151
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
152
|
Bennett-Keki S, Fowler EK, Folkes L, Moxon S, Chapman T. Sex-biased gene expression in nutrient-sensing pathways. Proc Biol Sci 2023; 290:20222086. [PMID: 36883280 PMCID: PMC9993052 DOI: 10.1098/rspb.2022.2086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Differences in lifespan between males and females are found across many taxa and may be determined, at least in part, by differential responses to diet. Here we tested the hypothesis that the higher dietary sensitivity of female lifespan is mediated by higher and more dynamic expression in nutrient-sensing pathways in females. We first reanalysed existing RNA-seq data, focusing on 17 nutrient-sensing genes with reported lifespan effects. This revealed, consistent with the hypothesis, a dominant pattern of female-biased gene expression, and among sex-biased genes there tended to be a loss of female-bias after mating. We then tested directly the expression of these 17 nutrient-sensing genes in wild-type third instar larvae, once-mated 5- and 16-day-old adults. This confirmed sex-biased gene expression and showed that it was generally absent in larvae, but frequent and stable in adults. Overall, the findings suggest a proximate explanation for the sensitivity of female lifespan to dietary manipulations. We suggest that the contrasting selective pressures to which males and females are subject create differing nutritional demands and requirements, resulting in sex differences in lifespan. This underscores the potential importance of the health impacts of sex-specific dietary responses.
Collapse
Affiliation(s)
- Suzanne Bennett-Keki
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Emily K. Fowler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Leighton Folkes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
153
|
Alimoradi N, Tahami M, Firouzabadi N, Haem E, Ramezani A. Metformin attenuates symptoms of osteoarthritis: role of genetic diversity of Bcl2 and CXCL16 in OA. Arthritis Res Ther 2023; 25:35. [PMID: 36879307 PMCID: PMC9990216 DOI: 10.1186/s13075-023-03025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the effectiveness of metformin versus placebo in overweight patients with knee osteoarthritis (OA). In addition, to assess the effects of inflammatory mediators and apoptotic proteins in the pathogenesis of OA, the genetic polymorphisms of two genes, one related to apoptosis (rs2279115 of Bcl-2) and the other related to inflammation (rs2277680 of CXCL-16), were investigated. METHODS In this double-blind placebo-controlled clinical trial, patients were randomly divided to two groups, one group receiving metformin (n = 44) and the other one receiving an identical inert placebo (n = 44) for 4 consecutive months (starting dose 0.5 g/day for the first week, increase to 1 g/day for the second week, and further increase to 1.5 g/day for the remaining period). Another group of healthy individuals (n = 92) with no history and diagnosis of OA were included in this study in order to evaluate the role of genetics in OA. The outcome of treatment regimen was evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire. The frequency of variants of rs2277680 (A181V) and rs2279115 (938C>A) were determined in extracted DNAs using PCR-RFLP method. RESULTS Our results indicated an increase in scores of pain (P ≤ 0.0001), activity of daily living (ADL) (P ≤ 0.0001), sport and recreation (Sport/Rec) (P ≤ 0.0001), and quality of life (QOL) (P = 0.003) and total scores of the KOOS questionnaire in the metformin group compared to the placebo group. Susceptibility to OA was associated with age, gender, family history, CC genotype of 938C>A (Pa = 0.001; OR = 5.2; 95% CI = 2.0-13.7), and GG+GA genotypes of A181V (Pa = 0.04; OR = 2.1; 95% CI = 1.1-10.5). The C allele of 938C>A (Pa = 0.04; OR = 2.2; 95% CI = 1.1-9.8) and G allele of A181V (Pa = 0.02; OR = 2.2; 95% CI = 1.1-4.8) were also associated with OA. CONCLUSION Our findings support the possible beneficial effects of metformin on improving pain, ADL, Sport/Rec, and QOL in OA patients. Our findings support the association between the CC genotype of Bcl-2 and GG+GA genotypes of CXCL-16 and OA.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tahami
- Bone and Joint Disease Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Elham Haem
- Department of Biostatistics, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
154
|
Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030651. [PMID: 36978899 PMCID: PMC10044767 DOI: 10.3390/antiox12030651] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Collapse
|
155
|
Zhang YC, Fan KY, Wang Q, Hu JX, Wang Q, Zhang HY, Song S, Zhao R, Qiao J, Zhang SX. Genetically Determined Levels of mTOR-Dependent Circulating Proteins and Risk of Multiple Sclerosis. Neurol Ther 2023; 12:751-762. [PMID: 36870011 DOI: 10.1007/s40120-023-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Results from observational studies indicate an association between circulating levels of mammalian target of rapamycin (mTOR)-dependent circulating proteins and the risk of multiple sclerosis (MS). However, a causal association has not been fully elucidated. Mendelian randomization (MR) is used to overcome limitations inherent to observational studies, assess the causal association, and minimize bias due to confounding and reverse causation. METHODS To explore the causal association between seven mTOR-dependent proteins (AKT, RP-S6K, eIF4E-BP, eIF4A, eIF4E, eIF4G, and PKC-α) and MS, we obtained summary statistics from the genome-wide association study (GWAS) meta-analysis of the International Multiple Sclerosis Genetics Consortium (47,429 patients and 68,374 controls) and the INTERVAL study (genetic associations with 2994 plasma proteins from 3301 healthy individuals). MR analyses were conducted using inverse variance weighted, weighted median estimator, and MR-Egger regression methods/models. Sensitivity analyses were performed to ensure the reliability of the findings. Single nucleotide polymorphisms (SNPs) that are independent (r2 < 0.01) and strongly associated to minerals (p < 1e-5) were selected as instrumental variables. RESULTS The results of the MR analyses revealed that among the seven mTOR-dependent proteins selected for study, the circulating level of PKC-α (odds ratio [OR] 0.90, 95% confidence interval [CI] 0.82-0.98; P = 0.017) and RP-S6K (OR 1.12, 95% CI 1.00-1.25; P = 0.045) were associated with MS risk and that there was no sign of pleiotropy or heterogeneity. PKC-α was negatively related to MS, while RP-S6K was positively related to MS. No significant causation was found between the other proteins studied (AKT, eIF4E-BP, eIF4A, eIF4E, eIF4G) and MS. CONCLUSION Molecules in the mTOR signaling pathway may bidirectionally regulate the occurrence and development of MS. PKC-α is a protective factor, while RP-S6K is a risk factor. Further explorations of pathways underlying the association between mTOR-dependent proteins and MS are required. PKC-α and RP-S6K might be used as future therapeutic targets for screening high-risk individuals and potentially improving opportunities for targeted prevention strategies.
Collapse
Affiliation(s)
- Yao-Chen Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.,Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ke-Yi Fan
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Qi Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.,School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Jing-Xi Hu
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Qian Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - He-Yi Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Shan Song
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.,Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Rong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.,Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Jun Qiao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.,Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China. .,Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China. .,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
156
|
Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem Res 2023; 48:697-712. [PMID: 36342577 DOI: 10.1007/s11064-022-03809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.
