151
|
Chen WW, Yi YH, Chien CH, Hsiung KC, Ma TH, Lin YC, Lo SJ, Chang TC. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging. Sci Rep 2016; 6:32021. [PMID: 27535493 PMCID: PMC4989181 DOI: 10.1038/srep32021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm−1) and lipid (~2845 cm−1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.
Collapse
Affiliation(s)
- Wei-Wen Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yung-Hsiang Yi
- Center of Molecular Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Cheng-Hao Chien
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Kuei-Ching Hsiung
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Tian-Hsiang Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Yi-Chun Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Szecheng J Lo
- Center of Molecular Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
152
|
Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials. Sci Rep 2016; 6:31332. [PMID: 27510732 PMCID: PMC4980679 DOI: 10.1038/srep31332] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/18/2016] [Indexed: 11/30/2022] Open
Abstract
A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.
Collapse
|
153
|
Morton A, Murawski C, Pulver SR, Gather MC. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour. Sci Rep 2016; 6:31117. [PMID: 27484401 PMCID: PMC4971487 DOI: 10.1038/srep31117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022] Open
Abstract
Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm−2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments.
Collapse
Affiliation(s)
- Andrew Morton
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - Caroline Murawski
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom.,Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Str. 1, 01062 Dresden, Germany
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, United Kingdom
| | - Malte C Gather
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom.,Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Str. 1, 01062 Dresden, Germany
| |
Collapse
|
154
|
Montgomery KL, Iyer SM, Christensen AJ, Deisseroth K, Delp SL. Beyond the brain: Optogenetic control in the spinal cord and peripheral nervous system. Sci Transl Med 2016; 8:337rv5. [DOI: 10.1126/scitranslmed.aad7577] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
|
155
|
Abstract
A primary envisioned use for nanoparticles (NPs) in a cellular context is for controlled drug delivery where the full benefit of NP attributes (small size, large drug cargo loading capacity) can improve the pharmacokinetics of the drug cargo. This requires the ability to controllably manipulate the release of the drug cargo from the NP vehicle or ‘controlled actuation’. In this review, we highlight new developments in this field from 2013 to 2015. The number and breadth of reports are a testament to the significant advancements made in this field over this time period. We conclude with a perspective of how we envision this field to continue to develop in the years to come.
Collapse
|
156
|
Ghanem A, Conzelmann KK. G gene-deficient single-round rabies viruses for neuronal circuit analysis. Virus Res 2016; 216:41-54. [DOI: 10.1016/j.virusres.2015.05.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/28/2015] [Accepted: 05/31/2015] [Indexed: 12/11/2022]
|
157
|
Sanchez-Rodriguez SP, Sauer JP, Stanley SA, Qian X, Gottesdiener A, Friedman JM, Dordick JS. Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells. Biotechnol Bioeng 2016; 113:2228-40. [PMID: 27563853 DOI: 10.1002/bit.25984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/17/2016] [Accepted: 03/21/2016] [Indexed: 02/03/2023]
Abstract
Remote activation of specific cells of a heterogeneous population can provide a useful research tool for clinical and therapeutic applications. Here, we demonstrate that photostimulation of gold nanorods (AuNRs) using a tunable near-infrared (NIR) laser at specific longitudinal surface plasmon resonance wavelengths can induce the selective and temporal internalization of calcium in HEK 293T cells. Biotin-PEG-Au nanorods coated with streptavidin Alexa Fluor-633 and biotinylated anti-His antibodies were used to decorate cells genetically modified with His-tagged TRPV1 temperature-sensitive ion channel and AuNRs conjugated to biotinylated RGD peptide were used to decorate integrins in unmodified cells. Plasmonic activation can be stimulated at weak laser power (0.7-4.0 W/cm(2) ) without causing cell damage. Selective activation of TRPV1 channels could be controlled by laser power between 1.0 and 1.5 W/cm(2) . Integrin targeting robustly stimulated calcium signaling due to a dense cellular distribution of nanoparticles. Such an approach represents a functional tool for combinatorial activation of cell signaling in heterogeneous cell populations. Our results suggest that it is possible to induce cell activation via NIR-induced gold nanorod heating through the selective targeting of membrane proteins in unmodified cells to produce calcium signaling and downstream expression of specific genes with significant relevance for both in vitro and therapeutic applications. Biotechnol. Bioeng. 2016;113: 2228-2240. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandra P Sanchez-Rodriguez
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Jeremy P Sauer
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Sarah A Stanley
- Laboratory of Molecular Genetics, Rockefeller University, 1230 York Ave, New York, New York, 10065
| | - Xi Qian
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Andrew Gottesdiener
- Laboratory of Molecular Genetics, Rockefeller University, 1230 York Ave, New York, New York, 10065.,Weill Cornell Medical College, New York, New York
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Rockefeller University, 1230 York Ave, New York, New York, 10065.
