
- Department of Orthopedic Surgery and Traumatology Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
| | - Cecilia Aris
- Department of Family and Community Medicine Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
| | - Esmaeil Alibakhshi
- Pneumology Department Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
- Physical Medicine and Rehabilitation Department Clinical Research Development Unite Baqyiatallah Hospital, Faculty of Medicine Baqyiatallah University of Medical Science Tehran Iran
- Quantitative MR Imaging and Spectroscopy Group Research Center for Molecular and Cellular Imaging Advanced Medical Technologies and Equipment Institute Tehran University of Medical Science Tehran Iran
| | - Maria Rubio‐Valera
- Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
- The Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP) Madrid Spain
| | - Juan Castellanos
- Department of Orthopedic Surgery and Traumatology Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
| | - Luis Lores
- Pneumology Department Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona) The Barcelona Institute of Science and Technology Barcelona Spain
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Barcelona Spain
- CIBER de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III Madrid Spain
| | - Anna Gumà
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Barcelona Spain
- Institute of Biomedicine of the University of Barcelona (IBUB) Barcelona Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona) The Barcelona Institute of Science and Technology Barcelona Spain
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Barcelona Spain
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona) The Barcelona Institute of Science and Technology Barcelona Spain
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Barcelona Spain
| |
Collapse
|
192
|
Krivoshapova KE, Vegner EA, Barbarash OL. [Frailty syndrome as an independent predictor of adverse prognosis in patients with chronic heart failure]. KARDIOLOGIIA 2022; 62:89-96. [PMID: 35414366 DOI: 10.18087/cardio.2022.3.n1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/29/2020] [Indexed: 06/14/2023]
Abstract
This review presents results of clinical studies of senile asthenia ("fragility") syndrome and chronic heart failure (CHF). Recent reports of the "fragility" prevalence in patients with CHF are described. The review presents specific features of pathophysiological pathways underlying the development of both senile asthenia syndrome and CHF; the role of "fragility" in the progression and complications of CHF is addressed. Senile asthenia syndrome associated with CHF is regarded as an independent predictor of unfavorable prognosis and high mortality in this patient category. The authors concluded that methods for "fragility" evaluation in CHF patients followed by risk stratification and selection of individual management tactics should be implemented in clinical practice.
Collapse
Affiliation(s)
- K E Krivoshapova
- Research Institute for Complex Issues of Cardiovascular Diseases
| | | | - Olga L Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical
| |
Collapse
|
193
|
Gatica D, Chiong M, Lavandero S, Klionsky DJ. The role of autophagy in cardiovascular pathology. Cardiovasc Res 2022; 118:934-950. [PMID: 33956077 PMCID: PMC8930074 DOI: 10.1093/cvr/cvab158] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic recycling pathway in which cytoplasmic components are sequestered, degraded, and recycled to survive various stress conditions. Autophagy dysregulation has been observed and linked with the development and progression of several pathologies, including cardiovascular diseases, the leading cause of death in the developed world. In this review, we aim to provide a broad understanding of the different molecular factors that govern autophagy regulation and how these mechanisms are involved in the development of specific cardiovascular pathologies, including ischemic and reperfusion injury, myocardial infarction, cardiac hypertrophy, cardiac remodelling, and heart failure.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| | - Mario Chiong
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
| | - Sergio Lavandero
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), 926 JF Gonzalez, Santiago 7860201, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-8573, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| |
Collapse
|
194
|
Barcena ML, Aslam M, Pozdniakova S, Norman K, Ladilov Y. Cardiovascular Inflammaging: Mechanisms and Translational Aspects. Cells 2022; 11:cells11061010. [PMID: 35326461 PMCID: PMC8946971 DOI: 10.3390/cells11061010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Aging is one of the major non-reversible risk factors for several chronic diseases, including cancer, type 2 diabetes, dementia, and cardiovascular diseases (CVD), and it is a key cause of multimorbidity, disability, and frailty (decreased physical activity, fatigue, and weight loss). The underlying cellular mechanisms are complex and consist of multifactorial processes, such as telomere shortening, chronic low-grade inflammation, oxidative stress, mitochondrial dysfunction, accumulation of senescent cells, and reduced autophagy. In this review, we focused on the molecular mechanisms and translational aspects of cardiovascular aging-related inflammation, i.e., inflammaging.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-525-359