Collapse
|
157
|
Takasugi M, Yoshida Y, Hara E, Ohtani N. The role of cellular senescence and SASP in tumour microenvironment. FEBS J 2023; 290:1348-1361. [PMID: 35106956 DOI: 10.1111/febs.16381] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Accepted: 01/31/2022] [Indexed: 01/01/2023]
Abstract
Cellular senescence refers to a state of irreversible cell cycle arrest that can be induced by various cellular stresses and is known to play a pivotal role in tumour suppression. While senescence-associated growth arrest can inhibit the proliferation of cancer-prone cells, the altered secretory profile of senescent cells, termed the senescence-associated secretory phenotype, can contribute to the microenvironment that promotes tumour development. Although the senescence-associated secretory phenotype and its effects on tumorigenesis are both highly context dependent, mechanisms underlying such diversity are becoming better understood, thereby allowing the creation of new strategies to effectively target the senescence-associated secretory phenotype and senescent cells for cancer therapy. In this review, we discuss the current knowledge on cellular senescence and the senescence-associated secretory phenotype to develop a structural understanding of their roles in the tumour microenvironment and provide perspectives for future research, including the possibility of senotherapy for the treatment of cancer.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Japan
| | - Yuya Yoshida
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases, Osaka University, Japan.,Immunology Frontier Research Center (IFReC), Osaka University, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
158
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
159
|
Ma Y, Zheng S, Xu M, Chen C, He H. Establishing and Validating an Aging-Related Prognostic Signature in Osteosarcoma. Stem Cells Int 2023; 2023:6245160. [PMID: 37964984 PMCID: PMC10643040 DOI: 10.1155/2023/6245160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2023] Open
Abstract
Aging is an inevitable process that biological changes accumulate with time and results in increased susceptibility to different tumors. But currently, aging-related genes (ARGs) in osteosarcoma were not clear. We investigated the potential prognostic role of ARGs and established an ARG-based prognostic signature for osteosarcoma. The transcriptome data and corresponding clinicopathological information of patients with osteosarcoma were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Molecular subtypes were generated based on prognosis-related ARGs obtained from univariate Cox analysis. With ARGs, a risk signature was built by univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Differences in clinicopathological features, immune infiltration, immune checkpoints, responsiveness to immunotherapy and chemotherapy, and biological pathways were assessed according to molecular subtypes and the risk signature. Based on risk signature and clinicopathological variables, a nomogram was established and validated. Three molecular subtypes with distinct clinical outcomes were classified based on 36 prognostic ARGs for osteosarcoma. A nine-ARG-based signature in the TCGA cohort, including BMP8A, CORT, SLC17A9, VEGFA, GAL, SSX1, RASGRP2, SDC3, and EVI2B, has been created and developed and could well perform patient stratification into the high- and low-risk groups. There were significant differences in clinicopathological features, immune checkpoints and infiltration, responsiveness to immunotherapy and chemotherapy, cancer stem cell, and biological pathways among the molecular subtypes. The risk signature and metastatic status were identified as independent prognostic factors for osteosarcoma. A nomogram combining ARG-based risk signature and metastatic status was established, showing great prediction accuracy and clinical benefit for osteosarcoma OS. We characterized three ARG-based molecular subtypes with distinct characteristics and built an ARG-based risk signature for osteosarcoma prognosis, which could facilitate prognosis prediction and making personalized treatment in osteosarcoma.
Collapse
Affiliation(s)
- Yibo Ma
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China 116044
| | - Shuo Zheng
- The Second Ward of Department of Orthopedics, The Second Hospital of Dalian Medical University, Dalian, China 116000
| | - Mingjun Xu
- The Second Hospital of Dalian Medical University, Dalian Medical University, Dalian, China 116000
| | - Changjian Chen
- The First Ward of Department of Orthopedics, The Second Hospital of Dalian Medical University, Dalian, China 116000
| | - Hongtao He
- The Third Ward of Department of Orthopedics, The Second Hospital of Dalian Medical University, Dalian, China 116000
| |
Collapse
|
160
|
Oka K, Yamakawa M, Kawamura Y, Kutsukake N, Miura K. The Naked Mole-Rat as a Model for Healthy Aging. Annu Rev Anim Biosci 2023; 11:207-226. [PMID: 36318672 DOI: 10.1146/annurev-animal-050322-074744] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Naked mole-rats (NMRs, Heterocephalus glaber) are the longest-lived rodents with a maximum life span exceeding 37 years. They exhibit a delayed aging phenotype and resistance to age-related functional decline/diseases. Specifically, they do not display increased mortality with age, maintain several physiological functions until nearly the end of their lifetime, and rarely develop cancer and Alzheimer's disease. NMRs live in a hypoxic environment in underground colonies in East Africa and are highly tolerant of hypoxia. These unique characteristics of NMRs have attracted considerable interest from zoological and biomedical researchers. This review summarizes previous studies of the ecology, hypoxia tolerance, longevity/delayed aging, and cancer resistance of NMRs and discusses possible mechanisms contributing to their healthy aging. In addition, we discuss current issues and future perspectives to fully elucidate the mechanisms underlying delayed aging and resistance to age-related diseases in NMRs.
Collapse
Affiliation(s)
- Kaori Oka
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , ,
| | - Masanori Yamakawa
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan; ,
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , ,
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan; , .,Research Center for Integrative Evolutionary Science, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , , .,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
161
|
Ha SG, Lee SJV. The role of tRNA-derived small RNAs in aging. BMB Rep 2023; 56:49-55. [PMID: 36646437 PMCID: PMC9978369 DOI: 10.5483/bmbrep.2022-0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 10/15/2023] Open
Abstract
Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases. [BMB Reports 2023; 56(2): 49-55].
Collapse
Affiliation(s)
- Seokjun G. Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
162
|
Ha SG, Lee SJV. The role of tRNA-derived small RNAs in aging. BMB Rep 2023; 56:49-55. [PMID: 36646437 PMCID: PMC9978369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 01/18/2023] Open
Abstract
Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases. [BMB Reports 2023; 56(2): 49-55].
Collapse
Affiliation(s)
- Seokjun G. Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
163
|
Dugan B, Conway J, Duggal NA. Inflammaging as a target for healthy ageing. Age Ageing 2023; 52:7024516. [PMID: 36735849 DOI: 10.1093/ageing/afac328] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/11/2022] [Indexed: 02/05/2023] Open
Abstract
Life expectancy has been on the rise for the past few decades, but healthy life expectancy has not kept pace, leading to a global burden of age-associated disorders. Advancing age is accompanied by a chronic increase in basal systemic inflammation, termed inflammaging, contributing towards an increased risk of developing chronic diseases in old age. This article reviews the recent literature to formulate hypotheses regarding how age-associated inflammaging plays a crucial role in driving chronic diseases and ill health in older adults. Here, we discuss how non-pharmacological intervention strategies (diet, nutraceutical supplements, phytochemicals, physical activity, microbiome-based therapies) targeting inflammaging restore health in older adults. We also consider alternative existing pharmacological interventions (Caloric restriction mimetics, p38 mitogen-activated protein kinase inhibitors) and explore novel targets (senolytics) aimed at combating inflammaging and optimising the ageing process to increase healthy lifespan.
Collapse
Affiliation(s)
- Ben Dugan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Jessica Conway
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
164
|
Hua D, Li X, Yuan J, Tao M, Zhang K, Zheng X, Wan Y, Gui L, Zhang Y, Wu Q. Fitness cost of spinosad resistance related to vitellogenin in Frankliniella occidentalis (Pergande). PEST MANAGEMENT SCIENCE 2023; 79:771-780. [PMID: 36264641 DOI: 10.1002/ps.7253] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The western flower thrips Frankliniella occidentalis, a worldwide agricultural pest, has developed resistance to an array of insecticides. Spinosad resistance confers an apparent fitness cost in F. occidentalis. In the present study, we compared the reproductive capacities, ovary development, and the expression of the vitellogenin (Vg) gene in spinosad-susceptible (Ivf03) and -resistant (NIL-R) near isogenetic lines of F. occidentalis in order to clarify the reason for the fitness cost in spinosad resistance. RESULTS The NIL-R strain exhibited a 17.9% decrease in fecundity (eggs laid per female) as compared to the Ivf03 strain, and the ovariole was significantly shortened by 2.8% in the NIL-R strain relative to the Ivf03 strain. Compared to the Ivf03 strain, the expression levels of Vg mRNA and protein were downregulated by 33.7% and 32.9% in the NIL-R strain, respectively. Moreover, interference with the Vg gene significantly reduced the expression levels of Vg mRNA and protein, and decreased ovariole length, survival rates and the fecundity of both strains. CONCLUSION The results indicate that the downregulated expression of Vg may contribute to the reduction of ovariole length and consequently to a fitness cost in spinosad-resistant F. occidentalis. The results not only increase our understanding of the evolution of insecticide resistance, but also could contribute to the formulation of control strategy of F. occidentalis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dengke Hua
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan, China
| | - Xiaoyu Li
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Hubei Biopesticide Engineering Research Centre, Wuhan, China
| | - Jiangjiang Yuan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lianyou Gui
- Department of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
165
|
Gonzalez B, Tare A, Ryu S, Johnson SC, Atzmon G, Barzilai N, Kaeberlein M, Suh Y. High-throughput sequencing analysis of nuclear-encoded mitochondrial genes reveals a genetic signature of human longevity. GeroScience 2023; 45:311-330. [PMID: 35948858 PMCID: PMC9886794 DOI: 10.1007/s11357-022-00634-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/28/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction is a well-known contributor to aging and age-related diseases. The precise mechanisms through which mitochondria impact human lifespan, however, remain unclear. We hypothesize that humans with exceptional longevity harbor rare variants in nuclear-encoded mitochondrial genes (mitonuclear genes) that confer resistance against age-related mitochondrial dysfunction. Here we report an integrated functional genomics study to identify rare functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as those in MTOR (Y2396Lfs*29), CPS1 (T1406N), and MFN2 (G548*) as well as LRPPRC (S1378G) that is predicted to affect mitochondrial translation. Taken together, our results suggest a functional role for specific mitonuclear genes and pathways in human longevity.
