151
|
Wang R, Cui W, Yang H. The interplay between innate lymphoid cells and microbiota. mBio 2023; 14:e0039923. [PMID: 37318214 PMCID: PMC10470585 DOI: 10.1128/mbio.00399-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/21/2023] [Indexed: 06/16/2023] Open
Abstract
Innate lymphoid cells (ILCs) are mainly resident in mucosal tissues such as gastrointestinal tract and respiratory tract, so they are closely linked to the microbiota. ILCs can protect commensals to maintain homeostasis and increase resistance to pathogens. Moreover, ILCs also play an early role in defense against a variety of pathogenic microorganisms including pathogenic bacteria, viruses, fungi and parasites, before the intervention of adaptive immune system. Due to the lack of adaptive antigen receptors expressed on T cells and B cells, ILCs need to use other means to sense the signals of microbiota and play a role in corresponding regulation. In this review, we focus on and summarize three major mechanisms used in the interaction between ILCs and microbiota: the mediation of accessory cells represented by dendritic cells; the metabolic pathways of microbiota or diet; the participation of adaptive immune cells.
Collapse
Affiliation(s)
- Rui Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wenwen Cui
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
152
|
Dong H, Du Z, Ma H, Zhou Z, Yang H, Wang Z. Prediction of distinct populations of innate lymphoid cells by transcriptional profiles. Front Genet 2023; 14:1227452. [PMID: 37719706 PMCID: PMC10500302 DOI: 10.3389/fgene.2023.1227452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a unique type of lymphocyte that differ from adaptive lymphocytes in that they lack antigen receptors, which primarily reside in tissues and are closely associated with fibers. Despite their plasticity and heterogeneity, identifying ILCs in peripheral blood can be difficult due to their small numbers. Accurately and rapidly identifying ILCs is critical for studying homeostasis and inflammation. To address this challenge, we collect single-cell RNA-seq data from 647 patients, including 26,087 transcripts. Background screening, Lasso analysis, and principal component analysis (PCA) are used to select features. Finally, we employ a deep neural network to classify lymphocytes. Our method achieved the highest accuracy compared to other approaches. Furthermore, we identified four genes that play a vital role in lymphocyte development. Adding these gene transcripts into model, we were able to increase the model's AUC. In summary, our study demonstrates the effectiveness of using single-cell transcriptomic analysis combined with machine learning techniques to accurately identify congenital lymphoid cells and advance our understanding of their development and function in the body.
Collapse
Affiliation(s)
- Haiyao Dong
- Department of Thoracic Surgery, China Medical University, Shenyang, China
- Department of Thoracic Surgery, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Zhenguang Du
- Department of No. 3 Oncology, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Haoming Ma
- College of Software, Northeastern University, Shenyang, China
| | - Zhicheng Zhou
- Department of No. 3 Oncology, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Haitao Yang
- Department of Thoracic Surgery, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Zhenyuan Wang
- Department of Thoracic Surgery, China Medical University, Shenyang, China
- Department of Thoracic Surgery, The People’s Hospital of Liaoning Province, Shenyang, China
| |
Collapse
|
153
|
Zheng M, Yao C, Ren G, Mao K, Chung H, Chen X, Hu G, Wang L, Luan X, Fang D, Li D, Zhong C, Lu X, Cannon N, Zhang M, Bhandoola A, Zhao K, O'Shea JJ, Zhu J. Transcription factor TCF-1 regulates the functions, but not the development, of lymphoid tissue inducer subsets in different tissues. Cell Rep 2023; 42:112924. [PMID: 37540600 PMCID: PMC10504686 DOI: 10.1016/j.celrep.2023.112924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Lymphoid tissue inducer (LTi) cells, a subset of innate lymphoid cells (ILCs), play an essential role in the formation of secondary lymphoid tissues. However, the regulation of the development and functions of this ILC subset is still elusive. In this study, we report that the transcription factor T cell factor 1 (TCF-1), just as GATA3, is indispensable for the development of non-LTi ILC subsets. While LTi cells are still present in TCF-1-deficient mice, the organogenesis of Peyer's patches (PPs), but not of lymph nodes, is impaired in these mice. LTi cells from different tissues have distinct gene expression patterns, and TCF-1 regulates the expression of lymphotoxin specifically in PP LTi cells. Mechanistically, TCF-1 may directly and/or indirectly regulate Lta, including through promoting the expression of GATA3. Thus, the TCF-1-GATA3 axis, which plays an important role during T cell development, also critically regulates the development of non-LTi cells and tissue-specific functions of LTi cells.
Collapse
Affiliation(s)
- Mingzhu Zheng
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbiology and Immunology School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Chen Yao
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Immunology & Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; College of Animal Science and Technology, Northwest A&F University, Shannxi 712100, China
| | - Kairui Mao
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hyunwoo Chung
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xi Chen
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Bioinformatics Core, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Lei Wang
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506, USA
| | - Xuemei Luan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Difeng Fang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan Li
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Clinical Laboratory, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chao Zhong
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoxiao Lu
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nikki Cannon
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506, USA
| | - Mingxu Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
154
|
Kent A, Crump LS, Davila E. Beyond αβ T cells: NK, iNKT, and γδT cell biology in leukemic patients and potential for off-the-shelf adoptive cell therapies for AML. Front Immunol 2023; 14:1202950. [PMID: 37654497 PMCID: PMC10465706 DOI: 10.3389/fimmu.2023.1202950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Acute myeloid leukemia (AML) remains an elusive disease to treat, let alone cure, even after highly intensive therapies such as stem cell transplants. Adoptive cell therapeutic strategies based on conventional alpha beta (αβ)T cells are an active area of research in myeloid neoplasms given their remarkable success in other hematologic malignancies, particularly B-cell-derived acute lymphoid leukemia, myeloma, and lymphomas. Several limitations have hindered clinical application of adoptive cell therapies in AML including lack of leukemia-specific antigens, on-target-off-leukemic toxicity, immunosuppressive microenvironments, and leukemic stem cell populations elusive to immune recognition and destruction. While there are promising T cell-based therapies including chimeric antigen receptor (CAR)-T designs under development, other cytotoxic lymphocyte cell subsets have unique phenotypes and capabilities that might be of additional benefit in AML treatment. Of particular interest are the natural killer (NK) and unconventional T cells known as invariant natural killer T (iNKT) and gamma delta (γδ) T cells. NK, iNKT, and γδT cells exhibit intrinsic anti-malignant properties, potential for alloreactivity, and human leukocyte-antigen (HLA)-independent function. Here we review the biology of each of these unconventional cytotoxic lymphocyte cell types and compare and contrast their strengths and limitations as the basis for adoptive cell therapies for AML.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- Department of Medicine, University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | | | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- Department of Medicine, University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
155
|
Wang Y, Lifshitz L, Silverstein NJ, Mintzer E, Luk K, StLouis P, Brehm MA, Wolfe SA, Deeks SG, Luban J. Transcriptional and chromatin profiling of human blood innate lymphoid cell subsets sheds light on HIV-1 pathogenesis. EMBO J 2023; 42:e114153. [PMID: 37382276 PMCID: PMC10425848 DOI: 10.15252/embj.2023114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a diverse population of cells that include NK cells and contribute to tissue homeostasis and repair, inflammation, and provide protection from infection. The interplay between human blood ILCs, as well as their responses to HIV-1 infection, remains poorly understood. This study used transcriptional and chromatin profiling to explore these questions. Transcriptional profiling and flow cytometry analysis support that there are four main ILC subsets found in human blood. Unlike in mice, human NK cells expressed the tissue repair protein amphiregulin (AREG). AREG production was induced by TCF7/WNT, IL-2, and IL-15, and inhibited by TGFB1, a cytokine increased in people living with HIV-1. In HIV-1 infection, the percentage of AREG+ NK cells correlated positively with the numbers of ILCs and CD4+ T cells but negatively with the concentration of inflammatory cytokine IL-6. NK-cell knockout of the TGFB1-stimulated WNT antagonist RUNX3 increased AREG production. Antiviral gene expression was increased in all ILC subsets from HIV-1 viremic people, and anti-inflammatory gene MYDGF was increased in an NK-cell subset from HIV-1-infected people whose viral load was undetectable in the absence of antiretroviral therapy. The percentage of defective NK cells in people living with HIV-1 correlated inversely with ILC percentage and CD4+ T-cell counts. CD4+ T cells and their production of IL-2 prevented the loss of NK-cell function by activating mTOR. These studies clarify how ILC subsets are interrelated and provide insight into how HIV-1 infection disrupts NK cells, including an uncharacterized homeostatic function in NK cells.
