151
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
152
|
Harder NHO, Lee HP, Flood VJ, San Juan JA, Gillette SK, Heffern MC. Fatty Acid Uptake in Liver Hepatocytes Induces Relocalization and Sequestration of Intracellular Copper. Front Mol Biosci 2022; 9:863296. [PMID: 35480878 PMCID: PMC9036104 DOI: 10.3389/fmolb.2022.863296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Copper is an essential metal micronutrient with biological roles ranging from energy metabolism to cell signaling. Recent studies have shown that copper regulation is altered by fat accumulation in both rodent and cell models with phenotypes consistent with copper deficiency, including the elevated expression of the copper transporter, ATP7B. This study examines the changes in the copper trafficking mechanisms of liver cells exposed to excess fatty acids. Fatty acid uptake was induced in liver hepatocarcinoma cells, HepG2, by treatment with the saturated fatty acid, palmitic acid. Changes in chaperones, transporters, and chelators demonstrate an initial state of copper overload in the cell that over time shifts to a state of copper deficiency. This deficiency is due to sequestration of copper both into the membrane-bound copper protein, hephaestin, and lysosomal units. These changes are independent of changes in copper concentration, supporting perturbations in copper localization at the subcellular level. We hypothesize that fat accumulation triggers an initial copper miscompartmentalization within the cell, due to disruptions in mitochondrial copper balance, which induces a homeostatic response to cytosolic copper overload. This leads the cell to activate copper export and sequestering mechanisms that in turn induces a condition of cytosolic copper deficiency. Taken together, this work provides molecular insights into the previously observed phenotypes in clinical and rodent models linking copper-deficient states to obesity-associated disorders.
Collapse
|
153
|
Jiang H, Muir RK, Gonciarz RL, Olshen AB, Yeh I, Hann BC, Zhao N, Wang YH, Behr SC, Korkola JE, Evans MJ, Collisson EA, Renslo AR. Ferrous iron-activatable drug conjugate achieves potent MAPK blockade in KRAS-driven tumors. J Exp Med 2022; 219:e20210739. [PMID: 35262628 PMCID: PMC8916116 DOI: 10.1084/jem.20210739] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
KRAS mutations drive a quarter of cancer mortality, and most are undruggable. Several inhibitors of the MAPK pathway are FDA approved but poorly tolerated at the doses needed to adequately extinguish RAS/RAF/MAPK signaling in the tumor cell. We found that oncogenic KRAS signaling induced ferrous iron (Fe2+) accumulation early in and throughout mutant KRAS-mediated transformation. We converted an FDA-approved MEK inhibitor into a ferrous iron-activatable drug conjugate (FeADC) and achieved potent MAPK blockade in tumor cells while sparing normal tissues. This innovation allowed sustainable, effective treatment of tumor-bearing animals, with tumor-selective drug activation, producing superior systemic tolerability. Ferrous iron accumulation is an exploitable feature of KRAS transformation, and FeADCs hold promise for improving the treatment of KRAS-driven solid tumors.
Collapse
Affiliation(s)
- Honglin Jiang
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Ryan K. Muir
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Adam B. Olshen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Iwei Yeh
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Departments of Pathology and Dermatology, University of California, San Francisco, San Francisco, CA
| | - Byron C. Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Ning Zhao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Yung-hua Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Spencer C. Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - James E. Korkola
- Center for Spatial Systems Biomedicine, Oregon Health & Sciences University, Portland, OR
| | - Michael J. Evans
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Eric A. Collisson
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Adam R. Renslo
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
154
|
Chakraborty K, Kar S, Rai B, Bhagat R, Naskar N, Seth P, Gupta A, Bhattacharjee A. Copper dependent ERK1/2 phosphorylation is essential for the viability of neurons and not glia. Metallomics 2022; 14:mfac005. [PMID: 35150272 PMCID: PMC8975716 DOI: 10.1093/mtomcs/mfac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/10/2022] [Indexed: 01/24/2023]
Abstract
Intracellular copper [Cu(I)] has been hypothesized to play role in the differentiation of the neurons. This necessitates understanding the role of Cu(I) not only in the neurons but also in the glia considering their anatomical proximity, contribution towards ion homeostasis, and neurodegeneration. In this study, we did a systematic investigation of the changes in the cellular copper homeostasis during neuronal and glial differentiation and the pathways triggered by them. Our study demonstrates increased mRNA for the plasma membrane copper transporter CTR1 leading to increased Cu(I) during the neuronal (PC-12) differentiation. ATP7A is retained in the trans-Golgi network (TGN) despite high Cu(I) demonstrating its utilization towards the neuronal differentiation. Intracellular copper triggers pathways essential for neurite generation and ERK1/2 activation during the neuronal differentiation. ERK1/2 activation also accompanies the differentiation of the foetal brain derived neuronal progenitor cells. The study demonstrates that ERK1/2 phosphorylation is essential for the viability of the neurons. In contrast, differentiated C-6 (glia) cells contain low intracellular copper and significant downregulation of the ERK1/2 phosphorylation demonstrating that ERK1/2 activation does not regulate the viability of the glia. But ATP7A shows vesicular localization despite low copper in the glia. In addition to the TGN, ATP7A localizes into RAB11 positive recycling endosomes in the glial neurites. Our study demonstrates the role of copper dependent ERK1/2 phosphorylation in the neuronal viability. Whereas glial differentiation largely involves sequestration of Cu(I) into the endosomes potentially (i) for ready release and (ii) rendering cytosolic copper unavailable for pathways like the ERK1/2 activation.
Collapse
Affiliation(s)
| | - Sumanta Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Bhawana Rai
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Reshma Bhagat
- Molecular and Cellular Neuroscience, Neurovirology Division, National Brain Research Centre, Manesar, India
| | - Nabanita Naskar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Division, National Brain Research Centre, Manesar, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | | |
Collapse
|
155
|
Copper enhances genotoxic drug resistance via ATOX1 activated DNA damage repair. Cancer Lett 2022; 536:215651. [DOI: 10.1016/j.canlet.2022.215651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022]
|
156
|
Su F, Fang Y, Yu J, Jiang T, Lin S, Zhang S, Lv L, Long T, Pan H, Qi J, Zhou Q, Tang W, Ding G, Wang L, Tan L, Yin J. The Single Nucleotide Polymorphisms of AP1S1 are Associated with Risk of Esophageal Squamous Cell Carcinoma in Chinese Population. Pharmgenomics Pers Med 2022; 15:235-247. [PMID: 35321090 PMCID: PMC8938157 DOI: 10.2147/pgpm.s342743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background The σ1A subunit of the adaptor protein 1 (AP1S1) participates in various intracellular transport pathways, especially the maintenance of copper homeostasis, which is pivotal in carcinogenesis. It is therefore rational to presume that AP1S1 might also be involved in carcinogenesis. In this hospital-based case-control study, we investigated the genetic susceptibility to ESCC in relation to SNPs of AP1S1 among Chinese population. Methods A database containing a total of 1303 controls and 1043 ESCC patients were retrospectively studied. The AP1S1 SNPs were analyzed based on ligation detection reaction (LDR) method. Then, the relationship between ESCC and SNPs of AP1S1 was determined with a significant crude P<0.05. Then the logistic regression analysis was used for the calculation for adjusted P in the demographic stratification comparison if a significant difference was observed in the previous step. Results AP1S1 rs77387752 C>T genotype TT was an independent risk factor for ESCC, while rs4729666 C>T genotype TC and rs35208462 C>T genotype TC were associated with a lower risk for ESCC, especially in co-dominant model and allelic test for younger, male subjects who are not alcohol-drinkers nor cigarette smokers. Conclusion AP1S1 rs77387752, rs4729666 and rs35208462 polymorphisms are associated with susceptibility to ESCC in Chinese individuals. AP1S1 SNPs may exert an important role in esophageal carcinogenesis and could serve as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Feng Su
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yong Fang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jinjie Yu
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Siyun Lin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Tao Long
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Huiwen Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Junqing Qi
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Qiang Zhou
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan, People’s Republic of China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Jiangsu, People’s Republic of China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Liming Wang
- Department of Respiratory, Shanghai Xuhui Central Hospital, Shanghai, People’s Republic of China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Correspondence: Jun Yin; Lijie Tan, Zhongshan Hospital of Fudan University, 180 Fenglin road, Xuhui District, Shanghai, 200032, People’s Republic of China, Email ;
| |
Collapse
|
157
|
Feng T, Karges J, Liao X, Ji L, Chao H. Engineered exosomes as a natural nanoplatform for cancer targeted delivery of metal-based drugs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
158
|
Venturelli S, Leischner C, Helling T, Renner O, Burkard M, Marongiu L. Minerals and Cancer: Overview of the Possible Diagnostic Value. Cancers (Basel) 2022; 14:1256. [PMID: 35267564 PMCID: PMC8909570 DOI: 10.3390/cancers14051256] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide and is expected to increase by one-third over the next two decades, in parallel with the growing proportion of the elderly population. Treatment and control of cancer incidence is a global issue. Since there is no clear way to prevent or cure this deadly malignancy, diagnostic, predictive, and prognostic markers for oncological diseases are of great therapeutic value. Minerals and trace elements are important micronutrients for normal physiological function of the body. They are abundant in natural food sources and are regularly included in dietary supplements whereas highly processed industrial food often contains reduced or altered amounts of them. In modern society, the daily intake, storage pools, and homeostasis of these micronutrients are dependent on certain dietary habits and can be thrown out of balance by malignancies. The current work summarizes the data on minerals and trace elements associated with abnormal accumulation or depletion states in tumor patients and discusses their value as potential tumor-associated biomarkers that could be introduced into cancer therapy.