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180. .,Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180. .,Departments of Biomedical Engineering and Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180.
| |
Collapse
|
158
|
Colombo E, Feyen P, Antognazza MR, Lanzani G, Benfenati F. Nanoparticles: A Challenging Vehicle for Neural Stimulation. Front Neurosci 2016; 10:105. [PMID: 27047327 PMCID: PMC4803724 DOI: 10.3389/fnins.2016.00105] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/04/2016] [Indexed: 12/12/2022] Open
Abstract
Neurostimulation represents a powerful and well-established tool for the treatment of several diseases affecting the central nervous system. Although, effective in reducing the symptoms or the progression of brain disorders, the poor accessibility of the deepest areas of the brain currently hampers the possibility of a more specific and controlled therapeutic stimulation, depending on invasive surgical approaches and long-term stability, and biocompatibility issues. The massive research of the last decades on nanomaterials and nanoscale devices favored the development of new tools to address the limitations of the available neurostimulation approaches. This mini-review focuses on the employment of nanoparticles for the modulation of the electrophysiological activity of neuronal networks and the related transduction mechanisms underlying the nanostructure-neuron interfaces.
Collapse
Affiliation(s)
- Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia Genova, Italy
| | - Paul Feyen
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia Genova, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia Milan, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di TecnologiaMilan, Italy; Department of Physics, Politecnico di MilanoMilan, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenova, Italy; Department of Experimental Medicine, Università di GenovaGenova, Italy
| |
Collapse
|
159
|
Yu-Wai-Man P. Genetic manipulation for inherited neurodegenerative diseases: myth or reality? Br J Ophthalmol 2016; 100:1322-31. [PMID: 27002113 PMCID: PMC5050284 DOI: 10.1136/bjophthalmol-2015-308329] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation.
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
160
|
Smith PF. Age-Related Neurochemical Changes in the Vestibular Nuclei. Front Neurol 2016; 7:20. [PMID: 26973593 PMCID: PMC4776078 DOI: 10.3389/fneur.2016.00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa's ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences and Brain Health Research Centre, University of Otago , Dunedin , New Zealand
| |
Collapse
|
161
|
Shining Light on the Sprout of Life: Optogenetics Applications in Stem Cell Research and Therapy. J Membr Biol 2016; 249:215-20. [DOI: 10.1007/s00232-016-9883-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/18/2016] [Indexed: 12/21/2022]
|
162
|
Neske GT. The Slow Oscillation in Cortical and Thalamic Networks: Mechanisms and Functions. Front Neural Circuits 2016; 9:88. [PMID: 26834569 PMCID: PMC4712264 DOI: 10.3389/fncir.2015.00088] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/21/2015] [Indexed: 12/03/2022] Open
Abstract
During even the most quiescent behavioral periods, the cortex and thalamus express rich spontaneous activity in the form of slow (<1 Hz), synchronous network state transitions. Throughout this so-called slow oscillation, cortical and thalamic neurons fluctuate between periods of intense synaptic activity (Up states) and almost complete silence (Down states). The two decades since the original characterization of the slow oscillation in the cortex and thalamus have seen considerable advances in deciphering the cellular and network mechanisms associated with this pervasive phenomenon. There are, nevertheless, many questions regarding the slow oscillation that await more thorough illumination, particularly the mechanisms by which Up states initiate and terminate, the functional role of the rhythmic activity cycles in unconscious or minimally conscious states, and the precise relation between Up states and the activated states associated with waking behavior. Given the substantial advances in multineuronal recording and imaging methods in both in vivo and in vitro preparations, the time is ripe to take stock of our current understanding of the slow oscillation and pave the way for future investigations of its mechanisms and functions. My aim in this Review is to provide a comprehensive account of the mechanisms and functions of the slow oscillation, and to suggest avenues for further exploration.