Collapse
Affiliation(s)
- Yetao Wang
- Hospital for Skin Diseases (Institute of Dermatology)Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjingChina
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Lawrence Lifshitz
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Noah J Silverstein
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Esther Mintzer
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Pamela StLouis
- Diabetes Center of ExcellenceUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Michael A Brehm
- Diabetes Center of ExcellenceUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Steven G Deeks
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Jeremy Luban
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Department of Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Ragon Institute of MGH, MIT, and HarvardCambridgeMAUSA
- Massachusetts Consortium on Pathogen ReadinessBostonMAUSA
| |
Collapse
|
156
|
Sun L, Wang L, Moore BB, Zhang S, Xiao P, Decker AM, Wang HL. IL-17: Balancing Protective Immunity and Pathogenesis. J Immunol Res 2023; 2023:3360310. [PMID: 37600066 PMCID: PMC10439834 DOI: 10.1155/2023/3360310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The biological role of interleukin 17 (IL-17) has been explored during recent decades and identified as a pivotal player in coordinating innate and adaptive immune responses. Notably, IL-17 functions as a double-edged sword with both destructive and protective immunological roles. While substantial progress has implicated unrestrained IL-17 in a variety of infectious diseases or autoimmune conditions, IL-17 plays an important role in protecting the host against pathogens and maintaining physiological homeostasis. In this review, we describe canonical IL-17 signaling mechanisms promoting neutrophils recruitment, antimicrobial peptide production, and maintaining the epithelium barrier integrity, as well as some noncanonical mechanisms involving IL-17 that elicit protective immunity.
Collapse
Affiliation(s)
- Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Shaoping Zhang
- Department of Periodontics, University of Iowa College of Dentistry, Iowa, IA, USA
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Immunological Disease Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ann M. Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
157
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
158
|
Cui W, Nagano Y, Morita S, Tanoue T, Yamane H, Ishikawa K, Sato T, Kubo M, Hori S, Taniguchi T, Hatakeyama M, Atarashi K, Honda K. Diet-mediated constitutive induction of novel IL-4+ ILC2 cells maintains intestinal homeostasis in mice. J Exp Med 2023; 220:214103. [PMID: 37163450 PMCID: PMC10174189 DOI: 10.1084/jem.20221773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) expressing IL-5 and IL-13 are localized at various mucosal tissues and play critical roles in the induction of type 2 inflammation, response to helminth infection, and tissue repair. Here, we reveal a unique ILC2 subset in the mouse intestine that constitutively expresses IL-4 together with GATA3, ST2, KLRG1, IL-17RB, and IL-5. In this subset, IL-4 expression is regulated by mechanisms similar to but distinct from those observed in T cells and is partly affected by IL-25 signaling. Although the absence of the microbiota had marginal effects, feeding mice with a vitamin B1-deficient diet compromised the number of intestinal IL-4+ ILC2s. The decrease in the number of IL-4+ ILC2s caused by the vitamin B1 deficiency was accompanied by a reduction in IL-25-producing tuft cells. Our findings reveal that dietary vitamin B1 plays a critical role in maintaining interaction between tuft cells and IL-4+ ILC2s, a previously uncharacterized immune cell population that may contribute to maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Wanlin Cui
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Yuji Nagano
- RIKEN Center for Integrative Medical Sciences (IMS) , Yokohama, Japan
- Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Satoru Morita
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Tanoue
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | - Hidehiro Yamane
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keiko Ishikawa
- Department of Organoid Medicine, Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo, Japan
| | - Masato Kubo
- RIKEN Center for Integrative Medical Sciences (IMS) , Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Shohei Hori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Tokyo, Japan
| | - Tadatsugu Taniguchi
- Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo , Tokyo, Japan
| | - Masanori Hatakeyama
- Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan
- Center of infection-associated cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences (IMS) , Yokohama, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences (IMS) , Yokohama, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| |
Collapse
|
159
|
Shen X, Gao X, Luo Y, Xu Q, Fan Y, Hong S, Huang Z, Liu X, Wang Q, Chen Z, Wang D, Lu L, Wu C, Liang H, Wang L. Cxxc finger protein 1 maintains homeostasis and function of intestinal group 3 innate lymphoid cells with aging. NATURE AGING 2023; 3:965-981. [PMID: 37429951 DOI: 10.1038/s43587-023-00453-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
Aging is accompanied by homeostatic and functional dysregulation of multiple immune cell subsets. Group 3 innate lymphoid cells (ILC3s) constitute a heterogeneous cell population that plays pivotal roles in intestinal immunity. In this study, we found that ILC3s in aged mice exhibited dysregulated homeostasis and function, leading to bacterial and fungal infection susceptibility. Moreover, our data revealed that the enrichment of the H3K4me3 modification in effector genes of aged gut CCR6+ ILC3s was specifically decreased compared to young mice counterparts. Disruption of Cxxc finger protein 1 (Cxxc1) activity, a key subunit of H3K4 methyltransferase, in ILC3s led to similar aging-related phenotypes. An integrated analysis revealed Kruppel-like factor 4 (Klf4) as a potential Cxxc1 target. Klf4 overexpression partially restored the differentiation and functional defects seen in both aged and Cxxc1-deficient intestinal CCR6+ ILC3s. Therefore, these data suggest that targeting intestinal ILC3s may provide strategies to protect against age-related infections.
Collapse
Affiliation(s)
- Xin Shen
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Co-Facility Center, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xianzhi Gao
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Yikai Luo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Fan
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | | | - Xiaoqian Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Di Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China.
- Laboratory Animal Center, Zhejiang University, Hangzhou, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
| |
Collapse
|
160
|
Lu Z, Wang H, Gong Z, Guo P, Li C, Bi K, Li X, Chen Y, Pan A, Xu Y, Zhou P, Wei Z, Jiang H, Cao Y. The enrichment of Arg1 +ILC2s and ILCregs facilitates the progression of endometriosis: A preliminary study. Int Immunopharmacol 2023; 121:110421. [PMID: 37302364 DOI: 10.1016/j.intimp.2023.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Innate lymphoid cells (ILCs) are a kind of lymphocytes that reside in the tissue and have an essential function in the immune microenvironment. However, the relationship between endometriosis (EMS) and ILCs is complex and not fully understood. This study examines several groups of ILCs in the peripheral blood (PB), peritoneal fluid (PF) and endometrium of patients with EMS via flow cytometry. The study observed an increase in PB ILCs, particularly ILC2s and ILCregs subsets and Arg1+ILC2s in the EMS patients were highly activated. EMS patients had significantly higher levels of serum interleukin (IL)-10/33/25 compared to controls. We also found an elevation of Arg1+ILC2s in the PF and higher levels of ILC2s and ILCregs in ectopic endometrium compared with eutopic. Importantly, a positive correlation was observed between the enrichment of Arg1+ILC2s and ILCregs in the PB of EMS patients. The findings indicate that the involvement of Arg1+ILC2s and ILCregs fosters potentially endometriosis progression.
Collapse
Affiliation(s)
- Zhimin Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhangyun Gong
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peipei Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Caihua Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kaihuan Bi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xuqing Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ya Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Anan Pan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Huanhuan Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
161
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
162
|
Yang Y, She S, Ren L, Zhao B, Chen D, Chen H. Prognosis and therapeutic benefits prediction based on NK cell marker genes through single-cell RNA-seq with integrated bulk RNA-seq analysis for hepatocellular carcinoma. Front Oncol 2023; 13:1208165. [PMID: 37554171 PMCID: PMC10406383 DOI: 10.3389/fonc.2023.1208165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Tumor-infiltrating immune cells greatly participate in regulating tumorigenesis and metastasis of hepatocellular carcinoma (HCC). Natural killer cell, as an important role of innate immunity, plays an indispensable role in antitumor immunity and regulate tumor development. In this study, we firstly identified 251 NK cell marker genes of HCC based on single-cell RNA sequencing data. Subsequently, an NK cell marker genes-related prognostic signature (NKPS) was developed in the cancer genome atlas (TCGA) cohort for risk stratification and prognosis prediction. The predictive value of the NKPS in prognosis was well validated in different clinical subgroups and three external datasets (ICGC-LIHC cohort, GSE14520 cohort and Guilin cohort). Moreover, multivariate analysis revealed the independent prognostic value of NKPS for OS in HCC. Further functional analysis indicated the NKPS was associated with basic cellular processes, that may contribute to the development and progression of HCC. Thereafter, immune characteristics as well as the therapeutic benefits in NKPS risk score-defined subgroups were analyzed. Patients with low-risk score exhibited immune-active status, manifested as higher immune scores, more infiltration of CD8+ T cells and macrophage M1, and higher T-cell receptor (TCR) richness and diversity. Remarkably, the NKPS was negatively correlated with immunotherapy response-related signatures. In addition, the low-risk group exhibited significantly improved therapeutic benefits, either from immunotherapy or traditional chemotherapy and target therapy. Overall, the NKPS showed an excellent predictive value for prognosis and therapeutic responses for HCC, which might also provide novel insights into better HCC management strategies.
