151
|
Buszewski B, Bukowska M, Ligor M, Staneczko-Baranowska I. A holistic study of neonicotinoids neuroactive insecticides-properties, applications, occurrence, and analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34723-34740. [PMID: 31520389 PMCID: PMC6900273 DOI: 10.1007/s11356-019-06114-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/29/2019] [Indexed: 05/14/2023]
Abstract
Among pesticides and foliar sprays involved in the treatment of seed, soil, and grass, also to crops, an important group is neonicotinoids. Neonicotinoid pesticides present similar properties with nicotine, but the mentioned compounds are less harmful for humans. Nevertheless, neonicotinoids are poisonous to insects and some invertebrates, which can act against insects' central nervous system, leading to their death. Moreover, neonicotinoids can affect the reproduction, foraging, and flying ability of honeybee and other insects including pollinators. In the present study, some neonicotinoids, such as imidacloprid, acetamiprid, clothianidin, thiacloprid, and thiamethoxam together with their toxic effects, have been presented. The Environmental Protection Agency (EPA) classifies these neonicotinoids as II and III class toxicity agents. Due to accumulation of these pesticides into the pollen of treated plants, especially due to their toxic effects against pollinators, the consequences of the occurrence of these insecticides have been discussed. Analytical aspects and methods involved in the isolation and determination of this class of pesticides have been presented in this contribution.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100, Torun, Poland.
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100, Torun, Poland.
| | - Małgorzata Bukowska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100, Torun, Poland
| | - Magdalena Ligor
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100, Torun, Poland.
| | - Irena Staneczko-Baranowska
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 7 M. Strzody Str., 44-100, Gliwice, Poland
| |
Collapse
|
152
|
Tong L, Nieh JC, Tosi S. Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation. CHEMOSPHERE 2019; 237:124408. [PMID: 31356997 DOI: 10.1016/j.chemosphere.2019.124408] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Flupyradifurone (FPF, Sivanto®) is a new butenolide insecticide that, like the neonicotinoids, is a systemic nicotinic acetylcholine receptor (nAChR) agonist. However, FPF is considered bee-safe (according to standard Risk Assessment tests), and is thus a potential solution to the adverse effects of other pesticides on beneficial insects. To date, no studies have examined the impact of nutritional stress (decreased food diversity and quality) and FPF exposure on bee health although both stressors can occur, especially around agricultural monocultures. We therefore tested the effects of a field-realistic FPF concentration (4 ppm, FPFdaily dose = 241 ± 4 ng/bee/day, 1/12 of LD50) and nutritional stress (nectar with low-sugar concentrations) on honey bee (Apis mellifera L.) mortality, food consumption, thermoregulation, flight success (unsuccessful vs. successful), and flight ability (duration, distance, velocity). Flight and thermoregulation are critical to colony health: bees fly to collect food and reproduce, and they thermoregulate to increase flight efficiency and to rear brood. We studied the effects across seasons because seasonality can influence bee sensitivity to environmental stress. We demonstrate that, depending upon season and nutritional stress, FPF can reduce bee survival (-14%), food consumption (-14%), thermoregulation (-4%, i.e. hypothermia), flight success (-19%), and increase flight velocity (+13%). Because pesticide exposure and nutritional stress can co-occur, we suggest that future studies and pesticide risk assessments consider both seasonality and nutritional stress when evaluating pesticide safety for bees.
Collapse
Affiliation(s)
- Linda Tong
- University of California, San Diego, Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, 9500 Gilman Drive, MC0116, La Jolla, CA, 92093-0116, USA.
| | - James C Nieh
- University of California, San Diego, Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, 9500 Gilman Drive, MC0116, La Jolla, CA, 92093-0116, USA.
| | - Simone Tosi
- University of California, San Diego, Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, 9500 Gilman Drive, MC0116, La Jolla, CA, 92093-0116, USA; Epidemiology Unit, European Union Reference Laboratory (EURL) for Honeybee Health, University Paris Est, ANSES (French Agency for Food, Environmental and Occupational Health and Safety) Animal Health Laboratory, 14 rue Pierre et Marie Curie, F94701 Maisons-Alfort, France.
| |
Collapse
|
153
|
Prey contaminated with neonicotinoids induces feeding deterrent behavior of a common farmland spider. Sci Rep 2019; 9:15895. [PMID: 31685882 PMCID: PMC6828688 DOI: 10.1038/s41598-019-52302-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/16/2019] [Indexed: 11/17/2022] Open
Abstract
Neonicotinoids are thought to have negligible repellent or anti-feeding effects. Based on our preliminary observations, we hypothesized that the contamination of spider prey with commonly used neonicotinoids has repellent or feeding deterrent effects on spiders. We tested this hypothesis by providing prey treated or not with field-realistic concentrations of neonicotinoids to the spiders and determining the number of (a) killed only and (b) killed and eaten prey. We exposed adult freshly molted and starved Pardosa agrestis, a common agrobiont lycosid species, to flies treated with neonicotinoids (acetamiprid, imidacloprid, thiacloprid and thiamethoxam) at field-realistic concentrations or with distilled water as a control. There were no effects of the exposure of the prey to neonicotinoids on the number of flies captured. However, the spiders consumed less of the prey treated with neonicotinoids compared to the ratio of control prey consumed, which resulted in increased overkilling (i.e., killing without feeding). In female P. agrestis, the overkilling increased from only 2.6% of control flies to 25–45% of neonicotinoid-treated flies. As the spiders avoided consuming the already captured neonicotinoid-treated prey, the sublethal effects of neonicotinoids extend beyond the simple attractivity/deterrence of the prey itself. The present study demonstrated that prey overkilling serves as a physiological response of spiders to the contact with the prey contaminated with agrochemicals. We speculate that primary contact with neonicotinoids during prey capture may play a role in this unexpected behavior.
Collapse
|
154
|
Ding F, Li LX, Peng W, Peng YK, Liu BQ. Molecular basis for the resistance of American sloughgrass to aryloxyphenoxypropionic acid pesticides and its environmental relevance: A combined experimental and computational study. CHEMOSPHERE 2019; 235:1030-1040. [PMID: 31561292 DOI: 10.1016/j.chemosphere.2019.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Organic pesticides are one of the main environmental pollutants, and how to reduce their environmental risks is an important issue. In this contribution, we disclose the molecular basis for the resistance of American sloughgrass to aryloxyphenoxypropionic acid pesticides using site-directed mutagenesis and molecular modeling and then construct an effective screening model. The results indicated that the target-site mutation (Trp-1999-Leu) in acetyl-coenzyme A carboxylase (ACCase) can affect the effectiveness of the pesticides (clodinafop, fenoxaprop, cyhalofop, and metamifop), and the plant resistance to fenoxaprop, clodinafop, cyhalofop, and metamifop was found to be 564, 19.5, 10, and 0.19 times, respectively. The established computational models (i.e. wild-type/mutant ACCase models) could be used for rational screening and evaluation of the resistance to pesticides. The resistance induced by target gene mutation can markedly reduce the bioreactivity of the ACCase-clodinafop/fenoxaprop adducts, and the magnitudes are 10 and 102, respectively. Such event will seriously aggravate environmental pollution. However, the biological issue has no distinct effect on cyhalofop (RI=10), and meanwhile it may markedly increase the bioefficacy of metamifop (RI=0.19). We could selectively adopt the two chemicals so as to decrease the residual pesticides in the environment. Significantly, research findings from the computational screening models were found to be negatively correlated with the resistance level derived from the bioassay testing, suggesting that the screening models can be used to guide the usage of pesticides. Obviously, this story may shed novel insight on the reduction of environmental risks of pesticides and other organic pollutants.
Collapse
Affiliation(s)
- Fei Ding
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, No. 126 Yanta Road, Yanta District, Xi'an, 710064, China
| | - Ling-Xu Li
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Peng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Department of Chemistry, China Agricultural University, Beijing, 100193, China.
| | - Yu-Kui Peng
- Center for Food Quality Supervision, Inspection & Testing, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Bing-Qi Liu
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
155
|
Liu S, Liu Y, He F, Zhang H, Li X, Tan H. Enantioselective Olfactory Effects of the Neonicotinoid Dinotefuran on Honey Bees ( Apis mellifera L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12105-12116. [PMID: 31600056 DOI: 10.1021/acs.jafc.9b04851] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sublethal exposure to neonicotinoids affects honey bee olfaction, but few studies have investigated the sublethal effects of the enantioselective neonicotinoid dinotefuran on honey bee olfaction. This study assessed the sublethal olfactory toxicity of dinotefuran enantiomers to honey bees. Compared to R-dinotefuran, S-dinotefuran had higher acute oral toxicity, sucrose sensitivity effects, octopamine concentrations, lower learning ability, and memory effects on honey bees. High-throughput circular RNA sequencing of the honey bee brain revealed that R-dinotefuran caused more gene regulatory changes than S-dinotefuran. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that the SERCA, Kca, and Maxik genes may be related to the enantioselective effects of dinotefuran isomers on honey bee olfaction. These results indicated that the current ecotoxicological safety knowledge about chiral dinotefuran effects on honey bees should be amended.
Collapse
Affiliation(s)
- Sihong Liu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
- Long Ping Branch , Graduate School of Hunan University , Changsha , Hunan 410000 , People's Republic of China
| | - Yanmei Liu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| | - Fengmei He
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| | - Hui Zhang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| | - Xuesheng Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| |
Collapse
|
156
|
Berenbaum MR, Liao LH. Honey Bees and Environmental Stress: Toxicologic Pathology of a Superorganism. Toxicol Pathol 2019; 47:1076-1081. [PMID: 31581932 DOI: 10.1177/0192623319877154] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a eusocial species, Apis mellifera, the European honey bee, is effectively a superorganism-a group of genetically related individuals functioning as a collective unit. Because the unit of selection is the colony and not the individual, standard methods for assessing toxicologic pathology can miss colony-level responses to stress. For over a decade, US populations of honeybees have experienced severe annual losses attributed to a variety of environmental stressors varying temporally and geographically; differentiating among those stressors is accordingly a high priority. Social interactions among individuals in this social species, however, mean that the "footprint" of stressors such as pesticides, phytochemicals, pathogens, and parasites may be most discernible in individuals that did not themselves directly encounter the stressor. For example, neurotoxic effects of pesticides on nurse bees may impair their behavioral responses to queen-destined larvae, which may then emerge as adults with altered anatomy or physiology. Similarly, pesticide-induced size alterations in nurse hypopharyngeal glands, which produce royal jelly, the exclusive food of larval and adult queens, may disproportionately affect the queen's (and thus colony) health. Thus, evaluating toxicologic pathology in the honeybee requires a new perspective and development of assays that preserve the social context that ultimately determines colony health.
