151
|
Liu C, Ren Y, Li Z, Hu Q, Yin L, Wang H, Qiao X, Zhang Y, Xing L, Xi Y, Jiang F, Wang S, Huang C, Liu B, Liu H, Wan F, Qian W, Fan W. Giant African snail genomes provide insights into molluscan whole-genome duplication and aquatic-terrestrial transition. Mol Ecol Resour 2020; 21:478-494. [PMID: 33000522 DOI: 10.1111/1755-0998.13261] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
Whole-genome duplication (WGD), contributing to evolutionary diversity and environmental adaptability, has been observed across a wide variety of eukaryotic groups, but not in molluscs. Molluscs are the second largest animal phylum in terms of species numbers, and among the organisms that have successfully adapted to the nonmarine realm through aquatic-terrestrial (A-T) transition. We assembled a chromosome-level reference genome for Achatina immaculata, a globally invasive species, and compared the genomes of two giant African snails (A. immaculata and Achatina fulica) to other available mollusc genomes. Macrosynteny, colinearity blocks, Ks peak and Hox gene clusters collectively suggested a WGD event in the two snails. The estimated WGD timing (~70 million years ago) was close to the speciation age of the Sigmurethra-Orthurethra (within Stylommatophora) lineage and the Cretaceous-Tertiary (K-T) mass extinction, indicating that the WGD may have been a common event shared by all Sigmurethra-Orthurethra species and conferred ecological adaptability allowing survival after the K-T extinction event. Furthermore, the adaptive mechanism of WGD in terrestrial ecosystems was confirmed by the presence of gene families related to the respiration, aestivation and immune defence. Several mucus-related gene families expanded early in the Stylommatophora lineage, and the haemocyanin and phosphoenolpyruvate carboxykinase families doubled during WGD, and zinc metalloproteinase genes were highly tandemly duplicated after WGD. This evidence suggests that although WGD may not have been the direct driver of the A-T transition, it played an important part in the terrestrial adaptation of giant African snails.
Collapse
Affiliation(s)
- Conghui Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuwei Ren
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zaiyuan Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qi Hu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lijuan Yin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hengchao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xi Qiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Longsheng Xing
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yu Xi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fan Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sen Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hangwei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wei Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
152
|
McCulloch KJ, Koenig KM. Krüppel-like factor/specificity protein evolution in the Spiralia and the implications for cephalopod visual system novelties. Proc Biol Sci 2020; 287:20202055. [PMID: 33081641 PMCID: PMC7661307 DOI: 10.1098/rspb.2020.2055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cephalopod visual system is an exquisite example of convergence in biological complexity. However, we have little understanding of the genetic and molecular mechanisms underpinning its elaboration. The generation of new genetic material is considered a significant contributor to the evolution of biological novelty. We sought to understand if this mechanism may be contributing to cephalopod-specific visual system novelties. Specifically, we identified duplications in the Krüppel-like factor/specificity protein (KLF/SP) sub-family of C2H2 zinc-finger transcription factors in the squid Doryteuthis pealeii. We cloned and analysed gene expression of the KLF/SP family, including two paralogs of the DpSP6-9 gene. These duplicates showed overlapping expression domains but one paralog showed unique expression in the developing squid lens, suggesting a neofunctionalization of DpSP6-9a. To better understand this neofunctionalization, we performed a thorough phylogenetic analysis of SP6-9 orthologues in the Spiralia. We find multiple duplications and losses of the SP6-9 gene throughout spiralian lineages and at least one cephalopod-specific duplication. This work supports the hypothesis that gene duplication and neofunctionalization contribute to novel traits like the cephalopod image-forming eye and to the diversity found within Spiralia.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA 02138, USA.,John Harvard Distinguished Science Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA 02138, USA.,John Harvard Distinguished Science Fellows, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
153
|
Li Y, Nong W, Baril T, Yip HY, Swale T, Hayward A, Ferrier DEK, Hui JHL. Reconstruction of ancient homeobox gene linkages inferred from a new high-quality assembly of the Hong Kong oyster (Magallana hongkongensis) genome. BMC Genomics 2020; 21:713. [PMID: 33059600 PMCID: PMC7566022 DOI: 10.1186/s12864-020-07027-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Homeobox-containing genes encode crucial transcription factors involved in animal, plant and fungal development, and changes to homeobox genes have been linked to the evolution of novel body plans and morphologies. In animals, some homeobox genes are clustered together in the genome, either as remnants from ancestral genomic arrangements, or due to coordinated gene regulation. Consequently, analyses of homeobox gene organization across animal phylogeny provide important insights into the evolution of genome organization and developmental gene control, and their interaction. However, homeobox gene organization remains to be fully elucidated in several key animal ancestors, including those of molluscs, lophotrochozoans and bilaterians. RESULTS Here, we present a high-quality chromosome-level genome assembly of the Hong Kong oyster, Magallana hongkongensis (2n = 20), for which 93.2% of the genomic sequences are contained on 10 pseudomolecules (~ 758 Mb, scaffold N50 = 72.3 Mb). Our genome assembly was scaffolded using Hi-C reads, facilitating a larger scaffold size compared to the recently published M. hongkongensis genome of Peng et al. (Mol Ecol Resources, 2020), which was scaffolded using the Crassostrea gigas assembly. A total of 46,963 predicted gene models (45,308 protein coding genes) were incorporated in our genome, and genome completeness estimated by BUSCO was 94.6%. Homeobox gene linkages were analysed in detail relative to available data for other mollusc lineages. CONCLUSIONS The analyses performed in this study and the accompanying genome sequence provide important genetic resources for this economically and culturally valuable oyster species, and offer a platform to improve understanding of animal biology and evolution more generally. Transposable element content is comparable to that found in other mollusc species, contrary to the conclusion of another recent analysis. Also, our chromosome-level assembly allows the inference of ancient gene linkages (synteny) for the homeobox-containing genes, even though a number of the homeobox gene clusters, like the Hox/ParaHox clusters, are undergoing dispersal in molluscs such as this oyster.
Collapse
Affiliation(s)
- Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tobias Baril
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, UK
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Alexander Hayward
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, UK.
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Martine Laboratory, University of St. Andrews, St Andrews, UK.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
154
|
Touceda-Suárez M, Kita EM, Acemel RD, Firbas PN, Magri MS, Naranjo S, Tena JJ, Gómez-Skarmeta JL, Maeso I, Irimia M. Ancient Genomic Regulatory Blocks Are a Source for Regulatory Gene Deserts in Vertebrates after Whole-Genome Duplications. Mol Biol Evol 2020; 37:2857-2864. [PMID: 32421818 PMCID: PMC7530604 DOI: 10.1093/molbev/msaa123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We investigated how the two rounds of whole-genome duplication that occurred at the base of the vertebrate lineage have impacted ancient microsyntenic associations involving developmental regulators (known as genomic regulatory blocks, GRBs). We showed that the majority of GRBs identified in the last common ancestor of chordates have been maintained as a single copy in humans. We found evidence that dismantling of the duplicated GRB copies occurred early in vertebrate evolution often through the differential retention of the regulatory gene but loss of the bystander gene’s exonic sequences. Despite the large evolutionary scale, the presence of duplicated highly conserved noncoding regions provided unambiguous proof for this scenario for multiple ancient GRBs. Remarkably, the dismantling of ancient GRB duplicates has contributed to the creation of large gene deserts associated with regulatory genes in vertebrates, providing a potentially widespread mechanism for the origin of these enigmatic genomic traits.
Collapse
Affiliation(s)
- María Touceda-Suárez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, pain
| | - Elizabeth M Kita
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, pain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Panos N Firbas
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Marta S Magri
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Jose Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, pain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
155
|
Fodor I, Urbán P, Scott AP, Pirger Z. A critical evaluation of some of the recent so-called 'evidence' for the involvement of vertebrate-type sex steroids in the reproduction of mollusks. Mol Cell Endocrinol 2020; 516:110949. [PMID: 32687858 DOI: 10.1016/j.mce.2020.110949] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Many studies on the control of reproduction in mollusks have focused on hormones (and proteins associated with the production and signaling of those hormones) which were originally discovered in humans, in the belief that if they are also present in mollusks, they must have the same role. However, although human sex steroids can be found in mollusks, they are so readily absorbed that their presence is not necessarily evidence of endogenous synthesis. A homolog of the vertebrate nuclear estrogen receptor has been found in mollusks, but it does not bind to estrogens or indeed to any steroid at all. Antibodies against human aromatase show positive immunostaining in mollusks, yet the aromatase gene has not been found in the genome of any invertebrates (let alone mollusks). This review will deal with these and other examples of contradictory evidence for a role of human hormones in invertebrate reproduction.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary.
| | - Péter Urbán
- Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, 7624, Pécs, Hungary
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Research (Cefas), Barrack Road, Weymouth, DT4 8UB, UK
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary
| |
Collapse
|
156
|
Genomic and transcriptomic landscapes and evolutionary dynamics of molluscan glycoside hydrolase families with implications for algae-feeding biology. Comput Struct Biotechnol J 2020; 18:2744-2756. [PMID: 33101612 PMCID: PMC7560691 DOI: 10.1016/j.csbj.2020.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/03/2023] Open
Abstract
Genome-wide characterization of GH families is conducted for Mollusca. GH9, GH10, GH18 and GH20 families are remarkably expanded in molluscs. The wide adoption of CBMs likely facilitates the hydrolysis of polysaccharides. Hepatopancreas is the main organ for the prominent expression of GH families. Functional divergence of GH families possibly contributes to their adaptive roles.
The hydrolysis of sugar-containing compounds by glycoside hydrolases (GHs) plays essential roles in many major biological processes, but to date our systematic understanding of the functional diversity and evolution of GH families remains largely limited to a few well-studied terrestrial animals. Molluscs represent the largest marine phylum in the animal kingdom, and many of them are herbivorous that utilize algae as a main nutritional source, making them good subjects for studying the functional diversity and adaptive evolution of GH families. In the present study, we conducted genome-wide identification and functional and evolutionary analysis of all GH families across major molluscan lineages. We revealed that the remarkable expansion of the GH9, GH10, GH18 and GH20 families and the wide adoption of carbohydrate-binding modules in molluscan expanded GH families likely contributed to the efficient hydrolysis of marine algal polysaccharides and were involved in the consolidation of molluscan algae-feeding habits. Gene expression and network analysis revealed the hepatopancreas as the main organ for the prominent expression of approximately half of the GH families (well corresponding to the digestive roles of the hepatopancreas) and key or hub GHs in the coexpression gene network with potentially diverse functionalities. We also revealed the evolutionary signs of differential expansion and functional divergence of the GH family, which possibly contributed to lineage-specific adaptation. Systematic analysis of GH families at both genomic and transcriptomic levels provides important clues for understanding the functional divergence and evolution of GH gene families in molluscs in relation to their algae-feeding biology.