Collapse
Affiliation(s)
- Yao Yang
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, China
| | - Shaopin She
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, China
| | - Liying Ren
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, China
| | - Bigeng Zhao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Dongbo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, China
| | - Hongsong Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, China
| |
Collapse
|
163
|
Rizzi A, Di Gioacchino M, Gammeri L, Inchingolo R, Chini R, Santilli F, Nucera E, Gangemi S. The Emerging Role of Innate Lymphoid Cells (ILCs) and Alarmins in Celiac Disease: An Update on Pathophysiological Insights, Potential Use as Disease Biomarkers, and Therapeutic Implications. Cells 2023; 12:1910. [PMID: 37508573 PMCID: PMC10378400 DOI: 10.3390/cells12141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Celiac disease (CD) is an intestinal disease that develops in genetically predisposed individuals and is triggered by the ingestion of gluten. CD was considered a Th1-disease. Today, the role of Th17, IL-21, and IL-17A lymphocytes is well known. Inflammation is regulated by the activity of gluten-specific CD4+ T lymphocytes that produce pro-inflammatory cytokines, including IFN-γ, TNF-α, and IL-21, perpetuating the Th1 response. These cytokines determine an inflammatory state of the small intestine, with consequent epithelial infiltration of lymphocytes and an alteration of the architecture of the duodenal mucosa. B cells produce antibodies against tissue transglutaminase and against deamidated gliadin. Although the role of the adaptive immune response is currently known, the evidence about the role of innate immunity cells is still poorly understood. Epithelial damage determines the release of damage-associated molecular patterns (DAMPs), also known as alarmins. Together with the intestinal epithelial cells and the type 1 innate lymphoid cells (ILC1s), alarmins like TSLP, IL-33, and HMGB1 could have a fundamental role in the genesis and maintenance of inflammation. Our study aims to evaluate the evidence in the literature about the role of ILCs and alarmins in celiac disease, evaluating the possible future diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Center for Advanced Studies and Technology, G. d'Annunzio University, 66100 Chieti, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Neurosciences, Sense Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Raffaella Chini
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Santilli
- Center for Advanced Studies and Technology, G. d'Annunzio University, 66100 Chieti, Italy
| | - Eleonora Nucera
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
164
|
Badrani JH, Strohm AN, Haung YA, Doherty TA. Monitoring Group 2 Innate Lymphoid Cell Biology in Models of Lung Inflammation. Bio Protoc 2023; 13:e4717. [PMID: 37497449 PMCID: PMC10366677 DOI: 10.21769/bioprotoc.4717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/23/2023] [Accepted: 04/28/2023] [Indexed: 07/28/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a rare cell population subdivided into ILC1s, ILC2s, and ILC3s, based on transcription factor expression and cytokine production. In models of lung inflammation, the release of alarmins from the epithelium activates ILC2s and promotes the production of Th2-cytokines and the proliferation and migration of ILC2s within the lung. ILC2s are the innate counterpart to CD4+ Th2s and, as such, express Gata-3 and produce IL-4, IL-5, and IL-13. Due to the low number of ILCs and the lack of specific surface markers, flow cytometry is the most reliable technique for the identification and characterization of ILCs. In this protocol, multicolor flow cytometry is utilized to identify Lineage- Thy1.2+ ILCs. Intracellular cytokine staining further identifies ILC2s within the lung. This protocol presents a reliable method for promoting ILC2-mediated lung inflammation and for monitoring ILC2 biology. Key features In this protocol, ILC2s are expanded via intranasal challenges withAlternaria alternata, a fungal allergen, or recombinant IL-33. Bronchoalveolar lavage (BAL) and lung are collected and processed into single-cell suspension for multicolor flow cytometric analysis, including intracellular staining of transcription factors and cytokines. During lung inflammation, the percentage of ILC2s and eosinophils increases. ILC2s express greater levels ofGata-3andKi-67and produce greater amounts of IL-5 and IL-13. Graphical overview.
Collapse
Affiliation(s)
- Jana H. Badrani
- Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Allyssa N. Strohm
- Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Health Care System, La Jolla, CA, USA
| | - Yung-An Haung
- Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Taylor A. Doherty
- Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Health Care System, La Jolla, CA, USA
| |
Collapse
|
165
|
Le Berre C, Naveilhan P, Rolli-Derkinderen M. Enteric glia at center stage of inflammatory bowel disease. Neurosci Lett 2023; 809:137315. [PMID: 37257681 DOI: 10.1016/j.neulet.2023.137315] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Although our understanding of the pathophysiology of inflammatory bowel disease (IBD) is increasing, the expanding body of knowledge does not simplify the equation but rather reveals diverse, interconnected, and complex mechanisms in IBD. In addition to immune overactivation, defects in intestinal epithelial barrier (IEB) functioning, dysbiosis, and structural and functional abnormalities of the enteric nervous system are emerging as new elements contributing to the development of IBD. In addition to molecular changes in IBD, enteric glia from patients with Crohn's disease (CD) exhibits the inability to strengthen the IEB; these defects are not observed in patients with ulcerative colitis. In addition, there is a growing body of work describing that enteric glia interacts with not only enterocytes and enteric neurons but also other local cellular neighbours. Thus, because of their functions as connectors and regulators of immune cells, IEB, and microbiota, enteric glia could be the keystone of digestive homeostasis that is lacking in patients with CD.
Collapse
Affiliation(s)
- Catherine Le Berre
- Hépato-Gastro-Entérologie et Assistance Nutritionnelle, Inserm CIC 1413, Institut des Maladies de l'Appareil Digestif (IMAD), CHU Nantes, 1 place Alexis Ricordeau, F-44000 Nantes, France; Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France.
| |
Collapse
|
166
|
Topkan E, Somay E, Yilmaz B, Pehlivan B, Selek U. Valero's host index is useful in predicting radiation-induced trismus and osteoradionecrosis of the jaw risks in locally advanced nasopharyngeal carcinoma patients. BMC Cancer 2023; 23:651. [PMID: 37438683 DOI: 10.1186/s12885-023-11155-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND In the absence of previous research, we sought to assess the H-Index's predictive significance for radiation-induced trismus (RIT) and osteoradionecrosis of the jaw (ORNJ) in patients with locally advanced nasopharyngeal carcinoma (LA-NPC) receiving concurrent chemoradiotherapy (C-CRT). PATIENTS AND METHODS The research comprised 295 LA-NPC patients who had C-CRT and pre- and post-C-CRT oral exams between June 2010 and December 2021. The H-Index was calculated using neutrophils, monocytes, lymphocytes, hemoglobin, and albumin measurements obtained on the first day of C-CRT. Patients were divided into three and two H-index groups, respectively, based on previously established cutoff values (1.5 and 3.5) and the cutoff value determined by our receiver operating characteristic (ROC) curve analysis. The primary objective was the presence of any significant connections between pretreatment H-Index groups and post-C-CRT RIT and ORNJ rates. RESULTS RIT and ORNJ was diagnosed in 46 (15.6%) and 13 (7.8%) patients, respectively. The original H-Index grouping could only categorize RIT and ORNJ risks at a cutoff value of 3.5, with no significant differences in RIT and ORNJ rates between groups with H-Index 1.5 and 1.5 to 3.5 (P < 0.05 for each). The ideal H-Index cutoff for both RIT and ORNJ rates was found to be 5.5 in ROC curve analysis, which divided the entire research population into two groups: H-Index ≤ 5.5 (N = 195) and H-Index > 5.5 (N = 110). Intergroup comparisons revealed that patients in the H-Index > 5.5 group had significantly higher rates of either RIT (31.8% vs. 5.9%; P < 0.001) or ORNJ (17.3% vs. 2.2%; P < 0.001) than their H-Index ≤ 5.5 counterparts. The results of the multivariate analysis showed that H-Index > 5.5 was independently linked to significantly higher RIT (P < 0.001) and ORNJ (P < 0.001) rates. CONCLUSION Pre-C-CRT H-Index > 5.5 is associated with significantly increased RIT and ORNJ rates in LA-NPC patients receiving definitive C-CRT.
Collapse
Affiliation(s)
- Erkan Topkan
- Department of Radiation Oncology, Medical Faculty, Baskent University, Adana, Turkey.
| | - Efsun Somay
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Baskent University, Ankara, Turkey
| | - Busra Yilmaz
- Department of Oral and Maxillofacial Radiology, School of Dental Medicine, Bahcesehir University, Istanbul, Turkey
| | - Berrin Pehlivan
- Department of Radiation Oncology, Bahcesehir University, Istanbul, Turkey
| | - Ugur Selek
- Department of Radiation Oncology, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
167
|
Jan-Abu SC, Kabil A, McNagny KM. Parallel origins and functions of T cells and ILCs. Clin Exp Immunol 2023; 213:76-86. [PMID: 37235977 PMCID: PMC10324547 DOI: 10.1093/cei/uxad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 05/28/2023] Open
Abstract
Innate lymphoid cells (ILCs) are tissue resident cells that are triggered through a relatively broad spectrum of alarmins, inflammatory cues, neuropeptides, and hormones. Functionally, ILCs are akin to subsets of helper T cells and are characterized by a similar effector cytokine profile. They also share a dependency on many of the same essential transcription factors identified for the maintenance and survival of T cells. The key distinguishing factor between the ILC family and T cells is the lack of antigen-specific T cell receptor (TCR) on ILCs and, thus, they can be considered the "ultimate invariant T cells". ILCs, like T cells, orchestrate downstream effector inflammatory responses by adjusting the cytokine microenvironment in a fashion that promotes protection, health, and homeostasis at mucosal barrier sites. But also, like T cells, ILCs have recently been implicated in several pathological inflammatory disease states. This review focuses on the selective role of ILCs in the development of allergic airway inflammation (AAI) and fibrosis in the gut where a complex ILC interplay has been shown to either attenuate or worsen disease. Finally, we discuss new data on TCR gene rearrangements in subsets of ILCs that challenge the current dogma linking their origin to committed bone marrow progenitors and instead propose a thymic origin for at least some ILCs. In addition, we highlight how naturally occurring TCR rearrangements and the expression of major histocompatibility (MHC) molecules in ILCs provide a useful natural barcode for these cells and may prove instrumental in studying their origins and plasticity.