Collapse
Affiliation(s)
- May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ling-Hsiu Liao
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
157
|
Li F, Li D, Dewer Y, Qu C, Yang Z, Tian J, Luo C. Discrimination of Oviposition Deterrent Volatile β-Ionone by Odorant-Binding Proteins 1 and 4 in the Whitefly Bemisia tabaci. Biomolecules 2019; 9:biom9100563. [PMID: 31623354 PMCID: PMC6843521 DOI: 10.3390/biom9100563] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022] Open
Abstract
: The whitefly, Bemisia tabaci, is an important invasive economic pest of agricultural crops worldwide. β-ionone has a significant oviposition repellent effect against B. tabaci, but the olfactory molecular mechanism of this insect for recognizing β-ionone is unclear. To clarify the binding properties of odorant-binding proteins (OBPs) with β-ionone, we performed gene cloning, evolution analysis, bacterial expression, fluorescence competitive binding assay, and molecular docking to study the binding function of OBP1 and OBP4 on β-ionone. The results showed that after the OBP1 and OBP4 proteins were recombined, the compound β-ionone exhibited a reduction in the fluorescence binding affinity to <50%, with a dissociation constant of 5.15 and 3.62 μM for OBP1 and OBP4, respectively. Our data indicate that β-ionone has high affinity for OBP1 and OBP4, which play a crucial role in the identification of oviposition sites in B. tabaci. The findings of this study suggest that whiteflies employ β-ionone compound in the selection of the suitable egg-laying sites on host plants during the oviposition behavior.
Collapse
Affiliation(s)
- Fengqi Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Du Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria 21616, Egypt.
| | - Cheng Qu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Zhen Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China.
| | - Jiahui Tian
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chen Luo
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
158
|
Quigley TP, Amdam GV, Harwood GH. Honey bees as bioindicators of changing global agricultural landscapes. CURRENT OPINION IN INSECT SCIENCE 2019; 35:132-137. [PMID: 31541967 DOI: 10.1016/j.cois.2019.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 05/08/2023]
Abstract
There is a growing need to understand relationships between agricultural intensification and global change. Monitoring solutions, however, often do not include pollinator communities that are of importance to ecosystem integrity. Here, we put forth the honey bee as an economical and broadly available bioindicator that can be used to assess and track changes in the quality of agricultural ecosystems. We detail a variety of simple, low-cost procedures that can be deployed within honey bee hives to gain generalizable information about ecosystem quality at multiple scales, and discuss the potential of the honey bee system in both environmental and ecological bioindication.
Collapse
Affiliation(s)
- Tyler P Quigley
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| | - Gro V Amdam
- School of Life Sciences, Arizona State University, Tempe, AZ, United States; Norwegian University of Life Sciences, Aas, Norway
| | - Gyan H Harwood
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
159
|
Tison L, Rößner A, Gerschewski S, Menzel R. The neonicotinoid clothianidin impairs memory processing in honey bees. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:139-145. [PMID: 31082577 DOI: 10.1016/j.ecoenv.2019.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Neonicotinoids act as agonists on the nicotinic Acetylcholine receptor (nAChR) in insect brains, an essential molecular component of central brain structures involved in learning and memory formation. Sublethal doses might, therefore, impair neural processes necessary for adaptive experience dependent behaviour and thus reduce the fitness of pollinating insects on the individual and community level. First, the question was addressed whether clothianidin has an aversive taste for honey bees and concluded with both a laboratory and a semi-field experiment that bees are unable to distinguish between control and contaminated sucrose solutions. In the laboratory, proboscis extension response conditioning was performed with forager bees exposed to different concentrations of clothianidin (0.1, 0.3 and 0.8 ng/bee) before learning, after learning during memory consolidation, and just before memory retention. These tests at different timings allowed uncovering an impairment of the consolidation and retrieval of memory due to the exposure to clothianidin. It was concluded that an acute exposure to clothianidin has an adverse effect on memory processing in honey bees.
Collapse
Affiliation(s)
- Léa Tison
- Institute of Biology-Neurobiology, Free University Berlin, Königin-Luise-Str. 28/30, 14195, Berlin, Germany.
| | - Alexander Rößner
- Institute of Biology-Neurobiology, Free University Berlin, Königin-Luise-Str. 28/30, 14195, Berlin, Germany
| | - Susan Gerschewski
- Institute of Biology-Neurobiology, Free University Berlin, Königin-Luise-Str. 28/30, 14195, Berlin, Germany
| | - Randolf Menzel
- Institute of Biology-Neurobiology, Free University Berlin, Königin-Luise-Str. 28/30, 14195, Berlin, Germany
| |
Collapse
|
160
|
Azpiazu C, Bosch J, Viñuela E, Medrzycki P, Teper D, Sgolastra F. Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Sci Rep 2019; 9:13770. [PMID: 31551470 PMCID: PMC6760219 DOI: 10.1038/s41598-019-50255-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Pesticide use is one of the main causes of pollinator declines in agricultural ecosystems. Traditionally, most laboratory studies on bee ecotoxicology test acute exposure to single compounds. However, under field conditions, bees are often chronically exposed to a variety of chemicals, with potential synergistic effects. We studied the effects of field-realistic concentrations of three pesticides measured in pollen and nectar of commercial melon fields on the solitary bee Osmia bicornis L. We orally exposed females of this species throughout their life span to 8 treatments combining two neonicotinoid insecticides (acetamiprid, imidacloprid) and a triazole fungicide (myclobutanil) via pollen and sugar syrup. We measured pollen and syrup consumption, longevity, ovary maturation and thermogenesis. Pesticide intake was three orders of magnitude higher via syrup than pollen. At the tested concentrations, no synergistic effects emerged, and we found no effects on longevity and ovary maturation. However, all treatments containing imidacloprid resulted in suppressed syrup consumption and drastic decreases in thoracic temperature and bee activity. Our results have important implications for pesticide regulation. If we had measured only lethal effects we would have wrongly concluded that the pesticide combinations containing imidacloprid were safe to O. bicornis. The incorporation of tests specifically intended to detect sublethal effects in bee risk assessment schemes should be an urgent priority. In this way, the effects of pesticide exposure on the dynamics of bee populations in agroecosystems will be better assessed.
Collapse
Affiliation(s)
- Celeste Azpiazu
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Av. Puerta de Hierro 2, 28040, Madrid, Spain.
| | - Jordi Bosch
- CREAF, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Elisa Viñuela
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Av. Puerta de Hierro 2, 28040, Madrid, Spain
| | - Piotr Medrzycki
- CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Agricoltura ed Ambiente, Via di Saliceto 80, 40128, Bologna, Italy
| | - Dariusz Teper
- Research Institute of Horticulture, Apiculture Division, 2 Kazmierska st., 24100, Puławy, Poland
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, viale Fanin 42, 40127, Bologna, Italy
| |
Collapse
|
161
|
Robertson BA, Blumstein DT. How to disarm an evolutionary trap. CONSERVATION SCIENCE AND PRACTICE 2019. [DOI: 10.1111/csp2.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Bruce A. Robertson
- Division of Science, Mathematics, and Computing Bard College Annandale‐on‐Hudson New York
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology University of California Los Angeles California
| |
Collapse
|
162
|
Chen Z, Yao X, Dong F, Duan H, Shao X, Chen X, Yang T, Wang G, Zheng Y. Ecological toxicity reduction of dinotefuran to honeybee: New perspective from an enantiomeric level. ENVIRONMENT INTERNATIONAL 2019; 130:104854. [PMID: 31200156 DOI: 10.1016/j.envint.2019.05.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In last decade, there has been a concerted effort to reduce the potential threats of honeybees' population due to exposure to neonicotinoid pesticides. A new perspective was put forward to reduce the potential ecological toxicity of neonicotinoid dinotefuran to honeybee in terms of an enantiomeric level in the study. Toxicity of dinotefuran was enantioselective, and S-dinotefuran was 41.1- to 128.4-fold more toxic than R-dinotefuran to honeybee Apis mellifera (Apis mellifera Linnaeus), whereas R-dinotefuran exhibited comparative insecticidal activities (1.7-2.4 times) to typical sucking pests Aphis gossypii and Apolygus lucorum compared to racemic mixtures. Our data suggested that use of R-dinotefuran could have a good efficacy in controlling target pests while minimizing hazard to honeybees. The mechanism for chiral specific toxicity to honeybee was further characterized by electrophysiological studies and molecular docking. S-dinotefuran appears to be more toxic by binding to α8 subunit of nAChR of Apis mellifera. The α8 also have a more stable, functional binding cavity to S-dinotefuran with a higher binding score of 7.15, primarily due to an extensive hydrogen bond network. Therefore, new chiral products with a high proportion of or an enantiomeric pure R-dinotefuran are recommended to achieve effective pests control reducing hazard to honeybee populations.
Collapse
Affiliation(s)
- Zenglong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiangmei Yao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Hongxia Duan
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Xusheng Shao
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiu Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ting Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
163
|
Qiu J, Ouyang G, Pawliszyn J, Schlenk D, Gan J. A Novel Water-Swelling Sampling Probe for in Vivo Detection of Neonicotinoids in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9686-9694. [PMID: 31313572 DOI: 10.1021/acs.est.9b01682] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ecotoxicological risks of neonicotinoid insecticides are raising significant concerns, including their potential role in bee population declines. Neonicotinoids are water-soluble, systemic insecticides, and exposure of nontarget organisms such as pollinators occurs mainly through residues in nectar and pollens of flowering plants. To better elucidate the underlying mechanisms for such nontarget exposure, it is highly valuable to develop analytical capabilities for in vivo monitoring of neonicotinoids in live plants. In this study, we developed a novel biomimetic water-swelling solid-phase microextraction (SPME) probe, with limits of detection for neonicotinoids as low as 0.03 ng mL-1, and applied it for in vivo detection of seven neonicotinoids in plant sap. The preparation of this fiber was simple and free of stringent or complex physical-chemical reactions. Equilibrium in neonicotinoid accumulation on the fiber was reached in <10 min, allowing for near instantaneous sampling. The water-swelling fiber displayed much greater sampling capacity than the commercially available polydimethylsiloxane and polyacrylate fibers, good reproducibility (RSD of inter- and intrafiber <8.9% and 7.8%, respectively), and antibiofouling property (no loss in performance after 20 use cycles). After treating lettuce (Lactuca sativa L.) by foliar spray and soybean (Glycine max M.) by seed soaking, the in vivo assays provided a wealth of information, including changes in levels and distribution of neonicotinoids over time in the same plants. Kinetics and distribution patterns suggested that after treatment at the same level, neonicotinoids differed significantly in their levels in the sap. The in vivo sampling and monitoring of neonicotinoids in live plants may provide unique and much needed information in achieving breakthrough understanding of the connection between neonicotinoid use and pollinator exposure.