Collapse
|
157
|
Lanza AR, Seaver EC. Functional evidence that Activin/Nodal signaling is required for establishing the dorsal-ventral axis in the annelid Capitella teleta. Development 2020; 147:147/18/dev189373. [PMID: 32967906 PMCID: PMC7522025 DOI: 10.1242/dev.189373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
The TGF-β superfamily comprises two distinct branches: the Activin/Nodal and BMP pathways. During development, signaling by this superfamily regulates a variety of embryological processes, and it has a conserved role in patterning the dorsal-ventral body axis. Recent studies show that BMP signaling establishes the dorsal-ventral axis in some mollusks. However, previous pharmacological inhibition studies in the annelid Capitella teleta, a sister clade to the mollusks, suggests that the dorsal-ventral axis is patterned via Activin/Nodal signaling. Here, we determine the role of both the Activin/Nodal and BMP pathways as they function in Capitella axis patterning. Antisense morpholino oligonucleotides were targeted to Ct-Smad2/3 and Ct-Smad1/5/8, transcription factors specific to the Activin/Nodal and BMP pathways, respectively. Following microinjection of zygotes, resulting morphant larvae were scored for axial anomalies. We demonstrate that the Activin/Nodal pathway of the TGF-β superfamily, but not the BMP pathway, is the primary dorsal-ventral patterning signal in Capitella. These results demonstrate variation in the molecular control of axis patterning across spiralians, despite sharing a conserved cleavage program. We suggest that these findings represent an example of developmental system drift. Summary: Morpholino knockdown experiments in the annelid Capitella teleta demonstrate that the dorsal-ventral axis is primarily patterned by the Activin/Nodal pathway of the TGF-β superfamily, rather than by the BMP pathway.
Collapse
Affiliation(s)
- Alexis R Lanza
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080-8610, USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080-8610, USA
| |
Collapse
|
158
|
Ferretti L, Krämer-Eis A, Schiffer PH. Conserved Patterns in Developmental Processes and Phases, Rather than Genes, Unite the Highly Divergent Bilateria. Life (Basel) 2020; 10:E182. [PMID: 32899936 PMCID: PMC7555945 DOI: 10.3390/life10090182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023] Open
Abstract
Bilateria are the predominant clade of animals on Earth. Despite having evolved a wide variety of body plans and developmental modes, they are characterized by common morphological traits. By default, researchers have tried to link clade-specific genes to these traits, thus distinguishing bilaterians from non-bilaterians, by their gene content. Here we argue that it is rather biological processes that unite Bilateria and set them apart from their non-bilaterian sisters, with a less complex body morphology. To test this hypothesis, we compared proteomes of bilaterian and non-bilaterian species in an elaborate computational pipeline, aiming to search for a set of bilaterian-specific genes. Despite the limited confidence in their bilaterian specificity, we nevertheless detected Bilateria-specific functional and developmental patterns in the sub-set of genes conserved in distantly related Bilateria. Using a novel multi-species GO-enrichment method, we determined the functional repertoire of genes that are widely conserved among Bilateria. Analyzing expression profiles in three very distantly related model species-D. melanogaster, D. rerio and C. elegans-we find characteristic peaks at comparable stages of development and a delayed onset of expression in embryos. In particular, the expression of the conserved genes appears to peak at the phylotypic stage of different bilaterian phyla. In summary, our study illustrate how development connects distantly related Bilateria after millions of years of divergence, pointing to processes potentially separating them from non-bilaterians. We argue that evolutionary biologists should return from a purely gene-centric view of evolution and place more focus on analyzing and defining conserved developmental processes and periods.
Collapse
Affiliation(s)
- Luca Ferretti
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Andrea Krämer-Eis
- Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany;
| | - Philipp H. Schiffer
- Institut für Zoologie, Universität zu Köln, Zülpicher Straße 47b, 50674 Köln, Germany
| |
Collapse
|
159
|
Liu G, Zhang H, Zhao C, Zhang H. Evolutionary History of the Toll-Like Receptor Gene Family across Vertebrates. Genome Biol Evol 2020; 12:3615-3634. [PMID: 31800025 PMCID: PMC6946030 DOI: 10.1093/gbe/evz266] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Adaptation to a wide range of pathogenic environments is a major aspect of the ecological adaptations of vertebrates during evolution. Toll-like receptors (TLRs) are ancient membrane-bound sensors in animals and are best known for their roles in detecting and defense against invading pathogenic microorganisms. To understand the evolutionary history of the vertebrate TLR gene family, we first traced the origin of single-cysteine cluster TLRs that share the same protein architecture with vertebrate TLRs in early-branching animals and then analyzed all members of the TLR family in over 200 species covering all major vertebrate clades. Our results indicate that although the emergence of single-cysteine cluster TLRs predates the separation of bilaterians and cnidarians, most vertebrate TLR members originated shortly after vertebrate emergence. Phylogenetic analyses divided 1,726 vertebrate TLRs into 8 subfamilies, and TLR3 may represent the most ancient subfamily that emerged before the branching of deuterostomes. Our analysis reveals that purifying selection predominated in the evolution of all vertebrate TLRs, with mean dN/dS (ω) values ranging from 0.082 for TLR21 in birds to 0.434 for TLR11 in mammals. However, we did observe patterns of positive selection acting on specific codons (527 of 60,294 codons across all vertebrate TLRs, 8.7‰), which are significantly concentrated in ligand-binding extracellular domains and suggest host–pathogen coevolutionary interactions. Additionally, we found stronger positive selection acting on nonviral compared with viral TLRs, indicating the more essential nonredundant function of viral TLRs in host immunity. Taken together, our findings provide comprehensive insight into the complex evolutionary processes of the vertebrate TLR gene family, involving gene duplication, pseudogenization, purification, and positive selection.
Collapse
Affiliation(s)
- Guangshuai Liu
- College of Life Science, Qufu Normal University, Shandong, China
| | - Huanxin Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, China
| | - Chao Zhao
- College of Life Science, Qufu Normal University, Shandong, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Shandong, China
| |
Collapse
|
160
|
Genes with spiralian-specific protein motifs are expressed in spiralian ciliary bands. Nat Commun 2020; 11:4171. [PMID: 32820176 PMCID: PMC7441323 DOI: 10.1038/s41467-020-17780-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Spiralia is a large, ancient and diverse clade of animals, with a conserved early developmental program but diverse larval and adult morphologies. One trait shared by many spiralians is the presence of ciliary bands used for locomotion and feeding. To learn more about spiralian-specific traits we have examined the expression of 20 genes with protein motifs that are strongly conserved within the Spiralia, but not detectable outside of it. Here, we show that two of these are specifically expressed in the main ciliary band of the mollusc Tritia (also known as Ilyanassa). Their expression patterns in representative species from five more spiralian phyla—the annelids, nemerteans, phoronids, brachiopods and rotifers—show that at least one of these, lophotrochin, has a conserved and specific role in particular ciliated structures, most consistently in ciliary bands. These results highlight the potential importance of lineage-specific genes or protein motifs for understanding traits shared across ancient lineages. Spiralians have ciliary bands, used for locomotion and feeding, but defining molecular features of these structures are unknown. Here, the authors report a gene, Lophotrochin, that contains a protein domain only found in spiralians, and specifically expressed in diverse ciliary bands across the group, which provides a molecular signature for these structures.
Collapse
|
161
|
Bai Y, Nie H, Wang Z, Yan X. Genome-wide identification and transcriptome-based expression profiling of Wnt gene family in Ruditapes philippinarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100709. [PMID: 32688272 DOI: 10.1016/j.cbd.2020.100709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The Wnt genes encode a set of conserved glycoproteins regulating early development, cell proliferation and differentiation, and tissue regeneration in metazoans. In some mollusks, the knowledge of Wnt gene family has been limited because of the short of the genomic and transcriptomic resources. Ruditapes philippinarum is an economically important bivalve with a variety of shell coloration patterns and ability to regenerate its siphon. To gain a greater understanding of the evolutionary dynamics of Wnt gene family, we carried out a genome-wide identification and phylogenetic analysis of Wnt gene family in R. philippinarum and other four mollusks. A total of 12 Wnt genes were identified in the genome of R. philippinarum, and the dynamic patterns of gene conservation, loss and duplication of Wnt genes were analyzed in mollusks and model organisms. Furthermore, the transcriptome analyses demonstrated the expression profiles of the Wnt genes at different developmental stage, in adult tissues, during siphon regeneration, in four different shell color strains, and at uncolored and colored developmental stages in two different shell color strains. These findings suggest that the expansion of Wnt genes may play vital roles in the larval development, the formation of shell color pattern and siphon regeneration in R. philippinarum. This study provides a valuable insight into Wnt function and evolution in mollusks.
Collapse
Affiliation(s)
- Yitian Bai
- College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Zhengxing Wang
- College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
162
|
Heger P, Zheng W, Rottmann A, Panfilio KA, Wiehe T. The genetic factors of bilaterian evolution. eLife 2020; 9:e45530. [PMID: 32672535 PMCID: PMC7535936 DOI: 10.7554/elife.45530] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship.
Collapse
Affiliation(s)
- Peter Heger
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Wen Zheng
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Anna Rottmann
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, Cologne Biocenter, University of CologneCologneGermany
- School of Life Sciences, University of Warwick, Gibbet Hill CampusCoventryUnited Kingdom
| | - Thomas Wiehe
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| |
Collapse
|
163
|
Mat AM, Sarrazin J, Markov GV, Apremont V, Dubreuil C, Eché C, Fabioux C, Klopp C, Sarradin PM, Tanguy A, Huvet A, Matabos M. Biological rhythms in the deep-sea hydrothermal mussel Bathymodiolus azoricus. Nat Commun 2020; 11:3454. [PMID: 32651383 PMCID: PMC7351958 DOI: 10.1038/s41467-020-17284-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
Biological rhythms are a fundamental property of life. The deep ocean covers 66% of our planet surface and is one of the largest biomes. The deep sea has long been considered as an arrhythmic environment because sunlight is totally absent below 1,000 m depth. In the present study, we have sequenced the temporal transcriptomes of a deep-sea species, the ecosystem-structuring vent mussel Bathymodiolus azoricus. We reveal that tidal cycles predominate in the transcriptome and physiology of mussels fixed directly at hydrothermal vents at 1,688 m depth at the Mid-Atlantic Ridge, whereas daily cycles prevail in mussels sampled after laboratory acclimation. We identify B. azoricus canonical circadian clock genes, and show that oscillations observed in deep-sea mussels could be either a direct response to environmental stimulus, or be driven endogenously by one or more biological clocks. This work generates in situ insights into temporal organisation in a deep-sea organism. Little is known about gene expression of organisms in the deep sea, partially owing to constraints on sampling these organisms in situ. Here the authors circumvent this problem, fixing tissue of a deep-sea mussel at 1,688 m in depth, and later analyzing transcriptomes to reveal gene expression patterns showing tidal oscillations.
