151
|
Zhang Y, Hyle J, Wright S, Shao Y, Zhao X, Zhang H, Li C. A cis-element within the ARF locus mediates repression of p16INK4A expression via long-range chromatin interactions. Proc Natl Acad Sci U S A 2019; 116:26644-26652. [PMID: 31818950 PMCID: PMC6936709 DOI: 10.1073/pnas.1909720116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Loss of function of CDKN2A/B, also known as INK4/ARF [encoding p16INK4A, p15INK4B, and p14ARF (mouse p19Arf)], confers susceptibility to cancers, whereas its up-regulation during organismal aging provokes cellular senescence and tissue degenerative disorders. To better understand the transcriptional regulation of p16INK4A, a CRISPR screen targeting open, noncoding chromatin regions adjacent to p16INK4A was performed in a human p16INK4A-P2A-mCherry reporter cell line. We identified a repressive element located in the 3' region adjacent to the ARF promoter that controls p16INK4A expression via long-distance chromatin interactions. Coinfection of lentiviral dCas9-KRAB with selected single-guide RNAs against the repressive element abrogated the ARF/p16INK4A chromatin contacts, thus reactivating p16INK4A expression. Genetic CRISPR screening identified candidate transcription factors inhibiting p16INK4A regulation, including ZNF217, which was confirmed to bind the ARF/p16INK4A interaction loop. In summary, direct physical interactions between p16INK4A and ARF genes provide mechanistic insights into their cross-regulation.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Ying Shao
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Hui Zhang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, People’s Republic of China
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
152
|
Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet 2019; 21:207-226. [PMID: 31848476 DOI: 10.1038/s41576-019-0195-2] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Determining how chromosomes are positioned and folded within the nucleus is critical to understanding the role of chromatin topology in gene regulation. Several methods are available for studying chromosome architecture, each with different strengths and limitations. Established imaging approaches and proximity ligation-based chromosome conformation capture (3C) techniques (such as DNA-FISH and Hi-C, respectively) have revealed the existence of chromosome territories, functional nuclear landmarks (such as splicing speckles and the nuclear lamina) and topologically associating domains. Improvements to these methods and the recent development of ligation-free approaches, including GAM, SPRITE and ChIA-Drop, are now helping to uncover new aspects of 3D genome topology that confirm the nucleus to be a complex, highly organized organelle.
Collapse
Affiliation(s)
- Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
153
|
Azagra A, Marina-Zárate E, Ramiro AR, Javierre BM, Parra M. From Loops to Looks: Transcription Factors and Chromatin Organization Shaping Terminal B Cell Differentiation. Trends Immunol 2019; 41:46-60. [PMID: 31822368 DOI: 10.1016/j.it.2019.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
B lymphopoiesis is tightly regulated at the level of gene transcription. In recent years, investigators have shed light on the transcription factor networks and the epigenetic machinery involved at all differentiation steps of mammalian B cell development. During terminal differentiation, B cells undergo dramatic changes in gene transcriptional programs to generate germinal center B cells, plasma cells and memory B cells. Recent evidence indicates that mature B cell formation involves an essential contribution from 3D chromatin conformations through its interplay with transcription factors and epigenetic machinery. Here, we provide an up-to-date overview of the coordination between transcription factors, epigenetic changes, and chromatin architecture during terminal B cell differentiation, focusing on recent discoveries and technical advances for studying 3D chromatin structures.
Collapse
Affiliation(s)
- Alba Azagra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain
| | - Ester Marina-Zárate
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Biola M Javierre
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain.
| | - Maribel Parra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
154
|
Zhang H, Emerson DJ, Gilgenast TG, Titus KR, Lan Y, Huang P, Zhang D, Wang H, Keller CA, Giardine B, Hardison RC, Phillips-Cremins JE, Blobel GA. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature 2019; 576:158-162. [PMID: 31776509 PMCID: PMC6895436 DOI: 10.1038/s41586-019-1778-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 10/02/2019] [Indexed: 11/08/2022]
Abstract
Features of higher-order chromatin organization-such as A/B compartments, topologically associating domains and chromatin loops-are temporarily disrupted during mitosis1,2. Because these structures are thought to influence gene regulation, it is important to understand how they are re-established after mitosis. Here we examine the dynamics of chromosome reorganization by Hi-C after mitosis in highly purified, synchronous mouse erythroid cell populations. We observed rapid establishment of A/B compartments, followed by their gradual intensification and expansion. Contact domains form from the 'bottom up'-smaller subTADs are formed initially, followed by convergence into multi-domain TAD structures. CTCF is partially retained on mitotic chromosomes and immediately resumes full binding in ana/telophase. By contrast, cohesin is completely evicted from mitotic chromosomes and regains focal binding at a slower rate. The formation of CTCF/cohesin co-anchored structural loops follows the kinetics of cohesin positioning. Stripe-shaped contact patterns-anchored by CTCF-grow in length, which is consistent with a loop-extrusion process after mitosis. Interactions between cis-regulatory elements can form rapidly, with rates exceeding those of CTCF/cohesin-anchored contacts. Notably, we identified a group of rapidly emerging transient contacts between cis-regulatory elements in ana/telophase that are dissolved upon G1 entry, co-incident with the establishment of inner boundaries or nearby interfering chromatin loops. We also describe the relationship between transcription reactivation and architectural features. Our findings indicate that distinct but mutually influential forces drive post-mitotic chromatin reconfiguration.
Collapse
Affiliation(s)
- Haoyue Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel J Emerson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas G Gilgenast
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Katelyn R Titus
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Di Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongxin Wang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | | | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
155
|
Oudelaar AM, Harrold CL, Hanssen LLP, Telenius JM, Higgs DR, Hughes JR. A revised model for promoter competition based on multi-way chromatin interactions at the α-globin locus. Nat Commun 2019; 10:5412. [PMID: 31776347 PMCID: PMC6881440 DOI: 10.1038/s41467-019-13404-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022] Open
Abstract
Specific communication between gene promoters and enhancers is critical for accurate regulation of gene expression. However, it remains unclear how specific interactions between multiple regulatory elements contained within a single chromatin domain are coordinated. Recent technological advances which can detect multi-way chromatin interactions at single alleles can provide insights into how multiple regulatory elements cooperate or compete for transcriptional activation. Here, we use such an approach to investigate how interactions of the α-globin enhancers are distributed between multiple promoters in a mouse model in which the α-globin domain is extended to include several additional genes. Our data show that gene promoters do not form mutually exclusive interactions with enhancers, but all interact simultaneously in a single complex. These findings suggest that promoters do not structurally compete for interactions with enhancers, but form a regulatory hub structure, which is consistent with recent models of transcriptional activation occurring in non-membrane bound nuclear compartments.
Collapse
Affiliation(s)
- A Marieke Oudelaar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Caroline L Harrold
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lars L P Hanssen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jelena M Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
156
|
Buckle A, Gilbert N, Marenduzzo D, Brackley CA. capC-MAP: software for analysis of Capture-C data. Bioinformatics 2019; 35:4773-4775. [PMID: 31173058 DOI: 10.1093/bioinformatics/btz480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 11/12/2022] Open
Abstract
SUMMARY Capture-C is a member of the chromosome-conformation-capture family of experimental methods which probes the 3D organization of chromosomes within the cell nucleus. It provides high-resolution information on the genome-wide chromatin interactions from a set of 'target' genomic locations, and is growing in popularity as a tool for improving our understanding of cis-regulation and gene function. Yet, analysis of the data is complicated, and to date there has been no dedicated or easy-to-use software to automate the process. We present capC-MAP, a software package for the analysis of Capture-C data. AVAILABILITY AND IMPLEMENTATION Implemented with both ease of use and flexibility in mind, capC-MAP is a suit of programs written in C++ and Python, where each program can be run separately, or an entire analysis can be performed with a single command line. It is available under an open-source licence at https://github.com/cbrackley/capC-MAP, as well as via the conda package manager, and should run on any standard Unix-style system. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Adam Buckle
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
| |
Collapse
|
157
|
Williams RM, Candido-Ferreira I, Repapi E, Gavriouchkina D, Senanayake U, Ling ITC, Telenius J, Taylor S, Hughes J, Sauka-Spengler T. Reconstruction of the Global Neural Crest Gene Regulatory Network In Vivo. Dev Cell 2019; 51:255-276.e7. [PMID: 31639368 PMCID: PMC6838682 DOI: 10.1016/j.devcel.2019.10.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Precise control of developmental processes is encoded in the genome in the form of gene regulatory networks (GRNs). Such multi-factorial systems are difficult to decode in vertebrates owing to their complex gene hierarchies and dynamic molecular interactions. Here we present a genome-wide in vivo reconstruction of the GRN underlying development of the multipotent neural crest (NC) embryonic cell population. By coupling NC-specific epigenomic and transcriptional profiling at population and single-cell levels with genome/epigenome engineering in vivo, we identify multiple regulatory layers governing NC ontogeny, including NC-specific enhancers and super-enhancers, novel trans-factors, and cis-signatures allowing reverse engineering of the NC-GRN at unprecedented resolution. Furthermore, identification and dissection of divergent upstream combinatorial regulatory codes has afforded new insights into opposing gene circuits that define canonical and neural NC fates early during NC ontogeny. Our integrated approach, allowing dissection of cell-type-specific regulatory circuits in vivo, has broad implications for GRN discovery and investigation.