Collapse
Affiliation(s)
- Sia C Jan-Abu
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Ahmed Kabil
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart and Lung Innovation (HLI), St Paul’s Hospital, Vancouver, BC, Canada
| |
Collapse
|
168
|
Henao-Mejía J, Crispín JC, Licona-Limón P. Editorial: Innate lymphoid cell development, migration, and function. Front Immunol 2023; 14:1242754. [PMID: 37469516 PMCID: PMC10352098 DOI: 10.3389/fimmu.2023.1242754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Affiliation(s)
- Jorge Henao-Mejía
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute of Immunology, University of Pennsylvania, Philadelphia, PA, United States
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - José C. Crispín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
169
|
Evers BD, Hils M, Heuser C, Hölge IM, Argiriu D, Skabytska Y, Kaesler S, Posch C, Knolle PA, Biedermann T. Inflammatory Cues Direct Skin-Resident Type 1 Innate Lymphoid Cells to Adopt a Psoriasis-Promoting Identity. JID INNOVATIONS 2023; 3:100204. [PMID: 37533580 PMCID: PMC10392090 DOI: 10.1016/j.xjidi.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 08/04/2023] Open
Abstract
Innate lymphoid cells (ILCs) are gatekeepers in barrier organs, where they maintain tissue integrity and contribute to host defense as well as tissue repair. Inappropriate activation of ILCs, however, can lead to immunopathology with detrimental results. In this study, we focused on type 1 ILCs (ILC1s), which under inflammatory conditions constitute a poorly defined population with ambiguous functions. To delineate the properties of ILC1s in skin pathology, we used the well-established mouse model of imiquimod-induced psoriasis. Although ILC1s represented a minority among cutaneous lymphocytes in vehicle-treated controls, they rapidly expanded during early psoriasis and ultimately increased by >20-fold. This rapid increase was verified using two additional psoriasis models. Inflammatory ILC1s from imiquimod-treated skin were defined as CD44+, CXCR6+, and CD11b+ and substantially contributed to TNF-α and GM-CSF production, rendering them a potential candidate to shape the inflammatory infiltrate. In accordance with the psoriasis-specific microenvironment, skin ILC1s upregulated the IL-23 receptor whereas expression of the IL-12Rβ2 subunit was diminished. As a consequence, neutralization of IL-12 only had a minor impact, whereas blocking IL-23 reduced both ILC1 abundance and disease severity. Together, our findings identify skin ILC1s as a likely player in early psoriasis and a prospective target for therapeutic approaches.
Collapse
Affiliation(s)
- Beatrix D.G. Evers
- Department of Dermatology and Allergology, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Miriam Hils
- Department of Dermatology and Allergology, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Christoph Heuser
- Leibniz Institute for Immunotherapy, Department of Functional Immune Cell Modulation, Regensburg, Germany
| | - Inga M. Hölge
- Department of Dermatology and Allergology, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Désirée Argiriu
- Department of Dermatology and Allergology, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Yuliya Skabytska
- Department of Dermatology and Allergology, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Susanne Kaesler
- Department of Dermatology and Allergology, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Christian Posch
- Department of Dermatology and Allergology, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Department of Dermatology, Vienna Healthcare Group, Vienna, Austria
- Sigmund Freud University Vienna, Faculty of Medicine, Vienna, Austria
| | - Percy A. Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich (TUM), Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
170
|
Chen L, Sun R, Lei C, Xu Z, Song Y, Deng Z. Alcohol-mediated susceptibility to lung fibrosis is associated with group 2 innate lymphoid cells in mice. Front Immunol 2023; 14:1178498. [PMID: 37457733 PMCID: PMC10343460 DOI: 10.3389/fimmu.2023.1178498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic alcohol ingestion promotes acute lung injury and impairs immune function. However, the mechanisms involved are incompletely understood. Here, we show that alcohol feeding enhances bleomycin-induced lung fibrosis and inflammation via the regulation of type 2 innate immune responses, especially by group 2 innate lymphoid cells (ILC2s). Neuroimmune interactions have emerged as critical modulators of lung inflammation. We found alcohol consumption induced the accumulation of ILC2 and reduced the production of the neuropeptide calcitonin gene-related peptide (CGRP), primarily released from sensory nerves and pulmonary neuroendocrine cells (PNECs). CGRP potently suppressed alcohol-driven type 2 cytokine signals in vivo. Vagal ganglia TRPV1+ afferents mediated immunosuppression occurs through the release of CGRP. Inactivation of the TRPV1 receptor enhanced bleomycin-induced fibrosis. In addition, mice lacking the CGRP receptor had the increased lung inflammation and fibrosis and type 2 cytokine production as well as exaggerated responses to alcohol feeding. Together, these data indicate that alcohol consumption regulates the interaction of CGRP and ILC2, which is a critical contributor of lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Liang Chen
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People’s Hospital, Nanjing Medical University, Huai’an, Jiangsu, China
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Rui Sun
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Chao Lei
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Zhishan Xu
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Zhongbin Deng
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
171
|
Carannante V, Wiklund M, Önfelt B. In vitro models to study natural killer cell dynamics in the tumor microenvironment. Front Immunol 2023; 14:1135148. [PMID: 37457703 PMCID: PMC10338882 DOI: 10.3389/fimmu.2023.1135148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy is revolutionizing cancer therapy. The rapid development of new immunotherapeutic strategies to treat solid tumors is posing new challenges for preclinical research, demanding novel in vitro methods to test treatments. Such methods should meet specific requirements, such as enabling the evaluation of immune cell responses like cytotoxicity or cytokine release, and infiltration into the tumor microenvironment using cancer models representative of the original disease. They should allow high-throughput and high-content analysis, to evaluate the efficacy of treatments and understand immune-evasion processes to facilitate development of new therapeutic targets. Ideally, they should be suitable for personalized immunotherapy testing, providing information for patient stratification. Consequently, the application of in vitro 3-dimensional (3D) cell culture models, such as tumor spheroids and organoids, is rapidly expanding in the immunotherapeutic field, coupled with the development of novel imaging-based techniques and -omic analysis. In this paper, we review the recent advances in the development of in vitro 3D platforms applied to natural killer (NK) cell-based cancer immunotherapy studies, highlighting the benefits and limitations of the current methods, and discuss new concepts and future directions of the field.
Collapse
Affiliation(s)
- Valentina Carannante
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Martin Wiklund
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
172
|
Butcher MJ, Gurram RK, Zhu X, Chen X, Hu G, Lazarevic V, Zhao K, Zhu J. GATA3 induces the pathogenicity of Th17 cells via regulating GM-CSF expression. Front Immunol 2023; 14:1186580. [PMID: 37449212 PMCID: PMC10337884 DOI: 10.3389/fimmu.2023.1186580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
T-bet-expressing Th17 (T-bet+RORγt+) cells are associated with the induction of pathology during experimental autoimmune encephalomyelitis (EAE) and the encephalitic nature of these Th17 cells can be explained by their ability to produce GM-CSF. However, the upstream regulatory mechanisms that control Csf2 (gene encoding GM-CSF) expression are still unclear. In this study, we found that Th17 cells dynamically expressed GATA3, the master transcription factor for Th2 cell differentiation, during their differentiation both in vitro and in vivo. Early deletion of Gata3 in three complimentary conditional knockout models by Cre-ERT2, hCd2 Cre and Tbx21 Cre, respectively, limited the pathogenicity of Th17 cells during EAE, which was correlated with a defect in generating pathogenic T-bet-expressing Th17 cells. These results indicate that early GATA3-dependent gene regulation is critically required to generate a de novo encephalitogenic Th17 response. Furthermore, a late deletion of Gata3 via Cre-ERT2 in the adoptive transfer EAE model resulted in a cell intrinsic failure to induce EAE symptoms which was correlated with a substantial reduction in GM-CSF production without affecting the generation and/or maintenance of T-bet-expressing Th17 cells. RNA-Seq analysis of Gata3-sufficient and Gata3-deficient CNS-infiltrating CD4+ effector T cells from mixed congenic co-transfer recipient mice revealed an important, cell-intrinsic, function of GATA3 in regulating the expression of Egr2, Bhlhe40, and Csf2. Thus, our data highlights a novel role for GATA3 in promoting and maintaining the pathogenicity of T-bet-expressing Th17 cells in EAE, via putative regulation of Egr2, Bhlhe40, and GM-CSF expression.
Collapse
Affiliation(s)
- Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xi Chen
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
173
|
Engel S, Klotz L, Wirth T, Fleck AK, Pickert G, Eschborn M, Kreuzburg S, Curella V, Bittner S, Zipp F, Schuppan D, Luessi F. Attenuation of immune activation in patients with multiple sclerosis on a wheat-reduced diet: a pilot crossover trial. Ther Adv Neurol Disord 2023; 16:17562864231170928. [PMID: 37384112 PMCID: PMC10293514 DOI: 10.1177/17562864231170928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/03/2023] [Indexed: 06/30/2023] Open
Abstract
Background Western lifestyle has been associated with an increase in relapsing-remitting multiple sclerosis (RRMS). In mice, dietary wheat amylase-trypsin inhibitors (ATIs) activate intestinal myeloid cells and augment T cell-mediated systemic inflammation. Objective The aim of this study was to assess whether a wheat- and thus ATI-reduced diet might exert beneficial effects in RRMS patients with modest disease activity. Methods In this 6-month, crossover, open-label, bicentric proof-of-concept trial, 16 RRMS patients with stable disease course were randomized to either 3 months of a standard wheat-containing diet with consecutive switch to a > 90% wheat-reduced diet, or vice versa. Results The primary endpoint was negative, as the frequency of circulating pro-inflammatory T cells did not decrease during the ATI-reduced diet. We did, however, observe decreased frequencies of CD14+ CD16++ monocytes and a concomitant increase in CD14++ CD16- monocytes during the wheat-reduced diet interval. This was accompanied by an improvement in pain-related quality of life in health-related quality of life assessed (SF-36). Conclusion Our results suggest that the wheat- and thus ATI-reduced diet was associated with changes in monocyte subsets and improved pain-related quality of life in RRMS patients. Thus, a wheat (ATI)-reduced diet might be a complementary approach accompanying immunotherapy for some patients. Registration German Clinical Trial Register (No. DRKS00027967).