Collapse
Affiliation(s)
- Audrey M Mat
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France. .,Ifremer, EEP, F-29280, Plouzané, France.
| | | | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Vincent Apremont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France.,Ifremer, EEP, F-29280, Plouzané, France
| | | | - Camille Eché
- GeT-PlaGe, Genotoul, INRA Auzeville, Auzeville, France
| | - Caroline Fabioux
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | | | | - Arnaud Tanguy
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | |
Collapse
|
164
|
Jang J, Forbes VE, Sadowsky MJ. Lack of evidence for the role of gut microbiota in PAH biodegradation by the polychaete Capitella teleta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138356. [PMID: 32302836 DOI: 10.1016/j.scitotenv.2020.138356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Capitella teleta is a marine sediment-feeding polychaete known to degrade various polycyclic aromatic hydrocarbons (PAHs) and reported to possess genes involved in PAH transformation, such as those in the P450 cytochrome superfamily. Previous research focusing on biodegradation of PAHs by C. teleta demonstrated that these worms are effective biodegraders, but overlooked the possible role of its gut microbiota in facilitating PAH metabolism. Recently, C. teleta's microbiome was characterized and found to contain several bacterial genera known to contain PAH-degrading members, including Acinetobacter, Thalassotalea, and Achromobacter. Despite this, however, no data have thus far been presented demonstrating the role of C. teleta's gut microbiota in PAH degradation. The present study was designed to more conclusively determine the presence of PAH-degrading bacteria in worm digestive tracts and to more clearly distinguish the relative roles of worm versus gut-microbial metabolism in the removal of PAH from sediment. To do this, we manipulated marine sediment microorganisms and worm gut microbiota by autoclaving and antibiotic treatment, respectively. Our results showed that no fluoranthene degradation occurred in microcosms in the absence of worms. More importantly, there was no significant difference in fluoranthene degradation between antibiotic-treated and non-treated worms. We also found no evidence of fluoranthene degradation using resting cells of gut microbes of C. teleta, and we were unable to isolate fluoranthene-degrading bacterial strains from enrichments of polychaete gut contents, despite multiple attempts. Gut microbiota in worms treated with antibiotics recovered, through bidirectional transfer, between worms and sediment after 2 weeks of microcosm incubation, and gut microbes appear to be required for the survival and growth of C. teleta. Our results build on previous studies suggesting that C. teleta itself is primarily responsible for the metabolism of fluoranthene in ingested sediment. We hypothesize that C. teleta's core microbiota, which includes members of Propionibacterium as the most abundant genus, likely aid worms in obtaining key nutrients (e.g., vitamins) from its sediment diet.
Collapse
Affiliation(s)
- Jeonghwan Jang
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| | - Valery E Forbes
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA; Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
165
|
Dong Y, Zeng Q, Ren J, Yao H, Lv L, He L, Ruan W, Xue Q, Bao Z, Wang S, Lin Z. The Chromosome-Level Genome Assembly and Comprehensive Transcriptomes of the Razor Clam ( Sinonovacula constricta). Front Genet 2020; 11:664. [PMID: 32733535 PMCID: PMC7358530 DOI: 10.3389/fgene.2020.00664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yinghui Dong
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hanhan Yao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Liyuan Lv
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Lin He
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Wenbin Ruan
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,The Sars-Fang Centre, Ocean University of China, Qingdao, China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
166
|
Jellyfish genomes reveal distinct homeobox gene clusters and conservation of small RNA processing. Nat Commun 2020; 11:3051. [PMID: 32561724 PMCID: PMC7305137 DOI: 10.1038/s41467-020-16801-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
The phylum Cnidaria represents a close outgroup to Bilateria and includes familiar animals including sea anemones, corals, hydroids, and jellyfish. Here we report genome sequencing and assembly for true jellyfish Sanderia malayensis and Rhopilema esculentum. The homeobox gene clusters are characterised by interdigitation of Hox, NK, and Hox-like genes revealing an alternate pathway of ANTP class gene dispersal and an intact three gene ParaHox cluster. The mitochondrial genomes are linear but, unlike in Hydra, we do not detect nuclear copies, suggesting that linear plastid genomes are not necessarily prone to integration. Genes for sesquiterpenoid hormone production, typical for arthropods, are also now found in cnidarians. Somatic and germline cells both express piwi-interacting RNAs in jellyfish revealing a conserved cnidarian feature, and evidence for tissue-specific microRNA arm switching as found in Bilateria is detected. Jellyfish genomes reveal a mosaic of conserved and divergent genomic characters evolved from a shared ancestral genetic architecture.
Collapse
|
167
|
Draft genome of the European medicinal leech Hirudo medicinalis (Annelida, Clitellata, Hirudiniformes) with emphasis on anticoagulants. Sci Rep 2020; 10:9885. [PMID: 32555498 PMCID: PMC7303139 DOI: 10.1038/s41598-020-66749-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
The European medicinal leech has been used for medicinal purposes for millennia, and continues to be used today in modern hospital settings. Its utility is granted by the extremely potent anticoagulation factors that the leech secretes into the incision wound during feeding and, although a handful of studies have targeted certain anticoagulants, the full range of anticoagulation factors expressed by this species remains unknown. Here, we present the first draft genome of the European medicinal leech, Hirudo medicinalis, and estimate that we have sequenced between 79–94% of the full genome. Leveraging these data, we searched for anticoagulation factors across the genome of H. medicinalis. Following orthology determination through a series of BLAST searches, as well as phylogenetic analyses, we estimate that fully 15 different known anticoagulation factors are utilized by the species, and that 17 other proteins that have been linked to antihemostasis are also present in the genome. We underscore the utility of the draft genome for comparative studies of leeches and discuss our results in an evolutionary context.
Collapse
|
168
|
Ishikawa A, Shimizu K, Isowa Y, Takeuchi T, Zhao R, Kito K, Fujie M, Satoh N, Endo K. Functional shell matrix proteins tentatively identified by asymmetric snail shell morphology. Sci Rep 2020; 10:9768. [PMID: 32555253 PMCID: PMC7299971 DOI: 10.1038/s41598-020-66021-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Molluscan shell matrix proteins (SMPs) are essential in biomineralization. Here, we identify potentially important SMPs by exploiting the asymmetric shell growth in snail, Lymnaea stagnalis. Asymmetric shells require bilaterally asymmetric expression of SMP genes. We examined expression levels of 35,951 transcripts expressed in the left and right sides of mantle tissue of the pond snail, Lymnaea stagnalis. This transcriptome dataset was used to identify 207 SMPs by LC-MS/MS. 32 of the 207 SMP genes show asymmetric expression patterns, which were further verified for 4 of the 32 SMPs using quantitative PCR analysis. Among asymmetrically expressed SMPs in dextral snails, those that are more highly expressed on the left side than the right side are 3 times more abundant than those that are more highly expressed on the right than the left, suggesting potentially inhibitory roles of SMPs in shell formation. The 32 SMPs thus identified have distinctive features, such as conserved domains and low complexity regions, which may be essential in biomineralization.
Collapse
Affiliation(s)
- Akito Ishikawa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Yukinobu Isowa
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba, Mie, 517-0004, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ran Zhao
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, Kanagawa, 214-8571, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
169
|
Cardoso JCR, Garcia MG, Power DM. Tracing the Origins of the Pituitary Adenylate-Cyclase Activating Polypeptide (PACAP). Front Neurosci 2020; 14:366. [PMID: 32508559 PMCID: PMC7251081 DOI: 10.3389/fnins.2020.00366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a well-conserved neuropeptide characteristic of vertebrates. This pluripotent hypothalamic neuropeptide regulates neurotransmitter release, intestinal motility, metabolism, cell division/differentiation, and immunity. In vertebrates, PACAP has a specific receptor (PAC1) but it can also activate the Vasoactive Intestinal Peptide receptors (VPAC1 and VPAC2). The evolution of the vertebrate PACAP ligand - receptor pair has been well-described. In contrast, the situation in invertebrates is much less clear. The PACAP ligand - receptor pair in invertebrates has mainly been studied using heterologous antibodies raised against mammalian peptides. A few partial PACAP cDNA clones sharing >87% aa identity with vertebrate PACAP have been isolated from a cnidarian, several protostomes and tunicates but no gene has been reported. Moreover, current evolutionary models of the peptide and receptors using molecular data from phylogenetically distinct invertebrate species (mostly nematodes and arthropods) suggests the PACAP ligand and receptors are exclusive to vertebrate genomes. A basal deuterostome, the cephalochordate amphioxus (Branchiostoma floridae), is the only invertebrate in which elements of a PACAP-like system exists but the peptides and receptor share relatively low sequence conservation with the vertebrate homolog system and are a hybrid with the vertebrate glucagon system. In this study, the evolution of the PACAP system is revisited taking advantage of the burgeoning sequence data (genome and transcriptomes) available for invertebrates to uncover clues about when it first appeared. The results suggest that elements of the PACAP system are absent from protozoans, non-bilaterians, and protostomes and they only emerged after the protostome-deuterostome divergence. PACAP and its receptors appeared in vertebrate genomes and they probably shared a common ancestral origin with the cephalochordate PACAP/GCG-like system which after the genome tetraploidization events that preceded the vertebrate radiation generated the PACAP ligand and receptor pair and also the other members of the Secretin family peptides and their receptors.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Manuel G Garcia
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Deborah M Power
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
170
|
Simakov O, Marlétaz F, Yue JX, O'Connell B, Jenkins J, Brandt A, Calef R, Tung CH, Huang TK, Schmutz J, Satoh N, Yu JK, Putnam NH, Green RE, Rokhsar DS. Deeply conserved synteny resolves early events in vertebrate evolution. Nat Ecol Evol 2020; 4:820-830. [PMID: 32313176 PMCID: PMC7269912 DOI: 10.1038/s41559-020-1156-z] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/19/2020] [Indexed: 01/24/2023]
Abstract
Although it is widely believed that early vertebrate evolution was shaped by ancient whole-genome duplications, the number, timing and mechanism of these events remain elusive. Here, we infer the history of vertebrates through genomic comparisons with a new chromosome-scale sequence of the invertebrate chordate amphioxus. We show how the karyotypes of amphioxus and diverse vertebrates are derived from 17 ancestral chordate linkage groups (and 19 ancestral bilaterian groups) by fusion, rearrangement and duplication. We resolve two distinct ancient duplications based on patterns of chromosomal conserved synteny. All extant vertebrates share the first duplication, which occurred in the mid/late Cambrian by autotetraploidization (that is, direct genome doubling). In contrast, the second duplication is found only in jawed vertebrates and occurred in the mid-late Ordovician by allotetraploidization (that is, genome duplication following interspecific hybridization) from two now-extinct progenitors. This complex genomic history parallels the diversification of vertebrate lineages in the fossil record.