Collapse
Affiliation(s)
- Ruth M Williams
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Ivan Candido-Ferreira
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Emmanouela Repapi
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | - Daria Gavriouchkina
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Upeka Senanayake
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Irving T C Ling
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK; University of Oxford, Department of Paediatric Surgery, Children's Hospital Oxford, Oxford, UK
| | - Jelena Telenius
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK; University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Stephen Taylor
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | - Jim Hughes
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK; University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
158
|
Geeven G, Teunissen H, de Laat W, de Wit E. peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data. Nucleic Acids Res 2019; 46:e91. [PMID: 29800273 PMCID: PMC6125690 DOI: 10.1093/nar/gky443] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/13/2018] [Indexed: 11/14/2022] Open
Abstract
It is becoming increasingly clear that chromosome organization plays an important role in gene regulation. High-resolution methods such as 4C, Capture-C and promoter capture Hi-C (PCHiC) enable the study of chromatin loops such as those formed between promoters and enhancers or CTCF/cohesin binding sites. An important aspect of 4C/Capture-C/PCHiC analyses is the reliable identification of chromatin loops, preferably not based on visual inspection of a DNA contact profile, but on reproducible statistical analysis that robustly scores interaction peaks in the non-uniform contact background. Here, we present peakC, an R package for the analysis of 4C/Capture-C/PCHiC data. We generated 4C data for 13 viewpoints in two tissues in at least triplicate to test our methods. We developed a non-parametric peak caller based on rank-products. Sampling analysis shows that not read depth but template quality is the most important determinant of success in 4C experiments. By performing peak calling on single experiments we show that the peak calling results are similar to the replicate experiments, but that false positive rates are significantly reduced by performing replicates. Our software is user-friendly and enables robust peak calling for one-vs-all chromosome capture experiments. peakC is available at: https://github.com/deWitLab/peakC.
Collapse
Affiliation(s)
- Geert Geeven
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Hans Teunissen
- Oncode Institute and Division of Gene Regulation, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Elzo de Wit
- Oncode Institute and Division of Gene Regulation, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
159
|
Li X, An Z, Zhang Z. Comparison of computational methods for 3D genome analysis at single-cell Hi-C level. Methods 2019; 181-182:52-61. [PMID: 31445093 DOI: 10.1016/j.ymeth.2019.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/09/2019] [Accepted: 08/19/2019] [Indexed: 11/18/2022] Open
Abstract
Hi-C is a high-throughput chromosome conformation capture technology that is becoming routine in the literature. Although the price of sequencing has been dropping dramatically, high-resolution Hi-C data are not always an option for many studies, such as in single cells. However, the performance of current computational methods based on Hi-C at the ultra-sparse data condition has yet to be fully assessed. Therefore, in this paper, after briefly surveying the primary computational methods for Hi-C data analysis, we assess the performance of representative methods on data normalization, identification of compartments, Topologically Associating Domains (TADs) and chromatin loops under the condition of ultra-low resolution. We showed that most state-of-the-art methods do not work properly for that condition. Then, we applied the three best-performing methods on real single-cell Hi-C data, and their performance indicates that compartments may be a statistical feature emerging from the cell population, while TADs and chromatin loops may dynamically exist in single cells.
Collapse
Affiliation(s)
- Xiao Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ziyang An
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
160
|
Portillo-Ledesma S, Schlick T. Bridging chromatin structure and function over a range of experimental spatial and temporal scales by molecular modeling. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019; 10. [PMID: 34046090 DOI: 10.1002/wcms.1434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromatin structure, dynamics, and function are being intensely investigated by a variety of methods, including microscopy, X-ray diffraction, nuclear magnetic resonance, biochemical crosslinking, chromosome conformation capture, and computation. A range of experimental techniques combined with modeling is clearly valuable to help interpret experimental data and, importantly, generate configurations and mechanisms related to the 3D organization and function of the genome. Contact maps, in particular, as obtained by a variety of chromosome conformation capture methods, are of increasing interest due to their implications on genome structure and regulation on many levels. In this perspective, using seven examples from our group's studies, we illustrate how molecular modeling can help interpret such experimental data. Specifically, we show how computed contact maps related to experimental systems can be used to explain structures of nucleosomes, chromatin higher-order folding, domain segregation mechanisms, gene organization, and the effect on chromatin structure of external and internal fiber parameters, such as nucleosome positioning, presence of nucleosome free regions, histone posttranslational modifications, and linker histone binding. We argue that such computations on multiple spatial and temporal scales will be increasingly important for the integration of genomic, epigenomic, and biophysical data on chromatin structure and related cellular processes.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, New York, 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, New York, 10003, USA.,Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, New York, 10012, USA.,New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
161
|
Large-scale chromatin organisation in interphase, mitosis and meiosis. Biochem J 2019; 476:2141-2156. [DOI: 10.1042/bcj20180512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/17/2023]
Abstract
AbstractThe spatial configuration of chromatin is fundamental to ensure any given cell can fulfil its functional duties, from gene expression to specialised cellular division. Significant technological innovations have facilitated further insights into the structure, function and regulation of three-dimensional chromatin organisation. To date, the vast majority of investigations into chromatin organisation have been conducted in interphase and mitotic cells leaving meiotic chromatin relatively unexplored. In combination, cytological and genome-wide contact frequency analyses in mammalian germ cells have recently demonstrated that large-scale chromatin structures in meiotic prophase I are reminiscent of the sequential loop arrays found in mitotic cells, although interphase-like segmentation of transcriptionally active and inactive regions are also evident along the length of chromosomes. Here, we discuss the similarities and differences of such large-scale chromatin architecture, between interphase, mitotic and meiotic cells, as well as their functional relevance and the proposed modulatory mechanisms which underlie them.
Collapse
|
162
|
Lewis MW, Li S, Franco HL. Transcriptional control by enhancers and enhancer RNAs. Transcription 2019; 10:171-186. [PMID: 31791217 PMCID: PMC6948965 DOI: 10.1080/21541264.2019.1695492] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/02/2022] Open
Abstract
The regulation of gene expression is a fundamental cellular process and its misregulation is a key component of disease. Enhancers are one of the most salient regulatory elements in the genome and help orchestrate proper spatiotemporal gene expression during development, in homeostasis, and in response to signaling. Notably, molecular aberrations at enhancers, such as translocations and single nucleotide polymorphisms, are emerging as an important source of human variation and susceptibility to disease. Herein we discuss emerging paradigms addressing how genes are regulated by enhancers, common features of active enhancers, and how non-coding enhancer RNAs (eRNAs) can direct gene expression programs that underlie cellular phenotypes. We survey the current evidence, which suggests that eRNAs can bind to transcription factors, mediate enhancer-promoter interactions, influence RNA Pol II elongation, and act as decoys for repressive cofactors. Furthermore, we discuss current methodologies for the identification of eRNAs and novel approaches to elucidate their functions.
Collapse
Affiliation(s)
- Michael W. Lewis
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Shen Li
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hector L. Franco
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
163
|
Park J, Lin S. Evaluation and comparison of methods for recapitulation of 3D spatial chromatin structures. Brief Bioinform 2019; 20:1205-1214. [PMID: 29091999 DOI: 10.1093/bib/bbx134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/10/2017] [Indexed: 11/12/2022] Open
Abstract
How chromosomes fold and how distal genomic elements interact with one another at a genomic scale have been actively pursued in the past decade following the seminal work describing the Chromosome Conformation Capture (3C) assay. Essentially, 3C-based technologies produce two-dimensional (2D) contact maps that capture interactions between genomic fragments. Accordingly, a plethora of analytical methods have been proposed to take a 2D contact map as input to recapitulate the underlying whole genome three-dimensional (3D) structure of the chromatin. However, their performance in terms of several factors, including data resolution and ability to handle contact map features, have not been sufficiently evaluated. This task is taken up in this article, in which we consider several recent and/or well-regarded methods, both optimization-based and model-based, for their aptness of producing 3D structures using contact maps generated based on a population of cells. These methods are evaluated and compared using both simulated and real data. Several criteria have been used. For simulated data sets, the focus is on accurate recapitulation of the entire structure given the existence of the gold standard. For real data sets, comparison with distances measured by Florescence in situ Hybridization and consistency with several genomic features of known biological functions are examined.