Collapse
Affiliation(s)
- Garrett T Neske
- Department of Neuroscience, Division of Biology and Medicine, Brown UniversityProvidence, RI, USA; Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
163
|
Animal models of major depression and their clinical implications. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:293-310. [PMID: 25891248 DOI: 10.1016/j.pnpbp.2015.04.004] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/09/2015] [Accepted: 04/12/2015] [Indexed: 12/12/2022]
Abstract
Major depressive disorder is a common, complex, and potentially life-threatening mental disorder that imposes a severe social and economic burden worldwide. Over the years, numerous animal models have been established to elucidate pathophysiology that underlies depression and to test novel antidepressant treatment strategies. Despite these substantial efforts, the animal models available currently are of limited utility for these purposes, probably because none of the models mimics this complex disorder fully. It is presumable that psychiatric illnesses, such as affective disorders, are related to the complexity of the human brain. Here, we summarize the animal models that are used most commonly for depression, and discuss their advantages and limitations. We discuss genetic models, including the recently developed optogenetic tools and the stress models, such as the social stress, chronic mild stress, learned helplessness, and early-life stress paradigms. Moreover, we summarize briefly the olfactory bulbectomy model, as well as models that are based on pharmacological manipulations and disruption of the circadian rhythm. Finally, we highlight common misinterpretations and often-neglected important issues in this field.
Collapse
|
164
|
Abstract
Recent advances in identifying genetically unique neuronal proteins has revolutionized the study of brain circuitry. Researchers are now able to insert specific light-sensitive proteins (opsins) into a wide range of specific cell types via viral injections or by breeding transgenic mice. These opsins enable the activation, inhibition, or modulation of neuronal activity with millisecond control within distinct brain regions defined by genetic markers. Here we present a useful guide to implement this technique into any lab. We first review the materials needed and practical considerations and provide in-depth instructions for acute surgeries in mice. We conclude with all-optical mapping techniques for simultaneous recording and manipulation of population activity of many neurons in vivo by combining arbitrary point optogenetic stimulation and regional voltage-sensitive dye imaging. It is our intent to make these methods available to anyone wishing to use them.
Collapse
Affiliation(s)
- Michael Kyweriga
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge at Lethbridge, 4401 University Dr W., Lethbridge, AB, Canada, T1K 3M4
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge at Lethbridge, 4401 University Dr W., Lethbridge, AB, Canada, T1K 3M4.
| |
Collapse
|
165
|
Fröhlich F. Optical Measurements and Perturbations. Netw Neurosci 2016. [DOI: 10.1016/b978-0-12-801560-5.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
166
|
Shah S. The nanomaterial toolkit for neuroengineering. NANO CONVERGENCE 2016; 3:25. [PMID: 28191435 PMCID: PMC5271150 DOI: 10.1186/s40580-016-0086-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/29/2016] [Indexed: 05/03/2023]
Abstract
There is a growing interest in developing effective tools to better probe the central nervous system (CNS), to understand how it works and to treat neural diseases, injuries and cancer. The intrinsic complexity of the CNS has made this a challenging task for decades. Yet, with the extraordinary recent advances in nanotechnology and nanoscience, there is a general consensus on the immense value and potential of nanoscale tools for engineering neural systems. In this review, an overview of specialized nanomaterials which have proven to be the most effective tools in neuroscience is provided. After a brief background on the prominent challenges in the field, a variety of organic and inorganic-based nanomaterials are described, with particular emphasis on the distinctive properties that make them versatile and highly suitable in the context of the CNS. Building on this robust nano-inspired foundation, the rational design and application of nanomaterials can enable the generation of new methodologies to greatly advance the neuroscience frontier.
Collapse
Affiliation(s)
- Shreyas Shah
- Physiological Communications Research Group, Nokia Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974 USA
| |
Collapse
|
167
|
Jorgenson LA, Newsome WT, Anderson DJ, Bargmann CI, Brown EN, Deisseroth K, Donoghue JP, Hudson KL, Ling GSF, MacLeish PR, Marder E, Normann RA, Sanes JR, Schnitzer MJ, Sejnowski TJ, Tank DW, Tsien RY, Ugurbil K, Wingfield JC. The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2014.0164. [PMID: 25823863 PMCID: PMC4387507 DOI: 10.1098/rstb.2014.0164] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions.