Collapse
Affiliation(s)
- Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Brendan O'Connell
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Alexander Brandt
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Kai Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
171
|
Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. Nat Commun 2020; 11:2656. [PMID: 32461609 PMCID: PMC7253469 DOI: 10.1038/s41467-020-16454-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The earthworm is particularly fascinating to biologists because of its strong regenerative capacity. However, many aspects of its regeneration in nature remain elusive. Here we report chromosome-level genome, large-scale transcriptome and single-cell RNA-sequencing data during earthworm (Eisenia andrei) regeneration. We observe expansion of LINE2 transposable elements and gene families functionally related to regeneration (for example, EGFR, epidermal growth factor receptor) particularly for genes exhibiting differential expression during earthworm regeneration. Temporal gene expression trajectories identify transcriptional regulatory factors that are potentially crucial for initiating cell proliferation and differentiation during regeneration. Furthermore, early growth response genes related to regeneration are transcriptionally activated in both the earthworm and planarian. Meanwhile, single-cell RNA-sequencing provides insight into the regenerative process at a cellular level and finds that the largest proportion of cells present during regeneration are stem cells. The mechanisms regulating regeneration of the earthworm are unclear. Here, the authors use genomic and transcriptomic analysis of the earthworm Eisenia andrei together with Hi-C analysis to identify genes involved and show activation of LINE2 transposable elements on regeneration.
Collapse
|
172
|
Horn KM, Anderson FE. Spiralian Genomes Reveal Gene Family Expansions Associated with Adaptation to Freshwater. J Mol Evol 2020; 88:463-472. [PMID: 32388714 DOI: 10.1007/s00239-020-09949-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
Abstract
The colonization of freshwater habitats by marine-adapted organisms represents a major transition that has only occurred a few times in the evolution of animals. Only around half of the extant animal phyla have representatives in both marine and freshwater environments and even within those phyla some major clades are restricted to marine environments. Moving from marine to freshwater environments can create severe osmotic and ionic stresses and the mechanisms that animals have used to adapt to those stresses are still not well understood. In this study, we downloaded amino acid sequence data from 11 spiralian animal genomes (four freshwater taxa representing four different phyla as well as 7 marine taxa) and identified a number of gene family expansions that have occurred exclusively in the freshwater lineages. Further investigation of these gene families and the timing and nature of their expansions will illuminate one of the major evolutionary transitions in the history of life on Earth.
Collapse
Affiliation(s)
- Kevin M Horn
- Division of Natural Sciences and Mathematics, Kentucky Wesleyan College, Owensboro, KY, 42301, USA. .,School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.
| | - Frank E Anderson
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
173
|
Kenny NJ, McCarthy SA, Dudchenko O, James K, Betteridge E, Corton C, Dolucan J, Mead D, Oliver K, Omer AD, Pelan S, Ryan Y, Sims Y, Skelton J, Smith M, Torrance J, Weisz D, Wipat A, Aiden EL, Howe K, Williams ST. The gene-rich genome of the scallop Pecten maximus. Gigascience 2020; 9:giaa037. [PMID: 32352532 PMCID: PMC7191990 DOI: 10.1093/gigascience/giaa037] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The king scallop, Pecten maximus, is distributed in shallow waters along the Atlantic coast of Europe. It forms the basis of a valuable commercial fishery and plays a key role in coastal ecosystems and food webs. Like other filter feeding bivalves it can accumulate potent phytotoxins, to which it has evolved some immunity. The molecular origins of this immunity are of interest to evolutionary biologists, pharmaceutical companies, and fisheries management. FINDINGS Here we report the genome assembly of this species, conducted as part of the Wellcome Sanger 25 Genomes Project. This genome was assembled from PacBio reads and scaffolded with 10X Chromium and Hi-C data. Its 3,983 scaffolds have an N50 of 44.8 Mb (longest scaffold 60.1 Mb), with 92% of the assembly sequence contained in 19 scaffolds, corresponding to the 19 chromosomes found in this species. The total assembly spans 918.3 Mb and is the best-scaffolded marine bivalve genome published to date, exhibiting 95.5% recovery of the metazoan BUSCO set. Gene annotation resulted in 67,741 gene models. Analysis of gene content revealed large numbers of gene duplicates, as previously seen in bivalves, with little gene loss, in comparison with the sequenced genomes of other marine bivalve species. CONCLUSIONS The genome assembly of P. maximus and its annotated gene set provide a high-quality platform for studies on such disparate topics as shell biomineralization, pigmentation, vision, and resistance to algal toxins. As a result of our findings we highlight the sodium channel gene Nav1, known to confer resistance to saxitoxin and tetrodotoxin, as a candidate for further studies investigating immunity to domoic acid.
Collapse
Affiliation(s)
- Nathan J Kenny
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| | - Shane A McCarthy
- University of Cambridge, Department of Genetics,Cambridge CB2 3EH, UK
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA
| | - Katherine James
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| | | | - Craig Corton
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Jale Dolucan
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Dan Mead
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Karen Oliver
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Pelan
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Yan Ryan
- School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Institute of Infection and Global Health, Liverpool University, iC2, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Ying Sims
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | | | | | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Erez L Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
- School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Kerstin Howe
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Suzanne T Williams
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
174
|
Lee JR, Kuo DH. Netrin expressed by the ventral ectoderm lineage guides mesoderm migration in epibolic gastrulation of the leech. Dev Biol 2020; 463:39-52. [PMID: 32360631 DOI: 10.1016/j.ydbio.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/24/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022]
Abstract
Netrin is a remarkably conserved midline landmark, serving as a chemotactic factor that organizes the bilateral neural architecture in the post-gastrula bilaterian embryos. Netrin signal also guides cell migration in many other neural and non-neural organogenesis events in later developmental stages but has never been found to participate in gastrulation - the earliest cell migration in metazoan embryogenesis. Here, we found that the netrin signaling molecules and their receptors are expressed during gastrulation of the leech Helobdella. Intriguingly, Hau-netrin-1 was expressed in the N lineage, which gives rise in part to the ventral midline of ectoderm, at the onset of gastrulation. We demonstrated that the N lineage is required for the entrance of mesoderm into the germinal band and that misexpression of Hau-netrin-1 in early gastrulation prevented mesoderm from entering the germinal band. Together, these results suggested that Hau-netrin-1 secreted by the N lineage guides mesoderm migration during germinal band assembly. Furthermore, ectopic expression of Hau-netrin-1 after the completion of germinal band assembly disrupted the epibolic migration of the germinal bands in a later stage of gastrulation. Thus, Hau-netrin-1 is likely involved in two distinct events in sequential stages of leech gastrulation: the assembly of germinal bands in early gastrulation and their epibolic migration in mid-gastrulation. Given that the leech netrin is expressed in the precursor cells of the ventral midline during gastrulation, we propose that a heterochronic change from the midline netrin expression had taken place in the evolution of a novel mode of gastrulation in the directly developing leech embryos.
Collapse
Affiliation(s)
- Jun-Ru Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Present Address: Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
175
|
Peng J, Li Q, Xu L, Wei P, He P, Zhang X, Zhang L, Guan J, Zhang X, Lin Y, Gui J, Chen X. Chromosome-level analysis of the Crassostrea hongkongensis genome reveals extensive duplication of immune-related genes in bivalves. Mol Ecol Resour 2020; 20:980-994. [PMID: 32198971 DOI: 10.1111/1755-0998.13157] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Crassostrea hongkongensis is a popular and important native oyster species that is cultured mainly along the coast of the South China Sea. However, the absence of a reference genome has restricted genetic studies and the development of molecular breeding schemes for this species. Here, we combined PacBio and 10 × Genomics technologies to create a C. hongkongensis genome assembly, which has a size of 610 Mb, and is close to that estimated by flow cytometry (~650 Mb). Contig and scaffold N50 are 2.57 and 4.99 Mb, respectively, and BUSCO analysis indicates that 95.8% of metazoan conserved genes are completely represented. Using a high-density linkage map of its closest related species, C. gigas, a total of 521 Mb (85.4%) was anchored to 10 haploid chromosomes. Comparative genomic analyses with other molluscs reveal that several immune- or stress response-related genes extensively expanded in bivalves by tandem duplication, including C1q, Toll-like receptors and Hsp70, which are associated with their adaptation to filter-feeding and sessile lifestyles in shallow sea and/or deep-sea ecosystems. Through transcriptome sequencing, potential genes and pathways related to sex determination and gonad development were identified. The genome and transcriptome of C. hongkongensis provide valuable resources for future molecular studies, genetic improvement and genome-assisted breeding of oysters.
Collapse
Affiliation(s)
- Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Qiongzhen Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Xingzhi Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Li Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Junliang Guan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Xiaojuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology and Innovation Academy for Seed Design, CAS, Wuhan, China
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology and Innovation Academy for Seed Design, CAS, Wuhan, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| |
Collapse
|
176
|
Yang Z, Zhang L, Hu J, Wang J, Bao Z, Wang S. The evo-devo of molluscs: Insights from a genomic perspective. Evol Dev 2020; 22:409-424. [PMID: 32291964 DOI: 10.1111/ede.12336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molluscs represent one of ancient and evolutionarily most successful groups of marine invertebrates, with a tremendous diversity of morphology, behavior, and lifestyle. Molluscs are excellent subjects for evo-devo studies; however, understanding of the evo-devo of molluscs has been largely hampered by incomplete fossil records and limited molecular data. Recent advancement of genomics and other technologies has greatly fueled the molluscan "evo-devo" field, and decoding of several molluscan genomes provides unprecedented insights into molluscan biology and evolution. Here, we review the recent progress of molluscan genome sequencing as well as novel insights gained from their genomes, by emphasizing how molluscan genomics enhances our understanding of the evo-devo of molluscs.