Collapse
|
164
|
Computational Processing and Quality Control of Hi-C, Capture Hi-C and Capture-C Data. Genes (Basel) 2019; 10:genes10070548. [PMID: 31323892 PMCID: PMC6678864 DOI: 10.3390/genes10070548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/06/2019] [Accepted: 07/14/2019] [Indexed: 01/08/2023] Open
Abstract
Hi-C, capture Hi-C (CHC) and Capture-C have contributed greatly to our present understanding of the three-dimensional organization of genomes in the context of transcriptional regulation by characterizing the roles of topological associated domains, enhancer promoter loops and other three-dimensional genomic interactions. The analysis is based on counts of chimeric read pairs that map to interacting regions of the genome. However, the processing and quality control presents a number of unique challenges. We review here the experimental and computational foundations and explain how the characteristics of restriction digests, sonication fragments and read pairs can be exploited to distinguish technical artefacts from valid read pairs originating from true chromatin interactions.
Collapse
|
165
|
Çalışkan M, Manduchi E, Rao HS, Segert JA, Beltrame MH, Trizzino M, Park Y, Baker SW, Chesi A, Johnson ME, Hodge KM, Leonard ME, Loza B, Xin D, Berrido AM, Hand NJ, Bauer RC, Wells AD, Olthoff KM, Shaked A, Rader DJ, Grant SFA, Brown CD. Genetic and Epigenetic Fine Mapping of Complex Trait Associated Loci in the Human Liver. Am J Hum Genet 2019; 105:89-107. [PMID: 31204013 PMCID: PMC6612522 DOI: 10.1016/j.ajhg.2019.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Deciphering the impact of genetic variation on gene regulation is fundamental to understanding common, complex human diseases. Although histone modifications are important markers of gene regulatory elements of the genome, any specific histone modification has not been assayed in more than a few individuals in the human liver. As a result, the effects of genetic variation on histone modification states in the liver are poorly understood. Here, we generate the most comprehensive genome-wide dataset of two epigenetic marks, H3K4me3 and H3K27ac, and annotate thousands of putative regulatory elements in the human liver. We integrate these findings with genome-wide gene expression data collected from the same human liver tissues and high-resolution promoter-focused chromatin interaction maps collected from human liver-derived HepG2 cells. We demonstrate widespread functional consequences of natural genetic variation on putative regulatory element activity and gene expression levels. Leveraging these extensive datasets, we fine-map a total of 74 GWAS loci that have been associated with at least one complex phenotype. Our results reveal a repertoire of genes and regulatory mechanisms governing complex disease development and further the basic understanding of genetic and epigenetic regulation of gene expression in the human liver tissue.
Collapse
Affiliation(s)
- Minal Çalışkan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Elisabetta Manduchi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biostatistics, Epidemiology, & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H Shanker Rao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julian A Segert
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcia Holsbach Beltrame
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Trizzino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - YoSon Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel W Baker
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandra Chesi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kenyaita M Hodge
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michelle E Leonard
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Baoli Loza
- Division of Transplant Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dong Xin
- Division of Transplant Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea M Berrido
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert C Bauer
- Division of Cardiology, Columbia University, New York, NY 10032, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kim M Olthoff
- Division of Transplant Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abraham Shaked
- Division of Transplant Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
166
|
Godfrey L, Crump NT, Thorne R, Lau IJ, Repapi E, Dimou D, Smith AL, Harman JR, Telenius JM, Oudelaar AM, Downes DJ, Vyas P, Hughes JR, Milne TA. DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation. Nat Commun 2019; 10:2803. [PMID: 31243293 PMCID: PMC6594956 DOI: 10.1038/s41467-019-10844-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 06/05/2019] [Indexed: 12/26/2022] Open
Abstract
Enhancer elements are a key regulatory feature of many important genes. Several general features including the presence of specific histone modifications are used to demarcate potentially active enhancers. Here we reveal that putative enhancers marked with H3 lysine 79 (H3K79) di or trimethylation (me2/3) (which we name H3K79me2/3 enhancer elements or KEEs) can be found in multiple cell types. Mixed lineage leukemia gene (MLL) rearrangements (MLL-r) such as MLL-AF4 are a major cause of incurable acute lymphoblastic leukemias (ALL). Using the DOT1L inhibitor EPZ-5676 in MLL-AF4 leukemia cells, we show that H3K79me2/3 is required for maintaining chromatin accessibility, histone acetylation and transcription factor binding specifically at KEEs but not non-KEE enhancers. We go on to show that H3K79me2/3 is essential for maintaining enhancer-promoter interactions at a subset of KEEs. Together, these data implicate H3K79me2/3 as having a functional role at a subset of active enhancers in MLL-AF4 leukemia cells.
Collapse
Affiliation(s)
- Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ross Thorne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - I-Jun Lau
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Dimitra Dimou
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Alastair L Smith
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jelena M Telenius
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - A Marieke Oudelaar
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Jim R Hughes
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
167
|
Zheng H, Xie W. The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 2019; 20:535-550. [DOI: 10.1038/s41580-019-0132-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
168
|
McKay DJ, Stutzman AV, Dowen JM. Advancements in mapping 3D genome architecture. Methods 2019; 170:75-81. [PMID: 31201934 DOI: 10.1016/j.ymeth.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/01/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Daniel J McKay
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexis V Stutzman
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jill M Dowen
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
169
|
Qian M, Cheng Y, Wang X. The methodology study of three-dimensional (3D) genome research. Semin Cell Dev Biol 2019; 90:12-18. [DOI: 10.1016/j.semcdb.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022]
|
170
|
Krumm A, Duan Z. Understanding the 3D genome: Emerging impacts on human disease. Semin Cell Dev Biol 2019; 90:62-77. [PMID: 29990539 PMCID: PMC6329682 DOI: 10.1016/j.semcdb.2018.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Recent burst of new technologies that allow for quantitatively delineating chromatin structure has greatly expanded our understanding of how the genome is organized in the three-dimensional (3D) space of the nucleus. It is now clear that the hierarchical organization of the eukaryotic genome critically impacts nuclear activities such as transcription, replication, as well as cellular and developmental events such as cell cycle, cell fate decision and embryonic development. In this review, we discuss new insights into how the structural features of the 3D genome hierarchy are established and maintained, how this hierarchy undergoes dynamic rearrangement during normal development and how its perturbation will lead to human disease, highlighting the accumulating evidence that links the diverse 3D genome architecture components to a multitude of human diseases and the emerging mechanisms by which 3D genome derangement causes disease phenotypes.
Collapse
Affiliation(s)
- Anton Krumm
- Department of Microbiology, University of Washington, USA.
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, USA; Division of Hematology, Department of Medicine, University of Washington, USA.
| |
Collapse
|
171
|
The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nat Genet 2019; 51:1024-1034. [PMID: 31133748 PMCID: PMC6551226 DOI: 10.1038/s41588-019-0412-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/04/2019] [Indexed: 01/08/2023]
Abstract
The mouse X-inactivation center (Xic) locus represents a powerful model for understanding the links between genome architecture and gene regulation, with the non-coding genes Xist and Tsix showing opposite developmental expression patterns while being organized as an overlapping sense/antisense unit. The Xic is organized into two topologically associating domains (TADs) but the role of this architecture in orchestrating cis-regulatory information remains elusive. To explore this, we generated genomic inversions that swap the Xist/Tsix transcriptional unit and place their promoters in each other’s TAD. We found that this led to a switch in their expression dynamics: Xist became precociously and ectopically up-regulated, both in male and female pluripotent cells, while Tsix expression aberrantly persisted during differentiation. The topological partitioning of the Xic is thus critical to ensure proper developmental timing of X inactivation. Our study illustrates how the genomic architecture of cis-regulatory landscapes can affect the regulation of mammalian developmental processes.