Collapse
Affiliation(s)
- Sascha Venturelli
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
| | - Thomas Helling
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
| | - Olga Renner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
| | - Markus Burkard
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
| |
Collapse
|
159
|
Recent Advances in Cancer Imaging with 64CuCl2 PET/CT. Nucl Med Mol Imaging 2022; 56:80-85. [PMID: 35464672 PMCID: PMC8976861 DOI: 10.1007/s13139-022-00738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022] Open
Abstract
Copper is required for cancer cell proliferation and tumor angiogenesis. Radioactive copper-64 chloride (64CuCl2) is a useful radiotracer for cancer imaging with position emission tomography (PET) based on increased cellular uptake of copper mediated by human copper transporter 1 (hCtr1) expressed on cancer cell membrane. Significant progress has been made in research of using 64CuCl2 as a radiotracer for cancer imaging with PET. Radiation dosimetry study in humans demonstrated radiation safety of 64CuCl2. Recently, 64CuCl2 was successfully used for PET imaging of prostate cancer, bladder cancer, glioblastoma multiforme (GBM), and non-small cell lung carcinoma in humans. Based on the findings from the preclinical research studies, 64CuCl2 PET/CT also holds potential for diagnostic imaging of human hepatocellular carcinoma (HCC), malignant melanoma, and detection of intracranial metastasis of copper-avid tumors based on low physiological background of radioactive copper uptake in the brain. Copper-64 radionuclide emits both β+ and β- particles, suggesting therapeutic potential of 64CuCl2 for radionuclide cancer therapy of copper-avid tumors. Recent progress in production of therapeutic copper-67 radionuclide invites clinical research in use of theranostic pair of 64CuCl2 and 67CuCl2 for cancer imaging and radionuclide therapy.
Collapse
|
160
|
El Fawal G, Abu-Serie MM, El-Gendi H, El-Fakharany EM. Fabrication, characterization and in vitro evaluation of disulfiram-loaded cellulose acetate/poly(ethylene oxide) nanofiber scaffold for breast and colon cancer cell lines treatment. Int J Biol Macromol 2022; 204:555-564. [PMID: 35139395 DOI: 10.1016/j.ijbiomac.2022.01.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022]
Abstract
Cancer and microbial infections threaten human health. Currently, chemotherapeutic drugs for cancer lack selectivity between normal and cancer cells, exacerbating this problem. Effective anticancer drug encapsulation is the golden key to solving this issue. Disulfiram (DS), an anticancer drug, has low solubility and selectivity and to tackle this concern, cellulose acetate (CA) and poly (ethylene oxide) (PEO) was selected as a matrix to prepare nanofiber containing DS (DS@CA/PEO) via electrospinning technique. DS@CA/PEO nanofiber was characterized by SEM, FTIR, TGA, and X-rd patterns and the results confirmed DS incorporation in CA/PEO nanofiber. DS@CA/PEO nanofiber scaffold showed higher safety than DS-free on human normal cells (Wi-38) with revealing similar anticancer activity of DS-free against colon cancer line (Caco-2) and breast cancer line (MDA-MB 231). This higher selectivity of DS@CA/PEO towards cancer cells than normal cells was associated with maintaining apoptotic activity and aldehyde dehydrogenase-inhibitory potency of DS. The latter efficacy led to eradicating colon and breast cancer stem cells, as evidenced by flow cytometry. Moreover, DS@CA/PEO nanofiber scaffold showed potent antibacterial activity (in vitro) against both Gram-negative and Gram-positive bacteria. These results investigated that DS@CA/PEO nanofiber scaffold could be a potential dual candidate as a selective anticancer and antimicrobial agent.
Collapse
Affiliation(s)
- Gomaa El Fawal
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab City 21934, Alexandria, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab 21934, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab 21934, Egypt
| |
Collapse
|
161
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, Kaler SG, Lutsenko S, Mittal V, Petris MJ, Polishchuk R, Ralle M, Schilsky ML, Tonks NK, Vahdat LT, Van Aelst L, Xi D, Yuan P, Brady DC, Chang CJ. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 2022; 22:102-113. [PMID: 34764459 PMCID: PMC8810673 DOI: 10.1038/s41568-021-00417-2] [Citation(s) in RCA: 617] [Impact Index Per Article: 205.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.
Collapse
Affiliation(s)
- Eva J Ge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, New York, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen G Kaler
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Michael L Schilsky
- Section of Transplantation and Immunology, Division of Digestive Diseases, Department of Medicine and Surgery, Yale University Medical Center, New Haven, CT, USA
| | | | - Linda T Vahdat
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Dan Xi
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, MI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MI, USA
| | - Donita C Brady
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
162
|
Scrivner O, Dao L, Newell-Rogers MK, Shahandeh B, Meyskens FL, Kozawa SK, Liu-Smith F, Plascencia-Villa G, José-Yacamán M, Jia S, Chang CJ, Farmer PJ. The ionophore thiomaltol induces rapid lysosomal accumulation of copper and apoptosis in melanoma. Metallomics 2022; 14:mfab074. [PMID: 34958363 PMCID: PMC8763036 DOI: 10.1093/mtomcs/mfab074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022]
Abstract
In this report, we investigate the toxicity of the ionophore thiomaltol (Htma) and Cu salts to melanoma. Divalent metal complexes of thiomaltol display toxicity against A375 melanoma cell culture resulting in a distinct apoptotic response at submicromolar concentrations, with toxicity of Cu(tma)2 > Zn(tma)2 >> Ni(tma)2. In metal-chelated media, Htma treatment shows little toxicity, but the combination with supplemental CuCl2, termed Cu/Htma treatment, results in toxicity that increases with suprastoichiometric concentrations of CuCl2 and correlates with the accumulation of intracellular copper. Electron microscopy and confocal laser scanning microscopy of Cu/Htma treated cells shows a rapid accumulation of copper within lysosomes over the course of hours, concurrent with the onset of apoptosis. A buildup of ubiquitinated proteins due to proteasome inhibition is seen on the same timescale and correlates with increases of copper without additional Htma.
Collapse
Affiliation(s)
- Ottis Scrivner
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Long Dao
- Department of Medical Physiology, College of Medicine, Texas A&M Health Sciences Center, Bryan, TX 77807, USA
| | - M Karen Newell-Rogers
- Department of Medical Physiology, College of Medicine, Texas A&M Health Sciences Center, Bryan, TX 77807, USA
| | | | | | - Susan Kurumi Kozawa
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Feng Liu-Smith
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Miguel José-Yacamán
- Applied Physics and Materials Science Department and MIRA Center, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Shang Jia
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Patrick J Farmer
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
163
|
Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nat Cell Biol 2022; 24:35-50. [PMID: 35027734 PMCID: PMC8851982 DOI: 10.1038/s41556-021-00822-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
VEGFR2 (KDR/Flk1) signaling in endothelial cells (ECs) is essential for developmental and reparative angiogenesis. Reactive oxygen species (ROS) and copper (Cu) are also involved.in these processes. However, their inter-relationship is poorly understood. The role of endothelial Cu importer CTR1 in VEGFR2 signaling and angiogenesis in vivo is hitherto unknown. Here we show that CTR1 functions as a previously unrecognized redox sensor to promote angiogenesis in ECs. CTR1-depleted ECs showed reduced VEGF-induced VEGFR2 signaling and angiogenic responses. Mechanistically, CTR1 was rapidly sulfenylated at Cys189 in cytosolic C-terminus upon VEGF stimulation, which induced CTR1-VEGFR2 disulfide bond formation and their co-internalization to early endosomes, driving sustained VEGFR2 signaling. In vivo, EC-specific Ctr1-deficient mice or CRISPR/Cas9-generated “redox-dead” Cys to Ala Ctr1 knock-in mutant mice had impaired developmental and reparative angiogenesis. Thus, oxidation of CTR1 at Cys189 promotes VEGFR2 internalization and signaling to enhance angiogenesis. Our study uncovers an important mechanism for ROS sensing through CTR1 to drive neovascularization.
Collapse
|
164
|
Regulation of DNA binding activity of the Staphylococcus aureus catabolite control protein A by copper (II)-mediated oxidation. J Biol Chem 2022; 298:101587. [PMID: 35032550 PMCID: PMC8847796 DOI: 10.1016/j.jbc.2022.101587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/23/2022] Open
Abstract
Catabolite control protein A (CcpA) of the human pathogen Staphylococcus aureus is an essential DNA regulator for carbon catabolite repression and virulence, which facilitates bacterial survival and adaptation to a changing environment. Here, we report that copper (II) signaling mediates the DNA-binding capability of CcpA in vitro and in vivo. Copper (II) catalyzes the oxidation of two cysteine residues (Cys216 and Cys242) in CcpA to form intermolecular disulfide bonds between two CcpA dimers, which results in the formation and dissociation of a CcpA tetramer of CcpA from its cognate DNA promoter. We further demonstrate that the two cysteine residues on CcpA are important for S. aureus to resist host innate immunity, indicating that S. aureus CcpA senses the redox-active copper (II) ions as a natural signal to cope with environmental stress. Together, these findings reveal a novel regulatory mechanism for CcpA activity through copper (II)-mediated oxidation.