Collapse
Affiliation(s)
- Junlang Qiu
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
- School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Gangfeng Ouyang
- School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Janusz Pawliszyn
- Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L3G1 , Canada
| | - Daniel Schlenk
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Jay Gan
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| |
Collapse
|
164
|
Coulon M, Schurr F, Martel AC, Cougoule N, Bégaud A, Mangoni P, Di Prisco G, Dalmon A, Alaux C, Ribière-Chabert M, Le Conte Y, Thiéry R, Dubois E. Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS One 2019; 14:e0220703. [PMID: 31415597 PMCID: PMC6695216 DOI: 10.1371/journal.pone.0220703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
Co-exposure to pesticides and viruses is likely to occur in honey bee colonies. Pesticides can be present in pollen, nectar, and persist in stored food (honey and bee bread), and viruses can be highly prevalent in honey bee colonies. Therefore, the present study describes the influence of chronic co-exposure to thiamethoxam and Chronic bee paralysis virus (CBPV) on bee survival, virus loads, expression level of immune and detoxication genes, and pesticide metabolism Experiments were performed on honey bees collected from a winter apiary with reduced viral contaminations. No synergistic effect of co-exposure was observed on bee survival, nor on the ability of bees to metabolise the pesticide into clothianidin. However, we found that co-exposure caused an increase in CBPV loads that reached the viral levels usually found in overt infections. The effect of co-exposure on CBPV replication was associated with down-regulation of vitellogenin and dorsal-1a gene transcription. Nevertheless, the observed effects might be different to those occurring in spring or summer bees, which are more likelyco-exposed to thiamethoxam and CBPV and exhibit a different physiology.
Collapse
Affiliation(s)
- Marianne Coulon
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
- INRA PACA, UR 406 Abeilles et Environnement, Avignon, France
| | - Frank Schurr
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Anne-Claire Martel
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Nicolas Cougoule
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Adrien Bégaud
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Patrick Mangoni
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Gennaro Di Prisco
- University of Napoli “Federico II”—Department of Agriculture, Portici, Napoli, Italy
- CREA, Council for Agricultural Research and Economics—Research Center for Agriculture and Environment, Bologna, Italy
| | - Anne Dalmon
- INRA PACA, UR 406 Abeilles et Environnement, Avignon, France
| | - Cédric Alaux
- INRA PACA, UR 406 Abeilles et Environnement, Avignon, France
| | | | - Yves Le Conte
- INRA PACA, UR 406 Abeilles et Environnement, Avignon, France
| | - Richard Thiéry
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Eric Dubois
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| |
Collapse
|
165
|
Siviter H, Scott A, Pasquier G, Pull CD, Brown MJ, Leadbeater E. No evidence for negative impacts of acute sulfoxaflor exposure on bee olfactory conditioning or working memory. PeerJ 2019; 7:e7208. [PMID: 31423353 PMCID: PMC6694785 DOI: 10.7717/peerj.7208] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 01/23/2023] Open
Abstract
Systemic insecticides such as neonicotinoids and sulfoximines can be present in the nectar and pollen of treated crops, through which foraging bees can become acutely exposed. Research has shown that acute, field realistic dosages of neonicotinoids can negatively influence bee learning and memory, with potential consequences for bee behaviour. As legislative reassessment of neonicotinoid use occurs globally, there is an urgent need to understand the potential risk of other systemic insecticides. Sulfoxaflor, the first branded sulfoximine-based insecticide, has the same mode of action as neonicotinoids, and may potentially replace them over large geographical ranges. Here we assessed the impact of acute sulfoxaflor exposure on performance in two paradigms that have previously been used to illustrate negative impacts of neonicotinoid pesticides on bee learning and memory. We assayed whether acute sulfoxaflor exposure influences (a) olfactory conditioning performance in both bumblebees (Bombus terrestris) and honeybees (Apis mellifera), using a proboscis extension reflex assay, and (b) working memory performance of bumblebees, using a radial-arm maze. We found no evidence to suggest that sulfoxaflor influenced performance in either paradigm. Our results suggest that despite a shared mode of action between sulfoxaflor and neonicotinoid-based insecticides, widely-documented effects of neonicotinoids on bee cognition may not be observed with sulfoxaflor, at least at acute exposure regimes.
Collapse
Affiliation(s)
- Harry Siviter
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Alfie Scott
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Grégoire Pasquier
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Christopher D. Pull
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Mark J.F. Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Ellouise Leadbeater
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
166
|
Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proc Natl Acad Sci U S A 2019; 116:16817-16822. [PMID: 31383752 PMCID: PMC6708310 DOI: 10.1073/pnas.1904298116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The use of insecticides in agriculture is one of the suggested causes of the decline in insect populations. Neonicotinoids are among the most widely used insecticides. However, they have important negative side effects, especially for pollinators and other beneficial insects feeding on floral nectar and pollen. We identified an exposure route: Neonicotinoids reach and kill beneficial insects when they feed on the most abundant carbohydrate source for insects in agroecosystems, honeydew. Honeydew is the excretion product of phloem-feeding hemipteran insects such as aphids, mealybugs, whiteflies, or psyllids. This route of exposure is likely to affect a much wider range of beneficial insects and crops than contaminated nectar. Therefore, it should be included in future environmental risk assessments of neonicotinoids. Pest control in agriculture is mainly based on the application of insecticides, which may impact nontarget beneficial organisms leading to undesirable ecological effects. Neonicotinoids are among the most widely used insecticides. However, they have important negative side effects, especially for pollinators and other beneficial insects feeding on nectar. Here, we identify a more accessible exposure route: Neonicotinoids reach and kill beneficial insects that feed on the most abundant carbohydrate source for insects in agroecosystems, honeydew. Honeydew is the excretion product of phloem-feeding hemipteran insects such as aphids, mealybugs, whiteflies, and psyllids. We allowed parasitic wasps and pollinating hoverflies to feed on honeydew from hemipterans feeding on trees treated with thiamethoxam or imidacloprid, the most commonly used neonicotinoids. LC-MS/MS analyses demonstrated that both neonicotinoids were present in honeydew. Honeydew with thiamethoxam was highly toxic to both species of beneficial insects, and honeydew with imidacloprid was moderately toxic to hoverflies. Collectively, our data provide strong evidence for honeydew as a route of insecticide exposure that may cause acute or chronic deleterious effects on nontarget organisms. This route should be considered in future environmental risk assessments of neonicotinoid applications.
Collapse
|
167
|
Rimal S, Lee Y. Molecular sensor of nicotine in taste of Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103178. [PMID: 31226410 DOI: 10.1016/j.ibmb.2019.103178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Nicotine is an alkaloid and potent parasympathomimetic stimulant found in the leaves of many plants including Nicotiana tabacum, which functions as an anti-herbivore chemical and an insecticide. Chemoreceptors embedded in the gustatory receptor neurons (GRNs) enable animals to judge the quality of bitter compounds and respond to them. Various taste receptors such as gustatory receptors (GRs), ionotropic receptors (IRs), transient receptor potential channels (TRPs), and pickpocket channels (PPKs) have been shown to have important roles in taste sensation. However, the mechanism underlying nicotine taste sensation has not been resolved in the insect model. Here we identify molecular receptors to detect the taste of nicotine and provide electrophysiological and behavioral evidence that gustatory receptors are required for avoiding nicotine-laced foods. Our results demonstrate that gustatory receptors are reasonable targets to develop new pesticides that maximize the insecticidal effects of nicotine.
Collapse
Affiliation(s)
- Suman Rimal
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
168
|
Tschoeke PH, Oliveira EE, Dalcin MS, Silveira-Tschoeke MCAC, Sarmento RA, Santos GR. Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:591-599. [PMID: 31108292 DOI: 10.1016/j.envpol.2019.04.133] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/02/2019] [Accepted: 04/29/2019] [Indexed: 05/14/2023]
Abstract
The ecological and economic contributions of pollinator bees to agricultural production have been threatened by the inappropriate and excessive use of pesticides. These pesticides are often applied in areas with ecological peculiarities (e.g., the Neotropical savannah-like region termed as Cerrado) that were not considered during the product development. Here, we conducted field experiments with melon (i.e., Cucumis melo L.) plants cultivated under Brazilian Cerrado conditions and evaluated the impacts of botanical (i.e., neem-based insecticide) and synthetic (i.e., the pyrethroid insecticide deltamethrin and the fungicides thiophanate-methyl and chlorothalonil) pesticides on the flower visitation rates of naturally occurring pollinator bees. Our results revealed that both honey bees (i.e., Apis mellifera L.) and non-Apis bees visited melon flowers and the intensity of bee visitation was moderately correlated with yield parameters (e.g., number of marketable fruits and fruit yield). Pesticide treatments differentially affected bee species. For instance, Plebeia sp. bees were not affected by any pesticide treatment, whereas both A. mellifera and Halictus sp. bees showed reduced visitation intensity after the application of deltamethrin or neem-based insecticides. Fungicide treatment alone did not influence the bee's visitation intensity. Deltamethrin-treated melon fields produced significantly lighter marketable fruits, and the melon yield was significantly lower in melon fields treated with the neem-based insecticide. Thus, our findings with such pollinator bees reinforce the idea that field applications of botanical pesticides may represent as risky as the applications of synthetic compounds, indicating that these alternative products should be submitted to risk assessments comparable to those required for synthetic products.
Collapse
Affiliation(s)
- Paulo Henrique Tschoeke
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi, TO, 77410-530, Brazil
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil.
| | - Mateus S Dalcin
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi, TO, 77410-530, Brazil
| | | | - Renato A Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi, TO, 77410-530, Brazil
| | - Gil Rodrigues Santos
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi, TO, 77410-530, Brazil
| |
Collapse
|
169
|
Dietzsch AC, Kunz N, Wirtz IP, Stähler M, Heimbach U, Pistorius J. Does winter oilseed rape grown from clothianidin-coated seeds affect experimental populations of mason bees and bumblebees? A semi-field and field study. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01225-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
170
|
Nicholls E, Krishna S, Wright O, Stabler D, Krefft A, Somanathan H, Hempel de Ibarra N. A matter of taste: the adverse effect of pollen compounds on the pre-ingestive gustatory experience of sugar solutions for honeybees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:333-346. [PMID: 31165282 PMCID: PMC6579781 DOI: 10.1007/s00359-019-01347-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022]
Abstract
In addition to sugars, nectar contains multiple nutrient compounds in varying concentrations, yet little is known of their effect on the reward properties of nectar and the resulting implications for insect behaviour. We examined the pre-ingestive responses of honeybees to sucrose solutions containing a mix of pollen compounds, the amino acids proline or phenylalanine, or known distasteful substances, quinine and salt. We predicted that in taste and learning assays, bees would respond positively to the presence of nutrient compounds in a sucrose solution. However, bees’ proboscis extension responses decreased when their antennae were stimulated with pollen- or amino acid-supplemented sucrose solutions. Compared to pure sucrose, bees exhibited worse acquisition when conditioned to an odour with pollen-supplemented sucrose as the unconditioned stimulus. Such learning impairment was also observed with quinine-containing sucrose solutions. Our results suggest that bees can use their antennae to detect pollen compounds in floral nectars. Depending on the type and concentrations of compounds present, this may result in nectar being perceived as distasteful by bees, making it less effective in reinforcing the learning of floral cues. Such reward devaluation might be adaptive in cases where plants benefit from regulating the frequency of bee visitation.