Collapse
|
172
|
Ben Zouari Y, Molitor AM, Sikorska N, Pancaldi V, Sexton T. ChiCMaxima: a robust and simple pipeline for detection and visualization of chromatin looping in Capture Hi-C. Genome Biol 2019; 20:102. [PMID: 31118054 PMCID: PMC6532271 DOI: 10.1186/s13059-019-1706-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Capture Hi-C (CHi-C) is a new technique for assessing genome organization based on chromosome conformation capture coupled to oligonucleotide capture of regions of interest, such as gene promoters. Chromatin loop detection is challenging because existing Hi-C/4C-like tools, which make different assumptions about the technical biases presented, are often unsuitable. We describe a new approach, ChiCMaxima, which uses local maxima combined with limited filtering to detect DNA looping interactions, integrating information from biological replicates. ChiCMaxima shows more stringency and robustness compared to previously developed tools. The tool includes a GUI browser for flexible visualization of CHi-C profiles alongside epigenomic tracks.
Collapse
Affiliation(s)
- Yousra Ben Zouari
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Anne M Molitor
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Natalia Sikorska
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM U1037, Toulouse, France
- University Paul Sabatier III, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.
- CNRS UMR7104, Illkirch, France.
- INSERM U1258, Illkirch, France.
- University of Strasbourg, Illkirch, France.
| |
Collapse
|
173
|
Schoenfelder S, Fraser P. Long-range enhancer–promoter contacts in gene expression control. Nat Rev Genet 2019; 20:437-455. [DOI: 10.1038/s41576-019-0128-0] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
174
|
Stam M, Tark-Dame M, Fransz P. 3D genome organization: a role for phase separation and loop extrusion? CURRENT OPINION IN PLANT BIOLOGY 2019; 48:36-46. [PMID: 31035031 DOI: 10.1016/j.pbi.2019.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/20/2019] [Indexed: 05/21/2023]
Abstract
In eukaryotes, genomic information is encoded in chromosomes, which occupy distinct territories within the nucleus. Inside these territories, chromosomes are folded in a hierarchical set of topological structures, called compartments, topologically associated domains and loops. Phase separation and loop extrusion are the mechanisms indicated to mediate the 3D organization of the genome, and gene activity and epigenetic marks determine the activity level of the formed chromatin domains. The main difference between plants and animals may be the absence of canonical insulator elements in plants. Comparison across plant species indicates that the identification of chromatin domains is affected by genome size, gene density, and the linear distribution of genes and transposable elements.
Collapse
Affiliation(s)
- Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands.
| | - Mariliis Tark-Dame
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
175
|
Abstract
Vast repertoires of unique antigen receptors are created in developing lymphocytes. The antigen receptor loci contain many variable (V), diversity (D), and joining (J) gene segments that are arrayed across very large genomic expanses and are joined to form variable-region exons. This process creates the potential for an organism to respond to large numbers of different pathogens. Here, we consider the underlying molecular mechanisms that favor some V genes for recombination prior to selection of the final antigen receptor repertoire. We discuss chromatin structures that form in antigen receptor loci to permit spatial proximity among the V, D, and J gene segments and how these relate to the generation of antigen receptor diversity.
Collapse
Affiliation(s)
- Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
176
|
Fernández-Tajes J, Gaulton KJ, van de Bunt M, Torres J, Thurner M, Mahajan A, Gloyn AL, Lage K, McCarthy MI. Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data. Genome Med 2019; 11:19. [PMID: 30914061 PMCID: PMC6436236 DOI: 10.1186/s13073-019-0628-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified several hundred susceptibility loci for type 2 diabetes (T2D). One critical, but unresolved, issue concerns the extent to which the mechanisms through which these diverse signals influencing T2D predisposition converge on a limited set of biological processes. However, the causal variants identified by GWAS mostly fall into a non-coding sequence, complicating the task of defining the effector transcripts through which they operate. METHODS Here, we describe implementation of an analytical pipeline to address this question. First, we integrate multiple sources of genetic, genomic and biological data to assign positional candidacy scores to the genes that map to T2D GWAS signals. Second, we introduce genes with high scores as seeds within a network optimization algorithm (the asymmetric prize-collecting Steiner tree approach) which uses external, experimentally confirmed protein-protein interaction (PPI) data to generate high-confidence sub-networks. Third, we use GWAS data to test the T2D association enrichment of the "non-seed" proteins introduced into the network, as a measure of the overall functional connectivity of the network. RESULTS We find (a) non-seed proteins in the T2D protein-interaction network so generated (comprising 705 nodes) are enriched for association to T2D (p = 0.0014) but not control traits, (b) stronger T2D-enrichment for islets than other tissues when we use RNA expression data to generate tissue-specific PPI networks and (c) enhanced enrichment (p = 3.9 × 10- 5) when we combine the analysis of the islet-specific PPI network with a focus on the subset of T2D GWAS loci which act through defective insulin secretion. CONCLUSIONS These analyses reveal a pattern of non-random functional connectivity between candidate causal genes at T2D GWAS loci and highlight the products of genes including YWHAG, SMAD4 or CDK2 as potential contributors to T2D-relevant islet dysfunction. The approach we describe can be applied to other complex genetic and genomic datasets, facilitating integration of diverse data types into disease-associated networks.
Collapse
Affiliation(s)
- Juan Fernández-Tajes
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kyle J. Gaulton
- 0000 0001 2107 4242grid.266100.3Department of Pediatrics, University of California, San Diego, CA USA
| | - Martijn van de Bunt
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK ,Present Address: Department of Bioinformatics and Data Mining, Novo Nordisk A/S, Maaloev, Denmark
| | - Jason Torres
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Matthias Thurner
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anna L. Gloyn
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK ,0000 0004 0488 9484grid.415719.fOxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Kasper Lage
- 0000 0004 0386 9924grid.32224.35Department of Surgery, Massachusetts, General Hospital, Boston, MA USA ,grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | - Mark I. McCarthy
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK ,0000 0004 0488 9484grid.415719.fOxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
177
|
Ho EYK, Cao Q, Gu M, Chan RWL, Wu Q, Gerstein M, Yip KY. Shaping the nebulous enhancer in the era of high-throughput assays and genome editing. Brief Bioinform 2019; 21:836-850. [PMID: 30895290 DOI: 10.1093/bib/bbz030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 01/22/2023] Open
Abstract
Since the 1st discovery of transcriptional enhancers in 1981, their textbook definition has remained largely unchanged in the past 37 years. With the emergence of high-throughput assays and genome editing, which are switching the paradigm from bottom-up discovery and testing of individual enhancers to top-down profiling of enhancer activities genome-wide, it has become increasingly evidenced that this classical definition has left substantial gray areas in different aspects. Here we survey a representative set of recent research articles and report the definitions of enhancers they have adopted. The results reveal that a wide spectrum of definitions is used usually without the definition stated explicitly, which could lead to difficulties in data interpretation and downstream analyses. Based on these findings, we discuss the practical implications and suggestions for future studies.
Collapse
Affiliation(s)
| | - Qin Cao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Mengting Gu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ricky Wai-Lun Chan
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Qiong Wu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.,Program in Computational Biology and Bioinformatics.,Department of Computer Science, Yale University, New Haven, Connecticut, USA
| | - Kevin Y Yip
- Department of Biomedical Engineering.,Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre.,CUHK-BGI Innovation Institute of Trans-omics.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
178
|
Chesi A, Wagley Y, Johnson ME, Manduchi E, Su C, Lu S, Leonard ME, Hodge KM, Pippin JA, Hankenson KD, Wells AD, Grant SFA. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat Commun 2019; 10:1260. [PMID: 30890710 PMCID: PMC6425012 DOI: 10.1038/s41467-019-09302-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis is a devastating disease with an essential genetic component. GWAS have discovered genetic signals robustly associated with bone mineral density (BMD), but not the precise localization of effector genes. Here, we carry out physical and direct variant to gene mapping in human mesenchymal progenitor cell-derived osteoblasts employing a massively parallel, high resolution Capture C based method in order to simultaneously characterize the genome-wide interactions of all human promoters. By intersecting our Capture C and ATAC-seq data, we observe consistent contacts between candidate causal variants and putative target gene promoters in open chromatin for ~ 17% of the 273 BMD loci investigated. Knockdown of two novel implicated genes, ING3 at ‘CPED1-WNT16’ and EPDR1 at ‘STARD3NL’, inhibits osteoblastogenesis, while promoting adipogenesis. This approach therefore aids target discovery in osteoporosis, here on the example of two relevant genes involved in the fate determination of mesenchymal progenitors, and can be applied to other common genetic diseases. GWAS have identified numerous genetic loci for bone mineral density (BMD) and fracture risk. Here, the authors map these variants to putative target genes using ATAC-seq and Capture C of human osteoblasts and confirm ING3 and EPDR1 as BMD genes in in vitro osteoblast differentiation experiments.