Collapse
Affiliation(s)
- Lyric A Jorgenson
- Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - William T Newsome
- Howard Hughes Medical Institute and Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Anderson
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cornelia I Bargmann
- Howard Hughes Medical Institute and Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Emery N Brown
- Institute for Medical Engineering and Science and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Karl Deisseroth
- Howard Hughes Medical Institute and Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - John P Donoghue
- Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Kathy L Hudson
- Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Geoffrey S F Ling
- Biological Technologies Office, Defense Advanced Research Projects Agency, Arlington, VA 22203, USA
| | - Peter R MacLeish
- Department of Neurobiology, Neuroscience Institute, Morehouse, School of Medicine, Atlanta, GA 30310, USA
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| | - Richard A Normann
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mark J Schnitzer
- Howard Hughes Medical Institute and James H. Clark Center for Biomedical Engineering & Sciences, CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute and Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David W Tank
- Princeton Neuroscience Institute, Bezos Center for Neural Circuit Dynamics and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Roger Y Tsien
- Howard Hughes Medical Institute and Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, MN 55454, USA
| | - John C Wingfield
- Directorate for Biological Sciences, National Science Foundation, Arlington, VA 22230, USA
| |
Collapse
|
168
|
Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording. Nat Methods 2015; 12:1157-62. [DOI: 10.1038/nmeth.3620] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022]
|
169
|
Farah N, Levinsky A, Brosh I, Kahn I, Shoham S. Holographic fiber bundle system for patterned optogenetic activation of large-scale neuronal networks. NEUROPHOTONICS 2015; 2:045002. [PMID: 26793741 PMCID: PMC4717229 DOI: 10.1117/1.nph.2.4.045002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/30/2015] [Indexed: 05/08/2023]
Abstract
Optogenetic perturbation has become a fundamental tool in controlling activity in neurons. Used to control activity in cell cultures, slice preparations, anesthetized and awake behaving animals, optical control of cell-type specific activity enables the interrogation of complex systems. A remaining challenge in developing optical control tools is the ability to produce defined light patterns such that power-efficient, precise control of neuronal populations is obtained. Here, we describe a system for patterned stimulation that enables the generation of structured activity in neurons by transmitting optical patterns from computer-generated holograms through an optical fiber bundle. The system couples the optical system to versatile fiber bundle configurations, including coherent or incoherent bundles composed of hundreds of up to several meters long fibers. We describe the components of the system, a method for calibration, and a detailed power efficiency and spatial specificity quantification. Next, we use the system to precisely control single-cell activity as measured by extracellular electrophysiological recordings in ChR2-expressing cortical cell cultures. The described system complements recent descriptions of optical control systems, presenting a system suitable for high-resolution spatiotemporal optical control of wide-area neural networks in vitro and in vivo, yielding a tool for precise neural system interrogation.
Collapse
Affiliation(s)
- Nairouz Farah
- Technion–Israel Institute of Technology, Faculty of Biomedical Engineering, Haifa 3200003, Israel
- Bar Ilan University, Optometry Department, Ramat Gan 5290002, Israel
| | - Alexandra Levinsky
- Technion–Israel Institute of Technology, Technion Autonomous Systems Program, Haifa 3200003, Israel
| | - Inbar Brosh
- Technion–Israel Institute of Technology, Faculty of Biomedical Engineering, Haifa 3200003, Israel
| | - Itamar Kahn
- Technion–Israel Institute of Technology, Rappaport Faculty of Medicine and Institute, Haifa 3200003, Israel
| | - Shy Shoham
- Technion–Israel Institute of Technology, Faculty of Biomedical Engineering, Haifa 3200003, Israel
- Address all correspondence to: Shy Shoham, E-mail:
| |
Collapse
|
170
|
Ma C, Zhou F, Liu Y, Wang LV. Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation. OPTICA 2015; 2:869-876. [PMID: 30221184 PMCID: PMC6137808 DOI: 10.1364/optica.2.000869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Light scattering inhibits high-resolution optical imaging, manipulation and therapy deep inside biological tissue by preventing focusing. To form deep foci, wavefront shaping techniques that break the optical diffusion limit have been developed. For in vivo applications, such focusing must provide high gain, high speed, and a high focal peak-to-background ratio. However, none of the previous techniques meet these requirements simultaneously. Here, we overcome this challenge by rapidly measuring the perturbed optical field within a single camera exposure followed by adaptively time-reversing the phase-binarized perturbation. Consequently, a phase-conjugated wavefront is synthesized within a millisecond, two orders of magnitude shorter than the digitally achieved record. We demonstrated real-time focusing in dynamic scattering media, and extended laser speckle contrast imaging to new depths. The unprecedented combination of fast response, high gain, and high focusing contrast makes this work a major stride toward in vivo deep tissue optical imaging, manipulation, and therapy.