Collapse
Affiliation(s)
- Sinah Engel
- Department of Neurology and Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Timo Wirth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Ann-Katrin Fleck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Geethanjali Pickert
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melanie Eschborn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Samia Kreuzburg
- Department of Neurology and Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Valentina Curella
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology and Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology and Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Felix Luessi
- Department of Neurology and Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
174
|
Verma M, McKay J, Verma D. Role of epigenetics in innate lymphoid cells. Epigenomics 2023; 15:615-618. [PMID: 37435673 DOI: 10.2217/epi-2023-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Epigenetics plays a crucial role in gene regulation and cell function without changing the DNA sequence. The process of differentiation in eukaryotes during cellular morphogenesis is a paradigm of epigenetic change; stem cells develop into pluripotent cell lines in the embryo, eventually becoming terminally developed cells. Recently, epigenetic changes were shown to play an important role in immune cell development, activation and differentiation, which impacts chromatin remodeling, DNA methylation, post-translational histone modifications and small or lncRNA engagement. Innate lymphoid cells (ILCs) are newly identified immune cells that lack antigen receptors. ILCs differentiate from hematopoietic stem cells via multipotent progenitor stages. In this editorial, the authors discuss the epigenetic regulation of ILC differentiation and function.
Collapse
Affiliation(s)
- Mukesh Verma
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Jerome McKay
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Divya Verma
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| |
Collapse
|
175
|
Matsuyama T, Machida K, Mizuno K, Matsuyama H, Dotake Y, Shinmura M, Takagi K, Inoue H. The Functional Role of Group 2 Innate Lymphoid Cells in Asthma. Biomolecules 2023; 13:893. [PMID: 37371472 DOI: 10.3390/biom13060893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation. Group 2 innate lymphoid cells (ILC2) play an important role in the pathogenesis of asthma. ILC2s lack antigen-specific receptors and respond to epithelial-derived cytokines, leading to the induction of airway eosinophilic inflammation in an antigen-independent manner. Additionally, ILC2s might be involved in the mechanism of steroid resistance. Numerous studies in both mice and humans have shown that ILC2s induce airway inflammation through inflammatory signals, including cytokines and other mediators derived from immune or non-immune cells. ILC2s and T helper type 2 (Th2) cells collaborate through direct and indirect interactions to organize type 2 immune responses. Interestingly, the frequencies or numbers of ILC2 are increased in the blood and bronchoalveolar lavage fluid of asthma patients, and the numbers of ILC2s in the blood and sputum of severe asthmatics are significantly larger than those of mild asthmatics. These findings may contribute to the regulation of the immune response in asthma. This review article highlights our current understanding of the functional role of ILC2s in asthma.
Collapse
Affiliation(s)
- Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Kentaro Machida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiromi Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yoichi Dotake
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Masahiro Shinmura
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Koichi Takagi
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
176
|
Liu Y, Liu Z, Liang J, Sun C. ILC2s control obesity by regulating energy homeostasis and browning of white fat. Int Immunopharmacol 2023; 120:110272. [PMID: 37210911 DOI: 10.1016/j.intimp.2023.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Innate lymphoid cells (ILCs) have been a hot topic in recent research, they are widely distributed in vivo and play an important role in different tissues. The important role of group 2 innate lymphoid cells (ILC2s) in the conversion of white fat into beige fat has attracted widespread attention. Studies have shown that ILC2s regulate adipocyte differentiation and lipid metabolism. This article reviews the types and functions of ILCs, focusing on the relationship between differentiation, development and function of ILC2s, and elaborates on the relationship between peripheral ILC2s and browning of white fat and body energy homeostasis. This has important implications for the future treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
177
|
Rafii S, Kandoussi S, Ghouzlani A, Naji O, Reddy KP, Ullah Sadiqi R, Badou A. Deciphering immune microenvironment and cell evasion mechanisms in human gliomas. Front Oncol 2023; 13:1135430. [PMID: 37274252 PMCID: PMC10235598 DOI: 10.3389/fonc.2023.1135430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Gliomas are considered one of the most malignant cancers in the body. Despite current therapies, including surgery, chemotherapy, and radiotherapy, these tumors usually recur with more aggressive and resistant phenotypes. Indeed, the survival following these conventional therapies is very poor, which makes immunotherapy the subject of active research at present. The anti-tumor immune response could also be considered a prognostic factor since each stage of cancer development is regulated by immune cells. However, glioma microenvironment contains malignant cells that secrete numerous chemokines, cytokines and growth factors, promoting the infiltration of immunosuppressive cells into the tumor, which limit the functioning of the immune system against glioma cells. Recently, researchers have been able to reverse the immune resistance of cancer cells and thus activate the anti-tumor immune response through different immunotherapy strategies. Here, we review the general concept of glioma's immune microenvironment and report the impact of its distinct components on the anti-tumor immune response. We also discuss the mechanisms of glioma cell evasion from the immune response and pinpoint some potential therapeutic pathways, which could alleviate such resistance.
Collapse
Affiliation(s)
- Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | | | - Rizwan Ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
178
|
Basílio-Queirós D, Mischak-Weissinger E. Natural killer cells- from innate cells to the discovery of adaptability. Front Immunol 2023; 14:1172437. [PMID: 37275911 PMCID: PMC10232812 DOI: 10.3389/fimmu.2023.1172437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Natural Killer (NK) cells have come a long way since their first description in the 1970's. The most recent reports of their adaptive-like behavior changed the way the immune system dichotomy is described. Adaptive NK cells present characteristics of both the innate and adaptive immune system. This NK cell subpopulation undergoes a clonal-like expansion in response to an antigen and secondary encounters with the same antigen result in an increased cytotoxic response. These characteristics can be of extreme importance in the clinical setting, especially as adoptive immunotherapies, since NK cells present several advantages compared other cell types. This review will focus on the discovery and the path to the current knowledge of the adaptive NK cell population.
Collapse
|
179
|
Li X, Yan X, Wang Y, Kaur B, Han H, Yu J. The Notch signaling pathway: a potential target for cancer immunotherapy. J Hematol Oncol 2023; 16:45. [PMID: 37131214 PMCID: PMC10155406 DOI: 10.1186/s13045-023-01439-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
Dysregulation of the Notch signaling pathway, which is highly conserved across species, can drive aberrant epigenetic modification, transcription, and translation. Defective gene regulation caused by dysregulated Notch signaling often affects networks controlling oncogenesis and tumor progression. Meanwhile, Notch signaling can modulate immune cells involved in anti- or pro-tumor responses and tumor immunogenicity. A comprehensive understanding of these processes can help with designing new drugs that target Notch signaling, thereby enhancing the effects of cancer immunotherapy. Here, we provide an up-to-date and comprehensive overview of how Notch signaling intrinsically regulates immune cells and how alterations in Notch signaling in tumor cells or stromal cells extrinsically regulate immune responses in the tumor microenvironment (TME). We also discuss the potential role of Notch signaling in tumor immunity mediated by gut microbiota. Finally, we propose strategies for targeting Notch signaling in cancer immunotherapy. These include oncolytic virotherapy combined with inhibition of Notch signaling, nanoparticles (NPs) loaded with Notch signaling regulators to specifically target tumor-associated macrophages (TAMs) to repolarize their functions and remodel the TME, combining specific and efficient inhibitors or activators of Notch signaling with immune checkpoint blockers (ICBs) for synergistic anti-tumor therapy, and implementing a customized and effective synNotch circuit system to enhance safety of chimeric antigen receptor (CAR) immune cells. Collectively, this review aims to summarize how Notch signaling intrinsically and extrinsically shapes immune responses to improve immunotherapy.