Collapse
Affiliation(s)
- Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Elisabetta Manduchi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA.,Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, PA, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, PA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA. .,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, PA, USA. .,Divisions of Genetics and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA.
| |
Collapse
|
179
|
Abstract
BACKGROUND Hi-C is currently the most widely used assay to investigate the 3D organization of the genome and to study its role in gene regulation, DNA replication, and disease. However, Hi-C experiments are costly to perform and involve multiple complex experimental steps; thus, accurate methods for measuring the quality and reproducibility of Hi-C data are essential to determine whether the output should be used further in a study. RESULTS Using real and simulated data, we profile the performance of several recently proposed methods for assessing reproducibility of population Hi-C data, including HiCRep, GenomeDISCO, HiC-Spector, and QuASAR-Rep. By explicitly controlling noise and sparsity through simulations, we demonstrate the deficiencies of performing simple correlation analysis on pairs of matrices, and we show that methods developed specifically for Hi-C data produce better measures of reproducibility. We also show how to use established measures, such as the ratio of intra- to interchromosomal interactions, and novel ones, such as QuASAR-QC, to identify low-quality experiments. CONCLUSIONS In this work, we assess reproducibility and quality measures by varying sequencing depth, resolution and noise levels in Hi-C data from 13 cell lines, with two biological replicates each, as well as 176 simulated matrices. Through this extensive validation and benchmarking of Hi-C data, we describe best practices for reproducibility and quality assessment of Hi-C experiments. We make all software publicly available at http://github.com/kundajelab/3DChromatin_ReplicateQC to facilitate adoption in the community.
Collapse
|
180
|
Abstract
The stability and function of many oncogenic mutant proteins depend on heat shock protein 90 (HSP90). This unique activity has inspired the exploration of HSP90 as an anticancer target for over two decades. Unfortunately, while clinical trials of highly optimized HSP90 inhibitors have demonstrated modest benefit for patients with advanced cancers, most commonly stabilization of disease, no HSP90 inhibitor has demonstrated sufficient efficacy to achieve FDA approval to date. This review discusses potential reasons for the limited success of these agents and how our increasingly sophisticated understanding of HSP90 suggests alternative, potentially more effective strategies for targeting it to treat cancers. First, we focus on insights gained from model organisms that suggest a fundamental role for HSP90 in supporting the adaptability and heterogeneity of cancers, key factors underlying their ability to evolve and acquire drug resistance. Second, we examine how HSP90’s role in promoting the stability of mutant proteins might be targeted in genetically unstable tumor cells to reveal their aberrant, foreign proteome to the immune system. Both of these emerging aspects of HSP90 biology suggest that the most effective use of HSP90 inhibitors may not be at high doses with the intent to kill cancer cells, but rather in combination with other molecularly targeted therapies at modest, non-heat shock-inducing exposures that limit the adaptive capacity of cancers.
Collapse
Affiliation(s)
- Alex M. Jaeger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
181
|
Furlan G, Gutierrez Hernandez N, Huret C, Galupa R, van Bemmel JG, Romito A, Heard E, Morey C, Rougeulle C. The Ftx Noncoding Locus Controls X Chromosome Inactivation Independently of Its RNA Products. Mol Cell 2019; 70:462-472.e8. [PMID: 29706539 DOI: 10.1016/j.molcel.2018.03.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/21/2018] [Accepted: 03/22/2018] [Indexed: 01/26/2023]
Abstract
Accumulation of the Xist long noncoding RNA (lncRNA) on one X chromosome is the trigger for X chromosome inactivation (XCI) in female mammals. Xist expression, which needs to be tightly controlled, involves a cis-acting region, the X-inactivation center (Xic), containing many lncRNA genes that evolved concomitantly to Xist from protein-coding ancestors through pseudogeneization and loss of coding potential. Here, we uncover an essential role for the Xic-linked noncoding gene Ftx in the regulation of Xist expression. We show that Ftx is required in cis to promote Xist transcriptional activation and establishment of XCI. Importantly, we demonstrate that this function depends on Ftx transcription and not on the RNA products. Our findings illustrate the multiplicity of layers operating in the establishment of XCI and highlight the diversity in the modus operandi of the noncoding players.
Collapse
Affiliation(s)
- Giulia Furlan
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France
| | - Nancy Gutierrez Hernandez
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France
| | - Christophe Huret
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France
| | - Rafael Galupa
- Institut Curie, PSL Research University, CNRS, INSERM, UMR3215/U934 Genetics and Developmental Biology Unit, Mammalian Developmental Epigenetics Group, F-75005 Paris, France
| | - Joke Gerarda van Bemmel
- Institut Curie, PSL Research University, CNRS, INSERM, UMR3215/U934 Genetics and Developmental Biology Unit, Mammalian Developmental Epigenetics Group, F-75005 Paris, France; Department of Developmental Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Antonio Romito
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France
| | - Edith Heard
- Institut Curie, PSL Research University, CNRS, INSERM, UMR3215/U934 Genetics and Developmental Biology Unit, Mammalian Developmental Epigenetics Group, F-75005 Paris, France
| | - Céline Morey
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France.
| | - Claire Rougeulle
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France.
| |
Collapse
|
182
|
Hansen P, Ali S, Blau H, Danis D, Hecht J, Kornak U, Lupiáñez DG, Mundlos S, Steinhaus R, Robinson PN. GOPHER: Generator Of Probes for capture Hi-C Experiments at high Resolution. BMC Genomics 2019; 20:40. [PMID: 30642251 PMCID: PMC6332836 DOI: 10.1186/s12864-018-5376-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/16/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Target enrichment combined with chromosome conformation capturing methodologies such as capture Hi-C (CHC) can be used to investigate spatial layouts of genomic regions with high resolution and at scalable costs. A common application of CHC is the investigation of regulatory elements that are in contact with promoters, but CHC can be used for a range of other applications. Therefore, probe design for CHC needs to be adapted to experimental needs, but no flexible tool is currently available for this purpose. RESULTS We present a Java desktop application called GOPHER (Generator Of Probes for capture Hi-C Experiments at high Resolution) that implements three strategies for CHC probe design. GOPHER's simple approach is similar to the probe design of previous approaches that employ CHC to investigate all promoters, with one probe being placed at each margin of a single digest that overlaps the transcription start site (TSS) of each promoter. GOPHER's simple-patched approach extends this methodology with a heuristic that improves coverage of viewpoints in which the TSS is located near to one of the boundaries of the digest. GOPHER's extended approach is intended mainly for focused investigations of smaller gene sets. GOPHER can also be used to design probes for regions other than TSS such as GWAS hits or large blocks of genomic sequence. GOPHER additionally provides a number of features that allow users to visualize and edit viewpoints, and outputs a range of files useful for documentation, ordering probes, and downstream analysis. CONCLUSION GOPHER is an easy-to-use and robust desktop application for CHC probe design. Source code and a precompiled executable can be downloaded from the GOPHER GitHub page at https://github.com/TheJacksonLaboratory/Gopher .
Collapse
Affiliation(s)
- Peter Hansen
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Salaheddine Ali
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, Berlin, 14195, Germany
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, 06032, CT, United States
| | - Daniel Danis
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, 06032, CT, United States
| | - Jochen Hecht
- Genomics Unit, Centre for Genomic Regulation, Carrer del Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany.,Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, 13125, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany.,Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, Berlin, 14195, Germany.,Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Robin Steinhaus
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, 06032, CT, United States. .,Institute for Systems Genomics, University of Connecticut, Farmington, 06032, CT, United States.
| |
Collapse
|
183
|
Chromosome Conformation Capture Reveals Two Elements That Interact with the PTBP3 ( ROD1) Transcription Start Site. Int J Mol Sci 2019; 20:ijms20020242. [PMID: 30634466 PMCID: PMC6359592 DOI: 10.3390/ijms20020242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022] Open
Abstract
The long-range control of gene expression is facilitated by chromatin looping and can be detected using chromosome conformation capture—3C. Here we focus on the chromatin architecture of the PTBP3 (Polypyrimidine tract binding protein 3) locus to evaluate its potential role in regulating expression of the gene. PTBP3 expression in prostate cancer cell lines is found significantly higher compared to skin fibroblasts using real-time PCR (p < 0.05) and digital droplet PCR (p < 0.01). Exploration of the chromatin spatial architecture of a nearly 200-kb fragment of chromosome 9 encompassing the PTBP3 gene identified two elements located 63 kb upstream and 48 kb downstream of PTBP3, which looped specifically to the PTBP3 promoter. These elements contain histone acetylation patterns characteristic of open chromatin regions with active enhancers. Our results reveal for the first time that long-range chromatin interactions between the −63 kb and +48 kb loci and the PTBP3 promoter regulate the expression of this gene in prostate cancer cells. These interactions support an open chromatin form for the PTBP3 locus in cancer cells and the three-dimensional structural model proposed in this paper.