Collapse
|
171
|
de Gracia Lux C, Lux J, Collet G, He S, Chan M, Olejniczak J, Foucault-Collet A, Almutairi A. Short Soluble Coumarin Crosslinkers for Light-Controlled Release of Cells and Proteins from Hydrogels. Biomacromolecules 2015; 16:3286-96. [DOI: 10.1021/acs.biomac.5b00950] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Caroline de Gracia Lux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Jacques Lux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Guillaume Collet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Sha He
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Minnie Chan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Jason Olejniczak
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Alexandra Foucault-Collet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| |
Collapse
|
172
|
Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun 2015; 6:8264. [PMID: 26372413 PMCID: PMC4571289 DOI: 10.1038/ncomms9264] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/04/2015] [Indexed: 12/30/2022] Open
Abstract
A major challenge in neuroscience is to reliably activate individual neurons, particularly those in deeper brain regions. Current optogenetic approaches require invasive surgical procedures to deliver light of specific wavelengths to target cells to activate or silence them. Here, we demonstrate the use of low-pressure ultrasound as a non-invasive trigger to activate specific ultrasonically sensitized neurons in the nematode, Caenorhabditis elegans. We first show that wild-type animals are insensitive to low-pressure ultrasound and require gas-filled microbubbles to transduce the ultrasound wave. We find that neuron-specific misexpression of TRP-4, the pore-forming subunit of a mechanotransduction channel, sensitizes neurons to ultrasound stimulus, resulting in behavioural outputs. Furthermore, we use this approach to manipulate the function of sensory neurons and interneurons and identify a role for PVD sensory neurons in modifying locomotory behaviours. We suggest that this method can be broadly applied to manipulate cellular functions in vivo. Common optogenetic approaches require surgical procedures to deliver light of specific wavelengths to the target cells. Here the authors demonstrate the use of low-pressure ultrasound as a non-invasive trigger to activate specific neurons in Caenorhabditis elegans and find that the mechanotransduction channel TRP-4 sensitizes cells to the ultrasound stimulus.
Collapse
|
173
|
Non-invasive Human Brain Stimulation in Cognitive Neuroscience: A Primer. Neuron 2015; 87:932-45. [DOI: 10.1016/j.neuron.2015.07.032] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/07/2015] [Accepted: 07/16/2015] [Indexed: 11/21/2022]
|
174
|
Guru A, Post RJ, Ho YY, Warden MR. Making Sense of Optogenetics. Int J Neuropsychopharmacol 2015; 18:pyv079. [PMID: 26209858 PMCID: PMC4756725 DOI: 10.1093/ijnp/pyv079] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/07/2015] [Indexed: 11/13/2022] Open
Abstract
This review, one of a series of articles, tries to make sense of optogenetics, a recently developed technology that can be used to control the activity of genetically-defined neurons with light. Cells are first genetically engineered to express a light-sensitive opsin, which is typically an ion channel, pump, or G protein-coupled receptor. When engineered cells are then illuminated with light of the correct frequency, opsin-bound retinal undergoes a conformational change that leads to channel opening or pump activation, cell depolarization or hyperpolarization, and neural activation or silencing. Since the advent of optogenetics, many different opsin variants have been discovered or engineered, and it is now possible to stimulate or inhibit neuronal activity or intracellular signaling pathways on fast or slow timescales with a variety of different wavelengths of light. Optogenetics has been successfully employed to enhance our understanding of the neural circuit dysfunction underlying mood disorders, addiction, and Parkinson's disease, and has enabled us to achieve a better understanding of the neural circuits mediating normal behavior. It has revolutionized the field of neuroscience, and has enabled a new generation of experiments that probe the causal roles of specific neural circuit components.
Collapse
Affiliation(s)
- Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY (Mr Guru and Post, Ms Ho, and Dr Warden)
| | - Ryan J Post
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY (Mr Guru and Post, Ms Ho, and Dr Warden)
| | - Yi-Yun Ho
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY (Mr Guru and Post, Ms Ho, and Dr Warden)
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY (Mr Guru and Post, Ms Ho, and Dr Warden).
| |
Collapse
|
175
|
Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics. Sci Rep 2015; 5:11501. [PMID: 26108566 PMCID: PMC4480008 DOI: 10.1038/srep11501] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/27/2015] [Indexed: 11/08/2022] Open
Abstract
Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam's degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz-Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics.