Collapse
Affiliation(s)
- Brenda Gonzalez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Archana Tare
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Seungjin Ryu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Simon C Johnson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Departments of Obstetrics and Gynecology, and Genetics and Development, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
166
|
Xu Z, Wu Z, Huang S, Ye K, Jiang Y, Liu J, Liu J, Lu X, Li B. A metal-organic framework-based immunomodulatory nanoplatform for anti-atherosclerosis treatment. J Control Release 2023; 354:615-625. [PMID: 36641123 DOI: 10.1016/j.jconrel.2023.01.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Immunomodulatory therapy has become a promising method for the clinical treatment of many diseases. Recently, pilot studies revealed that immunomodulatory therapy exhibited good effects on the treatment of cardiovascular diseases, but many problems remain to be solved, such as useful platforms for drug co-delivery and combination therapies. In this study, we designed and constructed the multifunctional nanoparticle Rapa@UiO-66-NH-FAM-IL-1Ra (RUFI) for the treatment of atherosclerotic cardiovascular disease. This nanoplatform combined the advantages of metal-organic frameworks (MOFs) for drug co-delivery, rapamycin and IL-1Ra for immunomodulation, IL-1Ra for cellular targeting, and 5-FAM for fluorescence imaging. RUFI exhibited good drug release of rapamycin and IL-1Ra and specific cytotoxicity for inflammatory macrophages in vitro. In an atherosclerotic model of diet-fed ApoE-/- mice, RUFI significantly targeted and reduced atherosclerosis plaques in coronary arteries, carotid arteries, and aortas. Mechanistic studies indicated that RUFI modulated macrophage phenotype, cytokine expression, and autophagy. This study demonstrated that combination therapy with rapamycin and IL-1Ra via MOF carriers enhanced the immunoregulatory effects against atherosclerosis. This drug co-delivery system suggests that MOF carriers loaded with immunomodulators are promising treatments for atherosclerosis or other inflammatory diseases.
Collapse
Affiliation(s)
- Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Sheng Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
167
|
Barnes-Vélez JA, Aksoy Yasar FB, Hu J. Myelin lipid metabolism and its role in myelination and myelin maintenance. Innovation (N Y) 2023; 4:100360. [PMID: 36588745 PMCID: PMC9800635 DOI: 10.1016/j.xinn.2022.100360] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Myelin is a specialized cell membrane indispensable for rapid nerve conduction. The high abundance of membrane lipids is one of myelin's salient features that contribute to its unique role as an insulator that electrically isolates nerve fibers across their myelinated surface. The most abundant lipids in myelin include cholesterol, glycosphingolipids, and plasmalogens, each playing critical roles in myelin development as well as function. This review serves to summarize the role of lipid metabolism in myelination and myelin maintenance, as well as the molecular determinants of myelin lipid homeostasis, with an emphasis on findings from genetic models. In addition, the implications of myelin lipid dysmetabolism in human diseases are highlighted in the context of hereditary leukodystrophies and neuropathies as well as acquired disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Joseph A. Barnes-Vélez
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
- University of Puerto Rico Medical Sciences Campus, School of Medicine, San Juan, PR 00936-5067, USA
| | - Fatma Betul Aksoy Yasar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
| |
Collapse
|
168
|
Zhang J, Wang S, Liu B. New Insights into the Genetics and Epigenetics of Aging Plasticity. Genes (Basel) 2023; 14:329. [PMID: 36833255 PMCID: PMC9956228 DOI: 10.3390/genes14020329] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Biological aging is characterized by irreversible cell cycle blockade, a decreased capacity for tissue regeneration, and an increased risk of age-related diseases and mortality. A variety of genetic and epigenetic factors regulate aging, including the abnormal expression of aging-related genes, increased DNA methylation levels, altered histone modifications, and unbalanced protein translation homeostasis. The epitranscriptome is also closely associated with aging. Aging is regulated by both genetic and epigenetic factors, with significant variability, heterogeneity, and plasticity. Understanding the complex genetic and epigenetic mechanisms of aging will aid the identification of aging-related markers, which may in turn aid the development of effective interventions against this process. This review summarizes the latest research in the field of aging from a genetic and epigenetic perspective. We analyze the relationships between aging-related genes, examine the possibility of reversing the aging process by altering epigenetic age.
Collapse
Affiliation(s)
- Jie Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Shixiao Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Medical School, Lihu Campus, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
169
|
Blagosklonny MV. Are menopause, aging and prostate cancer diseases? Aging (Albany NY) 2023; 15:298-307. [PMID: 36707068 PMCID: PMC9925691 DOI: 10.18632/aging.204499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
There is no doubt that prostate cancer is a disease. Then, according to hyperfunction theory, menopause is also a disease. Like all age-related diseases, it is a natural process, but is also purely harmful, aimless and unintended by nature. But exactly because these diseases (menopause, prostate enlargement, obesity, atherosclerosis, hypertension, diabetes, presbyopia and thousands of others) are partially quasi-programmed, they can be delayed by slowing aging. Is aging a disease? Aging is a quasi-programmed disease that is partially treatable by rapamycin. On the other hand, aging is an abstraction, a sum of all quasi-programmed diseases and processes. In analogy, the zoo consists of animals and does not exist without animals, but the zoo is not an animal.
Collapse
|
170
|
Kim HS, Pickering AM. Protein translation paradox: Implications in translational regulation of aging. Front Cell Dev Biol 2023; 11:1129281. [PMID: 36711035 PMCID: PMC9880214 DOI: 10.3389/fcell.2023.1129281] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Protein translation is an essential cellular process playing key roles in growth and development. Protein translation declines over the course of age in multiple animal species, including nematodes, fruit flies, mice, rats, and even humans. In all these species, protein translation transiently peaks in early adulthood with a subsequent drop over the course of age. Conversely, lifelong reductions in protein translation have been found to extend lifespan and healthspan in multiple animal models. These findings raise the protein synthesis paradox: age-related declines in protein synthesis should be detrimental, but life-long reductions in protein translation paradoxically slow down aging and prolong lifespan. This article discusses the nature of this paradox and complies an extensive body of work demonstrating protein translation as a modulator of lifespan and healthspan.
Collapse
Affiliation(s)
- Harper S. Kim
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew M. Pickering
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
171
|
Developing Novel Experimental Models of m-TORopathic Epilepsy and Related Neuropathologies: Translational Insights from Zebrafish. Int J Mol Sci 2023; 24:ijms24021530. [PMID: 36675042 PMCID: PMC9866103 DOI: 10.3390/ijms24021530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an important molecular regulator of cell growth and proliferation. Brain mTOR activity plays a crucial role in synaptic plasticity, cell development, migration and proliferation, as well as memory storage, protein synthesis, autophagy, ion channel expression and axonal regeneration. Aberrant mTOR signaling causes a diverse group of neurological disorders, termed 'mTORopathies'. Typically arising from mutations within the mTOR signaling pathway, these disorders are characterized by cortical malformations and other neuromorphological abnormalities that usually co-occur with severe, often treatment-resistant, epilepsy. Here, we discuss recent advances and current challenges in developing experimental models of mTOR-dependent epilepsy and other related mTORopathies, including using zebrafish models for studying these disorders, as well as outline future directions of research in this field.
Collapse
|
172
|
Tian C, Liu S, Huo R. Identification of the ageing-related prognostic gene signature, and the associated regulation axis in skin cutaneous melanoma. Sci Rep 2023; 13:24. [PMID: 36631465 PMCID: PMC9834281 DOI: 10.1038/s41598-022-22259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/12/2022] [Indexed: 01/12/2023] Open
Abstract
Skin cutaneous melanoma (SKCM) has substantial malignancy and a poor prognosis. The function of ageing-related genes (ARGs) in SKCM is unknown. In this study, a prognostic risk-scoring model for ARG was constructed based on SKCM RNA-seq, mutation, and clinical data in The Cancer Genome Atlas. Our novel prognostic model, which included four ARGs (IRS2, PDGFRA, TFAP2A, and SOD2), could distinguish between low-risk and high-risk groups. Low-risk patients benefited more from immunotherapy and commonly used targeted and chemotherapy drugs than high-risk patients. There were also considerable differences in immunocyte infiltration and tumour microenvironment between the two groups. Furthermore, multivariate Cox regression analysis revealed that age, pT_stage, pM_stage, body mass index, tumour mutation burden, and risk score were independent factors influencing the prognosis of patients with SKCM; therefore, we devised a prognosis nomogram. Last, a long non-coding (lncRNA) NEAT1/miR-33a-5p/IRS2 regulatory axis of the competing endogenous RNA network was built to investigate the mechanisms of SKCM metastasis progression. Grouping based on the scoring system could predict the prognosis of SKCM and predict the sensitivity of patients to immunotherapy, targeted therapy, and chemotherapy. This could facilitate the formulation of individualised treatment strategies and help drug research and development. These findings highlight the regulatory axis of the lncRNA NEAT1/miR-33a-5p/IRS2, which may play a role in SKCM metastasis.