Collapse
|
165
|
TFEB Regulates ATP7B Expression to Promote Platinum Chemoresistance in Human Ovarian Cancer Cells. Cells 2022; 11:cells11020219. [PMID: 35053335 PMCID: PMC8774088 DOI: 10.3390/cells11020219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
ATP7B is a hepato-specific Golgi-located ATPase, which plays a key role in the regulation of copper (Cu) homeostasis and signaling. In response to elevated Cu levels, ATP7B traffics from the Golgi to endo-lysosomal structures, where it sequesters excess copper and further promotes its excretion to the bile at the apical surface of hepatocytes. In addition to liver, high ATP7B expression has been reported in tumors with elevated resistance to platinum (Pt)-based chemotherapy. Chemoresistance to Pt drugs represents the current major obstacle for the treatment of large cohorts of cancer patients. Although the mechanisms underlying Pt-tolerance are still ambiguous, accumulating evidence suggests that lysosomal sequestration of Pt drugs by ion transporters (including ATP7B) might significantly contribute to drug resistance development. In this context, signaling mechanisms regulating the expression of transporters such as ATP7B are of great importance. Considering this notion, we investigated whether ATP7B expression in Pt-resistant cells might be driven by transcription factor EB (TFEB), a master regulator of lysosomal gene transcription. Using resistant ovarian cancer IGROV-CP20 cells, we found that TFEB directly binds to the predicted coordinated lysosomal expression and regulation (CLEAR) sites in the proximal promoter and first intron region of ATP7B upon Pt exposure. This binding accelerates transcription of luciferase reporters containing ATP7B CLEAR regions, while suppression of TFEB inhibits ATP7B expression and stimulates cisplatin toxicity in resistant cells. Thus, these data have uncovered a Pt-dependent transcriptional mechanism that contributes to cancer chemoresistance and might be further explored for therapeutic purposes.
Collapse
|
166
|
Han H, Nakaoka HJ, Hofmann L, Zhou JJ, Yu C, Zeng L, Nan J, Seo G, Vargas RE, Yang B, Qi R, Bardwell L, Fishman DA, Cho KWY, Huang L, Luo R, Warrior R, Wang W. The Hippo pathway kinases LATS1 and LATS2 attenuate cellular responses to heavy metals through phosphorylating MTF1. Nat Cell Biol 2022; 24:74-87. [PMID: 35027733 PMCID: PMC9022944 DOI: 10.1038/s41556-021-00813-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Heavy metals are both integral parts of cells and environmental toxicants, and their deregulation is associated with severe cellular dysfunction and various diseases. Here we show that the Hippo pathway plays a critical role in regulating heavy metal homeostasis. Hippo signalling deficiency promotes the transcription of heavy metal response genes and protects cells from heavy metal-induced toxicity, a process independent of its classic downstream effectors YAP and TAZ. Mechanistically, the Hippo pathway kinase LATS phosphorylates and inhibits MTF1, an essential transcription factor in the heavy metal response, resulting in the loss of heavy metal response gene transcription and cellular protection. Moreover, LATS activity is inhibited following heavy metal treatment, where accumulated zinc directly binds and inhibits LATS. Together, our study reveals an interplay between the Hippo pathway and heavy metals, providing insights into this growth-related pathway in tissue homeostasis and stress response.
Collapse
Affiliation(s)
- Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Hiroki J Nakaoka
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Line Hofmann
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Jeff Jiajing Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Lisha Zeng
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Junyu Nan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | | | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Ruxi Qi
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Dmitry A Fishman
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Rahul Warrior
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
167
|
Saadeh SM, Abu Shawish HM, Abu Foul MY. Lowering detection limits of copper(II)-selective carbon paste electrodes using an SNO- and an SNNS- Schiff base ligands. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2021.100151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
168
|
Abstract
Trace elements, such as iodine and selenium (Se), are vital to human health and play an essential role in metabolism. They are also important to thyroid metabolism and function, and correlate with thyroid autoimmunity and tumors. Other minerals such as iron (Ir), lithium (Li), copper (Co), zinc (Zn), manganese (Mn), magnesium (Mg), cadmium (Cd), and molybdenum (Mo), may related to thyroid function and disease. Normal thyroid function depends on a variety of trace elements for thyroid hormone synthesis and metabolism. These trace elements interact with each other and are in a dynamic balance. However, this balance may be disturbed by the excess or deficiency of one or more elements, leading to abnormal thyroid function and the promotion of autoimmune thyroid diseases and thyroid tumors.The relationship between trace elements and thyroid disorders is still unclear, and further research is needed to clarify this issue and improve our understanding of how trace elements mediate thyroid function and metabolism. This paper systematically reviewed recently published literature on the relationship between various trace elements and thyroid function to provide a preliminary theoretical basis for future research.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Thyroid Surgery, General Surgery Center, The Hospital of Jilin University, Changchun, China
| | - Shuai Xue
- Department of Thyroid Surgery, General Surgery Center, The Hospital of Jilin University, Changchun, China
- *Correspondence: Shuai Xue, ; Guang Chen,
| | - Li Zhang
- Department of Nephrology, The Hospital of Jilin University, Changchun, China
| | - Guang Chen
- Department of Thyroid Surgery, General Surgery Center, The Hospital of Jilin University, Changchun, China
- *Correspondence: Shuai Xue, ; Guang Chen,
| |
Collapse
|
169
|
Qi H, Zhang T, Jing C, Zhang Z, Chen Y, Chen Y, Deng Q, Wang S. Metal-organic gel as a fluorescence sensing platform to trace copper(II). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:52-57. [PMID: 34889920 DOI: 10.1039/d1ay01716k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic gel (MOG), as a novel type of metallic organic hybrid material, exhibits diverse properties. However, its application in fluorescence detection for specific metal ions has rarely been exploited. In this work, we have designed and synthesized a MOG based on Al-carboxylate coordination assemblies (denoted as MOG-Al). The resultant MOG-Al shows good specific fluorescence signal response to trace Cu2+. Under optimal conditions, the fluorescence quenching degrees (F0 - F) of the MOG-Al have a linear correlation with Cu2+ concentration ranging from 0.05 to 100 μM, and the limit of detection (LOD) is 45.00 nM. The proposed sensing platform was also applied for the detection of Cu2+ in real samples. Satisfactory recoveries (92-116%) for Cu2+ in rice, soybean milk powder and pork liver were obtained. These results indicate that MOG-Al is a promising material for the specific and sensitive sensing of Cu2+.
Collapse
Affiliation(s)
- Hao Qi
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Tianli Zhang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Chuang Jing
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhen Zhang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yujie Chen
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yali Chen
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qiliang Deng
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
170
|
Ramchandani D, Berisa M, Tavarez DA, Li Z, Miele M, Bai Y, Lee SB, Ban Y, Dephoure N, Hendrickson RC, Cloonan SM, Gao D, Cross JR, Vahdat LT, Mittal V. Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis. Nat Commun 2021; 12:7311. [PMID: 34911956 PMCID: PMC8674260 DOI: 10.1038/s41467-021-27559-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Copper serves as a co-factor for a host of metalloenzymes that contribute to malignant progression. The orally bioavailable copper chelating agent tetrathiomolybdate (TM) has been associated with a significant survival benefit in high-risk triple negative breast cancer (TNBC) patients. Despite these promising data, the mechanisms by which copper depletion impacts metastasis are poorly understood and this remains a major barrier to advancing TM to a randomized phase II trial. Here, using two independent TNBC models, we report a discrete subpopulation of highly metastatic SOX2/OCT4+ cells within primary tumors that exhibit elevated intracellular copper levels and a marked sensitivity to TM. Global proteomic and metabolomic profiling identifies TM-mediated inactivation of Complex IV as the primary metabolic defect in the SOX2/OCT4+ cell population. We also identify AMPK/mTORC1 energy sensor as an important downstream pathway and show that AMPK inhibition rescues TM-mediated loss of invasion. Furthermore, loss of the mitochondria-specific copper chaperone, COX17, restricts copper deficiency to mitochondria and phenocopies TM-mediated alterations. These findings identify a copper-metabolism-metastasis axis with potential to enrich patient populations in next-generation therapeutic trials.
Collapse
Affiliation(s)
- Divya Ramchandani
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mirela Berisa
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Diamile A Tavarez
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhuoning Li
- Department of Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Matthew Miele
- Department of Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yang Bai
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sharrell B Lee
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yi Ban
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ronald C Hendrickson
- Department of Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suzanne M Cloonan
- Department of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- The School of Medicine and Tallaght University Hospital, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Cell and Developmental biology, Weill Cornell Medicine, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Linda T Vahdat
- Department of Medicine, Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Cell and Developmental biology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
171
|
Duan F, Li J, Huang J, Hua X, Song C, Wang L, Bi X, Xia W, Yuan Z. Establishment and Validation of Prognostic Nomograms Based on Serum Copper Level for Patients With Early-Stage Triple-Negative Breast Cancer. Front Cell Dev Biol 2021; 9:770115. [PMID: 34901016 PMCID: PMC8657150 DOI: 10.3389/fcell.2021.770115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Altered copper levels have been observed in several cancers, but studies on the relationship between serum copper and early-stage triple-negative breast cancer (TNBC) remain scare. We sought to establish a predictive model incorporating serum copper levels for individualized survival predictions. Methods: We retrospectively analyzed clinicopathological information and baseline peripheric blood samples of patients diagnosed with early-stage TNBC between September 2005 and October 2016 at Sun Yat-sen University Cancer Center. The optimal cut-off point of serum copper level was determined using maximally selected log-rank statistics. Kaplan-Meier curves were used to estimate survival probabilities. Independent prognostic indicators associated with survival were identified using multivariate Cox regression analysis, and subsequently, prognostic nomograms were established to predict individualized disease-free survival (DFS) and overall survival (OS). The nomograms were validated in a separate cohort of 86 patients from the original randomized clinical trial SYSUCC-001 (SYSUCC-001 cohort). Results: 350 patients were eligible in this study, including 264 in the training cohort and 86 in the SYSUCC-001 cohort. An optimal cut-off value of 21.3 μmol/L of serum copper was determined to maximally divide patients into low- and high-copper groups. After a median follow-up of 87.1 months, patients with high copper levels had significantly worse DFS (p = 0.002) and OS (p < 0.001) than those with low copper levels in the training cohort. Multivariate Cox regression analysis revealed that serum copper level was an independent factor for DFS and OS. Further, prognostic models based on serum copper were established for individualized predictions. These models showed excellent discrimination [C-index for DFS: 0.689, 95% confidence interval (CI): 0.621-0.757; C-index for OS: 0.728, 95% CI: 0.654-0.802] and predictive calibration, and were validated in the SYSUCC-001 cohort. Conclusion: Serum copper level is a potential predictive biomarker for patients with early-stage TNBC. Predictive nomograms based on serum copper might be served as a practical tool for individualized prognostication.