Collapse
Affiliation(s)
- E Nicholls
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
- School of Life Sciences, University of Sussex, Brighton, UK
| | - S Krishna
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
- Centre for Research in Ecology and Evolution, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, India
| | - O Wright
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - D Stabler
- Institute of Neuroscience, University of Newcastle, Newcastle, UK
| | - A Krefft
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - H Somanathan
- Centre for Research in Ecology and Evolution, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, India
| | - N Hempel de Ibarra
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK.
| |
Collapse
|
171
|
Kenna D, Cooley H, Pretelli I, Ramos Rodrigues A, Gill SD, Gill RJ. Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecol Evol 2019; 9:5637-5650. [PMID: 31160987 PMCID: PMC6540668 DOI: 10.1002/ece3.5143] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/18/2022] Open
Abstract
The emergence of agricultural land use change creates a number of challenges that insect pollinators, such as eusocial bees, must overcome. Resultant fragmentation and loss of suitable foraging habitats, combined with pesticide exposure, may increase demands on foraging, specifically the ability to collect or reach sufficient resources under such stress. Understanding effects that pesticides have on flight performance is therefore vital if we are to assess colony success in these changing landscapes. Neonicotinoids are one of the most widely used classes of pesticide across the globe, and exposure to bees has been associated with reduced foraging efficiency and homing ability. One explanation for these effects could be that elements of flight are being affected, but apart from a couple of studies on the honeybee (Apis mellifera), this has scarcely been tested. Here, we used flight mills to investigate how exposure to a field realistic (10 ppb) acute dose of imidacloprid affected flight performance of a wild insect pollinator-the bumblebee, Bombus terrestris audax. Intriguingly, observations showed exposed workers flew at a significantly higher velocity over the first ¾ km of flight. This apparent hyperactivity, however, may have a cost because exposed workers showed reduced flight distance and duration to around a third of what control workers were capable of achieving. Given that bumblebees are central place foragers, impairment to flight endurance could translate to a decline in potential forage area, decreasing the abundance, diversity, and nutritional quality of available food, while potentially diminishing pollination service capabilities.
Collapse
Affiliation(s)
- Daniel Kenna
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Hazel Cooley
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Ilaria Pretelli
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
- Dipartimento di BiologiaUniversità di PadovaPadovaItaly
- Department of Human Behaviour, Ecology, and CultureMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Ana Ramos Rodrigues
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Steve D. Gill
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Richard J. Gill
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| |
Collapse
|
172
|
Chambers RG, Chatzimichael K, Tzouvelekas V. Sub-lethal concentrations of neonicotinoid insecticides at the field level affect negatively honey yield: Evidence from a 6-year survey of Greek apiaries. PLoS One 2019; 14:e0215363. [PMID: 31022196 PMCID: PMC6483167 DOI: 10.1371/journal.pone.0215363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 04/01/2019] [Indexed: 01/16/2023] Open
Abstract
The threats posed by neonicotinoid insecticides to bee populations have been the focus of considerable research. Previous work has shed new light on the effects of neonicotinoids on bees by uncovering pathways through which neonicotinoids affect bee population dynamics and the potential interactions they have with exogenous stressors. Yet, little is known about whether these effects translate in a field-relevant setting to substantial losses in honey yields for commercial beekeepers. Here, we used data from a 6-year survey of 60 apiaries in Greece and economic modelling to assess at the field level the effects of neonicotinoid insecticides on honey production. Based on production function estimates, we found that sub-lethal concentrations of two widely used neonicotinoid insecticides (imidacloprid and thiamethoxam) detected in the nectar of flowers resulted in substantial losses in honey production for commercial beekeepers in our sample. By simulating a scenario with ideal pathogenic and environmental conditions, we found that the magnitude of the neonicotinoid effects decreases significantly under ideal conditions providing evidence for possible synergies at the field between neonicotinoids and environmental and pathogenic factors. Moreover, in a replicated study with grouped apiaries, we found evidence that the marginal effects of neonicotinoids on honey production vary across apiaries facing different conditions.
Collapse
Affiliation(s)
- Robert G. Chambers
- Department of Agricultural and Resource Economics, University of Maryland, Symons Hall College Park 2105, MD, United States of America
| | - Konstantinos Chatzimichael
- Faculty of Management and Economics, Cyprus University of Technology, Sp. Araouzou 115, Limassol, Cyprus
- * E-mail:
| | - Vangelis Tzouvelekas
- Department of Economics, University of Crete, Gallos University Campus, Rethymno, Greece
| |
Collapse
|
173
|
A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Sci Rep 2019; 9:4764. [PMID: 30886154 PMCID: PMC6423345 DOI: 10.1038/s41598-019-39701-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/30/2019] [Indexed: 11/10/2022] Open
Abstract
Neonicotinoids are widely-used pesticides implicated in the decline of bees, known to have sub-lethal effects on bees’ foraging and colony performance. One proposed mechanism for these negative effects is impairment to bees’ ability to learn floral associations. However, the effects of neonicotinoids on learning performance have largely been addressed using a single protocol, where immobilized bees learn an association based on a single sensory modality. We thus have an incomplete understanding of how these pesticides affect bee learning in more naturalistic foraging scenarios. We carried out the first free-foraging study into the effects of acute exposure of a neonicotinoid (imidacloprid) on bumblebees’ (Bombus impatiens) ability to learn associations with visual stimuli. We uncovered dose-dependent detrimental effects on motivation to initiate foraging, amount of nectar collected, and initiation of subsequent foraging bouts. However, we did not find any impairment to bees’ ability to learn visual associations. While not precluding the possibility that other forms of learning are impaired, our findings suggest that some of the major effects of acute neonicotinoid exposure on foraging performance may be due to motivational and/or sensory impairments. In light of these findings, we discuss more broadly how pesticide effects on pollinator cognition might be studied.
Collapse
|
174
|
Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Sci Rep 2019; 9:3724. [PMID: 30842465 PMCID: PMC6403430 DOI: 10.1038/s41598-019-40031-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022] Open
Abstract
The non-target effects of pesticides are an area of growing concern, particularly for ecologically and economically important organisms such as bees. Much of the previous research on the effects of neonicotinoids, a class of insecticide that has gained attention for non-target effects, on bees focused on the consumption of contaminated food resources by a limited number of eusocial species. However, neonicotinoids are known to accumulate and persist in soils at concentrations 2 to 60 times greater than in food resources, and may represent an important route of exposure for diverse and ecologically important ground-nesting bees. This study aimed to assess the effect of chronic contact exposure to realistic soil concentrations of imidacloprid, the most widely used neonicotinoid pesticide, on bee longevity, development speed, and body mass. Cohorts of Osmia lignaria and Megachile rotundata were used as proxies for ground-nesting species. We observed species- and sex-specific changes to adult longevity, development speed, and mass in response to increasing concentrations of imidacloprid. These results suggest that chronic exposure to nesting substrates contaminated with neonicotinoids may represent an important route of exposure that could have considerable physiological and ecological consequences for bees and plant-pollinator interactions.
Collapse
|
175
|
Anderson NL, Harmon-Threatt AN. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Sci Rep 2019; 283:131177. [PMID: 30842465 DOI: 10.1016/j.chemosphere.2021.131177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 05/28/2023] Open
Abstract
The non-target effects of pesticides are an area of growing concern, particularly for ecologically and economically important organisms such as bees. Much of the previous research on the effects of neonicotinoids, a class of insecticide that has gained attention for non-target effects, on bees focused on the consumption of contaminated food resources by a limited number of eusocial species. However, neonicotinoids are known to accumulate and persist in soils at concentrations 2 to 60 times greater than in food resources, and may represent an important route of exposure for diverse and ecologically important ground-nesting bees. This study aimed to assess the effect of chronic contact exposure to realistic soil concentrations of imidacloprid, the most widely used neonicotinoid pesticide, on bee longevity, development speed, and body mass. Cohorts of Osmia lignaria and Megachile rotundata were used as proxies for ground-nesting species. We observed species- and sex-specific changes to adult longevity, development speed, and mass in response to increasing concentrations of imidacloprid. These results suggest that chronic exposure to nesting substrates contaminated with neonicotinoids may represent an important route of exposure that could have considerable physiological and ecological consequences for bees and plant-pollinator interactions.