Collapse
Affiliation(s)
- Chonglin Tian
- grid.460018.b0000 0004 1769 9639Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China ,grid.27255.370000 0004 1761 1174Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong China
| | - Sujing Liu
- grid.27255.370000 0004 1761 1174Shandong Provincial Third Hospital, Shandong University, Jinan, 250031 Shandong China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
173
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
174
|
Wen J, Pan T, Li H, Fan H, Liu J, Cai Z, Zhao B. Role of mitophagy in the hallmarks of aging. J Biomed Res 2023; 37:1-14. [PMID: 36642914 PMCID: PMC9898045 DOI: 10.7555/jbr.36.20220045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aging, subjected to scientific scrutiny, is extensively defined as a time-dependent decline in functions that involves the majority of organisms. The time-dependent accretion of cellular lesions is generally a universal trigger of aging, while mitochondrial dysfunction is a sign of aging. Dysfunctional mitochondria are identified and removed by mitophagy, a selective form of macroautophagy. Increased mitochondrial damage resulting from reduced biogenesis and clearance may promote the aging process. The primary purpose of this paper is to illustrate in detail the effects of mitophagy on aging and emphasize the associations between mitophagy and other signs of aging, including dietary restriction, telomere shortening, epigenetic alterations, and protein imbalance. The evidence regarding the effects of these elements on aging is still limited. And although the understanding of relationship between mitophagy and aging has been long-awaited, to analyze details of such a relationship remains the main challenge in aging studies.
Collapse
Affiliation(s)
- Jie Wen
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China,Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong 524001, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
| | - Tingyu Pan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
| | - Hongyan Li
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China,Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haixia Fan
- Chongqing Medical University, Chongqing 400042, China
| | - Jinhua Liu
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China,Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong 524001, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China,Zhiyou Cai, Department of Neurology, Chongqing General Hospital, 312 Zhongshan First Road, Yuzhong District, Chongqing 400013, China. Tel/Fax: +86-23-63515796/+86-23-63515796, E-mail:
| | - Bin Zhao
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China,Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong 524001, China,Bin Zhao, Department and Institute of Neurology, Guangdong Medical University, Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, 57 Renmin Road, Zhanjiang, Guangdong 524001, China. Tel/Fax: +86-759-2386949/+86-13902501596, E-mail: /
| |
Collapse
|
175
|
Werbner B, Tavakoli-Rouzbehani OM, Fatahian AN, Boudina S. The dynamic interplay between cardiac mitochondrial health and myocardial structural remodeling in metabolic heart disease, aging, and heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:9. [PMID: 36742465 PMCID: PMC9894375 DOI: 10.20517/jca.2022.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review provides a holistic perspective on the bi-directional relationship between cardiac mitochondrial dysfunction and myocardial structural remodeling in the context of metabolic heart disease, natural cardiac aging, and heart failure. First, a review of the physiologic and molecular drivers of cardiac mitochondrial dysfunction across a range of increasingly prevalent conditions such as metabolic syndrome and cardiac aging is presented, followed by a general review of the mechanisms of mitochondrial quality control (QC) in the heart. Several important mechanisms by which cardiac mitochondrial dysfunction triggers or contributes to structural remodeling of the heart are discussed: accumulated metabolic byproducts, oxidative damage, impaired mitochondrial QC, and mitochondrial-mediated cell death identified as substantial mechanistic contributors to cardiac structural remodeling such as hypertrophy and myocardial fibrosis. Subsequently, the less studied but nevertheless important reverse relationship is explored: the mechanisms by which cardiac structural remodeling feeds back to further alter mitochondrial bioenergetic function. We then provide a condensed pathogenesis of several increasingly important clinical conditions in which these relationships are central: diabetic cardiomyopathy, age-associated declines in cardiac function, and the progression to heart failure, with or without preserved ejection fraction. Finally, we identify promising therapeutic opportunities targeting mitochondrial function in these conditions.
Collapse
Affiliation(s)
- Benjamin Werbner
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Amir Nima Fatahian
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
176
|
Guang Z, Min Z, Jun-Tan L, Tian-Xu D, Xiang G. Single-cell protein activity analysis reveals a novel subpopulation of chondrocytes and the corresponding key master regulator proteins associated with anti-senescence and OA progression. Front Immunol 2023; 14:1077003. [PMID: 37033917 PMCID: PMC10077735 DOI: 10.3389/fimmu.2023.1077003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Background Osteoarthritis (OA) is a prevalent senescence-related disease with substantial joint pain, loss of joint function, and cartilage degeneration. Because of the paucity of single-cell studies of OA and the gene dropout problem of single-cell RNA sequencing, it is difficult to acquire an in-depth understanding of the molecular characteristics of various chondrocyte clusters. Methods Here, we aimed to provide new insights into chondrocyte senescence and a rationale for the development of effective intervention strategies for OA by using published single-cell RNA-sequencing data sets and the metaVIPER algorithm (Virtual Inference of Protein activity by Enriched Regulon). This algorithm was employed to present a proteome catalog of 62,449 chondrocytes from the cartilage of healthy individuals and OA patients at single-cell resolution. Furthermore, histopathologic analysis was carried out in cartilage samples from clinical patients and experimental mouse models of OA to validate above results. Results We identified 16 protein-activity-based chondrocyte clusters as well as the underlying master regulators in each cluster. By assessing the enrichment score of each cluster in bulk RNA-sequencing data, followed by gene-set variation analysis, we preliminarily identified a novel subpopulation of chondrocytes (cluster 3). This clinically relevant cluster was predicted to be the main chondrocyte cluster responsible for maintaining cellular homeostasis and anti-senescence. Specifically, we uncovered a set of the key leading-edge proteins of cluster 3 by validating the robustness of the above results using another human chondrocyte single-cell RNA-sequencing data set, consisting of 24,675 chondrocytes. Furthermore, cartilage samples from clinical patients and experimental mouse models of OA were used to evaluate the expression patterns of these leading-edge proteins, and the results indicated that NDRG2, TSPYL2, JMJD6 and HMGB2 are closely associated with OA pathogenesis and might play critical roles in modulating cellular homeostasis and anti-senescence in chondrocytes. Conclusion Our study revealed a novel subpopulation of chondrocytes that are critical for anti-progression of OA and the corresponding master regulator proteins, which might serve as therapeutic targets in OA.
Collapse
Affiliation(s)
- Zhao Guang
- Department of Orthopedics, The Fourth Hospital of China Medical University, Shenyang, China
| | - Zhang Min
- Department of Obstetrics, The Fourth Hospital of China Medical University, Shenyang, China
| | - Li Jun-Tan
- Department of Sport Medicine and Joint Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Dou Tian-Xu
- Department of Sport Medicine and Joint Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Gao Xiang
- Department of Orthopedics, The Fourth Hospital of China Medical University, Shenyang, China
- *Correspondence: Gao Xiang,
| |
Collapse
|
177
|
Brunet A, Goodell MA, Rando TA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol 2023; 24:45-62. [PMID: 35859206 PMCID: PMC9879573 DOI: 10.1038/s41580-022-00510-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Most adult organs contain regenerative stem cells, often organized in specific niches. Stem cell function is critical for tissue homeostasis and repair upon injury, and it is dependent on interactions with the niche. During ageing, stem cells decline in their regenerative potential and ability to give rise to differentiated cells in the tissue, which is associated with a deterioration of tissue integrity and health. Ageing-associated changes in regenerative tissue regions include defects in maintenance of stem cell quiescence, differentiation ability and bias, clonal expansion and infiltration of immune cells in the niche. In this Review, we discuss cellular and molecular mechanisms underlying ageing in the regenerative regions of different tissues as well as potential rejuvenation strategies. We focus primarily on brain, muscle and blood tissues, but also provide examples from other tissues, such as skin and intestine. We describe the complex interactions between different cell types, non-cell-autonomous mechanisms between ageing niches and stem cells, and the influence of systemic factors. We also compare different interventions for the rejuvenation of old regenerative regions. Future outlooks in the field of stem cell ageing are discussed, including strategies to counter ageing and age-dependent disease.
Collapse
Affiliation(s)
- Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
| | - Margaret A Goodell
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA.