Collapse
Affiliation(s)
- Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yufeng Wang
- Cancer Institute, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77225, USA
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA.
| |
Collapse
|
180
|
Kidzeru EB, Lebeko M, Sharma JR, Nkengazong L, Adeola HA, Ndlovu H, P Khumalo N, Bayat A. Immune cells and associated molecular markers in dermal fibrosis with focus on raised cutaneous scars. Exp Dermatol 2023; 32:570-587. [PMID: 36562321 PMCID: PMC10947010 DOI: 10.1111/exd.14734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Raised dermal scars including hypertrophic, and keloid scars as well as scalp-associated fibrosing Folliculitis Keloidalis Nuchae (FKN) are a group of fibrotic raised dermal lesions that mostly occur following cutaneous injury. They are characterized by increased extracellular matrix (ECM) deposition, primarily excessive collagen type 1 production by hyperproliferative fibroblasts. The extent of ECM deposition is thought to be proportional to the severity of local skin inflammation leading to excessive fibrosis of the dermis. Due to a lack of suitable study models, therapy for raised dermal scars remains ill-defined. Immune cells and their associated markers have been strongly associated with dermal fibrosis. Therefore, modulation of the immune system and use of anti-inflammatory cytokines are of potential interest in the management of dermal fibrosis. In this review, we will discuss the importance of immune factors in the pathogenesis of raised dermal scarring. The aim here is to provide an up-to-date comprehensive review of the literature, from PubMed, Scopus, and other relevant search engines in order to describe the known immunological factors associated with raised dermal scarring. The importance of immune cells including mast cells, macrophages, lymphocytes, and relevant molecules such as cytokines, chemokines, and growth factors, antibodies, transcription factors, and other immune-associated molecules as well as tissue lymphoid aggregates identified within raised dermal scars will be presented. A growing body of evidence points to a shift from proinflammatory Th1 response to regulatory/anti-inflammatory Th2 response being associated with the development of fibrogenesis in raised dermal scarring. In summary, a better understanding of immune cells and associated molecular markers in dermal fibrosis will likely enable future development of potential immune-modulated therapeutic, diagnostic, and theranostic targets in raised dermal scarring.
Collapse
Affiliation(s)
- Elvis Banboye Kidzeru
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Maribanyana Lebeko
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Present address:
Cape Biologix Technologies (PTY, LTD)Cape TownSouth Africa
| | - Jyoti Rajan Sharma
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
- Present address:
Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
| | - Lucia Nkengazong
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Henry Ademola Adeola
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Hlumani Ndlovu
- Department of Integrative Biomedical SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nonhlanhla P Khumalo
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Ardeshir Bayat
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
181
|
Sun S, Wijanarko K, Liani O, Strumila K, Ng ES, Elefanty AG, Stanley EG. Lymphoid cell development from fetal hematopoietic progenitors and human pluripotent stem cells. Immunol Rev 2023; 315:154-170. [PMID: 36939073 PMCID: PMC10952469 DOI: 10.1111/imr.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Lymphoid cells encompass the adaptive immune system, including T and B cells and Natural killer T cells (NKT), and innate immune cells (ILCs), including Natural Killer (NK) cells. During adult life, these lineages are thought to derive from the differentiation of long-term hematopoietic stem cells (HSCs) residing in the bone marrow. However, during embryogenesis and fetal development, the ontogeny of lymphoid cells is both complex and multifaceted, with a large body of evidence suggesting that lymphoid lineages arise from progenitor cell populations antedating the emergence of HSCs. Recently, the application of single cell RNA-sequencing technologies and pluripotent stem cell-based developmental models has provided new insights into lymphoid ontogeny during embryogenesis. Indeed, PSC differentiation platforms have enabled de novo generation of lymphoid immune cells independently of HSCs, supporting conclusions drawn from the study of hematopoiesis in vivo. Here, we examine lymphoid development from non-HSC progenitor cells and technological advances in the differentiation of human lymphoid cells from pluripotent stem cells for clinical translation.
Collapse
Affiliation(s)
- Shicheng Sun
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Kevin Wijanarko
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Oniko Liani
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Kathleen Strumila
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Elizabeth S. Ng
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Andrew G. Elefanty
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Edouard G. Stanley
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| |
Collapse
|
182
|
Sun XH. Serotonin suppresses lung ILC2 activation and proliferation. Cell Mol Immunol 2023; 20:546-547. [PMID: 37012397 PMCID: PMC10203116 DOI: 10.1038/s41423-023-00996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Affiliation(s)
- Xiao-Hong Sun
- Oklahoma Medical Research Foundation, Program in Arthritis and Clinical Immunology, Oklahoma City, OK, USA.
| |
Collapse
|
183
|
Borgia F, Li Pomi F, Alessandrello C, Vaccaro M, Gangemi S. Potential Role of Innate Lymphoid Cells in the Pathogenesis and Treatment of Skin Diseases. J Clin Med 2023; 12:jcm12083043. [PMID: 37109379 PMCID: PMC10144013 DOI: 10.3390/jcm12083043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are lymphoid cells that are resident in mucosal tissues, especially the skin, which, once stimulated by epithelial cell-derived cytokines, release IL-5, IL-13, and IL-4, as the effectors of type 2 immune responses. This research aims to evaluate the role of ILC2s in the pathogenesis of skin diseases, with a particular focus on inflammatory cutaneous disorders, in order to also elucidate potential therapeutic perspectives. The research has been conducted in articles, excluding reviews and meta-analyses, on both animals and humans. The results showed that ILC2s play a crucial role in the pathogenesis of systemic skin manifestations, prognosis, and severity, while a potential antimelanoma role is emerging from the new research. Future perspectives could include the development of new antibodies targeting or stimulating ILC2 release. This evidence could add a new therapeutic approach to inflammatory cutaneous conditions, including allergic ones.
Collapse
Affiliation(s)
- Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Clara Alessandrello
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
184
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
185
|
Saksida T, Paunović V, Koprivica I, Mićanović D, Jevtić B, Jonić N, Stojanović I, Pejnović N. Development of Type 1 Diabetes in Mice Is Associated with a Decrease in IL-2-Producing ILC3 and FoxP3 + Treg in the Small Intestine. Molecules 2023; 28:molecules28083366. [PMID: 37110604 PMCID: PMC10141349 DOI: 10.3390/molecules28083366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Recent data indicate the link between the number and function of T regulatory cells (Treg) in the gut immune tissue and initiation and development of autoimmunity associated with type 1 diabetes (T1D). Since type 3 innate lymphoid cells (ILC3) in the small intestine are essential for maintaining FoxP3+ Treg and there are no data about the possible role of ILC3 in T1D pathogenesis, the aim of this study was to explore ILC3-Treg link during the development of T1D. Mature diabetic NOD mice had lower frequencies of IL-2-producing ILC3 and Treg in small intestine lamina propria (SILP) compared to prediabetic NOD mice. Similarly, in multiple low doses of streptozotocin (MLDS)-induced T1D in C57BL/6 mice, hyperglycemic mice exhibited lower numbers of ILC3, IL-2+ ILC3 and Treg in SILP compared to healthy controls. To boost T1D severity, mice were treated with broad-spectrum antibiotics (ABX) for 14 days prior to T1D induction by MLDS. The higher incidence of T1D in ABX-treated mice was associated with significantly lower frequencies of IL-2+ ILC3 and FoxP3+ Treg in SILP compared with mice without ABX treatment. The obtained findings show that the lower proportions of IL-2-expressing ILC3 and FoxP3+ Treg in SILP coincided with diabetes progression and severity.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Verica Paunović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Dragica Mićanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Natalija Jonić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Nada Pejnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
186
|
Jiao Y, Yan Z, Yang A. The Roles of Innate Lymphoid Cells in the Gastric Mucosal Immunology and Oncogenesis of Gastric Cancer. Int J Mol Sci 2023; 24:ijms24076652. [PMID: 37047625 PMCID: PMC10095467 DOI: 10.3390/ijms24076652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a group of innate immune cells that have garnered considerable attention due to their critical roles in regulating immunity and tissue homeostasis. They are particularly abundant in the gastrointestinal tract, where they have been shown to interact with commensal bacteria, pathogens, and other components of the local microenvironment to influence host immune responses to infection and oncogenesis. Their tissue-residency properties enable gastric ILCs a localized and rapid response to alert and stress, which indicates their key potential in regulating immunosurveillance. In this review, we discuss the current understanding of the role of ILCs in the gastric mucosa, with a focus on their interactions with the gastric microbiota and Helicobacter pylori and their contributions to tissue homeostasis and inflammation. We also highlight recent findings on the involvement of ILCs in the pathogenesis of gastric cancer and the implications of targeting ILCs as a therapeutic approach. Overall, this review provides an overview of the diverse functions of ILCs in gastric mucosa and highlights their potential as targets for future therapies for gastric cancer.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- 4 + 4 M.D. Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
187
|
Si Y, Zhang Y, Zuloaga K, Yang Q. The role of innate lymphocytes in regulating brain and cognitive function. Neurobiol Dis 2023; 179:106061. [PMID: 36870457 PMCID: PMC11194859 DOI: 10.1016/j.nbd.2023.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Mounting evidence indicates complex interaction between the immune system and the nervous system, challenging the traditional view about the immune privilege of the brain. Innate lymphoid cells (ILCs) and innate-like T cells are unique families of immune cells that functionally mirror traditional T cells but may function via antigen- and T cell antigen receptor (TCR)-independent mechanisms. Recent work indicates that various ILCs and innate-like T cell subsets are present in the brain barrier tissue, where they play important roles in regulating brain barrier integrity, brain homeostasis and cognitive function. In this review, we discuss recent advances in understanding the intricate roles for innate and innate-like lymphocytes in regulating brain and cognitive function.