Collapse
Affiliation(s)
- Fangfang Duan
- Departments of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianpei Li
- Departments of Clinical Laboratory Medicine, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiajia Huang
- Departments of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Hua
- Departments of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chenge Song
- Departments of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Wang
- Departments of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiwen Bi
- Departments of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen Xia
- Departments of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongyu Yuan
- Departments of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
172
|
Krishnappa S, Naganna CM, Rajan HK, Rajashekarappa S, Gowdru HB. Cytotoxic and Apoptotic Effects of Chemogenic and Biogenic Nano-sulfur on Human Carcinoma Cells: A Comparative Study. ACS OMEGA 2021; 6:32548-32562. [PMID: 34901604 PMCID: PMC8655766 DOI: 10.1021/acsomega.1c04047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Two-dimensional nanostructures have gained tremendous interest in the field of biomedical applications and cancer activity in particular. Although sulfur is known for its wide range of biological activities, its potentiality in two-dimensional forms as an antitumor agent is hitherto unexplored. To address the current deficient knowledge on nano-sulfur as an antitumor agent, we report the synthesis of nano-sulfur sheets/particles and their cytotoxic, apoptotic activity against human carcinoma cell lines. In vitro cytotoxic effects of biogenic nanosheets (SNP-B) and chemogenic nanoparticles (SNP-C) were assessed against human lung carcinoma (A549), human epidermoid carcinoma (A431), human promyelocytic leukaemia (HL60) and human lung fibroblast (IMR90) cell lines. Cell cycle analysis, apoptotic study, and caspase-3 expression studies were carried out to understand the mechanism of cytotoxic activity of nano-sulfur. The MTT assay indicated a dose-dependent decrease in viability of all the cell lines treated with nano-sulfur, with SNP-B being more toxic compared to SNP-C. The apoptotic study and cell cycle analysis indicated cell cycle arrest followed by apoptosis-induced cell death. The caspase-3 expression study indicated that nano-sulfur induces apoptosis by the activation of caspase through the mitochondrial pathway. Apart from this, a lower cytotoxicity was observed in IMR90 cell lines treated with SNP-B , indicating a higher specificity of synthesized nanosheets towards cancer cells. Taken all together, this work highlights the potentiality of sulfur nanosheets in inducing cytotoxicity and apoptotic activity, and the impact of morphology as a critical determinant on the cytotoxic response on various cell lines.
Collapse
Affiliation(s)
- Samrat Krishnappa
- Department
of Biotechnology, M.S. Ramaiah Institute
of Technology (Affiliated to Visvesvaraya Technological University,
Belgaum), Bangalore, Karnataka 560 054, India
| | - Chandraprabha M. Naganna
- Department
of Biotechnology, M.S. Ramaiah Institute
of Technology (Affiliated to Visvesvaraya Technological University,
Belgaum), Bangalore, Karnataka 560 054, India
| | - Hari Krishna Rajan
- Department
of Chemistry, M.S. Ramaiah Institute of
Technology, Bangalore, Karnataka 560 054, India
| | - Sharath Rajashekarappa
- Department
of Food Technology, Davangere University, Shivagangotri, Davanagere, Karnataka 577002, India
| | | |
Collapse
|
173
|
Cepeda C, Denisov SA, Boturyn D, McClenaghan ND, Sénèque O. Ratiometric Luminescence Detection of Copper(I) by a Resonant System Comprising Two Antenna/Lanthanide Pairs. Inorg Chem 2021; 60:17426-17434. [PMID: 34788035 DOI: 10.1021/acs.inorgchem.1c02985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective and sensitive detection of Cu(I) is an ongoing challenge due to its important role in biological systems, for example. Herein, we describe a photoluminescent molecular chemosensor integrating two lanthanide ions (Tb3+ and Eu3+) and respective tryptophan and naphthalene antennas onto a polypeptide backbone. The latter was structurally inspired from copper-regulating biomacromolecules in Gram-negative bacteria and was found to bind Cu+ effectively under pseudobiological conditions (log KCu+ = 9.7 ± 0.2). Ion regulated modulation of lanthanide luminescence in terms of intensity and long, millisecond lifetime offers perspectives in terms of ratiometric and time-gated detection of Cu+. The role of the bound ion in determining the photophysical properties is discussed with the aid of additional model compounds.
Collapse
Affiliation(s)
- Céline Cepeda
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| | | | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250), 38000 Grenoble, France
| | | | - Olivier Sénèque
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| |
Collapse
|
174
|
Chen L, Li N, Zhang M, Sun M, Bian J, Yang B, Li Z, Wang J, Li F, Shi X, Wang Y, Yuan F, Zou P, Shan C, Wang J. APEX2-based Proximity Labeling of Atox1 Identifies CRIP2 as a Nuclear Copper-binding Protein that Regulates Autophagy Activation. Angew Chem Int Ed Engl 2021; 60:25346-25355. [PMID: 34550632 DOI: 10.1002/anie.202108961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Indexed: 01/05/2023]
Abstract
Mammalian cell nuclei contain copper, and cancer cells are known to accumulate aberrantly high copper levels, yet the mechanisms underlying nuclear accumulation and copper's broader functional significance remain poorly understood. Here, by combining APEX2-based proximity labeling focused on the copper chaperone Atox1 with mass spectrometry we identified a previously unrecognized nuclear copper binding protein, Cysteine-rich protein 2 (CRIP2), that interacts with Atox1 in the nucleus. We show that Atox1 transfers copper to CRIP2, which induces a change in CRIP2's secondary structure that ultimately promotes its ubiquitin-mediated proteasomal degradation. Finally, we demonstrate that depletion of CRIP2-as well as copper-induced CRIP2 degradation-elevates ROS levels and activates autophagy in H1299 cells. Thus, our study establishes that CRIP2 as an autophagic suppressor protein and implicates CRIP2-mediated copper metabolism in the activation of autophagy in cancer cells.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Meiqi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Jiaxuan Bian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhengcunxiao Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiayu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Feng Yuan
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
175
|
Chen L, Li N, Zhang M, Sun M, Bian J, Yang B, Li Z, Wang J, Li F, Shi X, Wang Y, Yuan F, Zou P, Shan C, Wang J. APEX2‐based Proximity Labeling of Atox1 Identifies CRIP2 as a Nuclear Copper‐binding Protein that Regulates Autophagy Activation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lin Chen
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Meiqi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 China
| | - Jiaxuan Bian
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Bo Yang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Zhengcunxiao Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Jiayu Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Fei Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Feng Yuan
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| |
Collapse
|
176
|
Xi E, Zhao Y, Xie Y, Gao N, Bian Z, Zhu G. Biological Application of Porous Aromatic Frameworks: State of the Art and Opportunities. J Phys Chem Lett 2021; 12:11050-11060. [PMID: 34747622 DOI: 10.1021/acs.jpclett.1c03209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porous aromatic frameworks (PAFs) were first reported in 2009 and have quickly attracted much attention because of their exceptionally ultrahigh specific surface area (5800 m2·g-1). Uniquely, PAFs are constructed from carbon-carbon-bond-linked aromatic-based building units, which render PAFs extremely stable in various environments. At present, PAFs have been applied in many fields, such as adsorption, catalysis, ion exchange, electrochemistry, and so on. However, for such a unique material, its application in the biological fields is still rarely explored. Therefore, this Perspective introduces the reported application of PAFs in biological fields, for instance, diagnosis and treatment of diseases, artificial enzymes, drug delivery, and extraction of bioactive substances. Major challenges and opportunities for future research on PAFs in biology and biomedicine are identified in diagnostic platforms, novel drug carriers/antidotes, and novel artificial enzymes.