Collapse
|
176
|
Venkatachalam V, Cohen AE. Imaging GFP-based reporters in neurons with multiwavelength optogenetic control. Biophys J 2015; 107:1554-63. [PMID: 25296307 DOI: 10.1016/j.bpj.2014.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/02/2014] [Accepted: 08/07/2014] [Indexed: 12/20/2022] Open
Abstract
To study the impact of neural activity on cellular physiology, one would like to combine precise control of firing patterns with highly sensitive probes of cellular physiology. Light-gated ion channels, e.g., Channelrhodopsin-2, enable precise control of firing patterns; green fluorescent protein-based reporters, e.g., the GCaMP6f Ca(2+) reporter, enable highly sensitive probing of cellular physiology. However, for most actuator-reporter combinations, spectral overlap prevents straightforward combination within a single cell. Here we explore multiwavelength control of channelrhodopsins to circumvent this limitation. The "stoplight" technique described in this article uses channelrhodopsin variants that are opened by blue light and closed by orange light. Cells are illuminated with constant blue light to excite fluorescence of a green fluorescent protein-based reporter. Modulated illumination with orange light negatively regulates activation of the channelrhodopsin. We performed detailed photophysical characterization and kinetic modeling of four candidate stoplight channelrhodopsins. The variant with the highest contrast, sdChR(C138S,E154A), enabled all-optical measurements of activity-induced calcium transients in cultured rat hippocampal neurons, although cell-to-cell variation in expression levels presents a challenge for quantification.
Collapse
Affiliation(s)
- Veena Venkatachalam
- Biophysics Program, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Adam E Cohen
- Departments of Chemistry and Chemical Biology and Physics, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
177
|
Abstract
Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals.
Collapse
Affiliation(s)
- Logan Grosenick
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Neurosciences Program, Stanford University, Stanford, CA 94305 USA
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305 USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA.
| |
Collapse
|
178
|
Buzsáki G, Stark E, Berényi A, Khodagholy D, Kipke DR, Yoon E, Wise KD. Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 2015; 86:92-105. [PMID: 25856489 PMCID: PMC4392339 DOI: 10.1016/j.neuron.2015.01.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To understand how function arises from the interactions between neurons, it is necessary to use methods that allow the monitoring of brain activity at the single-neuron, single-spike level and the targeted manipulation of the diverse neuron types selectively in a closed-loop manner. Large-scale recordings of neuronal spiking combined with optogenetic perturbation of identified individual neurons has emerged as a suitable method for such tasks in behaving animals. To fully exploit the potential power of these methods, multiple steps of technical innovation are needed. We highlight the current state of the art in electrophysiological recording methods, combined with optogenetics, and discuss directions for progress. In addition, we point to areas where rapid development is in progress and discuss topics where near-term improvements are possible and needed.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, School of Medicine, New York, NY 10016, USA.
| | - Eran Stark
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA
| | - Antal Berényi
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA; MTA-SZTE "Lendület" Oscillatory Neural Networks Research Group, University of Szeged, Department of Physiology, Szeged H-6720, Hungary
| | - Dion Khodagholy
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA
| | - Daryl R Kipke
- NeuroNexus Technologies, Inc., Ann Arbor, MI 48108, USA
| | - Euisik Yoon
- Center for Wireless Integrated Microsensing and Systems, The University of Michigan, Ann Arbor, MI 48109-2122, USA
| | - Kensall D Wise
- Center for Wireless Integrated Microsensing and Systems, The University of Michigan, Ann Arbor, MI 48109-2122, USA
| |
Collapse
|
179
|
Kazama H. Systems neuroscience in Drosophila: Conceptual and technical advantages. Neuroscience 2015; 296:3-14. [DOI: 10.1016/j.neuroscience.2014.06.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022]
|
180
|
McAlinden N, Gu E, Dawson MD, Sakata S, Mathieson K. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe. Front Neural Circuits 2015; 9:25. [PMID: 26074778 PMCID: PMC4448043 DOI: 10.3389/fncir.2015.00025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/09/2015] [Indexed: 11/20/2022] Open
Abstract
Optogenetics has proven to be a revolutionary technology in neuroscience and has advanced continuously over the past decade. However, optical stimulation technologies for in vivo need to be developed to match the advances in genetics and biochemistry that have driven this field. In particular, conventional approaches for in vivo optical illumination have a limitation on the achievable spatio-temporal resolution. Here we utilize a sapphire-based microscale gallium nitride light-emitting diode (μLED) probe to activate neocortical neurons in vivo. The probes were designed to contain independently controllable multiple μLEDs, emitting at 450 nm wavelength with an irradiance of up to 2 W/mm2. Monte-Carlo stimulations predicted that optical stimulation using a μLED can modulate neural activity within a localized region. To validate this prediction, we tested this probe in the mouse neocortex that expressed channelrhodopsin-2 (ChR2) and compared the results with optical stimulation through a fiber at the cortical surface. We confirmed that both approaches reliably induced action potentials in cortical neurons and that the μLED probe evoked strong responses in deep neurons. Due to the possibility to integrate many optical stimulation sites onto a single shank, the μLED probe is thus a promising approach to control neurons locally in vivo.