Collapse
|
184
|
Ohno M, Ando T, Priest DG, Kumar V, Yoshida Y, Taniguchi Y. Sub-nucleosomal Genome Structure Reveals Distinct Nucleosome Folding Motifs. Cell 2019; 176:520-534.e25. [DOI: 10.1016/j.cell.2018.12.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 10/16/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022]
|
185
|
Lin D, Bonora G, Yardımcı GG, Noble WS. Computational methods for analyzing and modeling genome structure and organization. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1435. [PMID: 30022617 PMCID: PMC6294685 DOI: 10.1002/wsbm.1435] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/07/2018] [Accepted: 06/16/2018] [Indexed: 12/31/2022]
Abstract
Recent advances in chromosome conformation capture technologies have led to the discovery of previously unappreciated structural features of chromatin. Computational analysis has been critical in detecting these features and thereby helping to uncover the building blocks of genome architecture. Algorithms are being developed to integrate these architectural features to construct better three-dimensional (3D) models of the genome. These computational methods have revealed the importance of 3D genome organization to essential biological processes. In this article, we review the state of the art in analytic and modeling techniques with a focus on their application to answering various biological questions related to chromatin structure. We summarize the limitations of these computational techniques and suggest future directions, including the importance of incorporating multiple sources of experimental data in building a more comprehensive model of the genome. This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Dejun Lin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
186
|
Abstract
In the epigenetics field, large-scale functional genomics datasets of ever-increasing size and complexity have been produced using experimental techniques based on high-throughput sequencing. In particular, the study of the 3D organization of chromatin has raised increasing interest, thanks to the development of advanced experimental techniques. In this context, Hi-C has been widely adopted as a high-throughput method to measure pairwise contacts between virtually any pair of genomic loci, thus yielding unprecedented challenges for analyzing and handling the resulting complex datasets. In this review, we focus on the increasing complexity of available Hi-C datasets, which parallels the adoption of novel protocol variants. We also review the complexity of the multiple data analysis steps required to preprocess Hi-C sequencing reads and extract biologically meaningful information. Finally, we discuss solutions for handling and visualizing such large genomics datasets.
Collapse
|
187
|
Chromatin conformation analysis of primary patient tissue using a low input Hi-C method. Nat Commun 2018; 9:4938. [PMID: 30498195 PMCID: PMC6265268 DOI: 10.1038/s41467-018-06961-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/03/2018] [Indexed: 12/21/2022] Open
Abstract
Chromatin conformation constitutes a fundamental level of eukaryotic genome regulation. However, our ability to examine its biological function and role in disease is limited by the large amounts of starting material required to perform current experimental approaches. Here, we present Low-C, a Hi-C method for low amounts of input material. By systematically comparing Hi-C libraries made with decreasing amounts of starting material we show that Low-C is highly reproducible and robust to experimental noise. To demonstrate the suitability of Low-C to analyse rare cell populations, we produce Low-C maps from primary B-cells of a diffuse large B-cell lymphoma patient. We detect a common reciprocal translocation t(3;14)(q27;q32) affecting the BCL6 and IGH loci and abundant local structural variation between the patient and healthy B-cells. The ability to study chromatin conformation in primary tissue will be fundamental to fully understand the molecular pathogenesis of diseases and to eventually guide personalised therapeutic strategies. Chromatin conformation studies are limited by the large amounts of starting material required to perform current protocols. Here the authors present Low-C, a Hi-C method for low amounts of input material and produce Low-C maps from primary B-cells of a diffuse large B-cell lymphoma patient, demonstrating the suitability of Low-C to analyse rare cell populations.
Collapse
|
188
|
Yakushiji-Kaminatsui N, Lopez-Delisle L, Bolt CC, Andrey G, Beccari L, Duboule D. Similarities and differences in the regulation of HoxD genes during chick and mouse limb development. PLoS Biol 2018; 16:e3000004. [PMID: 30475793 PMCID: PMC6283595 DOI: 10.1371/journal.pbio.3000004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/06/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
In all tetrapods examined thus far, the development and patterning of limbs require the activation of gene members of the HoxD cluster. In mammals, they are regulated by a complex bimodal process that controls first the proximal patterning and then the distal structure. During the shift from the former to the latter regulation, this bimodal regulatory mechanism allows the production of a domain with low Hoxd gene expression, at which both telomeric (T-DOM) and centromeric regulatory domains (C-DOM) are silent. These cells generate the future wrist and ankle articulations. We analyzed the implementation of this regulatory mechanism in chicken, i.e., in an animal for which large morphological differences exist between fore- and hindlimbs. We report that although this bimodal regulation is globally conserved between the mouse and the chick, some important modifications evolved at least between these two model systems, in particular regarding the activity of specific enhancers, the width of the TAD boundary separating the two regulations, and the comparison between the forelimb versus hindlimb regulatory controls. At least one aspect of these regulations seems to be more conserved between chick and bats than with mouse, which may relate to the extent to which forelimbs and hindlimbs of these various animals differ in their morphologies. A comparison of Hox gene regulation during the development of limbs in birds and mammals reveals that whereas the characteristic bimodal regulatory system, based on large chromatin domains, is largely conserved between these morphologically distinct structures, some differences are revealed in the way this is implemented in various vertebrates. The shapes of limbs vary greatly among tetrapod species, even between the forelimbs and hindlimbs of the same animal. Hox genes regulate the proper growth and patterning of tetrapod limbs. In order to evaluate whether variations in the complex regulation of a cluster of Hox genes—the Hoxd genes—during limb development contribute to the differences in limb shape, we compared their transcriptional control during limb bud development in the forelimbs and hindlimbs of mouse and chicken embryos. We found that the regulatory mechanism underlying Hoxd gene expression is highly conserved, but some clear differences exist. For instance, we observed a variation in the topologically associating domain (TAD; a self-interacting genomic region) boundary interval between the mouse and the chick, as well as differences in the activity of a conserved enhancer element situated within the telomeric regulatory domain. In contrast to the mouse, the chicken enhancer has a stronger activity in the forelimb buds than in the hindlimb buds, which is correlated with the striking differences in the mRNA levels of the genes. We conclude that differences in both the timing and duration of TAD activities and in the width of their boundary may parallel the important decrease in Hoxd gene transcription in chick hindlimb buds versus forelimb buds. These differences may also account for the slightly distinct regulatory strategies implemented by mammals and birds at this locus.
Collapse
Affiliation(s)
| | - Lucille Lopez-Delisle
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Christopher Chase Bolt
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Guillaume Andrey
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, Geneva 4, Switzerland
| | - Denis Duboule
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva 4, Switzerland
- * E-mail:
| |
Collapse
|
189
|
Non-Coding Variants in BRCA1 and BRCA2 Genes: Potential Impact on Breast and Ovarian Cancer Predisposition. Cancers (Basel) 2018; 10:cancers10110453. [PMID: 30453575 PMCID: PMC6266896 DOI: 10.3390/cancers10110453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
BRCA1 and BRCA2 are major breast cancer susceptibility genes whose pathogenic variants are associated with a significant increase in the risk of breast and ovarian cancers. Current genetic screening is generally limited to BRCA1/2 exons and intron/exon boundaries. Most identified pathogenic variants cause the partial or complete loss of function of the protein. However, it is becoming increasingly clear that variants in these regions only account for a small proportion of cancer risk. The role of variants in non-coding regions beyond splice donor and acceptor sites, including those that have no qualitative effect on the protein, has not been thoroughly investigated. The key transcriptional regulatory elements of BRCA1 and BRCA2 are housed in gene promoters, untranslated regions, introns, and long-range elements. Within these sequences, germline and somatic variants have been described, but the clinical significance of the majority is currently unknown and it remains a significant clinical challenge. This review summarizes the available data on the impact of variants on non-coding regions of BRCA1/2 genes and their role on breast and ovarian cancer predisposition.