Collapse
Affiliation(s)
- Enpeng Xi
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Yue Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Yiling Xie
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Nan Gao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Zheng Bian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| |
Collapse
|
177
|
Copper in tumors and the use of copper-based compounds in cancer treatment. J Inorg Biochem 2021; 226:111634. [PMID: 34740035 DOI: 10.1016/j.jinorgbio.2021.111634] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Copper homeostasis is strictly regulated by protein transporters and chaperones, to allow its correct distribution and avoid uncontrolled redox reactions. Several studies address copper as involved in cancer development and spreading (epithelial to mesenchymal transition, angiogenesis). However, being endogenous and displaying a tremendous potential to generate free radicals, copper is a perfect candidate, once opportunely complexed, to be used as a drug in cancer therapy with low adverse effects. Copper ions can be modulated by the organic counterpart, after complexed to their metalcore, either in redox potential or geometry and consequently reactivity. During the last four decades, many copper complexes were studied regarding their reactivity toward cancer cells, and many of them could be a drug choice for phase II and III in cancer therapy. Also, there is promising evidence of using 64Cu in nanoparticles as radiopharmaceuticals for both positron emission tomography (PET) imaging and treatment of hypoxic tumors. However, few compounds have gone beyond testing in animal models, and none of them got the status of a drug for cancer chemotherapy. The main challenge is their solubility in physiological buffers and their different and non-predictable mechanism of action. Moreover, it is difficult to rationalize a structure-based activity for drug design and delivery. In this review, we describe the role of copper in cancer, the effects of copper-complexes on tumor cell death mechanisms, and point to the new copper complexes applicable as drugs, suggesting that they may represent at least one component of a multi-action combination in cancer therapy.
Collapse
|
178
|
Lutsenko S. Dynamic and cell-specific transport networks for intracellular copper ions. J Cell Sci 2021; 134:272704. [PMID: 34734631 DOI: 10.1242/jcs.240523] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Copper (Cu) homeostasis is essential for the development and function of many organisms. In humans, Cu misbalance causes serious pathologies and has been observed in a growing number of diseases. This Review focuses on mammalian Cu(I) transporters and highlights recent studies on regulation of intracellular Cu fluxes. Cu is used by essential metabolic enzymes for their activity. These enzymes are located in various intracellular compartments and outside cells. When cells differentiate, or their metabolic state is otherwise altered, the need for Cu in different cell compartments change, and Cu has to be redistributed to accommodate these changes. The Cu transporters SLC31A1 (CTR1), SLC31A2 (CTR2), ATP7A and ATP7B regulate Cu content in cellular compartments and maintain Cu homeostasis. Increasing numbers of regulatory proteins have been shown to contribute to multifaceted regulation of these Cu transporters. It is becoming abundantly clear that the Cu transport networks are dynamic and cell specific. The comparison of the Cu transport machinery in the liver and intestine illustrates the distinct composition and dissimilar regulatory response of their Cu transporters to changing Cu levels.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Johns Hopkins Medical Institutes, Department of Physiology, Baltimore, MD 21205, USA
| |
Collapse
|
179
|
Grasso M, Bond GJ, Kim YJ, Boyd S, Matson Dzebo M, Valenzuela S, Tsang T, Schibrowsky NA, Alwan KB, Blackburn NJ, Burslem GM, Wittung-Stafshede P, Winkler DD, Marmorstein R, Brady DC. The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation. J Biol Chem 2021; 297:101314. [PMID: 34715128 DOI: 10.1016/j.jbc.2021.101314] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Normal physiology relies on the precise coordination of intracellular signal transduction pathways that respond to nutrient availability to balance cell growth and cell death. The canonical MAPK pathway consists of the RAF-MEK-ERK signaling cascade and represents one of the most well-defined axes within eukaryotic cells to promote cell proliferation, which underscores its frequent mutational activation in the majority of human cancers. Our recent studies illuminated a function for the redox-active micronutrient copper (Cu) as an intracellular mediator of signaling by connecting Cu to the amplitude of MAPK signaling via a direct interaction between Cu and the kinases MEK1 and MEK2. Given the large quantities of molecules like glutathione and metallothionein that limit cellular toxicity from free Cu ions, evolutionarily conserved Cu chaperones facilitate the efficient delivery of Cu to cuproenzymes. Thus, a dedicated cellular delivery mechanism of Cu to MEK1/2 is likely to exist. Using surface plasmon resonance and proximity-dependent biotin ligase studies, we report here that the Cu chaperone CCS selectively bound to and facilitated Cu transfer to MEK1. Mutations in CCS that disrupt Cu(I) acquisition and exchange or a CCS small molecule inhibitor were employed and resulted in reduced Cu-stimulated MEK1 kinase activity. Our findings indicate that the Cu chaperone CCS provides fidelity within a complex biological system to achieve appropriate installation of Cu within the MEK1 kinase active site that in turn modulates kinase activity and support the development of novel MEK1/2 inhibitors that target the Cu structural interface or blunt dedicated Cu delivery mechanisms via CCS.
Collapse
Affiliation(s)
- Michael Grasso
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gavin J Bond
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Biochemistry Major Program, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ye-Jin Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stefanie Boyd
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Maria Matson Dzebo
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Sebastian Valenzuela
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Tiffany Tsang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalie A Schibrowsky
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katherine B Alwan
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - George M Burslem
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Duane D Winkler
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ronen Marmorstein
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donita C Brady
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
180
|
Song G, Dong H, Ma D, Wang H, Ren X, Qu Y, Wu H, Zhu J, Song W, Meng Y, Wang L, Liu T, Shen X, Zhao Y, Zhu C. Tetrahedral Framework Nucleic Acid Delivered RNA Therapeutics Significantly Attenuate Pancreatic Cancer Progression via Inhibition of CTR1-Dependent Copper Absorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46334-46342. [PMID: 34549583 DOI: 10.1021/acsami.1c13091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Copper is vital for various life processes, whereas severely toxic at excess level. Intracellular copper homeostasis is strictly controlled by a set of transporters and chaperones encoded by the copper homeostasis genes. Increasing evidence has shown that copper is usually overloaded in multiple malignancies, including pancreatic cancer, which has an extremely poor prognosis. Recently, silencing the SLC31A1 gene, which encodes a major transmembrane copper transporter (CTR1), has been demonstrated to be an effective means for reducing the malignant degree of pancreatic cancer by downregulating the cellular copper levels. Herein, we utilized tetrahedral framework nucleic acids (tFNAs) as vehicles to overcome the biological barriers for delivering small molecular RNAs and efficiently transferred two kinds of CTR1 mRNA-targeted RNA therapeutics, siCTR1 or miR-124, into PANC-1 cells. Both therapeutic tFNAs, termed t-siCTR1 and t-miR-124, prevented copper intake more effective than the free RNA therapeutics via efficiently suppressing the expression of CTR1, thereby significantly attenuating the progression of PANC-1 cells. In this study, therapeutic tFNAs are constructed to target metal ion transporters for the first time, which may provide an effective strategy for future treatment of other metal metabolism disorders.
Collapse
Affiliation(s)
- Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Haisi Dong
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Danhui Ma
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Xinran Ren
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
- School of Pharmaceutical Science, Jilin University, Changchun 130021, China
| | - Yishen Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Wu Song
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Meng
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Wang
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Yicheng Zhao
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| |
Collapse
|
181
|
Kannappan V, Ali M, Small B, Rajendran G, Elzhenni S, Taj H, Wang W, Dou QP. Recent Advances in Repurposing Disulfiram and Disulfiram Derivatives as Copper-Dependent Anticancer Agents. Front Mol Biosci 2021; 8:741316. [PMID: 34604310 PMCID: PMC8484884 DOI: 10.3389/fmolb.2021.741316] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Copper (Cu) plays a pivotal role in cancer progression by acting as a co-factor that regulates the activity of many enzymes and structural proteins in cancer cells. Therefore, Cu-based complexes have been investigated as novel anticancer metallodrugs and are considered as a complementary strategy for currently used platinum agents with undesirable general toxicity. Due to the high failure rate and increased cost of new drugs, there is a global drive towards the repositioning of known drugs for cancer treatment in recent years. Disulfiram (DSF) is a first-line antialcoholism drug used in clinics for more than 65 yr. In combination with Cu, it has shown great potential as an anticancer drug by targeting a wide range of cancers. The reaction between DSF and Cu ions forms a copper diethyldithiocarbamate complex (Cu(DDC)2 also known as CuET) which is the active, potent anticancer ingredient through inhibition of NF-κB and ubiquitin-proteasome system as well as alteration of the intracellular reactive oxygen species (ROS). Importantly, DSF/Cu inhibits several molecular targets related to drug resistance, stemness, angiogenesis and metastasis and is thus considered as a novel strategy for overcoming tumour recurrence and relapse in patients. Despite its excellent anticancer efficacy, DSF has proven unsuccessful in several cancer clinical trials. This is likely due to the poor stability, rapid metabolism and/or short plasma half-life of the currently used oral version of DSF and the inability to form Cu(DDC)2 at relevant concentrations in tumour tissues. Here, we summarize the scientific rationale, molecular targets, and mechanisms of action of DSF/Cu in cancer cells and the outcomes of oral DSF ± Cu in cancer clinical trials. We will focus on the novel insights on harnessing the immune system and hypoxic microenvironment using DSF/Cu complex and discuss the emerging delivery strategies that can overcome the shortcomings of DSF-based anticancer therapies and provide opportunities for translation of DSF/Cu or its Cu(DDC)2 complex into cancer therapeutics.