Collapse
Affiliation(s)
- Niall McAlinden
- Institute of Photonics, Department of Physics, University of Strathclyde Glasgow, UK
| | - Erdan Gu
- Institute of Photonics, Department of Physics, University of Strathclyde Glasgow, UK
| | - Martin D Dawson
- Institute of Photonics, Department of Physics, University of Strathclyde Glasgow, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, UK ; Centre for Neuroscience, University of Strathclyde Glasgow, UK
| | - Keith Mathieson
- Institute of Photonics, Department of Physics, University of Strathclyde Glasgow, UK
| |
Collapse
|
181
|
Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, Sizemore RJ, Abraham WC, Hughes SM. Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci 2015; 8:14. [PMID: 26041987 PMCID: PMC4434958 DOI: 10.3389/fnmol.2015.00014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/30/2015] [Indexed: 01/18/2023] Open
Abstract
Lentiviruses have been extensively used as gene delivery vectors since the mid-1990s. Usually derived from the human immunodeficiency virus genome, they mediate efficient gene transfer to non-dividing cells, including neurons and glia in the adult mammalian brain. In addition, integration of the recombinant lentiviral construct into the host genome provides permanent expression, including the progeny of dividing neural precursors. In this review, we describe targeted vectors with modified envelope glycoproteins and expression of transgenes under the regulation of cell-selective and inducible promoters. This technology has broad utility to address fundamental questions in neuroscience and we outline how this has been used in rodents and primates. Combining viral tract tracing with immunohistochemistry and confocal or electron microscopy, lentiviral vectors provide a tool to selectively label and trace specific neuronal populations at gross or ultrastructural levels. Additionally, new generation optogenetic technologies can be readily utilized to analyze neuronal circuit and gene functions in the mature mammalian brain. Examples of these applications, limitations of current systems and prospects for future developments to enhance neuroscience knowledge will be reviewed. Finally, we will discuss how these vectors may be translated from gene therapy trials into the clinical setting.
Collapse
Affiliation(s)
- Louise C. Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
| | | | - Lucia Schoderboeck
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Biochemistry, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Department of Psychology, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | - Rachel J. Sizemore
- Department of Anatomy, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
| | - Wickliffe C. Abraham
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Psychology, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | - Stephanie M. Hughes
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Biochemistry, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| |
Collapse
|
182
|
Losi G, Marcon I, Mariotti L, Sessolo M, Chiavegato A, Carmignoto G. A brain slice experimental model to study the generation and the propagation of focally-induced epileptiform activity. J Neurosci Methods 2015; 260:125-31. [PMID: 25863141 PMCID: PMC4751973 DOI: 10.1016/j.jneumeth.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
Abstract
We propose a model of seizure-like events in temporal cortex slices from young mice. In the model local NMDA stimulations induce multiple seizure-like events. Electrophysiological, Ca2+ imaging and optogenetics are combined in the model. Seizures generation and propagation are separately studied. The role of specific cell population on these events can be accurately analyzed.
The early cellular events that in a brain network lead to seizure generation and govern seizure propagation are probably based on different cellular mechanisms. Experimental models in which these events can be separately studied would contribute to improve our understanding of epilepsy. We recently described an in vitro model in entorhinal cortex slices from young rats in which focal seizure-like discharges (SLDs) can be induced in spatially defined regions and at predictable times by local NMDA applications performed in the presence of 4-amimopyridine (4-AP) and low extracellular Mg2+. Through the use of single-dual cell patch-clamp and field potential recordings, and Ca2+ imaging from large ensembles of neurons, interneurons and astrocytes, we here extend this model to entorhinal and temporal cortex slices of rat and mouse brain, providing evidence that multiple SLDs exhibiting the typical tonic–clonic discharge pattern can be also evoked in these cortical regions by successive NMDA applications. Importantly, the temporal cortex is more accessible to viral vector injections than the entorhinal cortex: this makes it feasible in the former region the selective expression in inhibitory interneurons or principal neurons of genetically encoded Ca2+ indicators (GECI) or light-gated opsins. In this model, an optogenetic approach allows to activate specific neuronal types at spatially defined locations, i.e., the focus or the propagating region, and at precise time, i.e., before or during SLD. The NMDA/4-AP model can, therefore, represent a valuable tool to gain insights into the role of specific cell populations in seizure generation, propagation and cessation.