Collapse
Affiliation(s)
- Zhihui Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,The Sars-Fang Centre, Ocean University of China, Qingdao, China
| |
Collapse
|
177
|
Sun J, Chen C, Miyamoto N, Li R, Sigwart JD, Xu T, Sun Y, Wong WC, Ip JCH, Zhang W, Lan Y, Bissessur D, Watsuji TO, Watanabe HK, Takaki Y, Ikeo K, Fujii N, Yoshitake K, Qiu JW, Takai K, Qian PY. The Scaly-foot Snail genome and implications for the origins of biomineralised armour. Nat Commun 2020; 11:1657. [PMID: 32269225 PMCID: PMC7142155 DOI: 10.1038/s41467-020-15522-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
The Scaly-foot Snail, Chrysomallon squamiferum, presents a combination of biomineralised features, reminiscent of enigmatic early fossil taxa with complex shells and sclerites such as sachtids, but in a recently-diverged living species which even has iron-infused hard parts. Thus the Scaly-foot Snail is an ideal model to study the genomic mechanisms underlying the evolutionary diversification of biomineralised armour. Here, we present a high-quality whole-genome assembly and tissue-specific transcriptomic data, and show that scale and shell formation in the Scaly-foot Snail employ independent subsets of 25 highly-expressed transcription factors. Comparisons with other lophotrochozoan genomes imply that this biomineralisation toolkit is ancient, though expression patterns differ across major lineages. We suggest that the ability of lophotrochozoan lineages to generate a wide range of hard parts, exemplified by the remarkable morphological disparity in Mollusca, draws on a capacity for dynamic modification of the expression and positioning of toolkit elements across the genome.
Collapse
Affiliation(s)
- Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guanzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Norio Miyamoto
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Julia D Sigwart
- Marine Laboratory, Queen's University Belfast, Portaferry, N. Ireland
- Senckenberg Museum, Frankfurt, Germany
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yanan Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guanzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guanzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jack C H Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weipeng Zhang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guanzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi Lan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guanzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Dass Bissessur
- Department for Continental Shelf, Maritime Zones Administration & Exploration, Ministry of Defence and Rodrigues, 2nd Floor, Belmont House, 12 Intendance Street, Port-Louis, 11328, Mauritius
| | - Tomo-O Watsuji
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
- Department of Food and Nutrition, Higashi-Chikushi Junior College, Kitakyusyu, Japan
| | - Hiromi Kayama Watanabe
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yoshihiro Takaki
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Kazuho Ikeo
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, Japan
| | - Nobuyuki Fujii
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ken Takai
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guanzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
178
|
Yu D, Wu H, Peng X, Ji C, Zhang X, Song J, Qu J. Profiling of microRNAs and mRNAs in marine mussel Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108697. [PMID: 31891766 DOI: 10.1016/j.cbpc.2019.108697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNA molecules containing 18-24 nucleotides, and those with conserved structures are able to regulate the expression of eukaryotic genes by inhibition or enhancement of mRNA translation. However, miRNAs of the blue mussel, Mytilus galloprovincialis have not been reported. M. galloprovincialis is a primary species distributed along coastal zones worldwide. To reveal the repertoire of miRNAs in M. galloprovincialis, we constructed small RNA libraries prepared from three different mussels, which were then sequenced by Solexa deep sequencing technology. A total of 32,836,817, 33,359,113 and 33,093,562 clean reads from the tissues of the three M. galloprovincialis were obtained. Based on sequence similarities and hairpin structure predictions, 137 M. galloprovincialis miRNAs (mg-miRNA) were identified. Among the mg-miRNAs, 104 were conserved across species, whereas 33 might be novel and specific for M. galloprovincialis. Some of the mg-miRNAs, such as let-7 and the miR-100 family are playing key roles in many metabolic pathways and are worthy of further study. By performing a whole genome-scale characterization of mg-miRNAs and proposing their potential functions, these results provide a foundation for understanding the biological processes of the blue mussel, M. galloprovincialis.
Collapse
Affiliation(s)
- Deliang Yu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xiaoying Zhang
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, 518060, PR China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
179
|
Wang J, Zhang L, Lian S, Qin Z, Zhu X, Dai X, Huang Z, Ke C, Zhou Z, Wei J, Liu P, Hu N, Zeng Q, Dong B, Dong Y, Kong D, Zhang Z, Liu S, Xia Y, Li Y, Zhao L, Xing Q, Huang X, Hu X, Bao Z, Wang S. Evolutionary transcriptomics of metazoan biphasic life cycle supports a single intercalation origin of metazoan larvae. Nat Ecol Evol 2020; 4:725-736. [PMID: 32203475 DOI: 10.1038/s41559-020-1138-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
The transient larva-bearing biphasic life cycle is the hallmark of many metazoan phyla, but how metazoan larvae originated remains a major enigma in animal evolution. There are two hypotheses for larval origin. The 'larva-first' hypothesis suggests that the first metazoans were similar to extant larvae, with later evolution of the adult-added biphasic life cycle; the 'adult-first' hypothesis suggests that the first metazoans were adult forms, with the biphasic life cycle arising later via larval intercalation. Here, we investigate the evolutionary origin of primary larvae by conducting ontogenetic transcriptome profiling for Mollusca-the largest marine phylum characterized by a trochophore larval stage and highly variable adult forms. We reveal that trochophore larvae exhibit rapid transcriptome evolution with extraordinary incorporation of novel genes (potentially contributing to adult shell evolution), and that cell signalling/communication genes (for example, caveolin and innexin) are probably crucial for larval evolution. Transcriptome age analysis of eight metazoan species reveals the wide presence of young larval transcriptomes in both trochozoans and other major metazoan lineages, therefore arguing against the prevailing larva-first hypothesis. Our findings support an adult-first evolutionary scenario with a single metazoan larval intercalation, and suggest that the first appearance of proto-larva probably occurred after the divergence of direct-developing Ctenophora from a metazoan ancestor.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenkui Qin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuan Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jiankai Wei
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pingping Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Naina Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Dexu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhifeng Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Sinuo Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Xia
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,The Sars-Fang Centre, Ocean University of China, Qingdao, China.
| |
Collapse
|
180
|
Lu TM, Kanda M, Furuya H, Satoh N. Dicyemid Mesozoans: A Unique Parasitic Lifestyle and a Reduced Genome. Genome Biol Evol 2020; 11:2232-2243. [PMID: 31347665 PMCID: PMC6736024 DOI: 10.1093/gbe/evz157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Dicyemids, previously called “mesozoans” (intermediates between unicellular protozoans and multicellular metazoans), are an enigmatic animal group. They have a highly simplified adult body, comprising only ∼30 cells, and they have a unique parasitic lifestyle. Recently, dicyemids were shown to be spiralians, with affinities to the Platyhelminthes. In order to understand molecular mechanisms involved in evolution of this odd animal, we sequenced the genome of Dicyema japonicum and a reference transcriptome assembly using mixed-stage samples. The D. japonicum genome features a high proportion of repetitive sequences that account for 49% of the genome. The dicyemid genome is reduced to ∼67.5 Mb with 5,012 protein-coding genes. Only four Hox genes exist in the genome, with no clustering. Gene distribution in KEGG pathways shows that D. japonicum has fewer genes in most pathways. Instead of eliminating entire critical metabolic pathways, parasitic lineages likely simplify pathways by eliminating pathway-specific genes, while genes with fundamental functions may be retained in multiple pathways. In principle, parasites can stand to lose genes that are unnecessary, in order to conserve energy. However, whether retained genes in incomplete pathways serve intermediate functions and how parasites overcome the physiological needs served by lost genes, remain to be investigated in future studies.
Collapse
Affiliation(s)
- Tsai-Ming Lu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan.,Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Hidetaka Furuya
- Department of Biology, Graduate School of Science, Osaka University, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| |
Collapse
|
181
|
Oda H, Iwasaki-Yokozawa S, Usui T, Akiyama-Oda Y. Experimental duplication of bilaterian body axes in spider embryos: Holm's organizer and self-regulation of embryonic fields. Dev Genes Evol 2020; 230:49-63. [PMID: 30972574 PMCID: PMC7128006 DOI: 10.1007/s00427-019-00631-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Bilaterally symmetric body plans of vertebrates and arthropods are defined by a single set of two orthogonal axes, the anterior-posterior (or head-tail) and dorsal-ventral axes. In vertebrates, and especially amphibians, complete or partial doubling of the bilaterian body axes can be induced by two different types of embryological manipulations: transplantation of an organizer region or bi-sectioning of an embryo. Such axis doubling relies on the ability of embryonic fields to flexibly respond to the situation and self-regulate toward forming a whole body. This phenomenon has facilitated experimental efforts to investigate the mechanisms of vertebrate body axes formation. However, few studies have addressed the self-regulatory capabilities of embryonic fields associated with body axes formation in non-vertebrate bilaterians. The pioneer spider embryologist Åke Holm reported twinning of spider embryos induced by both types of embryological manipulations in 1952; yet, his experiments have not been replicated by other investigators, and access to spider or non-vertebrate twins has been limited. In this review, we provide a historical background on twinning experiments in spiders, and an overview of current twinning approaches in familiar spider species and related molecular studies. Moreover, we discuss the benefits of the spider model system for a deeper understanding of the ancestral mechanisms of body axes formation in arthropods, as well as in bilaterians.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | | | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
182
|
Guijarro-Clarke C, Holland PWH, Paps J. Widespread patterns of gene loss in the evolution of the animal kingdom. Nat Ecol Evol 2020; 4:519-523. [PMID: 32094540 DOI: 10.1038/s41559-020-1129-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
The animal kingdom shows an astonishing diversity, the product of over 550 million years of animal evolution. The current wealth of genome sequence data offers an opportunity to better understand the genomic basis of this diversity. Here we analyse a sampling of 102 whole genomes including >2.6 million protein sequences. We infer major genomic patterns associated with the variety of animal forms from the superphylum to phylum level. We show that a remarkable amount of gene loss occurred during the evolution of two major groups of bilaterian animals, Ecdysozoa and Deuterostomia, and further loss in several deuterostome lineages. Deuterostomes and protostomes also show large genome novelties. At the phylum level, flatworms, nematodes and tardigrades show the largest reduction of gene complement, alongside gene novelty. These findings paint a picture of evolution in the animal kingdom in which reductive evolution at the protein-coding level played a major role in shaping genome composition.
Collapse
Affiliation(s)
| | | | - Jordi Paps
- School of Biological Sciences, University of Essex, Colchester, UK. .,Department of Zoology, University of Oxford, Oxford, UK. .,School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
183
|
Albertin CB, Simakov O. Cephalopod Biology: At the Intersection Between Genomic and Organismal Novelties. Annu Rev Anim Biosci 2020; 8:71-90. [PMID: 31815522 DOI: 10.1146/annurev-animal-021419-083609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cephalopods are resourceful marine predators that have fascinated generations of researchers as well as the public owing to their advanced behavior, complex nervous system, and significance in evolutionary studies. Recent advances in genomics have accelerated the pace of cephalopod research. Many traditional areas focusing on evolution, development, behavior, and neurobiology, primarily on the morphological level, are now transitioning to molecular approaches. This review addresses the recent progress and impact of genomic and other molecular resources on research in cephalopods. We outline several key directions in which significant progress in cephalopod research is expected and discuss its impact on our understanding of the genetic background behind cephalopod biology and beyond.