Collapse
Affiliation(s)
- Vinodh Kannappan
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom.,Disulfican Ltd, University of Wolverhampton Science Park, Wolverhampton, United Kingdom
| | - Misha Ali
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Benjamin Small
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Gowtham Rajendran
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Salena Elzhenni
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Hamza Taj
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Weiguang Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom.,Disulfican Ltd, University of Wolverhampton Science Park, Wolverhampton, United Kingdom
| | - Q Ping Dou
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
182
|
Yu H, Wang H, Qie A, Wang J, Liu Y, Gu G, Yang J, Zhang H, Pan W, Tian Z, Wang C. FGF13 enhances resistance to platinum drugs by regulating hCTR1 and ATP7A via a microtubule-stabilizing effect. Cancer Sci 2021; 112:4655-4668. [PMID: 34533854 PMCID: PMC8586689 DOI: 10.1111/cas.15137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Platinum‐based regimens are the most widely used chemotherapy regimens, but cancer cells often develop resistance, which impedes therapy outcome for patients. Previous studies have shown that fibroblast growth factor 13 (FGF13) is associated with resistance to platinum drugs in HeLa cells. However, the mechanism and universality of this effect have not been clarified. Here, we found that FGF13 was associated with poor platinum‐based chemotherapy outcomes in a variety of cancers, such as lung, endometrial, and cervical cancers, through bioinformatics analysis. We then found that FGF13 simultaneously regulates the expression and distribution of hCTR1 and ATP7A in cancer cells, causes reduced platinum influx, and promotes platinum sequestration and efflux upon cisplatin exposure. We subsequently observed that FGF13‐mediated platinum resistance requires the microtubule‐stabilizing effect of FGF13. Only overexpression of FGF13 with the ‐SMIYRQQQ‐ tubulin‐binding domain could induce the platinum resistance effect. This phenomenon was also observed in SK‐MES‐1 cells, KLE cells, and 5637 cells. Our research reveals the mechanism of FGF13‐induced platinum drug resistance and suggests that FGF13 can be a sensibilization target and prognostic biomarker for chemotherapy.
Collapse
Affiliation(s)
- Hang Yu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Handong Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Anran Qie
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaqi Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guoqiang Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hanqiu Zhang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wensen Pan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
183
|
Abstract
Zinc (Zn2+) is an essential metal in biology, and its bioavailability is highly regulated. Many cell types exhibit fluctuations in Zn2+ that appear to play an important role in cellular function. However, the detailed molecular mechanisms by which Zn2+ dynamics influence cell physiology remain enigmatic. Here, we use a combination of fluorescent biosensors and cell perturbations to define how changes in intracellular Zn2+ impact kinase signaling pathways. By simultaneously monitoring Zn2+ dynamics and kinase activity in individual cells, we quantify changes in labile Zn2+ and directly correlate changes in Zn2+ with ERK and Akt activity. Under our experimental conditions, Zn2+ fluctuations are not toxic and do not activate stress-dependent kinase signaling. We demonstrate that while Zn2+ can nonspecifically inhibit phosphatases leading to sustained kinase activation, ERK and Akt are predominantly activated via upstream signaling and through a common node via Ras. We provide a framework for quantification of Zn2+ fluctuations and correlate these fluctuations with signaling events in single cells to shed light on the role that Zn2+ dynamics play in healthy cell signaling.
Collapse
|
184
|
Ruiz LM, Libedinsky A, Elorza AA. Role of Copper on Mitochondrial Function and Metabolism. Front Mol Biosci 2021; 8:711227. [PMID: 34504870 PMCID: PMC8421569 DOI: 10.3389/fmolb.2021.711227] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Copper is essential for life processes like energy metabolism, reactive oxygen species detoxification, iron uptake, and signaling in eukaryotic organisms. Mitochondria gather copper for the assembly of cuproenzymes such as the respiratory complex IV, cytochrome c oxidase, and the antioxidant enzyme superoxide dismutase 1. In this regard, copper plays a role in mitochondrial function and signaling involving bioenergetics, dynamics, and mitophagy, which affect cell fate by means of metabolic reprogramming. In mammals, copper homeostasis is tightly regulated by the liver. However, cellular copper levels are tissue specific. Copper imbalances, either overload or deficiency, have been associated with many diseases, including anemia, neutropenia, and thrombocytopenia, as well as tumor development and cancer aggressivity. Consistently, new pharmacological developments have been addressed to reduce or exacerbate copper levels as potential cancer therapies. This review goes over the copper source, distribution, cellular uptake, and its role in mitochondrial function, metabolic reprograming, and cancer biology, linking copper metabolism with the field of regenerative medicine and cancer.
Collapse
Affiliation(s)
- Lina M Ruiz
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Allan Libedinsky
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
185
|
Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, Hu C, Wu X, Jiang Q, Wu D, Okada H, Pandolfi PP, Wei W. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004303. [PMID: 34278744 PMCID: PMC8456201 DOI: 10.1002/advs.202004303] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/25/2021] [Indexed: 05/13/2023]
Abstract
Copper plays pivotal roles in metabolic homoeostasis, but its potential role in human tumorigenesis is not well defined. Here, it is revealed that copper activates the phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB, also termed AKT) oncogenic signaling pathway to facilitate tumorigenesis. Mechanistically, copper binds 3-phosphoinositide dependent protein kinase 1 (PDK1), in turn promotes PDK1 binding and subsequently activates its downstream substrate AKT to facilitate tumorigenesis. Blocking the copper transporter 1 (CTR1)-copper axis by either depleting CTR1 or through the use of copper chelators diminishes the AKT signaling and reduces tumorigenesis. In support of an oncogenic role for CTR1, the authors find that CTR1 is abnormally elevated in breast cancer, and is subjected by NEDD4 like E3 ubiquitin protein ligase (Nedd4l)-mediated negative regulation through ubiquitination and subsequent degradation. Accordingly, Nedd4l displays a tumor suppressive function by suppressing the CTR1-AKT signaling. Thus, the findings identify a novel regulatory crosstalk between the Nedd4l-CTR1-copper axis and the PDK1-AKT oncogenic signaling, and highlight the therapeutic relevance of targeting the CTR1-copper node for the treatment of hyperactive AKT-driven cancers.
Collapse
Affiliation(s)
- Jianping Guo
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
- Institute of Precision Medicinethe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510275China
| | - Ji Cheng
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430022China
| | - Nana Zheng
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215000China
| | - Xiaomei Zhang
- Institute of Precision Medicinethe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510275China
| | - Xiaoming Dai
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - Linli Zhang
- Department of OncologyTongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Changjiang Hu
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - Xueji Wu
- Institute of Precision Medicinethe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510275China
| | - Qiwei Jiang
- Institute of Precision Medicinethe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510275China
| | - Depei Wu
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215000China
| | - Hitoshi Okada
- Department of BiochemistryKindai University Faculty of Medicine377‐2 Ohno‐HigashiOsaka‐SayamaOsaka589‐8511Japan
| | - Pier Paolo Pandolfi
- Division of GeneticsDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - Wenyi Wei
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| |
Collapse
|
186
|
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.
Collapse
Affiliation(s)
- May T Maung
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | |
Collapse
|
187
|
Liu YL, Bager CL, Willumsen N, Ramchandani D, Kornhauser N, Ling L, Cobham M, Andreopoulou E, Cigler T, Moore A, LaPolla D, Fitzpatrick V, Ward M, Warren JD, Fischbach C, Mittal V, Vahdat LT. Tetrathiomolybdate (TM)-associated copper depletion influences collagen remodeling and immune response in the pre-metastatic niche of breast cancer. NPJ Breast Cancer 2021; 7:108. [PMID: 34426581 PMCID: PMC8382701 DOI: 10.1038/s41523-021-00313-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Tetrathiomolybdate (TM) is a novel, copper-depleting compound associated with promising survival in a phase II study of patients with high-risk and triple-negative breast cancer. We sought to elucidate the mechanism of TM by exploring its effects on collagen processing and immune function in the tumor microenvironment (TME). Using an exploratory cohort, we identified markers of collagen processing (LOXL2, PRO-C3, C6M, and C1M) that differed between those with breast cancer versus controls. We measured these collagen biomarkers in TM-treated patients on the phase II study and detected evidence of decreased collagen cross-linking and increased degradation over formation in those without disease compared to those who experienced disease progression. Preclinical studies revealed decreased collagen deposition, lower levels of myeloid-derived suppressor cells, and higher CD4+ T-cell infiltration in TM-treated mice compared with controls. This study reveals novel mechanisms of TM targeting the TME and immune response with potential applications across cancer types.