Collapse
Affiliation(s)
- Nicholas L Anderson
- University of Illinois at Urbana-Champaign, Department Of Entomology, 505 S. Goodwin Ave., Urbana, IL, 61801, United States.
| | - Alexandra N Harmon-Threatt
- University of Illinois at Urbana-Champaign, Department Of Entomology, 505 S. Goodwin Ave., Urbana, IL, 61801, United States
| |
Collapse
|
176
|
Crall JD, de Bivort BL, Dey B, Ford Versypt AN. Social Buffering of Pesticides in Bumblebees: Agent-Based Modeling of the Effects of Colony Size and Neonicotinoid Exposure on Behavior Within Nests. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
177
|
Wang W, Aregahegn KZ, Andersen ST, Ni AZ, Rohrbacher AF, Nielsen OJ, Finlayson-Pitts BJ. Quantum Yields and N 2O Formation from Photolysis of Solid Films of Neonicotinoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1638-1646. [PMID: 30698961 DOI: 10.1021/acs.jafc.8b05417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neonicotinoids (NN), first introduced in 1991, are found on environmental surfaces where they undergo photolytic degradation. Photolysis studies of thin films of NN were performed using two approaches: (1) transmission FTIR, in which solid films of NN and the gas-phase products were analyzed simultaneously, and (2) attenuated-total-reflectance FTIR combined with transmission FTIR, in which solid films of NN and the gas-phase products were probed in the same experiment but not at the same time. Photolysis quantum yields using broadband irradiation centered at 313 nm were (2.2 ± 0.9) × 10-3 for clothianidin (CLD), (3.9 ± 0.3) × 10-3 for thiamethoxam (TMX), and (3.3 ± 0.5) × 10-3 for dinotefuran (DNF), with all errors being ±1 s. At 254 nm, which was used to gain insight into the wavelength dependence, quantum yields were in the range of (0.8-20) × 10-3 for all NNs, including acetamiprid (ACM) and thiacloprid (TCD). Nitrous oxide (N2O), a potent greenhouse gas, was the only gas-phase product detected for the photolysis of nitroguanidines, with yields of ΔN2O/ΔNN > 0.5 in air at both 313 and 254 nm. The atmospheric lifetimes with respect to photolysis for CLD, TMX, and DNF, which absorb light in the actinic region, are estimated to be 15, 10, and 11 h, respectively, at a solar zenith angle of 35° and 12, 8, and 10 h at a solar zenith angle of 15°.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Kifle Z Aregahegn
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
- Department of Chemistry , Debre Berhan University , P.O. Box 445, Debre Berhan , Ethiopia
| | - Simone T Andersen
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
- Copenhagen Center for Atmospheric Research, Department of Chemistry , University of Copenhagen , 2100 Copenhagen Ø , Denmark
| | - Anton Z Ni
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Andrea F Rohrbacher
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Ole John Nielsen
- Copenhagen Center for Atmospheric Research, Department of Chemistry , University of Copenhagen , 2100 Copenhagen Ø , Denmark
| | - Barbara J Finlayson-Pitts
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| |
Collapse
|
178
|
Robertson BA, Horváth G. Color polarization vision mediates the strength of an evolutionary trap. Evol Appl 2019; 12:175-186. [PMID: 30697332 PMCID: PMC6346644 DOI: 10.1111/eva.12690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022] Open
Abstract
Evolutionary traps are scenarios in which animals are fooled by rapidly changing conditions into preferring poor-quality resources over those that better improve survival and reproductive success. The maladaptive attraction of aquatic insects to artificial sources of horizontally polarized light (e.g., glass buildings, asphalt roads) has become a first model system by which scientists can investigate the behavioral mechanisms that cause traps to occur. We employ this field-based system to experimentally investigate (a) in which portion(s) of the spectrum are polarizationally water-imitating reflectors attractive to nocturnal terrestrial and aquatics insects, and (b) which modern lamp types result in greater attraction in this typical kind of nocturnal polarized light pollution. We found that most aquatic taxa exhibited preferences for lamps based upon their color spectra, most having lowest preference for lamps emitting blue and red light. Yet, despite previously established preference for higher degrees of polarization of reflected light, most aquatic insect families were attracted to traps based upon their unpolarized spectrum. Chironomid midges, alone, showed a preference for the color of lamplight in both the horizontally polarized and unpolarized spectra indicating only this family has evolved to use light in this color range as a source of information to guide its nocturnal habitat selection. These results demonstrate that the color of artificial lighting can exacerbate or reduce its attractiveness to aquatic insects, but that the strength of attractiveness of nocturnal evolutionary traps, and so their demographic consequences, is primarily driven by unpolarized light pollution. This focuses management attention on limiting broad-spectrum light pollution, as well as its intentional deployment to attract insects back to natural habitats.
Collapse
Affiliation(s)
- Bruce A. Robertson
- Division of Science, Mathematics and ComputingBard CollegeAnnandale‐on‐HudsonNew York
| | - Gábor Horváth
- Environmental Optics LaboratoryDepartment of Biological Physics, Physical InstituteELTE Eötvös Loránd UniversityBudapestHungary
| |
Collapse
|
179
|
A spherical metal-organic coordination polymer for the microextraction of neonicotinoid insecticides prior to their determination by HPLC. Mikrochim Acta 2019; 186:103. [PMID: 30637512 DOI: 10.1007/s00604-018-3210-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/23/2018] [Indexed: 12/28/2022]
Abstract
The authors describe a new spherical metal-organic coordination polymer (MOCP) for use as an adsorbent in solid-phase microextraction (SPME). By applying the ions Co(II), Fe(II), Cu(II), and Zn(II) in these polymers, MOCP with different morphology were obtained. The respective coatings for SPME display different extraction efficiency towards neonicotinoid insecticides (neo-nics). The Co(II)@MOCP coating displays an improved extraction capability for neo-nics when compared to the four commercially available coatings studied. Following extraction with the Co(II)@MOCP-coated fiber, the neo-nics were eluted using 1 mL of trifluoroacetic acid/acetonitrile solution and quantified by high performance liquid chromatography. The method, when applied to spiked honey samples, has good linearity (0.5-600 μg kg-1) and a low limit of detection (0.05-0.15 μg kg-1). The precision (n = 6) for a single fiber was in the range of 3.6-8.3%. The reproducibility (for n = 5) from fiber-to-fiber ranges between 5.4 and 8.8%. The Co(II)@MOCP-coated fiber can be reused more than 80 times without any apparent reduction in its performance. In addition, the relative recoveries from spiked honey samples are very good (91.5%-103.5%). Graphical abstract A spherical metal-organic coordination polymer (MOCP) was synthesized under the regulation of Co(II) and used for the solid-phase microextraction (SPME) of neonicotinoid insecticides found in honey.
Collapse
|
180
|
Cook SC. Compound and Dose-Dependent Effects of Two Neonicotinoid Pesticides on Honey Bee ( Apis mellifera) Metabolic Physiology. INSECTS 2019; 10:E18. [PMID: 30626039 PMCID: PMC6358842 DOI: 10.3390/insects10010018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022]
Abstract
Use of neonicotinoid pesticides is now ubiquitous, and consequently non-targeted arthropods are exposed to their residues at sub-lethal doses. Exposure to these neurotoxins may be a major contributor to poor honey bee colony health. Few studies have explored how sub lethal exposure to neonicotinoids affects honey bee metabolic physiology, including nutritional and energetic homeostasis, both of which are important for maintaining colony health. Reported here are results from a study of chronic oral exposure of honey bees to two sub lethal concentrations of clothianidin and imidacloprid. Neonicotinoids altered important aspects of honey bee nutritional and metabolic physiology in a compound and dose-dependent manner; both compounds at low doses reduced honey bee body weight. Low-dose clothianidin exposure resulted in bees having protein, lipids, carbohydrates, and glycogen levels similar to newly emerged bees. High-dose clothianidin exposure lowered lipids and glycogen content of bees. High-dose imidacloprid exposure resulted in bees having depressed metabolic rate. Low-dose imidacloprid exposure resulted in bees consuming low and high levels of protein and carbohydrate rich foods, respectively. Results suggest neonicotinoids interfere with honey bee endocrine neurophysiological pathways. Compound and dose-dependent effects might represent respective chemical structural differences determining an observed effect, and thresholds of compound effects on honey bee physiology.
Collapse
Affiliation(s)
- Steven C Cook
- USDA-ARS, Bee Research Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| |
Collapse
|
181
|
Dai P, Jack CJ, Mortensen AN, Bustamante TA, Bloomquist JR, Ellis JD. Chronic toxicity of clothianidin, imidacloprid, chlorpyrifos, and dimethoate to Apis mellifera L. larvae reared in vitro. PEST MANAGEMENT SCIENCE 2019; 75:29-36. [PMID: 29931787 DOI: 10.1002/ps.5124] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The effects of chronic exposure to two neonicotinoids (clothianidin and imidacloprid) and two organophosphates (chlorpyrifos and dimethoate) on survival, developmental rate and larval weight of honey bee larvae reared in vitro were determined. Diets containing chemicals were fed to larvae with the range of concentrations for each compound based on published acute toxicity experiments and residues found in pollen and nectar, both components of the larval diet. RESULTS Four concentrations of each compound and controls were tested: chlorpyrifos: 0.5, 0.8, 1.2, 8 mg/L; clothianidin: 0.1, 0.4, 2, 10 mg L-1 ; dimethoate: 0.02, 1, 6, 45 mg L-1 ; imidacloprid: 0.4, 2, 4, 10 mg L-1 ; positive control: dimethoate (45 mg L-1 ); solvent control: acetone or methanol; and negative control. A significant decrease in survival, relative to the solvent control, occurred in the 0.8, 1.2 and 8 mg L-1 chlorpyrifos, 0.4, 2 and 10 mg L-1 clothianidin, and 45 mg L-1 dimethoate diets, but not the imidacloprid diets. CONCLUSION The treatment of larval diets with clothianidin, dimethoate and imidacloprid did not affect survival, developmental rate, or weight of immature honey bees; however, treatment with chlorpyrifos did. Overall, our results are valuable for evaluating the chronic toxicity of these pesticides to developing honey bees. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pingli Dai
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Cameron J Jack
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Ashley N Mortensen
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Tomas A Bustamante
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - James D Ellis
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
182
|
Sonter CA, Rader R, Wilson SC. A new, practicable and economical cage design for experimental studies on small honey bee colonies. J Exp Biol 2019; 222:jeb.200998. [DOI: 10.1242/jeb.200998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 01/15/2023]
Abstract
Bees are in decline globally due to multiple stressors including pests, pathogens and contaminants. The management of bees in enclosures can identify causes of decline under standardized conditions but the logistics of conducting effect studies in typical systems used across several colonies is complex and costly. This study details a practicable, new and economical cage system that effectively houses live honey bee colonies to investigate the impact of physical conditions, biological factors and environmental contaminants on honey bee health. The method has broad application for a range of effect studies concerning honey bee development, physiology, survival and population dynamics because it enables entire colonies to be managed well in captivity, as opposed to individual workers.
Collapse
Affiliation(s)
- Carolyn A. Sonter
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Romina Rader
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Susan C. Wilson
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
183
|
Wintermantel D, Locke B, Andersson GKS, Semberg E, Forsgren E, Osterman J, Rahbek Pedersen T, Bommarco R, Smith HG, Rundlöf M, de Miranda JR. Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nat Commun 2018; 9:5446. [PMID: 30575755 PMCID: PMC6303475 DOI: 10.1038/s41467-018-07914-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
Neonicotinoids are implicated in bee declines and laboratory studies imply that they impair the bee immune system, thereby precipitating a rise in pathogen levels. To establish whether such synergisms reduce bee performance in real-world agricultural landscapes, we analysed the microbial composition of the bumblebee (Bombus terrestris) samples from our recent landscape study on the impacts of field-level clothianidin exposure. We related clothianidin exposure and microbial composition to both individual- and colony-level performance parameters, to better understand the direct and indirect mechanistic effects of neonicotinoid exposure on bumblebees. We show that exposure to clothianidin from seed-coated oilseed rape reduces bumblebee size and numbers, particularly of reproductives. However, exposure does not affect the levels of non-pathogenic bacteria or viruses, nor induce rises in the levels or virulence of intracellular parasites. We conclude that field exposure to the neonicotinoid clothianidin affects bumblebee performance but generally not their pathogenic or beneficial microbiota.