Collapse
Affiliation(s)
- Youwen Si
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yuanyue Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Kristen Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Qi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
188
|
Magnusson FC, Bahhar I. Helper innate lymphoid cells as cell therapy for cancer. Immunology 2023; 168:569-579. [PMID: 36288454 DOI: 10.1111/imm.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Although the first cancer immunotherapy was given in the clinic more than a century ago, this line of treatment has remained more of a distant goal than a practical therapy due to limited understanding of the tumour microenvironment and the mechanisms at play within it, which led to failures of numerous clinical trials. However, in the last two decades, the immune checkpoint inhibitors (ICIs) and chimeric antigen receptor-T cell therapies have revolutionized the treatment of cancer and provided proof-of-concept that immunotherapies are a viable option. So far, immunotherapies have majoritarily focused on utilizing T cells; however, T cells are not autonomous but rather function as part of, and therefore are influenced by, a vast cast of other immune cells, including innate lymphoid cells (ILCs). Here, we summarize the role of ILCs, especially helper ILCs, in tumour development, progression and metastasis, as well as their potential to be used as immunotherapy for cancer. By reviewing the studies that used helper ILCs as adoptive cell therapy (ACT), we highlight the rationale behind considering these cells as novel ACT for cancer as well as identify open questions and areas for future research.
Collapse
Affiliation(s)
- Fay C Magnusson
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Medical Microbiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ilham Bahhar
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
189
|
Xu Y, Zhang H, Wu S, Liu J, Liu H, Wang D, Zhang Y, Niu H, Su X, Sun J, Shen L. PLZF restricts intestinal ILC3 function in gut defense. Cell Mol Immunol 2023; 20:379-388. [PMID: 36693920 PMCID: PMC10066334 DOI: 10.1038/s41423-023-00975-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/25/2022] [Indexed: 01/26/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) play important roles in maintaining intestinal homeostasis by protecting the host from pathogen infections and tissue inflammation. The transcription factor PLZF (promyelocytic leukemia zinc finger), encoded by zinc finger BTB domain containing 16 (Zbtb16), is highly and transiently expressed in ILC precursors (ILCPs). However, the role of PLZF in regulating ILC3 development and function remains unknown. Here, we show that PLZF was specifically expressed in mature intestinal ILC3s compared with other ILC subsets. PLZF was dispensable for ILC3 development. However, PLZF deficiency in ILC3s resulted in increased innate interleukin-22 (IL-22) secretion and protection against gut infection and inflammation. Mechanistically, PLZF negatively regulated IL-22 expression by ILC3s in a cell-intrinsic manner by binding to the IL-22 promoter region for transcriptional repression. Together, our data suggest that PLZF restricts intestinal ILC3 function to regulate gut immune homeostasis.
Collapse
Affiliation(s)
- Yaru Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huasheng Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuai Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianyue Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhi Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dongdi Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Youqin Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongshen Niu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaohui Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiping Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lei Shen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| |
Collapse
|
190
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
191
|
Maretti-Mira AC, Salomon MP, Hsu AM, Dara L, Golden-Mason L. Etiology of end-stage liver cirrhosis impacts hepatic natural killer cell heterogenicity. Front Immunol 2023; 14:1137034. [PMID: 37063898 PMCID: PMC10098346 DOI: 10.3389/fimmu.2023.1137034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
The natural killer (NK) cell population is a critical component of the innate immune compartment of the liver, and its functions are deeply affected by the surrounding environment. In the late stage of fibrosis, NK cells become dysfunctional, but the influence of disease etiology on NK cell behavior during cirrhosis remains unclear. Using single-cell RNA sequencing (scRNA-seq), we characterized the hepatic NK cells from end-stage cirrhotic livers from subjects with non-alcoholic steatohepatitis (NASH), chronic hepatitis C infection (HCV) and primary sclerosing cholangitis (PSC). Here, we show that although NK cells shared similar dysfunctions, the disease etiology impacts hepatic NK cell heterogeneity. Therapeutical strategies targeting NK cells for the prevention or treatment of fibrosis should consider liver disease etiology in their design.
Collapse
Affiliation(s)
- Ana C. Maretti-Mira
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Ana C. Maretti-Mira,
| | - Matthew P. Salomon
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Angela M. Hsu
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lily Dara
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lucy Golden-Mason
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
192
|
Li S, Wang CS, Montel-Hagen A, Chen HC, Lopez S, Zhou O, Dai K, Tsai S, Satyadi W, Botero C, Wong C, Casero D, Crooks GM, Seet CS. Strength of CAR signaling determines T cell versus ILC differentiation from pluripotent stem cells. Cell Rep 2023; 42:112241. [PMID: 36906850 PMCID: PMC10315155 DOI: 10.1016/j.celrep.2023.112241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/04/2023] [Accepted: 02/23/2023] [Indexed: 03/13/2023] Open
Abstract
Generation of chimeric antigen receptor (CAR) T cells from pluripotent stem cells (PSCs) will enable advances in cancer immunotherapy. Understanding how CARs affect T cell differentiation from PSCs is important for this effort. The recently described artificial thymic organoid (ATO) system supports in vitro differentiation of PSCs to T cells. Unexpectedly, PSCs transduced with a CD19-targeted CAR resulted in diversion of T cell differentiation to the innate lymphoid cell 2 (ILC2) lineage in ATOs. T cells and ILC2s are closely related lymphoid lineages with shared developmental and transcriptional programs. Mechanistically, we show that antigen-independent CAR signaling during lymphoid development enriched for ILC2-primed precursors at the expense of T cell precursors. We applied this understanding to modulate CAR signaling strength through expression level, structure, and presentation of cognate antigen to demonstrate that the T cell-versus-ILC lineage decision can be rationally controlled in either direction, providing a framework for achieving CAR-T cell development from PSCs.
Collapse
Affiliation(s)
- Suwen Li
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chloe S Wang
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amélie Montel-Hagen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ho-Chung Chen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shawn Lopez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olivia Zhou
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristy Dai
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Tsai
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William Satyadi
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Botero
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claudia Wong
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center (BSCRC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher S Seet
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center (BSCRC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
193
|
Zhang Y, Feng X, Chen J, Liu J, Wu J, Tan H, Mi Z, Rong P. Controversial role of ILC3s in intestinal diseases: A novelty perspective on immunotherapy. Front Immunol 2023; 14:1134636. [PMID: 37063879 PMCID: PMC10090672 DOI: 10.3389/fimmu.2023.1134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
ILC3s have been identified as crucial immune regulators that play a role in maintaining host homeostasis and modulating the antitumor response. Emerging evidence supports the idea that LTi cells play an important role in initiating lymphoid tissue development, while other ILC3s can promote host defense and orchestrate adaptive immunity, mainly through the secretion of specific cytokines and crosstalk with other immune cells or tissues. Additionally, dysregulation of ILC3-mediated overexpression of cytokines, changes in subset abundance, and conversion toward other ILC subsets are closely linked with the occurrence of tumors and inflammatory diseases. Regulation of ILC3 cytokines, ILC conversion and LTi-induced TLSs may be a novel strategy for treating tumors and intestinal or extraintestinal inflammatory diseases. Herein, we discuss the development of ILCs, the biology of ILC3s, ILC plasticity, the correlation of ILC3s and adaptive immunity, crosstalk with the intestinal microenvironment, controversial roles of ILC3s in intestinal diseases and potential applications for treatment.
Collapse
Affiliation(s)
- Yunshu Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuefei Feng
- Department of Government & Public Administration, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Juan Chen
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahao Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianmin Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongpei Tan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| |
Collapse
|
194
|
Ma Z, Wang J, Hu L, Wang S. Function of Innate Lymphoid Cells in Periodontal Tissue Homeostasis: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076099. [PMID: 37047071 PMCID: PMC10093809 DOI: 10.3390/ijms24076099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Periodontitis is an irreversible inflammatory response that occurs in periodontal tissues. Given the size and diversity of natural flora in the oral mucosa, host immunity must strike a balance between pathogen identification and a complicated system of tolerance. The innate immune system, which includes innate lymphoid cells (ILCs), certainly plays a crucial role in regulating this homeostasis because pathogens are quickly recognized and responded to. ILCs are a recently discovered category of tissue-resident lymphocytes that lack adaptive antigen receptors. ILCs are found in both lymphoid and non-lymphoid organs and are particularly prevalent at mucosal barrier surfaces, where they control inflammatory response and homeostasis. Recent studies have shown that ILCs are important players in periodontitis; however, the mechanisms that govern the innate immune response in periodontitis still require further investigation. This review focuses on the intricate crosstalk between ILCs and the microenvironment in periodontal tissue homeostasis, with the purpose of regulating or improving immune responses in periodontitis prevention and therapy.
Collapse
Affiliation(s)
- Zhiyu Ma
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jinsong Wang
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing 100050, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University Beijing 100070, China
| | - Lei Hu
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing 100050, China
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100070, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing 100050, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University Beijing 100070, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100070, China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100700, China
| |
Collapse
|
195
|
Laufer Britva R, Keren A, Bertolini M, Ullmann Y, Paus R, Gilhar A. Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata. eLife 2023; 12:80768. [PMID: 36930216 PMCID: PMC10023162 DOI: 10.7554/elife.80768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Here, we have explored the involvement of innate lymphoid cells-type 1 (ILC1) in the pathogenesis of alopecia areata (AA), because we found them to be significantly increased around lesional and non-lesional HFs of AA patients. To further explore these unexpected findings, we first co-cultured autologous circulating ILC1-like cells (ILC1lc) with healthy, but stressed, organ-cultured human scalp hair follicles (HFs). ILClc induced all hallmarks of AA ex vivo: they significantly promoted premature, apoptosis-driven HF regression (catagen), HF cytotoxicity/dystrophy, and most important for AA pathogenesis, the collapse of the HFs physiological immune privilege. NKG2D-blocking or IFNγ-neutralizing antibodies antagonized this. In vivo, intradermal injection of autologous activated, NKG2D+/IFNγ-secreting ILC1lc into healthy human scalp skin xenotransplanted onto SCID/beige mice sufficed to rapidly induce characteristic AA lesions. This provides the first evidence that ILC1lc, which are positive for the ILC1 phenotype and negative for the classical NK markers, suffice to induce AA in previously healthy human HFs ex vivo and in vivo, and further questions the conventional wisdom that AA is always an autoantigen-dependent, CD8 +T cell-driven autoimmune disease.