Collapse
Affiliation(s)
- Ying L Liu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | - Anne Moore
- Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Linda T Vahdat
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
188
|
Dvorak V, Wiedmer T, Ingles-Prieto A, Altermatt P, Batoulis H, Bärenz F, Bender E, Digles D, Dürrenberger F, Heitman LH, IJzerman AP, Kell DB, Kickinger S, Körzö D, Leippe P, Licher T, Manolova V, Rizzetto R, Sassone F, Scarabottolo L, Schlessinger A, Schneider V, Sijben HJ, Steck AL, Sundström H, Tremolada S, Wilhelm M, Wright Muelas M, Zindel D, Steppan CM, Superti-Furga G. An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Front Pharmacol 2021; 12:722889. [PMID: 34447313 PMCID: PMC8383457 DOI: 10.3389/fphar.2021.722889] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily represents the biggest family of transporters with important roles in health and disease. Despite being attractive and druggable targets, the majority of SLCs remains understudied. One major hurdle in research on SLCs is the lack of tools, such as cell-based assays to investigate their biological role and for drug discovery. Another challenge is the disperse and anecdotal information on assay strategies that are suitable for SLCs. This review provides a comprehensive overview of state-of-the-art cellular assay technologies for SLC research and discusses relevant SLC characteristics enabling the choice of an optimal assay technology. The Innovative Medicines Initiative consortium RESOLUTE intends to accelerate research on SLCs by providing the scientific community with high-quality reagents, assay technologies and data sets, and to ultimately unlock SLCs for drug discovery.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Helena Batoulis
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Felix Bärenz
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Eckhard Bender
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Daniela Digles
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Laura H. Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stefanie Kickinger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Daniel Körzö
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thomas Licher
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | | | | | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vanessa Schneider
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Hubert J. Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | | | | | | | | | - Marina Wright Muelas
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Diana Zindel
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Claire M. Steppan
- Pfizer Worldwide Research, Development and Medical, Groton, MA, United States
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
189
|
Babak MV, Ahn D. Modulation of Intracellular Copper Levels as the Mechanism of Action of Anticancer Copper Complexes: Clinical Relevance. Biomedicines 2021; 9:biomedicines9080852. [PMID: 34440056 PMCID: PMC8389626 DOI: 10.3390/biomedicines9080852] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
Copper (Cu) is a vital element required for cellular growth and development; however, even slight changes in its homeostasis might lead to severe toxicity and deleterious medical conditions. Cancer patients are typically associated with higher Cu content in serum and tumor tissues, indicating increased demand of cancer cells for this micronutrient. Cu is known to readily cycle between the +1 and +2 oxidation state in biological systems. The mechanism of action of Cu complexes is typically based on their redox activity and induction of reactive oxygen species (ROS), leading to deadly oxidative stress. However, there are a number of other biomolecular mechanisms beyond ROS generation that contribute to the activity of anticancer Cu drug candidates. In this review, we discuss how interfering with intracellular Cu balance via either diet modification or addition of inorganic Cu supplements or Cu-modulating compounds affects tumor development, progression, and sensitivity to treatment modalities. We aim to provide the rationale for the use of Cu-depleting and Cu-overloading conditions to generate the best possible patient outcome with minimal toxicity. We also discuss the advantages of the use of pre-formed Cu complexes, such as Cu-(bis)thiosemicarbazones or Cu-N-heterocyclic thiosemicarbazones, in comparison with the in situ formed Cu complexes with metal-binding ligands. In this review, we summarize available clinical and mechanistic data on clinically relevant anticancer drug candidates, including Cu supplements, Cu chelators, Cu ionophores, and Cu complexes.
Collapse
|
190
|
Arikrishnan S, Loh JS, Teo XW, Bin Norizan F, Low ML, Lee SH, Foo JB, Tor YS. Ternary Copper (II) Complex Induced Apoptosis and Cell Cycle Arrest in Colorectal Cancer Cells. Anticancer Agents Med Chem 2021; 22:999-1011. [PMID: 34238173 DOI: 10.2174/1871520621666210708100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The lack of specificity, severe side effects, and development of drug resistance have largely limited the use of platinum-based compounds in cancer treatment. Therefore, copper complexes have emerged as potential alternatives to platinum-based compounds. OBJECTIVE Ternary copper (II) complex incorporated with 1-10-phenanthroline and L-tyrosine was investigated for its anti-cancer effects in HT-29 colorectal cancer cells. METHODS Cytotoxic effects of ternary copper (II) complex in HT-29 cells were evaluated using MTT assay, Real-Time Cell Analysis (RTCA), and lactate dehydrogenase (LDH) assay. Cell cycle analysis was performed using flow cytometry. Apoptosis induction was studied by Annexin V-FITC/propidium iodide (PI) staining and mitochondrial membrane potential analysis (JC-10 staining) using flow cytometry. Intracellular reactive oxygen species (ROS) were detected by DCFH-DA assay. The expression of proteins involved in the apoptotic signalling pathway (p53, caspases, and PARP-1) was evaluated by western blot analysis. RESULTS Ternary copper (II) complex reduced the cell viability of HT-29 cells in a time- and dose-dependent manner, with IC50 of 2.4 ± 0.4 and 0.8 ± 0.04 µM at 24 and 48 hours, respectively. Cell cycle analysis demonstrated induction of S-phase cell cycle arrest. Morphological evaluation and Annexin V-FITC/PI flow cytometry analysis confirmed induction of apoptosis that was further supported by cleavage and activation of caspase-8, caspase-9, caspase-3, and PARP-1. Mutant p53 was also downregulated in a dose-dependent manner. No LDH release, mitochondrial membrane potential disruption, and ROS production were observed. CONCLUSION Ternary copper (II) complex holds great potential to be developed for colorectal cancer treatment.
Collapse
Affiliation(s)
- Sathiavani Arikrishnan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Jian Sheng Loh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Xian Wei Teo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Faris Bin Norizan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - May Lee Low
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Yin Sim Tor
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
191
|
Zhao X, Li X, Huang X, Liang S, Cai P, Wang Y, Cui Y, Chen W, Dong X. Development of lactobionic acid conjugated-copper chelators as anticancer candidates for hepatocellular carcinoma. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
192
|
Shen J, Zhou H, Liu J, Zhang Y, Zhou T, Yang Y, Fang W, Huang Y, Zhang L. A modifiable risk factors atlas of lung cancer: A Mendelian randomization study. Cancer Med 2021; 10:4587-4603. [PMID: 34076349 PMCID: PMC8267159 DOI: 10.1002/cam4.4015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND There has been no study systematically assessing the causal effects of putative modifiable risk factors on lung cancer. In this study, we aimed to construct a modifiable risk factors atlas of lung cancer by using the two-sample Mendelian randomization framework. METHODS We included 46 modifiable risk factors identified in previous studies. Traits with p-value smaller than 0.05 were considered as suggestive risk factors. While the Bonferroni corrected p-value for significant risk factors was set to be 8.33 × 10-4 . RESULTS In this two-sample Mendelian randomization analysis, we found that higher socioeconomic status was significantly correlated with lower risk of lung cancer, including years of schooling, college or university degree, and household income. While cigarettes smoked per day, time spent watching TV, polyunsaturated fatty acids, docosapentaenoic acid, eicosapentaenoic acid, and arachidonic acid in blood were significantly associated with higher risk of lung cancer. Suggestive risk factors for lung cancer were found to be serum vitamin A1, copper in blood, docosahexaenoic acid in blood, and body fat percentage. CONCLUSIONS This study provided the first Mendelian randomization assessment of the causality between previously reported risk factors and lung cancer risk. Several modifiable targets, concerning socioeconomic status, lifestyle, dietary, and obesity, should be taken into consideration for the development of primary prevention strategies for lung cancer.
Collapse
Affiliation(s)
- Jiayi Shen
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Huaqiang Zhou
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Jiaqing Liu
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yaxiong Zhang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Ting Zhou
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yunpeng Yang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wenfeng Fang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yan Huang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Li Zhang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
193
|
Michniewicz F, Saletta F, Rouaen JRC, Hewavisenti RV, Mercatelli D, Cirillo G, Giorgi FM, Trahair T, Ziegler D, Vittorio O. Copper: An Intracellular Achilles' Heel Allowing the Targeting of Epigenetics, Kinase Pathways, and Cell Metabolism in Cancer Therapeutics. ChemMedChem 2021; 16:2315-2329. [PMID: 33890721 DOI: 10.1002/cmdc.202100172] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Copper is an essential transition metal frequently increased in cancer known to strongly influence essential cellular processes. Targeted therapy protocols utilizing both novel and repurposed drug agents initially demonstrate strong efficacy, before failing in advanced cancers as drug resistance develops and relapse occurs. Overcoming this limitation involves the development of strategies and protocols aimed at a wider targeting of the underlying molecular changes. Receptor Tyrosine Kinase signaling pathways, epigenetic mechanisms and cell metabolism are among the most common therapeutic targets, with molecular investigations increasingly demonstrating the strong influence each mechanism exerts on the others. Interestingly, all these mechanisms can be influenced by intracellular copper. We propose that copper chelating agents, already in clinical trial for multiple cancers, may simultaneously target these mechanisms across a wide variety of cancers, serving as an excellent candidate for targeted combination therapy. This review summarizes the known links between these mechanisms, copper, and copper chelation therapy.