Collapse
|
190
|
Oudelaar AM, Davies JOJ, Hanssen LLP, Telenius JM, Schwessinger R, Liu Y, Brown JM, Downes DJ, Chiariello AM, Bianco S, Nicodemi M, Buckle VJ, Dekker J, Higgs DR, Hughes JR. Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nat Genet 2018; 50:1744-1751. [PMID: 30374068 PMCID: PMC6265079 DOI: 10.1038/s41588-018-0253-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/07/2018] [Indexed: 11/09/2022]
Abstract
The promoters of mammalian genes are commonly regulated by multiple distal enhancers, which physically interact within discrete chromatin domains. How such domains form and how the regulatory elements within them interact in single cells is not understood. To address this we developed Tri-C, a new Chromosome Conformation Capture (3C) approach to identify concurrent chromatin interactions at individual alleles. Analysis by Tri-C reveals heterogeneous patterns of single-allele interactions between CTCF boundary elements, indicating that the formation of chromatin domains likely results from a dynamic process. Within these domains, we observe specific higher-order structures involving simultaneous interactions between multiple enhancers and promoters. Such regulatory hubs provide a structural basis for understanding how multiple cis-regulatory elements act together to establish robust regulation of gene expression.
Collapse
Affiliation(s)
- A Marieke Oudelaar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lars L P Hanssen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jelena M Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ron Schwessinger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yu Liu
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jill M Brown
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK. .,MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
191
|
Buckle A, Brackley CA, Boyle S, Marenduzzo D, Gilbert N. Polymer Simulations of Heteromorphic Chromatin Predict the 3D Folding of Complex Genomic Loci. Mol Cell 2018; 72:786-797.e11. [PMID: 30344096 PMCID: PMC6242782 DOI: 10.1016/j.molcel.2018.09.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023]
Abstract
Chromatin folded into 3D macromolecular structures is often analyzed by chromosome conformation capture (3C) and fluorescence in situ hybridization (FISH) techniques, but these frequently provide contradictory results. Chromatin can be modeled as a simple polymer composed of a connected chain of units. By embedding data for epigenetic marks (H3K27ac), chromatin accessibility (assay for transposase-accessible chromatin using sequencing [ATAC-seq]), and structural anchors (CCCTC-binding factor [CTCF]), we developed a highly predictive heteromorphic polymer (HiP-HoP) model, where the chromatin fiber varied along its length; combined with diffusing protein bridges and loop extrusion, this model predicted the 3D organization of genomic loci at a population and single-cell level. The model was validated at several gene loci, including the complex Pax6 gene, and was able to determine locus conformations across cell types with varying levels of transcriptional activity and explain different mechanisms of enhancer use. Minimal a priori knowledge of epigenetic marks is sufficient to recapitulate complex genomic loci in 3D and enable predictions of chromatin folding paths. HiP-HoP: highly predictive heteromorphic polymer model to analyze chromatin structure Polymer simulations use widely available epigenetic and protein binding data as input Validate HiP-HoP model at complex loci using 3D FISH and Capture-C Simulations uncover striking conformational variability in chromatin fiber folding
Collapse
Affiliation(s)
- Adam Buckle
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Nick Gilbert
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK.
| |
Collapse
|
192
|
Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, Li D, Choudhary MNK, Li Y, Hu M, Hardison R, Wang T, Yue F. The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol 2018; 19:151. [PMID: 30286773 PMCID: PMC6172833 DOI: 10.1186/s13059-018-1519-9] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Abstract
Here, we introduce the 3D Genome Browser, http://3dgenome.org , which allows users to conveniently explore both their own and over 300 publicly available chromatin interaction data of different types. We design a new binary data format for Hi-C data that reduces the file size by at least a magnitude and allows users to visualize chromatin interactions over millions of base pairs within seconds. Our browser provides multiple methods linking distal cis-regulatory elements with their potential target genes. Users can seamlessly integrate thousands of other omics data to gain a comprehensive view of both regulatory landscape and 3D genome structure.
Collapse
Affiliation(s)
- Yanli Wang
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Fan Song
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Bo Zhang
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Lijun Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State Hershey, Hershey, PA, 17033, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State Hershey, Hershey, PA, 17033, USA
| | - Da Kuang
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daofeng Li
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Mayank N K Choudhary
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Ross Hardison
- Center for Computational Biology and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63108, USA.
| | - Feng Yue
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, 16802, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State Hershey, Hershey, PA, 17033, USA.
| |
Collapse
|
193
|
Fu Y, Tessneer KL, Li C, Gaffney PM. From association to mechanism in complex disease genetics: the role of the 3D genome. Arthritis Res Ther 2018; 20:216. [PMID: 30268153 PMCID: PMC6162955 DOI: 10.1186/s13075-018-1721-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Genome-wide association studies (GWAS) and fine mapping studies in autoimmune diseases have identified thousands of genetic variants, the majority of which are located in non-protein-coding enhancer regions. Enhancers function within the context of the three-dimensional (3D) genome to form long-range DNA looping events with target gene promoters that spatially and temporally regulate gene expression. Investigating the functional significance of GWAS variants in the context of the 3D genome is essential for mechanistic understanding of these variants and how they influence disease pathology by altering DNA looping between enhancers and the target gene promoters they regulate. In this review, we discuss the functional complexity of the 3D genome and the technological approaches used to characterize DNA looping events. We then highlight examples from the literature that illustrate how functional mapping of the 3D genome can assist in defining mechanisms that influence pathogenic gene expression. We conclude by highlighting future advances necessary to fully integrate 3D genome analyses into the functional workup of GWAS variants in the continuing effort to improve the health of patients with autoimmune diseases.
Collapse
Affiliation(s)
- Yao Fu
- Division of Genomics and Data Sciences, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104 USA
| | - Kandice L Tessneer
- Division of Genomics and Data Sciences, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104 USA
| | - Chuang Li
- School of Electrical and Computer Engineering, University of Oklahoma, Devan Energy Hall 150, 110 West Boyd Street, Norman, OK 73019 USA
| | - Patrick M Gaffney
- Division of Genomics and Data Sciences, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104 USA
| |
Collapse
|
194
|
Osgood JA, Knight JC. Translating GWAS in rheumatic disease: approaches to establishing mechanism and function for genetic associations with ankylosing spondylitis. Brief Funct Genomics 2018; 17:308-318. [PMID: 29741584 PMCID: PMC6158798 DOI: 10.1093/bfgp/ely015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ankylosing spondylitis (AS) is a highly heritable chronic inflammatory arthritis characterized by osteoproliferation, fusion of affected joints and systemic manifestations. Many disease associations for AS have been reported through genome-wide association studies; however, identifying modulated genes and functional mechanism remains challenging. This review summarizes current genetic associations involving AS and describes strategic approaches for functional follow-up of disease-associated variants. Fine mapping using methods leveraging Bayesian approaches are outlined. Evidence highlighting the importance of context specificity for regulatory variants is reviewed, noting current evidence in AS for the relevant cell and tissue type to conduct such analyses. Technological advances for understanding the regulatory landscape within which functional variants may act are discussed using exemplars. Approaches include defining regulatory elements based on chromatin accessibility, effects of variants on genes at a distance through evidence of physical interactions (chromatin conformation capture), expression quantitative trait loci mapping and single-cell methodologies. Opportunities for mechanistic studies to investigate the function of specific variants, regulatory elements and genes enabled by genome editing using clustered regularly interspaced short palindromic repeats/Cas9 are also described. Further progress in our understanding of the genetics of AS through functional genomic and epigenomic approaches offers new opportunities to understand mechanism and develop innovative treatments.
Collapse
Affiliation(s)
- Julie A Osgood
- Functional genomics of ankylosing spondylitis, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
195
|
Zhao Y, Yu J, Zhao J, Chen X, Xiong N, Wang T, Qing H, Lin Z. Intragenic Transcriptional cis-Antagonism Across SLC6A3. Mol Neurobiol 2018; 56:4051-4060. [PMID: 30259411 DOI: 10.1007/s12035-018-1357-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022]
Abstract
A promoter can be regulated by various cis-acting elements so that delineation of the regulatory modes among them may help understand developmental, environmental and genetic mechanisms in gene activity. Here we report that the human dopamine transporter gene SLC6A3 carries a 5' distal 5-kb super enhancer (5KSE) which upregulated the promoter by 5-fold. Interestingly, 5KSE is able to prevent 3' downstream variable number tandem repeats (3'VNTRs) from silencing the promoter. This new enhancer consists of a 5'VNTR and three repetitive sub-elements that are conserved in primates. Two of 5KSE's sub-elements, E-9.7 and E-8.7, upregulate the promoter, but only the later could continue doing so in the presence of 3'VNTRs. Finally, E-8.7 is activated by novel dopaminergic transcription factors including SRP54 and Nfe2l1. Together, these results reveal a multimodal regulatory mechanism in SLC6A3.