Collapse
Affiliation(s)
- Caroline B Albertin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA;
| | - Oleg Simakov
- Department of Molecular Evolutionary and Development, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
184
|
Gąsiorowski L, Hejnol A. Hox gene expression during development of the phoronid Phoronopsis harmeri. EvoDevo 2020; 11:2. [PMID: 32064072 PMCID: PMC7011278 DOI: 10.1186/s13227-020-0148-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Phoronida is a small group of marine worm-like suspension feeders, which together with brachiopods and bryozoans form the clade Lophophorata. Although their development is well studied on the morphological level, data regarding gene expression during this process are scarce and restricted to the analysis of relatively few transcription factors. Here, we present a description of the expression patterns of Hox genes during the embryonic and larval development of the phoronid Phoronopsis harmeri. Results We identified sequences of eight Hox genes in the transcriptome of Ph. harmeri and determined their expression pattern during embryonic and larval development using whole mount in situ hybridization. We found that none of the Hox genes is expressed during embryonic development. Instead their expression is initiated in the later developmental stages, when the larval body is already formed. In the investigated initial larval stages the Hox genes are expressed in the non-collinear manner in the posterior body of the larvae: in the telotroch and the structures that represent rudiments of the adult worm. Additionally, we found that certain head-specific transcription factors are expressed in the oral hood, apical organ, preoral coelom, digestive system and developing larval tentacles, anterior to the Hox-expressing territories. Conclusions The lack of Hox gene expression during early development of Ph. harmeri indicates that the larval body develops without positional information from the Hox patterning system. Such phenomenon might be a consequence of the evolutionary intercalation of the larval form into an ancestral life cycle of phoronids. The observed Hox gene expression can also be a consequence of the actinotrocha representing a “head larva”, which is composed of the most anterior body region that is devoid of Hox gene expression. Such interpretation is further supported by the expression of head-specific transcription factors. This implies that the Hox patterning system is used for the positional information of the trunk rudiments and is, therefore, delayed to the later larval stages. We propose that a new body form was intercalated to the phoronid life cycle by precocious development of the anterior structures or by delayed development of the trunk rudiment in the ancestral phoronid larva.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- 1Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway.,2Department of Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Andreas Hejnol
- 1Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway.,2Department of Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
185
|
Yasuoka Y, Matsumoto M, Yagi K, Okazaki Y. Evolutionary History of GLIS Genes Illuminates Their Roles in Cell Reprograming and Ciliogenesis. Mol Biol Evol 2020; 37:100-109. [PMID: 31504761 PMCID: PMC6984359 DOI: 10.1093/molbev/msz205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The GLIS family transcription factors, GLIS1 and GLIS3, potentiate generation of induced pluripotent stem cells (iPSCs). In contrast, another GLIS family member, GLIS2, suppresses cell reprograming. To understand how these disparate roles arose, we examined evolutionary origins and genomic organization of GLIS genes. Comprehensive phylogenetic analysis shows that GLIS1 and GLIS3 originated during vertebrate whole genome duplication, whereas GLIS2 is a sister group to the GLIS1/3 and GLI families. This result is consistent with their opposing functions in cell reprograming. Glis1 evolved faster than Glis3, losing many protein-interacting motifs. This suggests that Glis1 acquired new functions under weakened evolutionary constraints. In fact, GLIS1 induces induced pluripotent stem cells more strongly. Transcriptomic data from various animal embryos demonstrate that glis1 is maternally expressed in some tetrapods, whereas vertebrate glis3 and invertebrate glis1/3 genes are rarely expressed in oocytes, suggesting that vertebrate (or tetrapod) Glis1 acquired a new expression domain and function as a maternal factor. Furthermore, comparative genomic analysis reveals that glis1/3 is part of a bilaterian-specific gene cluster, together with rfx3, ndc1, hspb11, and lrrc42. Because known functions of these genes are related to cilia formation and function, the last common ancestor of bilaterians may have acquired this cluster by shuffling gene order to establish more sophisticated epithelial tissues involving cilia. This evolutionary study highlights the significance of GLIS1/3 for cell reprograming, development, and diseases in ciliated organs such as lung, kidney, and pancreas.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahito Matsumoto
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Advanced Diabetic Therapeutics, Department of Metabolic Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Yagi
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
186
|
Xun X, Cheng J, Wang J, Li Y, Li X, Li M, Lou J, Kong Y, Bao Z, Hu X. Solute carriers in scallop genome: Gene expansion and expression regulation after exposure to toxic dinoflagellate. CHEMOSPHERE 2020; 241:124968. [PMID: 31606578 DOI: 10.1016/j.chemosphere.2019.124968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The solute carriers (SLCs) are membrane proteins that transport many endogenous and exogenous substances such as xenobiotic toxins. Bivalve mollusks, mainly feeding on microalgae, show marked capacity to accumulate paralytic shellfish toxins (PSTs), the most common and hazardous marine biotoxins produced by dinoflagellates. Exploring the SLCs related to PST accumulation in bivalve could benefit our understanding about the mechanisms of PST bioavailability in bivalve and the adaptations of these species. Herein, we provided the first systematic analysis of SLC genes in mollusks, which identified 673 SLCs (PySLCs, 48 subfamilies) in Yesso scallop (Patinopecten yessoensis), 510 (48 subfamilies) in Pacific oyster (Crassostrea gigas), and 350 (47 subfamilies) in gastropod owl limpet (Lottia gigantea). Significant expansion of subfamilies SLC5, SLC6, SLC16, and SLC23 in scallop, and SLC46 subfamily in both scallop and oyster were revealed. Different PySLC members were highly expressed in the developmental stages and adult tissues, and hepatopancreas harboured more specifically expressed PySLCs than other tissues/organs. After feeding the scallops with PST-producing dinoflagellate, 131 PySLCs were regulated and more than half of them were from the expanded subfamilies. The trend of expression fold change in regulated PySLCs was consistent with that of PST changes in hepatopancreas, implying the possible involvement of these PySLCs in PST transport and homeostasis. In addition, the PySLCs from the expanded subfamily were revealed to be under positive selection, which might be related to lineage-specific adaptation to the marine environments with algae derived biotoxins.
Collapse
Affiliation(s)
- Xiaogang Xun
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao, 266237, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao, 266237, China
| | - Jing Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Yangping Li
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Xu Li
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Moli Li
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Jiarun Lou
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Yifan Kong
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao, 266237, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
187
|
Chai L, Yang Y, Yang H, Zhao Y, Wang H. Transcriptome analysis of genes expressed in the earthworm Eisenia fetida in response to cadmium exposure. CHEMOSPHERE 2020; 240:124902. [PMID: 31563721 DOI: 10.1016/j.chemosphere.2019.124902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Eisenia fetida earthworm is an ecotoxicologically important test species to monitor various pollutants. However, there is a little knowledge about the effects of cadmium (Cd) on earthworms at the transcriptional level. Firstly, we exposed E. fetida to soils supplemented with different concentrations (10, 30, 60 mg/kg soil) of Cd. Moreover, we depicted the characterization of gene expressions with E. fetida using high-throughput profiling of gene expression. In addition, a comparison of the gene expression profiles between each Cd treatment group and the control group suggested that differential expressional genes (DEGs) mainly enriched in enzyme activity, metabolism, oxidative stress, regeneration and apoptosis pathways. 8 DEGs from these pathways had been selected randomly to confirm the data of RNA-seq. Among these DEGs, six genes (metallothionein-2, phytochelatin synthase 1a, CuZn superoxide dismutase, sex determining region Y-box 2, sex determining region Y-box 4b, TP53-regulated inhibitor of apoptosis 1-like) up-regulated and 2 genes (beta-1,4-endoglucanase, apoptosis-stimulating of p53 protein 2-like) down-regulated in response to Cd exposure. The alteration of them indicated that earthworms could reduce the toxicity and bioavailability of Cd in polluted soil ecosystems through different pathways. This work lays an important foundation for linking earthworm transcriptional level with the ecological risk of Cd in soil ecosystem.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an, 710054, China.
| | - Yijie Yang
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hongyu Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yonghua Zhao
- Shaanxi Key Laboratory of Land Consolidation, Xi'an, 710054, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
188
|
Sun J, Mu H, Ip JCH, Li R, Xu T, Accorsi A, Sánchez Alvarado A, Ross E, Lan Y, Sun Y, Castro-Vazquez A, Vega IA, Heras H, Ituarte S, Van Bocxlaer B, Hayes KA, Cowie RH, Zhao Z, Zhang Y, Qian PY, Qiu JW. Signatures of Divergence, Invasiveness, and Terrestrialization Revealed by Four Apple Snail Genomes. Mol Biol Evol 2020; 36:1507-1520. [PMID: 30980073 PMCID: PMC6573481 DOI: 10.1093/molbev/msz084] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The family Ampullariidae includes both aquatic and amphibious apple snails. They are an emerging model for evolutionary studies due to the high diversity, ancient history, and wide geographical distribution. Insight into drivers of ampullariid evolution is hampered, however, by the lack of genomic resources. Here, we report the genomes of four ampullariids spanning the Old World (Lanistes nyassanus) and New World (Pomacea canaliculata, P. maculata, and Marisa cornuarietis) clades. The ampullariid genomes have conserved ancient bilaterial karyotype features and a novel Hox gene cluster rearrangement, making them valuable in comparative genomic studies. They have expanded gene families related to environmental sensing and cellulose digestion, which may have facilitated some ampullarids to become notorious invasive pests. In the amphibious Pomacea, novel acquisition of an egg neurotoxin and a protein for making the calcareous eggshell may have been key adaptations enabling their transition from underwater to terrestrial egg deposition.