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
| | - Thomas A Rando
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Neurology Service, VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
178
|
Lin ZH, Chang SY, Shen WC, Lin YH, Shen CL, Liao SB, Liu YC, Chen CS, Ching TT, Wang HD. Isocitrate Dehydrogenase Alpha-1 Modulates Lifespan and Oxidative Stress Tolerance in Caenorhabditis elegans. Int J Mol Sci 2022; 24:ijms24010612. [PMID: 36614054 PMCID: PMC9820670 DOI: 10.3390/ijms24010612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Altered metabolism is a hallmark of aging. The tricarboxylic acid cycle (TCA cycle) is an essential metabolic pathway and plays an important role in lifespan regulation. Supplementation of α-ketoglutarate, a metabolite converted by isocitrate dehydrogenase alpha-1 (idha-1) in the TCA cycle, increases lifespan in C. elegans. However, whether idha-1 can regulate lifespan in C. elegans remains unknown. Here, we reported that the expression of idha-1 modulates lifespan and oxidative stress tolerance in C. elegans. Transgenic overexpression of idha-1 extends lifespan, increases the levels of NADPH/NADP+ ratio, and elevates the tolerance to oxidative stress. Conversely, RNAi knockdown of idha-1 exhibits the opposite effects. In addition, the longevity of eat-2 (ad1116) mutant via dietary restriction (DR) was reduced by idha-1 knockdown, indicating that idha-1 may play a role in DR-mediated longevity. Furthermore, idha-1 mediated lifespan may depend on the target of rapamycin (TOR) signaling. Moreover, the phosphorylation levels of S6 kinase (p-S6K) inversely correlate with idha-1 expression, supporting that the idha-1-mediated lifespan regulation may involve the TOR signaling pathway. Together, our data provide new insights into the understanding of idha-1 new function in lifespan regulation probably via DR and TOR signaling and in oxidative stress tolerance in C. elegans.
Collapse
Affiliation(s)
- Zhi-Han Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115201, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106319, Taiwan
| | - Shun-Ya Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Chi Shen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yen-Hung Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chiu-Lun Shen
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Sin-Bo Liao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Chun Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 300044, Taiwan
- Correspondence: ; Tel.: +88-635742470
| |
Collapse
|
179
|
Donati Zeppa S, Agostini D, Ferrini F, Gervasi M, Barbieri E, Bartolacci A, Piccoli G, Saltarelli R, Sestili P, Stocchi V. Interventions on Gut Microbiota for Healthy Aging. Cells 2022; 12:cells12010034. [PMID: 36611827 PMCID: PMC9818603 DOI: 10.3390/cells12010034] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the improvement in health and social conditions has led to an increase in the average lifespan. Since aging is the most important risk factor for the majority of chronic human diseases, the development of therapies and intervention to stop, lessen or even reverse various age-related morbidities is an important target to ameliorate the quality of life of the elderly. The gut microbiota, that is, the complex ecosystem of microorganisms living in the gastrointestinal tract, plays an important role, not yet fully understood, in maintaining the host's health and homeostasis, influencing metabolic, oxidative and cognitive status; for this reason, it is also named "the forgotten endocrine organ" or "the second brain". On the other hand, the gut microbiota diversity and richness are affected by unmodifiable factors, such as aging and sex, and modifiable ones, such as diet, pharmacological therapies and lifestyle. In this review, we discuss the changes, mostly disadvantageous, for human health, induced by aging, in microbiota composition and the effects of dietary intervention, of supplementation with probiotics, prebiotics, synbiotics, psychobiotics and antioxidants and of physical exercise. The development of an integrated strategy to implement microbiota health will help in the goal of healthy aging.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, Univerity San Raffaele, 00166 Rome, Italy
| |
Collapse
|
180
|
Sun L, Liu Z, Ning K, Wu Z, Chen Z, Wu Z, Yin X. Comprehensive Analysis of Cellular Senescence-Related Genes in Prognosis, Molecular Characterization and Immunotherapy of Hepatocellular Carcinoma. Biol Proced Online 2022; 24:24. [PMID: 36536279 PMCID: PMC9761989 DOI: 10.1186/s12575-022-00187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cellular senescence is a tumor suppressive response in which the cell cycle is in a state of permanent arrest and can inhibit tumor cell proliferation. In recent years, induction of cellular senescence has been shown to be important for antitumor therapy, and the link between cellular senescence and clinical prognosis and immunotherapy of hepatocellular carcinoma is still unknown. METHODS We performed enrichment analysis of genes in three cellular senescence gene sets, screened for gene sets significantly enriched in hepatocellular carcinoma and extracted genes from them. Signature were constructed using senescence-related genes, and their expression was verified at the protein and RNA levels. Survival, clinical staging and grading, immune infiltration, immunotherapy, and drug sensitivity were also analyzed between risk groups. RESULTS The q-PCR and immunohistochemistry results revealed significant differences in the expression of the signature genes between normal and tumor tissues. Significant differences in clinicopathological features, prognosis and immune infiltration were observed between risk groups. In the low-risk group, better OS and lower TMB scores were demonstrated, while the high-risk group had higher immune checkpoint expression, as well as lower risk of immune escape. In addition, we found that the High-risk group was more sensitive to sorafenib. CONCLUSION In summary, the signature constructed using aging-related genes can reliably predict patient prognosis and immunotherapy efficacy, providing a new idea for immune system therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Liang Sun
- grid.412455.30000 0004 1756 5980Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zitao Liu
- grid.412455.30000 0004 1756 5980Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ke Ning
- grid.412604.50000 0004 1758 4073Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhipeng Wu
- grid.412455.30000 0004 1756 5980Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhendong Chen
- grid.412455.30000 0004 1756 5980Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengyi Wu
- grid.412455.30000 0004 1756 5980Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiangbao Yin
- grid.412455.30000 0004 1756 5980Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
181
|
Wang Q, Zhang J, Zhuang J, Shen F, Zhao M, Du J, Yu P, Zhong H, Feng F. Soft-Shelled Turtle Peptides Extend Lifespan and Healthspan in Drosophila. Nutrients 2022; 14:nu14245205. [PMID: 36558363 PMCID: PMC9781693 DOI: 10.3390/nu14245205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
In traditional Chinese medicine, soft-shelled turtle protein and peptides serve as a nutraceutical for prolonging the lifespan. However, their effects on anti-aging have not been clarified scientifically in vivo. This study aimed to determine whether soft-shelled turtle peptides (STP) could promote the lifespan and healthspan in Drosophila melanogaster and the underlying molecular mechanisms. Herein, STP supplementation prolonged the mean lifespan by 20.23% and 9.04% in males and females, respectively, delaying the aging accompanied by climbing ability decline, enhanced gut barrier integrity, and improved anti-oxidation, starvation, and heat stress abilities, while it did not change the daily food intake. Mechanistically, STP enhanced autophagy and decreased oxidative stress by downregulating the target of rapamycin (TOR) signaling pathway. In addition, 95.18% of peptides from the identified sequences in STP could exert potential inhibitory effects on TOR through hydrogen bonds, van der Walls, hydrophobic interactions, and electrostatic interactions. The current study could provide a theoretical basis for the full exploitation of soft-shelled turtle aging prevention.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiachen Zhuang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Juan Du
- Zhejiang Nuoyan Biotechnology Co., Ltd., Huzhou 313000, China
| | - Peng Yu
- Yuyao Lengjiang Turtle Industry, Ningbo 315400, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (H.Z.); (F.F.)
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Correspondence: (H.Z.); (F.F.)
| |
Collapse
|
182
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|
183
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
184
|
Martin JL, Dawson SJ, Gale JE. An emerging role for stress granules in neurodegenerative disease and hearing loss. Hear Res 2022; 426:108634. [PMID: 36384053 DOI: 10.1016/j.heares.2022.108634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
Abstract
Stress granules (SGs) are membrane-less cytosolic assemblies that form in response to stress (e.g., heat, oxidative stress, hypoxia, viral infection and UV). Composed of mRNA, RNA binding proteins and signalling proteins, SGs minimise stress-related damage and promote cell survival. Recent research has shown that the stress granule response is vital to the cochlea's response to stress. However, emerging evidence suggests stress granule dysfunction plays a key role in the pathophysiology of multiple neurodegenerative diseases, several of which present with hearing loss as a symptom. Hearing loss has been identified as the largest potentially modifiable risk factor for dementia. The underlying reason for the link between hearing loss and dementia remains to be established. However, several possible mechanisms have been proposed including a common pathological mechanism. Here we will review the role of SGs in the pathophysiology of neurodegenerative diseases and explore possible links and emerging evidence that they may play an important role in maintenance of hearing and may be a common mechanism underlying age-related hearing loss and dementia.