Collapse
Affiliation(s)
- Filip Michniewicz
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rehana V Hewavisenti
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Toby Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - David Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
194
|
Ash D, Sudhahar V, Youn SW, Okur MN, Das A, O'Bryan JP, McMenamin M, Hou Y, Kaplan JH, Fukai T, Ushio-Fukai M. The P-type ATPase transporter ATP7A promotes angiogenesis by limiting autophagic degradation of VEGFR2. Nat Commun 2021; 12:3091. [PMID: 34035268 PMCID: PMC8149886 DOI: 10.1038/s41467-021-23408-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
VEGFR2 (KDR/Flk1) signaling in endothelial cells (ECs) plays a central role in angiogenesis. The P-type ATPase transporter ATP7A regulates copper homeostasis, and its role in VEGFR2 signaling and angiogenesis is entirely unknown. Here, we describe the unexpected crosstalk between the Copper transporter ATP7A, autophagy, and VEGFR2 degradation. The functional significance of this Copper transporter was demonstrated by the finding that inducible EC-specific ATP7A deficient mice or ATP7A-dysfunctional ATP7Amut mice showed impaired post-ischemic neovascularization. In ECs, loss of ATP7A inhibited VEGF-induced VEGFR2 signaling and angiogenic responses, in part by promoting ligand-induced VEGFR2 protein degradation. Mechanistically, VEGF stimulated ATP7A translocation from the trans-Golgi network to the plasma membrane where it bound to VEGFR2, which prevented autophagy-mediated lysosomal VEGFR2 degradation by inhibiting autophagic cargo/adapter p62/SQSTM1 binding to ubiquitinated VEGFR2. Enhanced autophagy flux due to ATP7A dysfunction in vivo was confirmed by autophagy reporter CAG-ATP7Amut -RFP-EGFP-LC3 transgenic mice. In summary, our study uncovers a novel function of ATP7A to limit autophagy-mediated degradation of VEGFR2, thereby promoting VEGFR2 signaling and angiogenesis, which restores perfusion recovery and neovascularization. Thus, endothelial ATP7A is identified as a potential therapeutic target for treatment of ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Dipankar Ash
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Seock-Won Youn
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mustafa Nazir Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Archita Das
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Maggie McMenamin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Yali Hou
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
- Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Department of Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
195
|
Xuefeng X, Hou MX, Yang ZW, Agudamu A, Wang F, Su XL, Li X, Shi L, Terigele T, Bao LL, Wu XL. Epithelial-mesenchymal transition and metastasis of colon cancer cells induced by the FAK pathway in cancer-associated fibroblasts. J Int Med Res 2021; 48:300060520931242. [PMID: 32588696 PMCID: PMC7323289 DOI: 10.1177/0300060520931242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective The role and mechanism of tetrathiomolybdate (TM) in cancer-associated fibroblasts (CAFs) in colon cancer using three-dimensional (3D) culture were investigated, and the associations between the focal adhesion kinase (FAK) pathway and epithelial–mesenchymal transition (EMT) in CAFs were explored. Methods A 3D co-culture model of colon cancer LOVO cells with CAFs and normal fibroblasts (NFs) was established using Matrigel as a scaffold material. The differential expression of LOXL2 (lysyl oxidase-like 2) in the supernatant of CAFs and NFs was determined using ELISA, and expression levels of EMT-related proteins and FAK signaling pathway-related proteins were determined using western blot. Results LOXL2 levels secreted by CAFs were higher compared with that secreted by NFs. In the CAF + LOVO group, compared with the LOVO group, E-cadherin expression decreased significantly, while N-cadherin and F-PAK expression increased significantly. TM results were opposite compared with the above results. Conclusions CAFs stimulate EMT in human colon cancer LOVO cells by secreting LOXL2 to activate the FAK signaling pathway, thereby promoting tumor metastasis. TM inhibited the occurrence of EMT in the CAF-induced colon cancer LOVO cell line, thereby reducing the invasion and metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Xuefeng Xuefeng
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Ming-Xing Hou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Zhi-Wen Yang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Agudamu Agudamu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Xiu-Lan Su
- Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Xian Li
- Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Lin Shi
- Department of Pathology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Terigele Terigele
- Department of Pathology, Inner Mongolia Autonomous Region Maternal and Child Health Hospital, Hohhot, Inner Mongolian Autonomous Region, China
| | - Li-Li Bao
- Center of Geriatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Xin-Lin Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| |
Collapse
|
196
|
Zhao L, Yang Q, Guo W, Zhang F, Yu K, Yang C, Qu F. Non-stoichiometric cobalt sulfide nanodots enhance photothermal and chemodynamic therapies against solid tumor. J Colloid Interface Sci 2021; 600:390-402. [PMID: 34023700 DOI: 10.1016/j.jcis.2021.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/18/2021] [Accepted: 05/10/2021] [Indexed: 01/15/2023]
Abstract
Photodynamic therapy (PDT) mainly relies on reactive oxygen species generated by light- activated photosensitizers and oxygen to kill tumor cells. However, a critical limitation of the current PDT is that it is less effective in solid tumors where the microenvironment is hypoxic, and, therefore, repeated treatment is required. Here, non-stoichiometric Co2.19S4 nanodots (NDs), which can be rapidly degraded to cobalt (Co2+) and sulfur (S2-) ions, were developed to enhance tumor photothermal therapy (PTT) and chemodynamic therapy (CDT) via the capture of copper (Cu2+) ions (starvation therapy) in the hypoxic tumor microenvironment under near-infrared irradiation. Co2.19S4 NDs with excellent photothermal conversion efficiency (ɳ = 52%) can be used for PTT, and the Co2+ ions produced by their degradation can catalyze the endogenous hydrogen peroxide of tumor cells to produce highly toxic hydroxyl radicals to achieve tumor CDT. The mechanism of starvation therapy was explored using western blotting, and the results indicated that blocking the uptake of Cu2+ ions could restrain the growth and proliferation of tumors by inhibiting the BRAF/mitogen-activated extracellular signal regulated kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway. Our work highlights the great potential of Co2.19S4 NDs as a theranostic agent for implementing photoacoustic/photothermal imaging and starvation therapy-enhanced PTT/CDT.
Collapse
Affiliation(s)
- Le Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Qingzhu Yang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| |
Collapse
|
197
|
Abstract
Background: Several mechanisms likely cooperate with the mitogen-activated protein (MAP)-kinase pathway to promote cancer progression in the thyroid. One putative pathway is NOTCH signaling, which is implicated in several other malignancies. In thyroid cancer, data regarding the role of the NOTCH pathway are insufficient and even contradictory. Methods: A BRAFV600E-driven papillary thyroid carcinoma (PTC) mouse model was subjected to NOTCH pathway genetic alterations, and the tumor burden was followed by ultrasound. Further analyses were performed on PTC cell lines or noncancerous cells transfected with NOTCHIC or BRAFV600E, which were then subjected to pharmacological treatment with MAP-kinase or NOTCH pathway inhibitors. Results: The presence of the BRAFV600E mutation coupled with overexpression of the NOTCH intracellular domain led to significantly bigger thyroid tumors in mice, to a more aggressive carcinoma, and decreased overall survival. Although more cystic, the tumors did not progress into anaplastic thyroid carcinomas. On the contrary, the deletion of RBP-jκ (a major cofactor involved in NOTCH signaling) did not alter the phenotype in mice. BRAFV600E-mutated PTC cell lines were resistant to pharmacological inhibition of the NOTCH pathway. Inhibition of MEK1/2 uncovered a predominant effect on Hes1/Hey1 transcription compared with NOTCH inhibition in BRAFV600E-mutated cell lines. Finally, γ-secretase activity and γ-secretase subunit transcription levels were dependent on ERK activation. Our findings suggest that MAP-kinase activity overrides the NOTCH pathway in the context of thyroid cancer. Conclusions: The interaction between the BRAF and NOTCH pathways demonstrates that the BRAFV600E mutation might bypass NOTCH and exert a strong positive effect on NOTCH downstream targets in thyroid carcinoma.
Collapse
Affiliation(s)
- Florian Traversi
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Amandine Stooss
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | | | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
198
|
Abstract
Metals are vital for life as they are necessary for essential biological processes. Traditionally, metals are categorized as either dynamic signals or static cofactors. Redox-inactive metals such as calcium (Ca), potassium (K), sodium (Na), and zinc (Zn) signal through large fluctuations in their metal-ion pools. In contrast, redox-active transition metals such as copper (Cu) and iron (Fe) drive catalysis and are largely characterized as static cofactors that must be buried and protected within the active sites of proteins, due to their ability to generate damaging reactive-oxygen species through Fenton chemistry. Cu has largely been studied as a static cofactor in fundamental processes from cellular respiration to pigmentation, working through cytochrome c oxidase and tyrosinase, respectively. However, within the last decade, a new paradigm in nutrient sensing and protein regulation - termed 'metalloallostery' - has emerged, expanding the repertoire of Cu beyond the catalytic proteins to dynamic signaling molecules essential for cellular processes that impact normal physiology and disease states. In this Primer we introduce both the 'traditional' and emerging roles for Cu in biology and the many ways in which Cu intersects with human health.
Collapse
Affiliation(s)
- Tiffany Tsang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caroline I Davis
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
199
|
Xin C, Zhu C, Jin Y, Li H. Discovering the role of VEGF signaling pathway in mesendodermal induction of human embryonic stem cells. Biochem Biophys Res Commun 2021; 553:58-64. [PMID: 33756346 DOI: 10.1016/j.bbrc.2021.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
Human embryonic stem cells (hESCs) have the unique feature of unlimited self-renewal and differentiation into derivatives of all three germ layers in human body, providing a powerful in vitro model for studying cell differentiation. FGF2, BMP4 and TGF-β signaling have been shown to play crucial roles in mesendodermal differentiation of hESCs. However, their underlying molecular mechanisms and other signaling pathways potentially involved in mesendodermal differentiation of hESCs remain to be further investigated. In this study, we uncover that VEGF signaling pathway plays a critical role in the mesendodermal induction of hESCs. Treating hESCs with Lenvatinib, a pan-inhibitor of VEGF receptors (VEGFRs), impedes their mesendodermal induction. Conversely, overexpression of VEGFA165, a major human VEGF isoform, promotes the mesendodermal differentiation. Similar to the VEGFR inhibitor, MEK inhibitor PD0325901 hinders mesendodermal induction of hESCs. In contrast, overexpression of ERK2GOF, an intrinsically active ERK2 mutant, markedly reduces the inhibitory effect of the VEGFR inhibitor. Thus, the MEK-ERK cascade plays an important role for the function of VEGF signaling pathway in the mesendodermal induction of hESCs. All together, this study identifies the critical role of VEGF signaling pathway as well as potential crosstalk of VEGF signaling pathway with other known signaling pathways in mesendodermal differentiation of hESCs.
Collapse
Affiliation(s)
- Chenge Xin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaonan Zhu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
200
|
|