Collapse
Affiliation(s)
- Jin Sun
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Huawei Mu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jack C H Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Alice Accorsi
- Howard Hughes Medical Institute, Kansas City, MO.,Stowers Institute for Medical Research, Kansas City, MO
| | - Alejandro Sánchez Alvarado
- Howard Hughes Medical Institute, Kansas City, MO.,Stowers Institute for Medical Research, Kansas City, MO
| | - Eric Ross
- Howard Hughes Medical Institute, Kansas City, MO.,Stowers Institute for Medical Research, Kansas City, MO
| | - Yi Lan
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanan Sun
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Alfredo Castro-Vazquez
- Instituto de Histología y Embriología (IHEM-CONICET), Mendoza, Argentina.,Instituto de Fisiología (FCM-UNCuyo), Mendoza, Argentina
| | - Israel A Vega
- Instituto de Histología y Embriología (IHEM-CONICET), Mendoza, Argentina.,Instituto de Fisiología (FCM-UNCuyo), Mendoza, Argentina
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", INIBIOLP. CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), La Plata, Argentina.,Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Santiago Ituarte
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", INIBIOLP. CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Bert Van Bocxlaer
- Centre national de la recherche scientifique (CNRS), UMR 8198 Evolution, Ecology, Paleotology, Université de Lille, Lille, France
| | | | - Robert H Cowie
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
189
|
Guan DL, Yang J, Liu YK, Li Y, Mi D, Ma LB, Wang ZZ, Xu SQ, Qiu Q. Draft Genome of the Asian Buffalo Leech Hirudinaria manillensis. Front Genet 2020; 10:1321. [PMID: 32010187 PMCID: PMC6977106 DOI: 10.3389/fgene.2019.01321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The Asian Buffalo leech, Hirudinaria manillensis, is an aquatic sanguivorous species distributed widely in Southeast Asia. H. manillensis has long been used clinically for bloodletting and other medical purposes. Recent studies have focused on artificial culturing, strain optimization, and the identification and development new drugs based on the anticoagulant effects of H. manillensis bites; however, data regarding its genome remain unclear. This study aimed to determine the genome sequence of an adult Asian Buffalo leech. We generated a draft assembly of 151.8 Mb and a N50 scaffold of 2.28 Mb. Predictions indicated that the assembled genome contained 21,005 protein-coding genes. Up to 17,865 genes were annotated in multiple databases including Gene Ontology. Sixteen anticoagulant proteins with a Hirudin or Antistasin domain were identified. This study is the first to report the whole-genome sequence of the Asian Buffalo leech, an important sanguivorous leech of clinical significance. The quality of the assembly is comparable to those of other annelids. These data will help further the current understanding of the biological mechanisms and genetic characteristics of leeches and serve as a valuable resource for future studies.
Collapse
Affiliation(s)
- De-Long Guan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jie Yang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ying-Kui Liu
- College of Biomedical Sciences & Department of Biological Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuan Li
- Nextomics Biosciences Institute, Wuhan, China
| | - Da Mi
- Nextomics Biosciences Institute, Wuhan, China
| | - Li-Bin Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe-Zhi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Sheng-Quan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiang Qiu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
190
|
Gök C, Fuller W. Regulation of NCX1 by palmitoylation. Cell Calcium 2020; 86:102158. [PMID: 31935590 DOI: 10.1016/j.ceca.2019.102158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 11/17/2022]
Abstract
Palmitoylation (S-acylation) is the reversible conjugation of a fatty acid (usually C16 palmitate) to intracellular cysteine residues of proteins via a thioester linkage. Palmitoylation anchors intracellular regions of proteins to membranes because the palmitoylated cysteine is recruited to the lipid bilayer. NCX1 is palmitoylated at a single cysteine in its large regulatory intracellular loop. The presence of an amphipathic α-helix immediately adjacent to the NCX1 palmitoylation site is required for NCX1 palmitoylation. The NCX1 palmitoylation site is conserved through most metazoan phlya. Although palmitoylation does not regulate the normal forward or reverse ion transport modes of NCX1, NCX1 palmitoylation is required for its inactivation: sodium-dependent inactivation and inactivation by PIP2 depletion are significantly impaired for unpalmitoylatable NCX1. Here we review the role of palmitoylation in regulating NCX1 activity, and highlight future questions that must be addressed to fully understand the importance of this regulatory mechanism for sodium and calcium transport in cardiac muscle.
Collapse
Affiliation(s)
- Caglar Gök
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK. https://twitter.com@FullerLabGlas
| |
Collapse
|
191
|
Choo LQ, Bal TMP, Choquet M, Smolina I, Ramos-Silva P, Marlétaz F, Kopp M, Hoarau G, Peijnenburg KTCA. Novel genomic resources for shelled pteropods: a draft genome and target capture probes for Limacina bulimoides, tested for cross-species relevance. BMC Genomics 2020; 21:11. [PMID: 31900119 PMCID: PMC6942316 DOI: 10.1186/s12864-019-6372-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pteropods are planktonic gastropods that are considered as bio-indicators to monitor impacts of ocean acidification on marine ecosystems. In order to gain insight into their adaptive potential to future environmental changes, it is critical to use adequate molecular tools to delimit species and population boundaries and to assess their genetic connectivity. We developed a set of target capture probes to investigate genetic variation across their large-sized genome using a population genomics approach. Target capture is less limited by DNA amount and quality than other genome-reduced representation protocols, and has the potential for application on closely related species based on probes designed from one species. RESULTS We generated the first draft genome of a pteropod, Limacina bulimoides, resulting in a fragmented assembly of 2.9 Gbp. Using this assembly and a transcriptome as a reference, we designed a set of 2899 genome-wide target capture probes for L. bulimoides. The set of probes includes 2812 single copy nuclear targets, the 28S rDNA sequence, ten mitochondrial genes, 35 candidate biomineralisation genes, and 41 non-coding regions. The capture reaction performed with these probes was highly efficient with 97% of the targets recovered on the focal species. A total of 137,938 single nucleotide polymorphism markers were obtained from the captured sequences across a test panel of nine individuals. The probes set was also tested on four related species: L. trochiformis, L. lesueurii, L. helicina, and Heliconoides inflatus, showing an exponential decrease in capture efficiency with increased genetic distance from the focal species. Sixty-two targets were sufficiently conserved to be recovered consistently across all five species. CONCLUSION The target capture protocol used in this study was effective in capturing genome-wide variation in the focal species L. bulimoides, suitable for population genomic analyses, while providing insights into conserved genomic regions in related species. The present study provides new genomic resources for pteropods and supports the use of target capture-based protocols to efficiently characterise genomic variation in small non-model organisms with large genomes.
Collapse
Affiliation(s)
- Le Qin Choo
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
| | - Thijs M P Bal
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Marvin Choquet
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Paula Ramos-Silva
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Martina Kopp
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Katja T C A Peijnenburg
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
192
|
Abstract
Snails, earthworms and flatworms are remarkably different animals, but they all exhibit a very similar mode of early embryogenesis: spiral cleavage. This is one of the most widespread developmental programs in animals, probably ancestral to almost half of the animal phyla, and therefore its study is essential for understanding animal development and evolution. However, our knowledge of spiral cleavage is still in its infancy. Recent technical and conceptual advances, such as the establishment of genome editing and improved phylogenetic resolution, are paving the way for a fresher and deeper look into this fascinating early cleavage mode.
Collapse
Affiliation(s)
- José M Martín-Durán
- Queen Mary, University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science & Technology, 1919-1, Tancha, Onna 904-0495, Japan
| |
Collapse
|
193
|
da Fonseca RR, Couto A, Machado AM, Brejova B, Albertin CB, Silva F, Gardner P, Baril T, Hayward A, Campos A, Ribeiro ÂM, Barrio-Hernandez I, Hoving HJ, Tafur-Jimenez R, Chu C, Frazão B, Petersen B, Peñaloza F, Musacchia F, Alexander GC, Osório H, Winkelmann I, Simakov O, Rasmussen S, Rahman MZ, Pisani D, Vinther J, Jarvis E, Zhang G, Strugnell JM, Castro LFC, Fedrigo O, Patricio M, Li Q, Rocha S, Antunes A, Wu Y, Ma B, Sanges R, Vinar T, Blagoev B, Sicheritz-Ponten T, Nielsen R, Gilbert MTP. A draft genome sequence of the elusive giant squid, Architeuthis dux. Gigascience 2020; 9:giz152. [PMID: 31942620 PMCID: PMC6962438 DOI: 10.1093/gigascience/giz152] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/27/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked. FINDINGS We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. CONCLUSIONS This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.
Collapse
Affiliation(s)
- Rute R da Fonseca
- Center for Macroecology, Evolution and Climate (CMEC), GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Alvarina Couto
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
| | - Andre M Machado
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
| | - Brona Brejova
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina, 842 48 Bratislava, Slovak Republic
| | - Carolin B Albertin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Filipe Silva
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Paul Gardner
- Department of Biochemistry, University of Otago, 710 Cumberland Street, North Dunedin, Dunedin 9016, New Zealand
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Alex Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
| | - Ângela M Ribeiro
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
| | - Inigo Barrio-Hernandez
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Henk-Jan Hoving
- GEOMAR Helmholtz Centre for Ocean Research Kiel,Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Ricardo Tafur-Jimenez
- Instituto del Mar del Perú, Esq. Gamarra y Gral. Valle, Chucuito Apartado 22, Callao, Peru
| | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Barbara Frazão
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
- IPMA, Fitoplâncton Lab, Rua C do Aeroporto, 1749-077, Lisboa, Portugal
| | - Bent Petersen
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Batu 3 1/2, Butik Air Nasi, 08100 Bedong, Kedah, Malaysia
- Evolutionary Genomics Section, Globe Institute, University of Copenhagen,Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Fernando Peñaloza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Francesco Musacchia
- Genomic Medicine, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy
| | - Graham C Alexander
- GCB Sequencing and Genomic Technologies Shared Resource, Duke University CIEMAS, 101 Science Drive, Durham, NC 27708, USA
| | - Hugo Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal
| | - Inger Winkelmann
- Section for GeoGenetics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, Althanstrasse 14 (UZA1), A-1090 Vienna, Austria
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - M Ziaur Rahman
- Bioinformatics Solutions Inc, 470 Weber St N Suite 204, Waterloo, ON N2L 6J2, Canada
| | - Davide Pisani
- School of Biological Sciences and School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TG, UK
| | - Jakob Vinther
- School of Biological Sciences and School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TG, UK
| | - Erich Jarvis
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- China National Genebank, BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Kunming, Yunnan 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu Kunming, Yunnan 650223, China
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries & Aquaculture, James Cook University, Townsville, Douglas QLD 4814, Australia
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Melbourne Victoria 3086, Australia
| | - L Filipe C Castro
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Olivier Fedrigo
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Qiye Li
- BGI-Shenzhen, Shenzhen, China
| | - Sara Rocha
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
- Biomedical Research Center (CINBIO), University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
| | - Agostinho Antunes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Yufeng Wu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Bin Ma
- School of Computer Science, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Tomas Vinar
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina, 842 48 Bratislava, Slovak Republic
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Thomas Sicheritz-Ponten
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Batu 3 1/2, Butik Air Nasi, 08100 Bedong, Kedah, Malaysia
- Evolutionary Genomics Section, Globe Institute, University of Copenhagen,Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Rasmus Nielsen
- Section for GeoGenetics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Departments of Integrative Biology and Statistics, University of California, 3040 Valley Life Sciences, Berkeley, CA 94720-3200, USA
| | - M Thomas P Gilbert
- Section for GeoGenetics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Høgskolering 1, 7491 Trondheim, Norway
| |
Collapse
|
194
|
Dorsoventral decoupling of Hox gene expression underpins the diversification of molluscs. Proc Natl Acad Sci U S A 2019; 117:503-512. [PMID: 31871200 DOI: 10.1073/pnas.1907328117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In contrast to the Hox genes in arthropods and vertebrates, those in molluscs show diverse expression patterns with differences reported among lineages. Here, we investigate 2 phylogenetically distant molluscs, a gastropod and a polyplacophoran, and show that the Hox expression in both species can be divided into 2 categories. The Hox expression in the ventral ectoderm generally shows a canonical staggered pattern comparable to the patterns of other bilaterians and likely contributes to ventral patterning, such as neurogenesis. The other category of Hox expression on the dorsal side is strongly correlated with shell formation and exhibits lineage-specific characteristics in each class of mollusc. This generalized model of decoupled dorsoventral Hox expression is compatible with known Hox expression data from other molluscan lineages and may represent a key characteristic of molluscan Hox expression. These results support the concept of widespread staggered Hox expression in Mollusca and reveal aspects that may be related to the evolutionary diversification of molluscs. We propose that dorsoventral decoupling of Hox expression allowed lineage-specific dorsal and ventral patterning, which may have facilitated the evolution of diverse body plans in different molluscan lineages.