Collapse
Affiliation(s)
- Dimitry Wintermantel
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
- INRA, UE 1255 APIS, Le Magneraud, 17700, Surgères, France.
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & Université de La Rochelle, 79360, Villiers-en-Bois, France.
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Georg K S Andersson
- Department of Biology, Lund University, 223 62, Lund, Sweden
- Centre for Environmental and Climate Research, Lund University, 223 62, Lund, Sweden
| | - Emilia Semberg
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Julia Osterman
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
- Martin Luther University of Halle-Wittenberg, Institute of Biology, 06120, Halle, Germany
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research-UFZ Leipzig, ESCALATE, 04318, Leipzig, Germany
| | | | - Riccardo Bommarco
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Henrik G Smith
- Department of Biology, Lund University, 223 62, Lund, Sweden
- Centre for Environmental and Climate Research, Lund University, 223 62, Lund, Sweden
| | - Maj Rundlöf
- Department of Biology, Lund University, 223 62, Lund, Sweden
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| |
Collapse
|
184
|
Santos ACC, Cristaldo PF, Araújo APA, Melo CR, Lima APS, Santana EDR, de Oliveira BMS, Oliveira JWS, Vieira JS, Blank AF, Bacci L. Apis mellifera (Insecta: Hymenoptera) in the target of neonicotinoids: A one-way ticket? Bioinsecticides can be an alternative. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:28-36. [PMID: 30031942 DOI: 10.1016/j.ecoenv.2018.07.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/25/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
The recent decline of Apis mellifera populations around the world has been subject of intense research due to ecological and economic damages resulting from the loss of pollination services. The intensive use of insecticides from the neonicotinoids group is among the possible causal factors of this decline, including also sub-lethal effects. However, the use of synthetic insecticides has been increased on a global scale in the recent decades. In order to evaluate an alternative to the use of neonicotinoids, this work investigated the effects of a bioinsecticide and its major compound on A. mellifera (Apidae: Hymenoptera), one of the main pollinators of crop plants. For this, bees were exposed, by contact and ingestion, to the essential oil of Cymbopogon martinii (Poaceae: Poales), to geraniol (major compound) and the insecticide imidacloprid to evaluate the toxicity and behavioral effects as well as the locomotion changes and immune responses of bees treated with these compounds. In general, toxicity was greater through ingestion and the insecticide imidacloprid was more toxic to A. mellifera compared to the essential oil and its major compound. The individual and collective behaviors (i.e. trophallaxis, grooming, avoidance) as well as the immune responses of bees were not significantly affected by bioinsecticides. However, the locomotion response and flight orientation of the bees were significantly altered by insecticide when administered by ingestion. Our results highlight the potential of C. martinii essential oil and its major compound as a possible alternative to mitigate the harmful effects of neonicotinoids on bees.
Collapse
Affiliation(s)
- Ane C C Santos
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Paulo F Cristaldo
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Ana P A Araújo
- Departamento de Ecologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Carlisson R Melo
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Ana P S Lima
- Departamento de Engenharia Agronômica, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Emile D R Santana
- Departamento de Engenharia Agronômica, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Bruna M S de Oliveira
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - José W S Oliveira
- Departamento de Zootecnia, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Jodnes S Vieira
- Departamento de Zootecnia, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Arie F Blank
- Departamento de Engenharia Agronômica, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Leandro Bacci
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; Departamento de Engenharia Agronômica, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
185
|
Wang K, Fan RL, Ji WN, Zhang WW, Chen XM, Wang S, Yin L, Gao FC, Chen GH, Ji T. Transcriptome Analysis of Newly Emerged Honeybees Exposure to Sublethal Carbendazim During Larval Stage. Front Genet 2018; 9:426. [PMID: 30349555 PMCID: PMC6186791 DOI: 10.3389/fgene.2018.00426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023] Open
Abstract
There are increasing concerns regarding the impact of agrochemical pesticides on non-target organisms. Pesticides could cause honeybee abnormal development in response to neurotoxins such as neonicotinoid. However, knowledge of carbendazim, a widespread fungicide in beekeeping practice, influencing on honeybee (Apis mellifera L.) brain development is lacking. Large-scale transcriptome approaches were applied to determine the changes in global gene expression in the brains of newly emerged honeybees after carbendazim exposure during the larval stage. To further understand the effects of carbendazim on the brain development of honeybees, the functions of differentially expressed genes were compared between the treatment and control groups. We found that neuroregulatory genes were down-regulated after carbendazim exposure, which suggest the neurotoxic effects of this fungicide on honeybee nervous system. Carbendazim exposure also altered the expression of genes implicated in metabolism, transport, sensor, and hormone. Notably, larvae in the carbendazim-treated group observed longer time to shift into the dormant pupal state than the control group. Moreover, a low juvenile hormone and high ecdysone titers were found in the treatment group compared to control group. The data is the first report of neurotoxic effects on honeybee caused by carbendazim, and the sublethal carbendazim may disturb honeybee development and is a potential chemical threating the honeybee colonies.
Collapse
Affiliation(s)
- Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Rong-Li Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wen-Na Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wen-Wen Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiao-Mei Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuang Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ling Yin
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Fu-Chao Gao
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guo-Hong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
186
|
Jiang X, Wang Z, He Q, Liu Q, Li X, Yu L, Cao H. The Effect of Neonicotinoid Insecticide and Fungicide on Sugar Responsiveness and Orientation Behavior of Honey Bee ( Apis mellifera) in Semi-Field Conditions. INSECTS 2018; 9:insects9040130. [PMID: 30274315 PMCID: PMC6316467 DOI: 10.3390/insects9040130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 11/16/2022]
Abstract
Neonicotinoid insecticides are in widespread use around the world, cause pollinator decline. We used semi-field conditions to determine the effect of sublethal insecticide, thiamethoxam, exposure on orientation behavior and sugar responsiveness. Bees could not reject the non-treated flower or the insecticide or insecticide/fungicide treated flower. After bees consumed the insecticide or insecticide/fungicide treated nectar, they could not discriminate between a flower odor or blank control in a Y-maze when making a first choice. We also found that treated bees wander back and forth in both arms to make a final decision about food location, and used longer duration in the Y maze than the control group. Sugar responsiveness was also reduced after bees were fed with insecticide or insecticide/fungicide treated food, one week was needed for them to display the same level of responsiveness as the control group. The thiamethoxam or thiamethoxam/carbendazol treated crop field does not act as an olfactory repellent to the bee, but it does affect its post-consumption behavior.
Collapse
Affiliation(s)
- Xingchuan Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Zhengwei Wang
- Chemical Ecology Group, CAS Key laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China.
| | - Qibao He
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Qiongqiong Liu
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Xinyang Li
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Linsheng Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Haiqun Cao
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
187
|
Arce AN, Ramos Rodrigues A, Yu J, Colgan TJ, Wurm Y, Gill RJ. Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proc Biol Sci 2018; 285:rspb.2018.0655. [PMID: 30158303 PMCID: PMC6125916 DOI: 10.1098/rspb.2018.0655] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
Social bees represent an important group of pollinating insects that can be exposed to potentially harmful pesticides when foraging on treated or contaminated flowering plants. To investigate if such exposure is detrimental to bees, many studies have exclusively fed individuals with pesticide-spiked food, informing us about the hazard but not necessarily the risk of exposure. While such studies are important to establish the physiological and behavioural effects on individuals, they do not consider the possibility that the risk of exposure may change over time. For example, many pesticide assays exclude potential behavioural adaptations to novel toxins, such as rejection of harmful compounds by choosing to feed on an uncontaminated food source, thus behaviourally lowering the risk of exposure. In this paper, we conducted an experiment over 10 days in which bumblebees could forage on an array of sucrose feeders containing 0, 2 and 11 parts per billion of the neonicotinoid pesticide thiamethoxam. This more closely mimics pesticide exposure in the wild by allowing foraging bees to (i) experience a field realistic range of pesticide concentrations across a chronic exposure period, (ii) have repeated interactions with the pesticide in their environment, and (iii) retain the social cues associated with foraging by using whole colonies. We found that the proportion of visits to pesticide-laced feeders increased over time, resulting in greater consumption of pesticide-laced sucrose relative to untreated sucrose. After changing the spatial position of each feeder, foragers continued to preferentially visit the pesticide-laced feeders which indicates that workers can detect thiamethoxam and alter their behaviour to continue feeding on it. The increasing preference for consuming the neonicotinoid-treated food therefore increases the risk of exposure for the colony during prolonged pesticide exposure. Our results highlight the need to incorporate attractiveness of pesticides to foraging bees (and potentially other insect pollinators) in addition to simply considering the proportion of pesticide-contaminated floral resources within the foraging landscape.
Collapse
Affiliation(s)
- Andres N Arce
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Ana Ramos Rodrigues
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Jiajun Yu
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Thomas J Colgan
- Department of Organismal Biology, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yannick Wurm
- Department of Organismal Biology, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| |
Collapse
|
188
|
Sgolastra F, Arnan X, Cabbri R, Isani G, Medrzycki P, Teper D, Bosch J. Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee. Proc Biol Sci 2018; 285:20180887. [PMID: 30135154 PMCID: PMC6125910 DOI: 10.1098/rspb.2018.0887] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/25/2018] [Indexed: 12/25/2022] Open
Abstract
Pollinators in agroecosystems are often exposed to pesticide mixtures. Even at low concentrations, the effects of these mixtures on bee populations are difficult to predict due to potential synergistic interactions. In this paper, we orally exposed newly emerged females of the solitary bee Osmia bicornis to environmentally realistic levels of clothianidin (neonicotinoid insecticide) and propiconazole (fungicide), singly and in combination. The amount of feeding solution consumed was highest in bees exposed to the neonicotinoid, and lowest in bees exposed to the pesticide mixture. Ovary maturation and longevity of bees of the neonicotinoid and the fungicide treatments did not differ from those of control bees. By contrast, bees exposed to the pesticide mixture showed slow ovary maturation and decreased longevity. We found a synergistic interaction between the neonicotinoid and the fungicide on survival probability. We also found an interaction between treatment and emergence time (an indicator of physiological condition) on longevity. Longevity was negatively correlated to physiological condition only in the fungicide and the mixture treatments. Delayed ovary maturation and premature death imply a shortened nesting period (highly correlated to fecundity in Osmia). Our findings provide a mechanism to explain the observed dynamics of solitary bee populations exposed to multiple chemical residues in agricultural environments.