Collapse
Affiliation(s)
- Rimma Laufer Britva
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
- Department of Dermatology, Rambam Health Care CampusHaifaIsrael
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | | | - Yehuda Ullmann
- Department of Plastic Surgery, Rambam Medical CenterHaifaIsrael
| | - Ralf Paus
- Monasterium LaboratoryMünsterGermany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of MiamiMiamiUnited States
- CUTANEONHamburgGermany
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
196
|
Asahi T, Abe S, Tajika Y, Rodewald HR, Sexl V, Takeshima H, Ikuta K. Retinoic acid receptor activity is required for the maintenance of type 1 innate lymphoid cells. Int Immunol 2023; 35:147-155. [PMID: 36480702 DOI: 10.1093/intimm/dxac057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Group 1 innate lymphoid cells (G1-ILCs) are innate immune effectors critical for the response to intracellular pathogens and tumors. G1-ILCs comprise circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s). ILC1s mainly reside in barrier tissues and provide the initial sources of interferon-γ (IFN-γ) to prime the protecting responses against infections, which are followed by the response of recruited NK cells. Despite such distribution differences, whether local environmental factors influence the behavior of NK cells and ILC1s is unclear. Here, we show that the signaling of retinoic acid (RA), active metabolites of vitamin A, is essential for the maintenance of ILC1s in the periphery. Mice expressing RARα403, a truncated form of retinoic acid receptor α (RARα) that exerts dominant negative activity, in a lymphoid cell- or G1-ILC-specific manner showed remarkable reductions of peripheral ILC1s while NK cells were unaffected. Lymphoid cell-specific inhibition of RAR activity resulted in the reduction of PD-1+ ILC progenitors (ILCPs), but not of common lymphoid progenitors (CLPs), suggesting the impaired commitment and differentiation of ILC1s. Transcriptome analysis revealed that RARα403-expressing ILC1s exhibited impaired proliferative states and declined expression of effector molecules. Thus, our findings demonstrate that cell-intrinsic RA signaling is required for the homeostasis and the functionality of ILC1s, which may present RA as critical environmental cue targeting local type 1 immunity against infection and cancer.
Collapse
Affiliation(s)
- Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yuya Tajika
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
197
|
Farley MJ, Bartlett DB, Skinner TL, Schaumberg MA, Jenkins DG. Immunomodulatory Function of Interleukin-15 and Its Role in Exercise, Immunotherapy, and Cancer Outcomes. Med Sci Sports Exerc 2023; 55:558-568. [PMID: 36730979 DOI: 10.1249/mss.0000000000003067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Exercise has been shown to improve physical and psychosocial outcomes for people across the cancer care continuum. A proposed mechanism underpinning the relationship between exercise and cancer outcomes is exercise-induced immunomodulation via secretion of anti-inflammatory myokines from skeletal muscle tissue. Myokines have the potential to impair cancer growth through modulation of natural killer (NK) cells and CD8+ T cells while improving the effectiveness of cancer therapies. Interleukin-15 (IL-15), one of the most abundant myokines found in skeletal muscle, has a key immunoregulatory role in supporting the proliferation and maturation of T cells and NK cells, which have a key role in the host's immune response to cancer. Furthermore, IL-15 is being explored clinically as an immunotherapy agent with doses similar to the IL-15 concentrations released by skeletal muscle during exercise. Here we review the role of IL-15 within the immune system, examine how IL-15 is produced as a myokine during exercise, and how it may improve outcomes for people with cancer, specifically as an adjuvant or neoadjuvant to immunotherapy. We summarize the available evidence showing changes in IL-15 in response to both acute exercise and training, and the results are inconsistent; higher quality research is needed to advance the understanding of how exercise-mediated increases in IL-15 potentially benefit those who are being treated for, or who have had, cancer.
Collapse
Affiliation(s)
- Morgan J Farley
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, AUSTRALIA
| | - David B Bartlett
- School of Biosciences and Medicine, University of Surrey, Surrey, UNITED KINGDOM
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, AUSTRALIA
| | | | | |
Collapse
|
198
|
Kawabe T. Homeostasis and immunological function of self-driven memory-phenotype CD4 + T lymphocytes. Immunol Med 2023; 46:1-8. [PMID: 36218322 DOI: 10.1080/25785826.2022.2129370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
CD4+ T lymphocytes play an essential role in adaptive immune responses. In pathogen infection, naïve CD4+ T cells that strongly respond to foreign antigens robustly proliferate to differentiate into effector/memory cells, contributing to elimination of the pathogen concerned. In addition to this conventional T cell activation pathway, naïve T cells can also weakly respond to self antigens in the periphery to spontaneously acquire a memory phenotype through homeostatic proliferation in steady state. Such 'memory-phenotype' (MP) CD4+ T lymphocytes are distinguishable from foreign antigen-specific memory cells in terms of marker expression. Once generated, MP cells are maintained by rapid proliferation while differentiating into the T-bet+ 'MP1' subset, with the latter response promoted by IL-12 homeostatically produced by type 1 dendritic cells. Importantly, MP1 cells possess innate immune function; they can produce IFN-γ in response to IL-12 and IL-18 to contribute to host defense against pathogens. Similarly, the presence of RORγt+ 'MP17' and Gata3hi 'MP2' cells as well as their potential immune functions have been proposed. In this review, I will discuss our current understanding on the unique mechanisms of generation, maintenance, and differentiation of MP CD4+ T lymphocytes as well as their functional significance in various disease conditions.
Collapse
Affiliation(s)
- Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
199
|
Boldison J, Hopkinson JR, Davies J, Pearson JA, Leete P, Richardson S, Morgan NG, Wong FS. Gene expression profiling in NOD mice reveals that B cells are highly educated by the pancreatic environment during autoimmune diabetes. Diabetologia 2023; 66:551-566. [PMID: 36508037 PMCID: PMC9892163 DOI: 10.1007/s00125-022-05839-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS B cells play an important role in driving the development of type 1 diabetes; however, it remains unclear how they contribute to local beta cell destruction during disease progression. Here, we use gene expression profiling of B cell subsets identified in inflamed pancreatic tissue to explore their primary functional role during the progression of autoimmune diabetes. METHODS Transcriptional profiling was performed on FACS-sorted B cell subsets isolated from pancreatic islets and the pancreatic lymph nodes of NOD mice. RESULTS B cells are highly modified by the inflamed pancreatic tissue and can be distinguished by their transcriptional profile from those in the lymph nodes. We identified both a discrete and a core shared gene expression profile in islet CD19+CD138- and CD19+CD138+ B cell subsets, the latter of which is known to have enriched autoreactivity during diabetes development. On localisation to pancreatic islets, compared with CD138- B cells, CD138+ B cells overexpress genes associated with adhesion molecules and growth factors. Their shared signature consists of gene expression changes related to the differentiation of antibody-secreting cells and gene regulatory networks associated with IFN signalling pathways, proinflammatory cytokines and Toll-like receptor (TLR) activation. Finally, abundant TLR7 expression was detected in islet B cells and was enhanced specifically in CD138+ B cells. CONCLUSIONS/INTERPRETATION Our study provides a detailed transcriptional analysis of islet B cells. Specific gene signatures and interaction networks have been identified that point towards a functional role for B cells in driving autoimmune diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| | - Jessica R Hopkinson
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Joanne Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - James A Pearson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Pia Leete
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Sarah Richardson
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Noel G Morgan
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
200
|
He H, Hao Y, Fan Y, Li B, Cheng L. The interaction between innate immunity and oral microbiota in oral diseases. Expert Rev Clin Immunol 2023; 19:405-415. [PMID: 36803467 DOI: 10.1080/1744666x.2023.2182291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Innate immunity serves as the frontline to combat invading pathogens. Oral microbiota is the total collection of microorganisms colonized within the oral cavity. By recognizing the resident microorganisms through pattern recognition receptors, innate immunity is capable of interacting with oral microbiota and maintaining homeostasis. Dysregulation of interaction may lead to the pathogenesis of several oral diseases. Decoding the crosstalk between oral microbiota and innate immunity may be contributory to developing novel therapies for preventing and treating oral diseases. AREAS COVERED This article reviewed pattern recognition receptors in the recognition of oral microbiota, the reciprocal interaction between innate immunity and oral microbiota, and discussed how the dysregulation of this relationship leads to the pathogenesis and development of oral diseases. EXPERT OPINION Many studies have been conducted to illustrate the relationship between oral microbiota and innate immunity and its role in the occurrence of different oral diseases. The impact and mechanisms of innate immune cells on oral microbiota and the mechanisms of dysbiotic microbiota in altering innate immunity are still needed to be investigated. Altering the oral microbiota might be a possible solution for treating and preventing oral diseases.
Collapse
Affiliation(s)
- Hongzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|