Collapse
|
195
|
Ritschard EA, Whitelaw B, Albertin CB, Cooke IR, Strugnell JM, Simakov O. Coupled Genomic Evolutionary Histories as Signatures of Organismal Innovations in Cephalopods: Co-evolutionary Signatures Across Levels of Genome Organization May Shed Light on Functional Linkage and Origin of Cephalopod Novelties. Bioessays 2019; 41:e1900073. [PMID: 31664724 DOI: 10.1002/bies.201900073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/05/2019] [Indexed: 12/07/2023]
Abstract
How genomic innovation translates into organismal organization remains largely unanswered. Possessing the largest invertebrate nervous system, in conjunction with many species-specific organs, coleoid cephalopods (octopuses, squids, cuttlefishes) provide exciting model systems to investigate how organismal novelties evolve. However, dissecting these processes requires novel approaches that enable deeper interrogation of genome evolution. Here, the existence of specific sets of genomic co-evolutionary signatures between expanded gene families, genome reorganization, and novel genes is posited. It is reasoned that their co-evolution has contributed to the complex organization of cephalopod nervous systems and the emergence of ecologically unique organs. In the course of reviewing this field, how the first cephalopod genomic studies have begun to shed light on the molecular underpinnings of morphological novelty is illustrated and their impact on directing future research is described. It is argued that the application and evolutionary profiling of evolutionary signatures from these studies will help identify and dissect the organismal principles of cephalopod innovations. By providing specific examples, the implications of this approach both within and beyond cephalopod biology are discussed.
Collapse
Affiliation(s)
- Elena A Ritschard
- Department for Molecular Evolution and Development, University of Vienna, Austria
| | - Brooke Whitelaw
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | | | - Ira R Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Oleg Simakov
- Department for Molecular Evolution and Development, University of Vienna, Austria
| |
Collapse
|
196
|
Song K, Wen S, Zhang G. Adaptive Evolution Patterns in the Pacific Oyster Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:614-622. [PMID: 31203476 DOI: 10.1007/s10126-019-09906-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Estimation of adaptive evolution rates at the molecular level is important in evolutionary genomics. However, knowledge of adaptive evolutionary patterns in Mollusca is very scarce, especially for oysters. Such information would help clarify how oysters adapt to pathogen-rich and dynamically changing intertidal environments. In this study, we characterized the patterns of adaptive evolution in the Crassostrea gigas genome, using population diversity analysis and congeneric comparison. Our analysis revealed that gene expression patterns were positively associated with adaptive evolution rates, which suggested that positive selection played an important role in gene evolution. The genes with more exons and alternative splicing events had higher adaptive evolution rates. The rates of adaptive evolution in immune-related and stress-response genes were higher than those in other genes, suggesting that these groups of genes experienced strong positive selection. This study represents the first analysis of adaptive evolution rates in oysters and the first comprehensive study of a Mollusca species. These results provide a system-level investigation of association between adaptive evolution rates with some intrinsic genetic factors. They also suggest that adaptation to pathogens and environmental stressors are important forces driving the adaptive evolution of genes.
Collapse
Affiliation(s)
- Kai Song
- School of Mathematics and Statistics, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Shiyong Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, China
- Dezhou State-owned Assets Supervision and Administration Commission, Dezhou,, 253000, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.
| |
Collapse
|
197
|
Guo Y, Zhang Y, Liu Q, Huang Y, Mao G, Yue Z, Abe EM, Li J, Wu Z, Li S, Zhou X, Hu W, Xiao N. A chromosomal-level genome assembly for the giant African snail Achatina fulica. Gigascience 2019; 8:giz124. [PMID: 31634388 PMCID: PMC6802634 DOI: 10.1093/gigascience/giz124] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/09/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Achatina fulica, the giant African snail, is the largest terrestrial mollusk species. Owing to its voracious appetite, wide environmental adaptability, high growth rate, and reproductive capacity, it has become an invasive species across the world, mainly in Southeast Asia, Japan, the western Pacific islands, and China. This pest can damage agricultural crops and is an intermediate host of many parasites that can threaten human health. However, genomic information of A. fulica remains limited, hindering genetic and genomic studies for invasion control and management of the species. FINDINGS Using a k-mer-based method, we estimated the A. fulica genome size to be 2.12 Gb, with a high repeat content up to 71%. Roughly 101.6 Gb genomic long-read data of A. fulica were generated from the Pacific Biosciences sequencing platform and assembled to produce a first A. fulica genome of 1.85 Gb with a contig N50 length of 726 kb. Using contact information from the Hi-C sequencing data, we successfully anchored 99.32% contig sequences into 31 chromosomes, leading to the final contig and scaffold N50 length of 721 kb and 59.6 Mb, respectively. The continuity, completeness, and accuracy were evaluated by genome comparison with other mollusk genomes, BUSCO assessment, and genomic read mapping. A total of 23,726 protein-coding genes were predicted from the assembled genome, among which 96.34% of the genes were functionally annotated. The phylogenetic analysis using whole-genome protein-coding genes revealed that A. fulica separated from a common ancestor with Biomphalaria glabrata ∼182 million years ago. CONCLUSION To our knowledge, the A. fulica genome is the first terrestrial mollusk genome published to date. The chromosome sequence of A. fulica will provide the research community with a valuable resource for population genetics and environmental adaptation studies for the species, as well as investigations of the chromosome-level of evolution within mollusks.
Collapse
Affiliation(s)
- Yunhai Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Qin Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Yun Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Guangyao Mao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Zhiyuan Yue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Eniola M Abe
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200438, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Xiaonong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200438, China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| |
Collapse
|
198
|
Elnahriry KA, Wai DC, Krishnarjuna B, Badawy NN, Chittoor B, MacRaild CA, Williams-Noonan BJ, Surm JM, Chalmers DK, Zhang AH, Peigneur S, Mobli M, Tytgat J, Prentis P, Norton RS. Structural and functional characterisation of a novel peptide from the Australian sea anemone Actinia tenebrosa. Toxicon 2019; 168:104-112. [DOI: 10.1016/j.toxicon.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
|
199
|
Miller SW, Movsesyan A, Zhang S, Fernández R, Posakony JW. Evolutionary emergence of Hairless as a novel component of the Notch signaling pathway. eLife 2019; 8:48115. [PMID: 31545167 PMCID: PMC6777938 DOI: 10.7554/elife.48115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022] Open
Abstract
Suppressor of Hairless [Su(H)], the transcription factor at the end of the Notch pathway in Drosophila, utilizes the Hairless protein to recruit two co-repressors, Groucho (Gro) and C-terminal Binding Protein (CtBP), indirectly. Hairless is present only in the Pancrustacea, raising the question of how Su(H) in other protostomes gains repressive function. We show that Su(H) from a wide array of arthropods, molluscs, and annelids includes motifs that directly bind Gro and CtBP; thus, direct co-repressor recruitment is ancestral in the protostomes. How did Hairless come to replace this ancestral paradigm? Our discovery of a protein (S-CAP) in Myriapods and Chelicerates that contains a motif similar to the Su(H)-binding domain in Hairless has revealed a likely evolutionary connection between Hairless and Metastasis-associated (MTA) protein, a component of the NuRD complex. Sequence comparison and widely conserved microsynteny suggest that S-CAP and Hairless arose from a tandem duplication of an ancestral MTA gene.
Collapse
Affiliation(s)
- Steven W Miller
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Artem Movsesyan
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Sui Zhang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Rosa Fernández
- Bioinformatics and Genomics Unit, Center for Genomic Regulation, Barcelona, Spain
| | - James W Posakony
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
200
|
Guerin MN, Weinstein DJ, Bracht JR. Stress Adapted Mollusca and Nematoda Exhibit Convergently Expanded Hsp70 and AIG1 Gene Families. J Mol Evol 2019; 87:289-297. [PMID: 31486870 DOI: 10.1007/s00239-019-09900-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
We recently sequenced the genome of the first subterrestrial metazoan, the nematode Halicephalobus mephisto. A central finding was a dramatic expansion of genes encoding avrRpt2 induced gene (AIG1), and 70 kDa heat shock (Hsp70) domains. While the role of Hsp70 in thermotolerance is well established, the contribution of AIG1 is much more poorly characterized, though in plants some members of this family are heat-induced. Hypothesizing that this dual domain expansion may constitute a general biosignature of thermal stress adaptation, here we examine a number of genomes, finding that expansion of both AIG1 and Hsp70 is common in bivalves. Phylogenetic analysis reveals that the bivalve-specific Hsp70 protein expansion groups with H. mephisto sequences. Our identification of the same gene expansions in bivalves and a nematode implies that this biosignature may be a general stress adaptation strategy for protostomes, particularly those organisms that cannot escape their stressful environments. We hypothesize that the two families play largely complementary mechanistic roles, with Hsp70 directly refolding heat-denatured proteins while AIG1 promotes cellular and organismal survival by inhibiting apoptosis.
Collapse
Affiliation(s)
- Megan N Guerin
- Department of Biology, American University, Washington, DC, 20016, USA
| | | | - John R Bracht
- Department of Biology, American University, Washington, DC, 20016, USA.
| |
Collapse
|