Collapse
Affiliation(s)
- Jack L Martin
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| |
Collapse
|
185
|
Chen Q, Fan K, Song G, Wang X, Zhang J, Chen H, Qin X, Lu Y, Qi W. Rapamycin regulates osteogenic differentiation through Parkin-mediated mitophagy in rheumatoid arthritis. Int Immunopharmacol 2022; 113:109407. [PMID: 36379150 DOI: 10.1016/j.intimp.2022.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Varying degrees of bone destruction and bone loss occur in the development of rheumatoid arthritis (RA). Nevertheless, the mechanism underlying osteoporosis in the development of RA is not completely elucidated. Recent evidence indicates that mitophagy may play a vital role in regulating the differentiation and function of preosteoblast. Parkin is associated with mitophagy and various inflammatory diseases, but the precise role of Parkin in the treatment of osteoporosis in RA is unclear. In the present study, we found that the abnormal bone metabolism of RA is related to the activation of the mechanistic targets of mTORC1 pathway, and chronic inflammation which regulates the differentiation of preosteoblast through mitophagy. In this study, we found that Parkin was upregulated, and the mitochondrion was damaged in tumor necrosis factor alpha (TNF-α) stimulated preosteoblasts. Rapamycin (RAPA, an mTORC1 pathway blocker) upregulation of Parkin-mediated mitophagy tends to attenuate mitochondrial impairment caused by TNF-α in preosteoblasts. Theexperimentinvivo demonstrated that the combination therapy with TNF-α neutralizing antibody and RAPA significantly reduced osteoporosis in AIA mice. Drug inhibition of this pathway can be a potential treatment for osteoporosis in patients with RA.
Collapse
Affiliation(s)
- Qiyue Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Kai Fan
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Guangbao Song
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xinqiong Wang
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jinwei Zhang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Huan Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xuan Qin
- Department of Stomatology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, Guangdong, China
| | - Yao Lu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou 510010, Guangdong, China.
| | - Weizhong Qi
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
186
|
Innate immunity dysregulation in aging eye and therapeutic interventions. Ageing Res Rev 2022; 82:101768. [PMID: 36280210 DOI: 10.1016/j.arr.2022.101768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
The prevalence of eye diseases increases considerably with age, resulting in significant vision impairment. Although the pathobiology of age-related eye diseases has been studied extensively, the contribution of immune-related changes due to aging remains elusive. In the eye, tissue-resident cells and infiltrating immune cells regulate innate responses during injury or infection. But due to aging, these cells lose their protective functions and acquire pathological phenotypes. Thus, dysregulated ocular innate immunity in the elderly increases the susceptibility and severity of eye diseases. Herein, we emphasize the impact of aging on the ocular innate immune system in the pathogenesis of infectious and non-infectious eye diseases. We discuss the role of age-related alterations in cellular metabolism, epigenetics, and cellular senescence as mechanisms underlying altered innate immune functions. Finally, we describe approaches to restore protective innate immune functions in the aging eye. Overall, the review summarizes our current understanding of innate immune functions in eye diseases and their dysregulation during aging.
Collapse
|
187
|
Palmer RD. Three Tiers to biological escape velocity: The quest to outwit aging. Aging Med (Milton) 2022; 5:281-286. [PMID: 36606268 PMCID: PMC9805293 DOI: 10.1002/agm2.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
As longevity companies emerge with new products and the fields of anti-aging research develop new cutting-edge therapies, three distinct classes of longevity methodologies emerge. This discussion finds that there are three clear classes (Tiers) of longevity systems that are currently under development, and all three will be paramount to achieve biological escape velocity (where tissues can be repaired faster than aging can damage them). These classes are referred to as Tier 1, Tier 2, and Tier 3 treatments and are described in detail below. These three Tiers are required for easy identification for pharmaceutical companies and research companies to determine the type of therapy they may choose to deliver being noninvasive, invasive, time consuming, or simple end user products. Specific targets and goals need to be defined clearly from an early perspective in the development of these technologies for future precision medicines. This allows consumers of future anti-aging technologies to consider which Tier a particular therapy may be, delivering a more informed choice.
Collapse
Affiliation(s)
- Raymond D. Palmer
- Full Spectrum BiologicsSouth PerthWestern AustraliaAustralia
- School of Aging, Science of AgingSouth PerthWestern AustraliaAustralia
| |
Collapse
|
188
|
Sampadi B, Vermeulen S, Mišovic B, Boei JJ, Batth TS, Chang JG, Paulsen MT, Magnuson B, Schimmel J, Kool H, Olie CS, Everts B, Vertegaal ACO, Olsen JV, Ljungman M, Jeggo PA, Mullenders LHF, Vrieling H. Divergent Molecular and Cellular Responses to Low and High-Dose Ionizing Radiation. Cells 2022; 11:cells11233794. [PMID: 36497055 PMCID: PMC9739411 DOI: 10.3390/cells11233794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).
Collapse
Affiliation(s)
- Bharath Sampadi
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Correspondence: (B.S.); (H.V.)
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Branislav Mišovic
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Jan J. Boei
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Tanveer S. Batth
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jer-Gung Chang
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Michelle T. Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Magnuson
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Hanneke Kool
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Cyriel S. Olie
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Jesper V. Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Penny A. Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Leon H. F. Mullenders
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya 464-8601, Japan
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Correspondence: (B.S.); (H.V.)
| |
Collapse
|
189
|
Wang S, Li H, Yuan M, Fan H, Cai Z. Role of AMPK in autophagy. Front Physiol 2022; 13:1015500. [PMID: 36505072 PMCID: PMC9732440 DOI: 10.3389/fphys.2022.1015500] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a significant energy sensor in the maintenance of cellular energy homeostasis. Autophagy is a highly conserved catabolic process that involves an intracellular degradation system in which cytoplasmic components, such as protein aggregates, organelles, and other macromolecules, are directed to the lysosome through the self-degradative process to maintain cellular homeostasis. Given the triggered autophagy process in various situations including the nutrient deficit, AMPK is potentially linked with different stages of autophagy. Above all, AMPK increases ULK1 activity by directly phosphorylating Ser467, Ser555, Thr574, and Ser637 at least four sites, which increases the recruitment of autophagy-relevant proteins (ATG proteins) to the membrane domains which affects autophagy at the initiation stage. Secondly, AMPK inhibits VPS34 complexes that do not contain pro-autophagic factors and are thus involved in isolation membrane forming processes, by direct phosphorylation of VPS34 on Thr163 and Ser165. After phosphorylation, AMPK can govern autophagosome formation through recruiting downstream autophagy-related proteins to the autophagosome formation site. Finally, the AMPK-SIRT1 signaling pathway can be activated by upregulating the transcription of autophagy-related genes, thereby enhancing autophagosome-lysosome fusion. This review provides an introduction to the role of AMPK in different stages of autophagy.
Collapse
Affiliation(s)
- Shengyuan Wang
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Hongyan Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Minghao Yuan
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Haixia Fan
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Zhiyou Cai
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China,*Correspondence: Zhiyou Cai,
| |
Collapse
|
190
|
Xiaofei Y, Tingting L, Xuan W, Zhiyi H. Erythromycin attenuates oxidative stress-induced cellular senescence via the PI3K-mTOR signaling pathway in chronic obstructive pulmonary disease. Front Pharmacol 2022; 13:1043474. [PMID: 36506578 PMCID: PMC9727195 DOI: 10.3389/fphar.2022.1043474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose: Chronic obstructive pulmonary disease (COPD) is proposed to hasten lung aging. Erythromycin protects against oxidative stress and inflammatory responses. However, the potential anti-senescence effect of erythromycin remains disclosed. In the present study, we investigated whether erythromycin influenced oxidative stress-induced cellular senescence and investigated its related mechanisms. Methods: A cigarrete smoke (CS) -induced emphysema mouse model and a H2O2-induced premature senescence model in human bronchial epithelial cell line (BEAS-2B) were established. Senescence-related markers (P53, P21 and SA-β-Gal activity), and levels of oxidative stress biomarkers (MDA, SOD and ROS) were measured. Additionally, cells were pretreated with rapamycin (mTOR inhibitor) or erythromycin, and the expression levels of components of the PI3K-mTOR signaling pathway were measured in BEAS-2B cells. Results: Exposed to H2O2, increased SA-β-gal activity was observed in BEAS-2B cells suggesting premature senescence. Erythromycin inhibited the expression of P53 and P21 in the CS-induced emphysema mouse model. MDA levels significantly increased and SOD levels decreased in the CS-exposed mice and H2O2-induced BEAS-2B cells. Rapamycin and erythromycin significantly suppressed the expression of P53 and P21. Additionally, rapamycin and erythromycin inhibited the PI3K-mTOR signaling pathway. Conclusion: Our findings suggest that erythromycin ameliorates oxidative stress-induced cellular senescence via the PI3K-mTOR signaling pathway. Hence, we establish a theoretical foundation for the clinical application of erythromycin for COPD prevention and treatment.