Collapse
Affiliation(s)
- Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Xavier Arnan
- CREAF, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Riccardo Cabbri
- Dipartimento di Scienze Mediche Veterinarie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Gloria Isani
- Dipartimento di Scienze Mediche Veterinarie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Piotr Medrzycki
- CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Agricoltura ed Ambiente, Bologna, Italy
| | - Dariusz Teper
- Research Institute of Horticulture, Apiculture Division, Puławy, Poland
| | - Jordi Bosch
- CREAF, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
189
|
Yao J, Zhu YC, Adamczyk J. Responses of Honey Bees to Lethal and Sublethal Doses of Formulated Clothianidin Alone and Mixtures. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1517-1525. [PMID: 29889221 DOI: 10.1093/jee/toy140] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/16/2018] [Accepted: 05/06/2018] [Indexed: 05/21/2023]
Abstract
The widespread use of neonicotinoid insecticides has sparked concern over the toxicity risk to honey bees (Apis mellifera L. (Hymenoptera: Apidae)). In this study, feeding treatments with the clothianidin formulation at 2.6 ppb (residue concentration) or its binary mixtures with five representative pesticides (classes) did not influence on adult survivorship, but all treatments caused significantly lower body weight than controls. Most binary mixtures at residue levels showed minor or no interaction on body weight loss, and synergistic interaction was detected only from the mixture of clothianidin + λ-cyhalothrin. Chlorpyrifos alone and the mixture of clothianidin + chlorpyrifos significantly suppressed esterase (EST) activity, while most treatments of individual pesticides and mixtures had no effect on EST and glutathione S-transferase (GST) activities. However, ingestion of clothianidin at 2.6 ppb significantly enhanced P450 oxidase activity by 19%. The LC50 of formulated clothianidin was estimated at 0.53 ppm active ingredient, which is equivalent to 25.4 ng clothianidin per bee (LD50) based on the average sugar consumption of 24 µl per bee per day. In addition to mortality, ingestion of clothianidin at LC50 significantly reduced bee body weight by 12%. P450 activities were also significantly induced at 24 and 48 h in clothianidin-treated bees, while no significant difference was found in GST and EST activities. Further examinations revealed that the expression of an important CYP9q1 detoxification gene was significantly induced by clothianidin. Thus, data consistently indicated that P450s were involved in clothianidin detoxification in honey bees. Although the honey bee population in Stoneville (MS, United States) had sixfold lower susceptibility than other reported populations, clothianidin had very high oral toxicity to bees.
Collapse
Affiliation(s)
- Jianxiu Yao
- USDA-ARS, Southern Insect Management Unit, Stoneville, MS
| | - Yu Cheng Zhu
- USDA-ARS, Southern Insect Management Unit, Stoneville, MS
| | - John Adamczyk
- USDA-ARS, Southern Horticultural Research Unit, Poplarville, MS
| |
Collapse
|
190
|
Lämsä J, Kuusela E, Tuomi J, Juntunen S, Watts PC. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proc Biol Sci 2018; 285:20180506. [PMID: 30051863 PMCID: PMC6083263 DOI: 10.1098/rspb.2018.0506] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 11/21/2022] Open
Abstract
Widespread use of neonicotinoid insecticides, such as imidacloprid, is often associated with diminishing populations of bees; this loss of pollinators presents a concern for food security and may cause unpredictable changes in ecological networks. However, little is known about the potential behavioural mechanisms behind the neonicotinoid-associated pollinator decline. We quantified the effects of low-dose (1 ppb) imidacloprid exposure on the foraging behaviour of bumblebees (Bombus terrestris). Individual bumblebees were released into a flight arena containing three patches of robotic flowers whose colour (yellow, orange, blue) indicated whether the flower delivered a reward (sugar solution). Exposure to imidacloprid had no significant effect on measures of bumblebee physical performance (such as flight speed) or learning (identifying rewarding flowers). However, pesticide-treated bumblebees had reduced foraging motivation compared with the control bumblebees, as they visited fewer robotic flowers, were slower to start foraging and did not visit all three flower colours as often. Neonicotinoid concentrations of 1 ppb, often reported in plant nectar near agricultural lands, can thus affect the foraging behaviour of bumblebees. Even without a notable impact on flight performance and learning, a reduction in foraging motivation could explain the poor performance of colonies of bumblebees exposed to neonicotinoids.
Collapse
Affiliation(s)
- Juho Lämsä
- Ecology and Genetics, University of Oulu, 90014 Oulu, Finland
| | - Erno Kuusela
- Ecology and Genetics, University of Oulu, 90014 Oulu, Finland
| | - Juha Tuomi
- Ecology and Genetics, University of Oulu, 90014 Oulu, Finland
- Department of Biology, Section of Ecology, University of Turku, 20014 Turku, Finland
| | - Sini Juntunen
- Ecology and Genetics, University of Oulu, 90014 Oulu, Finland
| | - Phillip C Watts
- Ecology and Genetics, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
191
|
Gélvez-Zúñiga I, Teixido AL, Neves ACO, Fernandes GW. Floral antagonists counteract pollinator-mediated selection on attractiveness traits in the hummingbird-pollinatedCollaea cipoensis(Fabaceae). Biotropica 2018. [DOI: 10.1111/btp.12574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irene Gélvez-Zúñiga
- Laboratório de Ecologia Evolutiva & Biodiversidade; Departamento de Biologia Geral; ICB/Universidade Federal de Minas Gerais; CP 486 30161-970 Belo Horizonte MG Brazil
| | - Alberto L. Teixido
- Departamento de Botânica; Universidade Federal de Minas Gerais; Av. Antônio Carlos 6627 30161-970 Belo Horizonte MG Brazil
| | - Ana C. O. Neves
- Laboratório de Ecologia Evolutiva & Biodiversidade; Departamento de Biologia Geral; ICB/Universidade Federal de Minas Gerais; CP 486 30161-970 Belo Horizonte MG Brazil
| | - Geraldo Wilson Fernandes
- Laboratório de Ecologia Evolutiva & Biodiversidade; Departamento de Biologia Geral; ICB/Universidade Federal de Minas Gerais; CP 486 30161-970 Belo Horizonte MG Brazil
| |
Collapse
|
192
|
Siviter H, Koricheva J, Brown MJF, Leadbeater E. Quantifying the impact of pesticides on learning and memory in bees. J Appl Ecol 2018; 55:2812-2821. [PMID: 30449899 PMCID: PMC6221055 DOI: 10.1111/1365-2664.13193] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023]
Abstract
Most insecticides are insect neurotoxins. Evidence is emerging that sublethal doses of these neurotoxins are affecting the learning and memory of both wild and managed bee colonies, exacerbating the negative effects of pesticide exposure and reducing individual foraging efficiency. Variation in methodologies and interpretation of results across studies has precluded the quantitative evaluation of these impacts that is needed to make recommendations for policy change. It is not clear whether robust effects occur under acute exposure regimes (often argued to be more field‐realistic than the chronic regimes upon which many studies are based), for field‐realistic dosages, and for pesticides other than neonicotinoids. Here we use meta‐analysis to examine the impact of pesticides on bee performance in proboscis extension‐based learning assays, the paradigm most commonly used to assess learning and memory in bees. We draw together 104 (learning) and 167 (memory) estimated effect sizes across a diverse range of studies. We detected significant negative effects of pesticides on learning and memory (i) at field realistic dosages, (ii) under both chronic and acute application, and (iii) for both neonicotinoid and non‐neonicotinoid pesticides groups. We also expose key gaps in the literature that include a critical lack of studies on non‐Apis bees, on larval exposure (potentially one of the major exposure routes), and on performance in alternative learning paradigms. Policy implications. Procedures for the registration of new pesticides within EU member states now typically require assessment of risks to pollinators if potential target crops are attractive to bees. However, our results provide robust quantitative evidence for subtle, sublethal effects, the consequences of which are unlikely to be detected within small‐scale prelicensing laboratory or field trials, but can be critical when pesticides are used at a landscape scale. Our findings highlight the need for long‐term postlicensing environmental safety monitoring as a requirement within licensing policy for plant protection products.
Collapse
Affiliation(s)
- Harry Siviter
- School of Biological Sciences Royal Holloway University of London Surrey UK
| | - Julia Koricheva
- School of Biological Sciences Royal Holloway University of London Surrey UK
| | - Mark J F Brown
- School of Biological Sciences Royal Holloway University of London Surrey UK
| | | |
Collapse
|
193
|
Piechowicz B, Szpyrka E, Zaręba L, Podbielska M, Grodzicki P. Transfer of the Active Ingredients of Some Plant Protection Products from Raspberry Plants to Beehives. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:45-58. [PMID: 29247388 PMCID: PMC5988780 DOI: 10.1007/s00244-017-0488-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/27/2017] [Indexed: 05/06/2023]
Abstract
Plant protection products (PPPs) have been found increasingly in the environment. They pose a huge threat to bees, contributing to honeybee colony losses and consequently to enormous economic losses. Therefore, this field investigation was designed to determine whether their active ingredients (AIs) were transferred from raspberry plants to beehives located in the immediate neighbourhood of the crop and to what extent they were transferred. Every week for 2 months, samples of soil, raspberry leaves, flowers and fruits, worker bees, honeybee brood, and honey were collected and analysed for the presence of propyzamide, chlorpyrifos, iprodione, pyraclostrobin, boscalid, cypermethrin, difenoconazole, azoxystrobin, and pyrimethanil residues. Five of these substances were found in the worker bee bodies. Chlorpyrifos, applied to only the soil through the irrigation system, also was detected in the brood. A small amount of boscalid was noted in the honey, but its residues did not exceed the maximum residue level. For chlorpyrifos, boscalid, and pyrimethanil, a positive correlation between the occurrence of PPPs in the crops and the beehives was found. Statistical methods confirmed that the application of PPPs on a raspberry plantation, as an example of nectar-secreting plants, was linked to the transfer of their AIs to beehives.