| | - Muhammad Aslam
- Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University, Aulweg 129, 35392 Giessen, Germany;
- Department of Cardiology, Kerckhoff Clinic GmbH, 61231 Bad Nauheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Rhein-Main, 61231 Bad Nauheim, Germany
| | - Sofya Pozdniakova
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Barcelona Biomedical Research Park (PRBB), Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Kristina Norman
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Department of Nutrition & Gerontology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Yury Ladilov
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Department of Cardiovascular Surgery, Heart Center Brandenburg, Brandenburg Medical School Theodor Fontane, University Hospital, Ladeburger Str. 17, 16321 Bernau, Germany
| |
Collapse
|
195
|
Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes. Cell Biol Toxicol 2022; 39:277-299. [PMID: 35235096 PMCID: PMC10042943 DOI: 10.1007/s10565-021-09692-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/22/2021] [Indexed: 11/02/2022]
Abstract
Diabetic cardiomyopathy (DCM) is characterized by lipid accumulation, mitochondrial dysfunction, and aseptic inflammatory activation. Mitochondria-derived cytosolic DNA has been reported to induce inflammation by activating cyclic GMP-AMP synthase (cGAS)/the stimulator of interferon genes (STING) pathway in the adipose, liver, and kidney tissues. However, the role of cytosolic mtDNA in the progression of DCM is unclear. In this study, with an obesity-related DCM mouse model established by feeding db/db mice with a high-fat diet (HFD), we observed increased mtDNA in the cytosol and activated cGAS-STING signaling pathway during DCM, as well as the downstream targets, IRF3, NF-κB, IL-18, and IL-1β. In a further study with a palmitic acid (PA)-induced lipotoxic cell model established in H9C2 cells, we revealed that the cytosolic mtDNA was the result of PA-induced overproduction of mitochondrial ROS, which also led to the activation of the cGAS/STING system and its downstream targets. Notably, treatment of extracted mtDNA alone was sufficient to activate the cGAS-STING signaling pathway in cultured H9C2 cells. Besides, both knockdown of STING in PA-induced H9C2 cells and inhibition of STING by C-176 injection in the DCM mouse model could remarkably block the inflammation and apoptosis of cardiomyocytes. In conclusion, our study elucidated the critical role of cytosolic mtDNA-induced cGAS-STING activation in the pathogenesis of obesity-related DCM and provided preclinical validation for using a STING inhibitor as a new potential therapeutic strategy for the treatment of DCM.
Collapse
|
196
|
Evaluation of Ectopic Mitochondrial DNA in HeLa Cells. Curr Issues Mol Biol 2022; 44:1215-1223. [PMID: 35723303 PMCID: PMC8947175 DOI: 10.3390/cimb44030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022] Open
Abstract
The presence of ectopic DNA in the cytoplasm induces inflammation and cell death. It has been widely reported that leakage of nuclear DNA into the cytoplasm can mainly be sensed by cyclic GMP-AMP synthase (cGAS). We recently reported that mitochondria-derived cytoplasmic double-stranded DNA (dsDNA) that has escaped lysosomal degradation induces significant cytotoxicity in cultured cells and in vivo. Cytoplasmic mitochondrial DNA is assumed to be involved in various diseases and disorders, and more and more papers have been published confirming this. On the other hand, the current method for evaluating mitochondrial DNA in the cytoplasm may not be quantitative. Here, we introduce in detail a method to evaluate ectopic mitochondrial DNA in cells. This method is useful in basic research as well as in the study of aging, Parkinson’s disease, Alzheimer’s disease, heart failure, autoimmune diseases, cancer, and other conditions.
Collapse
|
197
|
Ma X, Rawnsley DR, Kovacs A, Islam M, Murphy JT, Zhao C, Kumari M, Foroughi L, Liu H, Qi K, Diwan A, Hyrc K, Evans S, Satoh T, French BA, Margulies KB, Javaheri A, Razani B, Mann DL, Mani K, Diwan A. TRAF2, an Innate Immune Sensor, Reciprocally Regulates Mitophagy and Inflammation to Maintain Cardiac Myocyte Homeostasis. JACC Basic Transl Sci 2022; 7:223-243. [PMID: 35411325 PMCID: PMC8993766 DOI: 10.1016/j.jacbts.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
Mitochondria are essential for cardiac myocyte function, but damaged mitochondria trigger cardiac myocyte death. Although mitophagy, a lysosomal degradative pathway to remove damaged mitochondria, is robustly active in cardiac myocytes in the unstressed heart, its mechanisms and physiological role remain poorly defined. We discovered a critical role for TRAF2, an innate immunity effector protein with E3 ubiquitin ligase activity, in facilitating physiological cardiac myocyte mitophagy in the adult heart, to prevent inflammation and cell death, and maintain myocardial homeostasis.