Collapse
Affiliation(s)
- Ying Zhao
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinlong Yu
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA
| | - Juan Zhao
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,College of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaowu Chen
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,Department of Neurology, Shenzhen University General Hospital, Shenzhen, Guangzhou, 518060, China
| | - Nian Xiong
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Qing
- College of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.
| |
Collapse
|
196
|
Brown JM, Roberts NA, Graham B, Waithe D, Lagerholm C, Telenius JM, De Ornellas S, Oudelaar AM, Scott C, Szczerbal I, Babbs C, Kassouf MT, Hughes JR, Higgs DR, Buckle VJ. A tissue-specific self-interacting chromatin domain forms independently of enhancer-promoter interactions. Nat Commun 2018; 9:3849. [PMID: 30242161 PMCID: PMC6155075 DOI: 10.1038/s41467-018-06248-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/24/2018] [Indexed: 11/08/2022] Open
Abstract
Self-interacting chromatin domains encompass genes and their cis-regulatory elements; however, the three-dimensional form a domain takes, whether this relies on enhancer-promoter interactions, and the processes necessary to mediate the formation and maintenance of such domains, remain unclear. To examine these questions, here we use a combination of high-resolution chromosome conformation capture, a non-denaturing form of fluorescence in situ hybridisation and super-resolution imaging to study a 70 kb domain encompassing the mouse α-globin regulatory locus. We show that this region forms an erythroid-specific, decompacted, self-interacting domain, delimited by frequently apposed CTCF/cohesin binding sites early in terminal erythroid differentiation, and does not require transcriptional elongation for maintenance of the domain structure. Formation of this domain does not rely on interactions between the α-globin genes and their major enhancers, suggesting a transcription-independent mechanism for establishment of the domain. However, absence of the major enhancers does alter internal domain interactions. Formation of a loop domain therefore appears to be a mechanistic process that occurs irrespective of the specific interactions within.
Collapse
Affiliation(s)
- Jill M Brown
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Nigel A Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Bryony Graham
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Dominic Waithe
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK
| | - Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK
| | - Jelena M Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Sara De Ornellas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - A Marieke Oudelaar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Caroline Scott
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Izabela Szczerbal
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Christian Babbs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Mira T Kassouf
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK.
| |
Collapse
|
197
|
Trac-looping measures genome structure and chromatin accessibility. Nat Methods 2018; 15:741-747. [PMID: 30150754 DOI: 10.1038/s41592-018-0107-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/15/2018] [Indexed: 12/22/2022]
Abstract
Long-range chromatin interactions play critical roles in genome organization and regulation of transcription. We now report transposase-mediated analysis of chromatin looping (Trac-looping) for simultaneous detection of multiscale genome-wide chromatin interactions among regulatory elements and chromatin accessibility. With this technique, a bivalent oligonucleotide linker is inserted between two interacting regions such that the chromatin interactions are captured without prior chromatin fragmentation and proximity-based ligation. Application of Trac-looping to human CD4+ T cells revealed substantial reorganization of enhancer-promoter interactions associated with changes in gene expression after T cell receptor stimulation.
Collapse
|
198
|
Diament A, Tuller T. Modeling three-dimensional genomic organization in evolution and pathogenesis. Semin Cell Dev Biol 2018; 90:78-93. [PMID: 30030143 DOI: 10.1016/j.semcdb.2018.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/08/2018] [Indexed: 12/17/2022]
Abstract
The regulation of gene expression is mediated via the complex three-dimensional (3D) conformation of the genetic material and its interactions with various intracellular factors. Various experimental and computational approaches have been developed in recent years for understating the relation between the 3D conformation of the genome and the phenotypes of cells in normal condition and diseases. In this review, we will discuss novel approaches for analyzing and modeling the 3D genomic conformation, focusing on deciphering disease-causing mutations that affect gene expression. We conclude that as this is a very challenging mission, an important direction should involve the comparative analysis of various 3D models from various organisms or cells.
Collapse
Affiliation(s)
- Alon Diament
- Dept. of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Dept. of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
199
|
Muller H, Scolari VF, Agier N, Piazza A, Thierry A, Mercy G, Descorps-Declere S, Lazar-Stefanita L, Espeli O, Llorente B, Fischer G, Mozziconacci J, Koszul R. Characterizing meiotic chromosomes' structure and pairing using a designer sequence optimized for Hi-C. Mol Syst Biol 2018; 14:e8293. [PMID: 30012718 PMCID: PMC6047084 DOI: 10.15252/msb.20188293] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
In chromosome conformation capture experiments (Hi-C), the accuracy with which contacts are detected varies due to the uneven distribution of restriction sites along genomes. In addition, repeated sequences or homologous regions remain indistinguishable because of the ambiguities they introduce during the alignment of the sequencing reads. We addressed both limitations by designing and engineering 144 kb of a yeast chromosome with regularly spaced restriction sites (Syn-HiC design). In the Syn-HiC region, Hi-C signal-to-noise ratio is enhanced and can be used to measure the shape of an unbiased distribution of contact frequencies, allowing to propose a robust definition of a Hi-C experiment resolution. The redesigned region is also distinguishable from its native homologous counterpart in an otherwise isogenic diploid strain. As a proof of principle, we tracked homologous chromosomes during meiotic prophase in synchronized and pachytene-arrested cells and captured important features of their spatial reorganization, such as chromatin restructuration into arrays of Rec8-delimited loops, centromere declustering, individualization, and pairing. Overall, we illustrate the promises held by redesigning genomic regions to explore complex biological questions.
Collapse
Affiliation(s)
- Héloïse Muller
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Vittore F Scolari
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Nicolas Agier
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Aurèle Piazza
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Agnès Thierry
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Guillaume Mercy
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Stéphane Descorps-Declere
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Luciana Lazar-Stefanita
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Olivier Espeli
- Centre Interdisciplinaire de Recherche en Biologie, Collège de France, UMR-CNRS 7241, INSERM U1050, Paris, France
| | - Bertrand Llorente
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Gilles Fischer
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Julien Mozziconacci
- Theoretical Physics for Condensed Matter Lab, CNRS UMR 7600, Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Romain Koszul
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| |
Collapse
|
200
|
Wang Y, Li J, Feng C, Zhao Y, Hu X, Li N. Transcriptome analysis of comb and testis from Rose-comb Silky chicken (R1/R1) and Beijing Fatty wild type chicken (r/r). Poult Sci 2018; 96:1866-1873. [PMID: 28339981 DOI: 10.3382/ps/pew447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022] Open
Abstract
Rose-comb was one of the chicken comb-variants first used by Bateson and Punnet in 1902 to demonstrate Mendelian inheritance in animals. Rose-comb is a monogenic trait that has been widely described in chickens. It is caused by a large structural rearrangement that leads to mis-expression of transcription factor MNR2 on chromosome 7. Rose-comb has pleiotropic effects in homozygous roosters, which is associated with poor sperm mobility. It was postulated that this is caused by the disruption of the CCDC108 gene located at the distal inversion breakpoint. In this study, we did the transcriptional profiling of combs and testes from Rose-comb Silky (RS) (R1/R1) and Beijing Fatty (BF) wild type chickens (r/r) using RNA-seq. We obtained 68,694,797 unique mapped reads and over 80% of the chicken genes were covered for each sample. In combs, we found that differentially expressed genes (DEGs) were significantly enriched in the retinol metabolism (RPE65, CYP26A1, and CYP26C1) and hedgehog-signaling pathway (PTCH1, GLI1, and HHIP), while genes related to cell differentiation and morphogenesis were down-regulated in R1/R1 chickens, suggesting that the transient expression of MNR2 might affect the expression of these genes and influence the development of comb tissue. For testes, DEGs were significantly enriched in the GO terms of binding activates and mitochondrial oxidation-reduction reactions. Our results suggested that the CCDC108 might be functionally related with mitochondrial oxidation-reduction reactions and caused subfertility of roosters. Compared with the genome average, the degree of expression variations within the inversion region did not show significant differences. However, DEGs near the breakpoints showed greater expression variance. Our results demonstrated that the large-scale rearrangements affected the gene expression only around the breakpoint in this case.
Collapse
Affiliation(s)
- Y Wang
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - J Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - C Feng
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Y Zhao
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - X Hu
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - N Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China.,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|