Collapse
|
191
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. Therapeutic Potential of Extracellular Vesicles in Aging and Age-Related Diseases. Int J Mol Sci 2022; 23:ijms232314632. [PMID: 36498960 PMCID: PMC9735639 DOI: 10.3390/ijms232314632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Aging is associated with an alteration of intercellular communication. These changes in the extracellular environment contribute to the aging phenotype and have been linked to different aging-related diseases. Extracellular vesicles (EVs) are factors that mediate the transmission of signaling molecules between cells. In the aging field, these EVs have been shown to regulate important aging processes, such as oxidative stress or senescence, both in vivo and in vitro. EVs from healthy cells, particularly those coming from stem cells (SCs), have been described as potential effectors of the regenerative potential of SCs. Many studies with different animal models have shown promising results in the field of regenerative medicine. EVs are now viewed as a potential cell-free therapy for tissue damage and several diseases. Here we propose EVs as regulators of the aging process, with an important role in tissue regeneration and a raising therapy for age-related diseases.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Cardiology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
192
|
Xie K, Fuchs H, Scifo E, Liu D, Aziz A, Aguilar-Pimentel JA, Amarie OV, Becker L, da Silva-Buttkus P, Calzada-Wack J, Cho YL, Deng Y, Edwards AC, Garrett L, Georgopoulou C, Gerlini R, Hölter SM, Klein-Rodewald T, Kramer M, Leuchtenberger S, Lountzi D, Mayer-Kuckuk P, Nover LL, Oestereicher MA, Overkott C, Pearson BL, Rathkolb B, Rozman J, Russ J, Schaaf K, Spielmann N, Sanz-Moreno A, Stoeger C, Treise I, Bano D, Busch DH, Graw J, Klingenspor M, Klopstock T, Mock BA, Salomoni P, Schmidt-Weber C, Weiergräber M, Wolf E, Wurst W, Gailus-Durner V, Breteler MMB, Hrabě de Angelis M, Ehninger D. Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice. Nat Commun 2022; 13:6830. [PMID: 36369285 PMCID: PMC9652467 DOI: 10.1038/s41467-022-34515-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Enzo Scifo
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Juan Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Oana Veronica Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yi-Li Cho
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yushuang Deng
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - A Cole Edwards
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Christina Georgopoulou
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | | | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dimitra Lountzi
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Phillip Mayer-Kuckuk
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lena L Nover
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Manuela A Oestereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Clemens Overkott
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Brandon L Pearson
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Mailman School of Public Health, Columbia University, 630W. 168th St., New York, NY, 10032, USA
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jenny Russ
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Kristina Schaaf
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Claudia Stoeger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Irina Treise
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, 81675, Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, 85350, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University Munich, 80336, Munich, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Paolo Salomoni
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Marco Weiergräber
- Research Group Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices, 53175, Bonn, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, Freising, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, 85354, Freising, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.
| |
Collapse
|
193
|
Davies DM, van den Handel K, Bharadwaj S, Lengefeld J. Cellular enlargement - A new hallmark of aging? Front Cell Dev Biol 2022; 10:1036602. [PMID: 36438561 PMCID: PMC9688412 DOI: 10.3389/fcell.2022.1036602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2023] Open
Abstract
Years of important research has revealed that cells heavily invest in regulating their size. Nevertheless, it has remained unclear why accurate size control is so important. Our recent study using hematopoietic stem cells (HSCs) in vivo indicates that cellular enlargement is causally associated with aging. Here, we present an overview of these findings and their implications. Furthermore, we performed a broad literature analysis to evaluate the potential of cellular enlargement as a new aging hallmark and to examine its connection to previously described aging hallmarks. Finally, we highlight interesting work presenting a correlation between cell size and age-related diseases. Taken together, we found mounting evidence linking cellular enlargement to aging and age-related diseases. Therefore, we encourage researchers from seemingly unrelated areas to take a fresh look at their data from the perspective of cell size.
Collapse
Affiliation(s)
- Daniel M. Davies
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kim van den Handel
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Soham Bharadwaj
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jette Lengefeld
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
194
|
Musa M, Dionisio PA, Casqueiro R, Milosevic I, Raimundo N, Krisko A. Lack of peroxisomal catalase affects heat shock response in Caenorhabditis elegans. Life Sci Alliance 2022; 6:6/1/e202201737. [PMID: 36347545 PMCID: PMC9644420 DOI: 10.26508/lsa.202201737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Exact mechanisms of heat shock-induced lifespan extension, although documented across species, are still not well understood. Here, we show that fully functional peroxisomes, specifically peroxisomal catalase, are needed for the activation of canonical heat shock response and heat-induced hormesis in Caenorhabditis elegans Although during heat shock, the HSP-70 chaperone is strongly up-regulated in the WT and in the absence of peroxisomal catalase (ctl-2(ua90)II), the small heat shock proteins display modestly increased expression in the mutant. Nuclear foci formation of HSF-1 is reduced in the ctl-2(ua90)II mutant. In addition, heat-induced lifespan extension, observed in the WT, is absent in the ctl-2(ua90)II strain. Activation of the antioxidant response and pentose phosphate pathway are the most prominent changes observed during heat shock in the WT worm but not in the ctl-2(ua90)II mutant. Involvement of peroxisomes in the cell-wide cellular response to transient heat shock reported here gives new insight into the role of organelle communication in the organism's stress response.
Collapse
Affiliation(s)
- Marina Musa
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Pedro A Dionisio
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ricardo Casqueiro
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal,Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal,Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
195
|
Chen M, Yu Y, Mi T, Guo Q, Xiang B, Tian X, Jin L, Long C, Shen L, Liu X, Pan J, Zhang Y, Xu T, Zhang D, Wei G. MK-2206 Alleviates Renal Fibrosis by Suppressing the Akt/mTOR Signaling Pathway In Vivo and In Vitro. Cells 2022; 11:3505. [PMID: 36359901 PMCID: PMC9655032 DOI: 10.3390/cells11213505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 09/06/2024] Open
Abstract
Renal fibrosis is a common pathological feature of various kidney diseases, leading to irreversible renal failure and end-stage renal disease. However, there are still no effective treatments to reverse renal fibrosis. This study aimed to explore the potential mechanism of a targeted drug for fibrosis. Here, unilateral ureteral obstruction (UUO)-treated mice and a TGF-β1-treated human renal tubular epithelial cell line (HK-2 cells) were used as models of renal fibrosis. Based on the changes of mRNA in UUO kidneys detected by transcriptome sequencing, MK-2206, an Akt inhibitor, was predicted as a potential drug to alleviate renal fibrosis through bioinformatics. We dissolved UUO mice with MK-2206 by gastric gavage and cultured TGF-β-induced HK-2 cells with MK-2206. Histopathological examinations were performed after MK-2206 intervention, and the degree of renal fibrosis, as well as the expression of Akt/mTOR pathway-related proteins, were evaluated by immunohistochemical staining, immunofluorescence staining, and Western blot. The results showed that MK-2206 significantly improved the pathological structure of the kidney. Furthermore, MK-2206 intervention effectively inhibited UUO- and TGF-β1-induced epithelial-mesenchymal transition, fibroblast activation, and extracellular matrix deposition. Mechanistically, MK-2206 treatment attenuated the activation of the Akt/mTOR signaling pathway. Taken together, our study revealed for the first time that MK-2206 is a promising drug for the improvement of renal fibrosis.