Collapse
Key Words
- AAV9, adeno-associated virus serotype 9
- ER, endoplasmic reticulum
- FS, fractional shortening
- GFP, green fluorescent protein
- IP, intraperitoneal
- LV, left ventricular
- MAM, mitochondria-associated membranes
- MCM, MerCreMer
- MEF, murine embryonic fibroblast
- PINK1, PTEN-induced kinase 1
- RFP, red fluorescent protein
- TLR9, toll-like receptor 9
- TRAF2
- TRAF2, tumor necrosis factor receptor-associated factor-2
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- cTnT, cardiac troponin T
- cell death
- inflammation
- mitophagy
Collapse
Affiliation(s)
- Xiucui Ma
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - David R. Rawnsley
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Attila Kovacs
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Moydul Islam
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John T. Murphy
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Chen Zhao
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minu Kumari
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Layla Foroughi
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Haiyan Liu
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Kevin Qi
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aaradhya Diwan
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Krzysztof Hyrc
- Alafi Neuroimaging Laboratory, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah Evans
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Takashi Satoh
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Brent A. French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth B. Margulies
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ali Javaheri
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Babak Razani
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Douglas L. Mann
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kartik Mani
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Abhinav Diwan
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
198
|
Harapas CR, Idiiatullina E, Al-Azab M, Hrovat-Schaale K, Reygaerts T, Steiner A, Laohamonthonkul P, Davidson S, Yu CH, Booty L, Masters SL. Organellar homeostasis and innate immune sensing. Nat Rev Immunol 2022; 22:535-549. [PMID: 35197578 DOI: 10.1038/s41577-022-00682-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
A cell is delimited by numerous borders that define specific organelles. The walls of some organelles are particularly robust, such as in mitochondria or endoplasmic reticulum, but some are more fluid such as in phase-separated stress granules. Either way, all organelles can be damaged at times, leading their contents to leak out into the surrounding environment. Therefore, an elegant way to construct an innate immune defence system is to recognize host molecules that do not normally reside within a particular compartment. Here, we provide several examples where organellar homeostasis is lost, leading to the activation of a specific innate immune sensor; these include NLRP3 activation owing to a disrupted trans-Golgi network, Pyrin activation due to cytoskeletal damage, and cGAS-STING activation following the leakage of nuclear or mitochondrial DNA. Frequently, organelle damage is observed downstream of pathogenic infection but it can also occur in sterile settings as associated with auto-inflammatory disease. Therefore, understanding organellar homeostasis is central to efforts that will identify new innate immune pathways, and therapeutics that balance organellar homeostasis, or target the breakdown pathways that trigger innate immune sensors, could be useful treatments for infection and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Elina Idiiatullina
- Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Mahmoud Al-Azab
- Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Katja Hrovat-Schaale
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Thomas Reygaerts
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Annemarie Steiner
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Lee Booty
- Immunology Network, Immunology Research Unit, GSK, Stevenage, UK
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. .,Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China.
| |
Collapse
|
199
|
Abstract
Mitochondria are dynamic organelles vital for energy production with now appreciated roles in immune defense. During microbial infection, mitochondria serve as signaling hubs to induce immune responses to counteract invading pathogens like viruses. Mitochondrial functions are central to a variety of antiviral responses including apoptosis and type I interferon signaling (IFN-I). While apoptosis and IFN-I mediated by mitochondrial antiviral signaling (MAVS) are well-established defenses, new dimensions of mitochondrial biology are emerging as battlefronts during viral infection. Increasingly, it has become apparent that mitochondria serve as reservoirs for distinct cues that trigger immune responses and that alterations in mitochondrial morphology may also tip infection outcomes. Furthermore, new data are foreshadowing pivotal roles for classic, homeostatic facets of this organelle as host-virus interfaces, namely, the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) complexes like respiratory supercomplexes. Underscoring the importance of "housekeeping" mitochondrial activities in viral infection is the growing list of viral-encoded inhibitors including mimics derived from cellular genes that antagonize these functions. For example, virologs for ETC factors and several enzymes from the TCA cycle have been recently identified in DNA virus genomes and serve to pinpoint new vulnerabilities during infection. Here, we highlight recent advances for known antiviral functions associated with mitochondria as well as where the next battlegrounds may be based on viral effectors. Collectively, new methodology and mechanistic insights over the coming years will strengthen our understanding of how an ancient molecular truce continues to defend cells against viruses.
Collapse
Affiliation(s)
- Mahsa Sorouri
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Genetics, Disease, and Development Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
200
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Damiano FP, Bucci C, Marzetti E. Circulating Mitochondrial DNA and Inter-Organelle Contact Sites in Aging and Associated Conditions. Cells 2022; 11:cells11040675. [PMID: 35203322 PMCID: PMC8870554 DOI: 10.3390/cells11040675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are primarily involved in cell bioenergetics, regulation of redox homeostasis, and cell death/survival signaling. An immunostimulatory property of mitochondria has also been recognized which is deployed through the extracellular release of entire or portioned organelle and/or mitochondrial DNA (mtDNA) unloading. Dynamic homo- and heterotypic interactions involving mitochondria have been described. Each type of connection has functional implications that eventually optimize mitochondrial activity according to the bioenergetic demands of a specific cell/tissue. Inter-organelle communications may also serve as molecular platforms for the extracellular release of mitochondrial components and subsequent ignition of systemic inflammation. Age-related chronic inflammation (inflamm-aging) has been associated with mitochondrial dysfunction and increased extracellular release of mitochondrial components—in particular, cell-free mtDNA. The close relationship between mitochondrial dysfunction and cellular senescence further supports the central role of mitochondria in the aging process and its related conditions. Here, we provide an overview of (1) the mitochondrial genetic system and the potential routes for generating and releasing mtDNA intermediates; (2) the pro-inflammatory pathways elicited by circulating mtDNA; (3) the participation of inter-organelle contacts to mtDNA homeostasis; and (4) the link of these processes with senescence and age-associated conditions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Correspondence: ; Tel.: +39-06-3015-5559; Fax: +39-06-3051-911
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco P. Damiano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|