Collapse
Affiliation(s)
- Bartosz Piechowicz
- Department of Analytical Chemistry, Institute of Biotechnology, University of Rzeszów, Werynia, Poland
| | - Ewa Szpyrka
- Department of Analytical Chemistry, Institute of Biotechnology, University of Rzeszów, Werynia, Poland
- Laboratory of Pesticide Residues, Institute of Plant Protection, National Research Institute, Rzeszów, Poland
| | - Lech Zaręba
- Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Magdalena Podbielska
- Department of Analytical Chemistry, Institute of Biotechnology, University of Rzeszów, Werynia, Poland
| | - Przemysław Grodzicki
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland.
| |
Collapse
|
194
|
Main AR, Webb EB, Goyne KW, Mengel D. Neonicotinoid insecticides negatively affect performance measures of non-target terrestrial arthropods: a meta-analysis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1232-1244. [PMID: 29603486 DOI: 10.1002/eap.1723] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/20/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Neonicotinoid insecticides are currently the fastest-growing and most widely used insecticide class worldwide. Valued for their versatility in application, these insecticides may cause deleterious effects in a range of non-target (beneficial) arthropods. However, it remains unclear whether strong patterns exist in terms of their major effects, if broad measures of arthropod performance are negatively affected, or whether different functional groups are equally vulnerable. Here, we present a meta-analysis of 372 observations from 44 field and laboratory studies that describe neonicotinoid effects on 14 arthropod orders across five broad performance measures: abundance, behavior, condition, reproductive success, and survival. Across studies, neonicotinoids negatively affected all performance metrics evaluated; however, magnitude of the effects varied. Arthropod behavior and survival were the most negatively affected and abundance was the least negatively affected. Effects on arthropod functional groups were inconsistent. Pollinator condition, reproductive success, and survival were significantly lower in neonicotinoid treatments compared to untreated controls; whereas, neonicotinoid effects on detritivores were not significant. Although magnitude of arthropod response to neonicotinoids varied among performance measures and functional groups, we documented a consistent negative relationship between exposure to neonicotinoid insecticides in published studies and beneficial arthropod performance.
Collapse
Affiliation(s)
- Anson R Main
- School of Natural Resources, University of Missouri, Columbia, Missouri, 65211, USA
| | - Elisabeth B Webb
- School of Natural Resources, University of Missouri, Columbia, Missouri, 65211, USA
- U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, Columbia, Missouri, 65211, USA
| | - Keith W Goyne
- School of Natural Resources, University of Missouri, Columbia, Missouri, 65211, USA
| | - Doreen Mengel
- Resource Science Division, Missouri Department of Conservation, Columbia, Missouri, 65201, USA
| |
Collapse
|
195
|
Démares FJ, Pirk CWW, Nicolson SW, Human H. Neonicotinoids decrease sucrose responsiveness of honey bees at first contact. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:25-30. [PMID: 29775568 DOI: 10.1016/j.jinsphys.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/20/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
For two decades, neonicotinoid insecticides have been extensively used worldwide. Targeting neuronal receptors, they have deleterious effects on the behaviour and physiology of many insects. Bees are exposed to these insecticides in pollen and nectar while providing pollination services to agricultural crops, and neonicotinoids have been shown to impair navigation and decrease their foraging activity. We have previously reported the effect of dietary thiamethoxam on sucrose responsiveness of young worker bees. Here, we exposed caged foragers to sublethal acute doses of clothianidin, imidacloprid, and thiamethoxam, then tested them individually for sucrose responsiveness using standard methods. In addition, we tested the response to a range of sucrose solutions laced with neonicotinoids on bees previously unexposed to neonicotinoids. This paradigm mimics the situation where foragers would first encounter poisoned nectars varying in sugar concentration. Bees were exposed to the insecticides in the feeding solution for 24 h before testing, or in the test solutions, or both. The three compounds had a detrimental effect on responses to mid-to-high sucrose concentrations under all experimental conditions, and unexposed bees tested with laced sucrose displayed unexpected low responses to the higher sucrose concentrations tested. This attenuation of sucrose response is further evidence that neonicotinoids are multisensory disruptors, with potent actions against pollinators and other beneficial insects at first contact.
Collapse
Affiliation(s)
- Fabien J Démares
- Social Insects Research Group, Department of Zoology & Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa.
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology & Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Susan W Nicolson
- Social Insects Research Group, Department of Zoology & Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Hannelie Human
- Social Insects Research Group, Department of Zoology & Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| |
Collapse
|
196
|
Imidacloprid Decreases Honey Bee Survival Rates but Does Not Affect the Gut Microbiome. Appl Environ Microbiol 2018; 84:AEM.00545-18. [PMID: 29678920 DOI: 10.1128/aem.00545-18] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence suggests that pesticides have played a role in the increased rate of honey bee colony loss. One of the most commonly used pesticides in the United States is the neonicotinoid imidacloprid. Although the primary mode of action of imidacloprid is on the insect nervous system, it has also been shown to cause changes in insects' digestive physiology and alter the microbiota of Drosophila melanogaster larvae. The honey bee gut microbiome plays a major role in bee health. Although many studies have shown that imidacloprid affects honey bee behavior, its impact on the microbiome has not been fully elucidated. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. Consistent with other studies, we show that imidacloprid exposure results in an elevated mortality of honey bees in the hive and increases the susceptibility to infection by pathogens. However, we did not find evidence that imidacloprid affects the gut bacterial community of honey bees. Our in vitro experiments demonstrated that honey bee gut bacteria can grow in the presence of imidacloprid, and we found some evidence that imidacloprid can be metabolized in the bee gut environment. However, none of the individual bee gut bacterial species tested could metabolize imidacloprid, suggesting that the observed metabolism of imidacloprid within in vitro bee gut cultures is not caused by the gut bacteria. Overall, our results indicate that imidacloprid causes increased mortality in honey bees, but this mortality does not appear to be linked to the microbiome.IMPORTANCE Growing evidence suggests that the extensive use of pesticides has played a large role in the increased rate of honey bee colony loss. Despite extensive research on the effects of imidacloprid on honey bees, it is still unknown whether it impacts the community structure of the gut microbiome. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. We found that the exposure to imidacloprid resulted in an elevated mortality of honey bees and increased the susceptibility to infection by opportunistic pathogens. However, we did not find evidence that imidacloprid affects the gut microbiome of honey bees. We found some evidence that imidacloprid can be metabolized in the bee gut environment in vitro, but because it is quickly eliminated from the bee, it is unlikely that this metabolism occurs in nature. Thus, imidacloprid causes increased mortality in honey bees, but this does not appear to be linked to the microbiome.
Collapse
|
197
|
Leza M, Watrous KM, Bratu J, Woodard SH. Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proc Biol Sci 2018; 285:20180761. [PMID: 29899072 PMCID: PMC6015844 DOI: 10.1098/rspb.2018.0761] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/21/2018] [Indexed: 11/12/2022] Open
Abstract
Bumblebees are among the world's most important groups of pollinating insects in natural and agricultural ecosystems. Each spring, queen bumblebees emerge from overwintering and initiate new nests, which ultimately give rise to workers and new reproductives later in the season. Nest initiation and survival are thus key drivers of both bumblebee pollination services and population dynamics. We performed the first laboratory experiment with the model bumblebee species Bombus impatiens that explores how early nesting success is impacted by the effects of temporary or more sustained exposure to sublethal levels of a neonicotinoid-type insecticide (imidacloprid at 5 ppb in nectar) and by reliance on a monofloral pollen diet, two factors that have been previously implicated in bumblebee decline. We found that queens exhibited increased mortality and dramatically reduced activity levels when exposed to imidacloprid, as well as delayed nest initiation and lower brood numbers in the nest, but partially recovered from these effects when they only received early, temporary exposure. The effects of pollen diet on individual queen- and colony-level responses were overshadowed by effects of the insecticide, although a monofloral pollen diet alone was sufficient to negatively impact brood production. These findings speak to the sensitivity of queen bumblebees during the nest initiation phase of the colony cycle, with implications for how queens and their young nests are uniquely impacted by exposure to threats such as pesticide exposure and foraging habitat unsuitability.
Collapse
Affiliation(s)
- Mar Leza
- Laboratory of Zoology, Department of Biology, University of the Balearic Islands, Cra, Valldemossa km 7.5, CP 07122, Palma, Illes Balears, Spain
| | - Kristal M Watrous
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jade Bratu
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
198
|
Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 2018; 557:238-241. [DOI: 10.1038/s41586-018-0074-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/24/2018] [Indexed: 11/09/2022]
|
199
|
Simon-Delso N, San Martin G, Bruneau E, Hautier L. Time-to-death approach to reveal chronic and cumulative toxicity of a fungicide for honeybees not revealed with the standard ten-day test. Sci Rep 2018; 8:7241. [PMID: 29739960 PMCID: PMC5940668 DOI: 10.1038/s41598-018-24746-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/04/2018] [Indexed: 01/02/2023] Open
Abstract
Synthetic fungicides are pesticides widely used in agriculture to control phytopathogenic fungi. The systemicity, persistency and intense application of some of these fungicides, such as boscalid, leads to long periods of exposure for honeybees via contaminated water, pollen and nectar. We exposed adult honeybees in the lab to food contaminated with boscalid for 33 days instead of the standard 10-day test. Most of the toxic effects were observed after 10 days. The median time to death (LT50) ranged from 24.9 days (lowest concentration) to 7.1 days (highest concentration) and was significantly shorter in all cases than with the control (32.0 days). The concentration and dietary doses of boscalid inducing 50% mortality (LC50 and LDD50, respectively) decreased strongly with the time of exposure: LC50 = 14,729 and 1,174 mg/l and LDD50 = 0.318 and 0.0301 mg bee−1 day−1 at days 8 and 25, respectively. We found evidence of reinforced toxicity when exposure is prolonged, but with an unusual pattern: no cumulative toxicity is observed until 17–18 days, when a point of inflexion appears that suggests a reduced capacity of bees to deal with the toxicant. Our results show the importance of time-to-death experiments rather than fixed-duration studies for evaluating chronic toxicity.
Collapse
Affiliation(s)
- Noa Simon-Delso
- Beekeeping Research and Information Centre (CARI), Place Croix du Sud 4, 1348, Louvain la Neuve, Belgium.
| | - Gilles San Martin
- Walloon Agricultural Research Centre, Life Sciences Department, Plant Protection and Ecotoxicology Unit, Rue de Liroux, 2, B-5030, Gembloux, Belgium
| | - Etienne Bruneau
- Beekeeping Research and Information Centre (CARI), Place Croix du Sud 4, 1348, Louvain la Neuve, Belgium
| | - Louis Hautier
- Walloon Agricultural Research Centre, Life Sciences Department, Plant Protection and Ecotoxicology Unit, Rue de Liroux, 2, B-5030, Gembloux, Belgium
| |
Collapse
|
200
|
Pamminger T, Botías C, Goulson D, Hughes WOH. A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Christina Botías
- School of Life SciencesUniversity of Sussex Brighton UK
- Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Dave Goulson
- School of Life SciencesUniversity of Sussex Brighton UK
| | | |
Collapse
|