Collapse
Affiliation(s)
- Meiling Chen
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Yihang Yu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Tao Mi
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Qitong Guo
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Bin Xiang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Xiaomao Tian
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Liming Jin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Chunlan Long
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Lianju Shen
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Xing Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Jianbo Pan
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Tao Xu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Deying Zhang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Guanghui Wei
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| |
Collapse
|
196
|
Peng L, Chen H, Wang Z, He Y, Zhang X. Identification and validation of a classifier based on hub aging-related genes and aging subtypes correlation with immune microenvironment for periodontitis. Front Immunol 2022; 13:1042484. [PMID: 36389665 PMCID: PMC9663931 DOI: 10.3389/fimmu.2022.1042484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Periodontitis (PD), an age-related disease, is characterized by inflammatory periodontal tissue loss, and with the general aging of the global population, the burden of PD is becoming a major health concern. Nevertheless, the mechanism underlying this phenomenon remains indistinct. We aimed to develop a classification model for PD and explore the relationship between aging subtypes and the immune microenvironment for PD based on bioinformatics analysis. MATERIALS AND METHODS The PD-related datasets were acquired from the Gene Expression Omnibus (GEO) database, and aging-related genes (ARGs) were obtained from the Human Aging Genomic Resources (HAGR). Four machine learning algorithms were applied to screen out the hub ARGs. Then, an artificial neural network (ANN) model was constructed and the accuracy of the model was validated by receiver operating characteristic (ROC) curve analysis. The clinical effect of the model was evaluated by decision curve analysis (DCA). Consensus clustering was employed to determine the aging expression subtypes. A series of bioinformatics analyses were performed to explore the PD immune microenvironment and its subtypes. The hub aging-related modules were defined using weighted correlation network analysis (WGCNA). RESULTS Twenty-seven differentially expressed ARGs were dysregulated and a classifier based on four hub ARGs (BLM, FOS, IGFBP3, and PDGFRB) was constructed to diagnose PD with excellent accuracy. Subsequently, the mRNA levels of the hub ARGs were validated by quantitative real-time PCR (qRT-PCR). Based on differentially expressed ARGs, two aging-related subtypes were identified. Distinct biological functions and immune characteristics including infiltrating immunocytes, immunological reaction gene sets, the human leukocyte antigen (HLA) gene, and immune checkpoints were revealed between the subtypes. Additionally, the black module correlated with subtype-1 was manifested as the hub aging-related module and its latent functions were identified. CONCLUSION Our findings highlight the critical implications of aging-related genes in modulating the immune microenvironment. Four hub ARGs (BLM, FOS, IGFBP3, and PDGFRB) formed a classification model, and accompanied findings revealed the essential role of aging in the immune microenvironment for PD, providing fresh inspiration for PD etiopathogenesis and potential immunotherapy.
Collapse
Affiliation(s)
- Limin Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Hang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,*Correspondence: Xiaonan Zhang,
| |
Collapse
|
197
|
Pan RY, Zhang J, Wang J, Wang Y, Li Z, Liao Y, Liao Y, Zhang C, Liu Z, Song L, Yu J, Yuan Z. Intermittent fasting protects against Alzheimer's disease in mice by altering metabolism through remodeling of the gut microbiota. NATURE AGING 2022; 2:1024-1039. [PMID: 37118092 DOI: 10.1038/s43587-022-00311-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/11/2022] [Indexed: 04/30/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia without effective clinical treatment. Here, we show that intermittent fasting (IF) improves cognitive functions and AD-like pathology in a transgenic AD mouse model (5XFAD). IF alters gut microbial composition with a significant enrichment in probiotics such as Lactobacillus. The changes in the composition of the gut microbiota affect metabolic activities and metabolite production. Metabolomic profiling analysis of cecal contents revealed IF leads to a decreased carbohydrate metabolism (for example, glucose) and an increased abundance in amino acids (for example, sarcosine and dimethylglycine). Interestingly, we found that the administration of IF-elevated sarcosine or dimethylglycine mimics the protective effects of IF in 5XFAD mice, including the amelioration of cognitive decline, amyloid-β (Aβ) burden and glial overactivation. Our findings thus demonstrate an IF regimen is a potential approach to prevent AD progression, at least through the gut-microbiota-metabolites-brain axis, and constitutes an innovative AD therapeutic avenue.
Collapse
Affiliation(s)
- Rui-Yuan Pan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jing Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jinlei Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yingyi Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhihui Li
- Cognitive and Mental Health Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Liao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yajin Liao
- Department of neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chenggang Zhang
- Cognitive and Mental Health Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiqiang Liu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijuan Song
- Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jiezhong Yu
- Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
198
|
Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat Commun 2022; 13:6339. [PMID: 36284093 PMCID: PMC9596710 DOI: 10.1038/s41467-022-33850-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Twenty-nine years following the breakthrough discovery that a single-gene mutation of daf-2 doubles Caenorhabditis elegans lifespan, it remains unclear where this insulin/IGF-1 receptor gene is expressed and where it acts to regulate ageing. Using knock-in fluorescent reporters, we determined that daf-2 and its downstream transcription factor daf-16 are expressed ubiquitously. Using tissue-specific targeted protein degradation, we determined that intracellular DAF-2-to-DAF-16 signaling in the intestine plays a major role in lifespan regulation, while that in the hypodermis, neurons, and germline plays a minor role. Notably, intestine-specific loss of DAF-2 activates DAF-16 in and outside the intestine, causes almost no adverse effects on development and reproduction, and extends lifespan by 94% in a way that partly requires non-intestinal DAF-16. Consistent with intestine supplying nutrients to the entire body, evidence from this and other studies suggests that altered metabolism, particularly down-regulation of protein and RNA synthesis, mediates longevity by reduction of insulin/IGF-1 signaling.
Collapse
|
199
|
Serras F. The sooner, the better: ROS, kinases and nutrients at the onset of the damage response in Drosophila. Front Cell Dev Biol 2022; 10:1047823. [PMID: 36353511 PMCID: PMC9637634 DOI: 10.3389/fcell.2022.1047823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
One of the main topics in regeneration biology is the nature of the early signals that trigger the damage response. Recent advances in Drosophila point to the MAP3 kinase Ask1 as a molecular hub that integrates several signals at the onset of regeneration. It has been discovered that reactive oxygen species (ROS) produced in damaged imaginal discs and gut epithelia will activate the MAP3 kinase Ask1. Severely damaged and apoptotic cells produce an enormous amount of ROS, which ensures their elimination by activating Ask1 and in turn the pro-apoptotic function of JNK. However, this creates an oxidative stress environment with beneficial effects that is sensed by neighboring healthy cells. This environment, in addition to the Pi3K/Akt nutrient sensing pathway, can be integrated into Ask1 to launch regeneration. Ultimately the activity of Ask1 depends on these and other inputs and modulates its signaling to achieve moderate levels of p38 and low JNK signaling and thus promote survival and regeneration. This model based on the dual function of Ask1 for early response to damage is discussed here.
Collapse
Affiliation(s)
- Florenci Serras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
200
|
Zhang JL, Zhang MN, Wang HG, Yang XZ, Yu CG. Jatrorrhizine alleviates ulcerative colitis via regulating gut microbiota and NOS2 expression. Gut Pathog 2022; 14:41. [PMID: 36271438 PMCID: PMC9587631 DOI: 10.1186/s13099-022-00514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background The natural protoberberine jatrorrhizine (JA) is reported to have several medicinal properties and a significant effect on the gut microbiota of mice. The regulation of gut microbiota is generally known to play an important role in the intestinal mucosal immune response to ulcerative colitis (UC). However, whether JA can be used in the treatment of UC is still unclear. Our study aimed to investigate the underlying therapeutic effects and mechanisms of JA in treating colitis. Results Compared with the DSS-induced colitis model group, the JA + DSS treated group had more significant improvements in weight loss, disease activity index score, colon length shortening, and pathological inflammation. 16s rRNA sequencing analysis showed that JA treatment protected colitis mice against DSS-induced disturbance of gut microbiota. At the phylum level, reductions in Deferribacteres and Proteobacteria were observed in the JA-treated group; At the genus level, the JA-treated group showed an increased relative abundance of Akkermansia and decreased abundance of Escherichia-Shigella, Desulfovibrio, Mucispirillum, etc. Network pharmacology was then used to screen out five drug-disease target genes (NOS2, ESR1, CALM1, CALM2, CALM3). Transcriptomics analysis further validated that the NOS2 expression was significantly reduced in colon tissue of JA-administered mice compared with DSS control mice. Additionally, analysis of correlation suggested that NOS2 expression was negatively correlated with the relative abundance of AKKermansia and positively correlated with Desulfovibrio, Rikenella. Conclusion JA alleviates ulcerative colitis via regulating gut microbiota and NOS2 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-022-00514-z.
Collapse
Affiliation(s)
- Jia Ling Zhang
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Gastroenterology, The Affiliated Huai'an No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Min Na Zhang
- Department of Gastroenterology, The Affiliated Huai'an No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Hong Gang Wang
- Department of Gastroenterology, The Affiliated Huai'an No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Xiao Zhong Yang
- Department of Gastroenterology, The Affiliated Huai'an No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| | - Cheng Gong Yu
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|