Collapse
Affiliation(s)
- Gabriele Losi
- Neuroscience Institute, National Research Council (CNR) and Department of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy.
| | - Iacopo Marcon
- Neuroscience Institute, National Research Council (CNR) and Department of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Letizia Mariotti
- Neuroscience Institute, National Research Council (CNR) and Department of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Michele Sessolo
- Neuroscience Institute, National Research Council (CNR) and Department of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Angela Chiavegato
- Neuroscience Institute, National Research Council (CNR) and Department of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, National Research Council (CNR) and Department of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| |
Collapse
|
183
|
Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 2015; 86:207-17. [PMID: 25772189 DOI: 10.1016/j.neuron.2015.02.033] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/18/2015] [Accepted: 02/14/2015] [Indexed: 01/05/2023]
Abstract
Unmodified neurons can be directly stimulated with light to produce action potentials, but such techniques have lacked localization of the delivered light energy. Here we show that gold nanoparticles can be conjugated to high-avidity ligands for a variety of cellular targets. Once bound to a neuron, these particles transduce millisecond pulses of light into heat, which changes membrane capacitance, depolarizing the cell and eliciting action potentials. Compared to non-functionalized nanoparticles, ligand-conjugated nanoparticles highly resist convective washout and enable photothermal stimulation with lower delivered energy and resulting temperature increase. Ligands targeting three different membrane proteins were tested; all showed similar activity and washout resistance. This suggests that many types of ligands can be bound to nanoparticles, preserving ligand and nanoparticle function, and that many different cell phenotypes can be targeted by appropriate choice of ligand. The findings have applications as an alternative to optogenetics and potentially for therapies involving neuronal photostimulation.
Collapse
|
184
|
Avants BW, Murphy DB, Dapello JA, Robinson JT. NeuroPG: open source software for optical pattern generation and data acquisition. FRONTIERS IN NEUROENGINEERING 2015; 8:1. [PMID: 25784873 PMCID: PMC4345891 DOI: 10.3389/fneng.2015.00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/09/2015] [Indexed: 11/29/2022]
Abstract
Patterned illumination using a digital micromirror device (DMD) is a powerful tool for optogenetics. Compared to a scanning laser, DMDs are inexpensive and can easily create complex illumination patterns. Combining these complex spatiotemporal illumination patterns with optogenetics allows DMD-equipped microscopes to probe neural circuits by selectively manipulating the activity of many individual cells or many subcellular regions at the same time. To use DMDs to study neural activity, scientists must develop specialized software to coordinate optical stimulation patterns with the acquisition of electrophysiological and fluorescence data. To meet this growing need we have developed an open source optical pattern generation software for neuroscience—NeuroPG—that combines, DMD control, sample visualization, and data acquisition in one application. Built on a MATLAB platform, NeuroPG can also process, analyze, and visualize data. The software is designed specifically for the Mightex Polygon400; however, as an open source package, NeuroPG can be modified to incorporate any data acquisition, imaging, or illumination equipment that is compatible with MATLAB’s Data Acquisition and Image Acquisition toolboxes.
Collapse
Affiliation(s)
- Benjamin W Avants
- Department of Electrical and Computer Engineering, Rice University Houston, TX, USA
| | - Daniel B Murphy
- Department of Electrical and Computer Engineering, Rice University Houston, TX, USA
| | | | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University Houston, TX, USA ; Department of Bioengineering, Rice University Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
185
|
Su CTE, Yoon SI, Marcy G, Chin EWM, Augustine GJ, Goh ELK. An optogenetic approach for assessing formation of neuronal connections in a co-culture system. J Vis Exp 2015:e52408. [PMID: 25742527 PMCID: PMC4354644 DOI: 10.3791/52408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here we describe a protocol to generate a co-culture consisting of 2 different neuronal populations. Induced pluripotent stem cells (iPSCs) are reprogrammed from human fibroblasts using episomal vectors. Colonies of iPSCs can be observed 30 days after initiation of fibroblast reprogramming. Pluripotent colonies are manually picked and grown in neural induction medium to permit differentiation into neural progenitor cells (NPCs). iPSCs rapidly convert into neuroepithelial cells within 1 week and retain the capability to self-renew when maintained at a high culture density. Primary mouse NPCs are differentiated into astrocytes by exposure to a serum-containing medium for 7 days and form a monolayer upon which embryonic day 18 (E18) rat cortical neurons (transfected with channelrhodopsin-2 (ChR2)) are added. Human NPCs tagged with the fluorescent protein, tandem dimer Tomato (tdTomato), are then seeded onto the astrocyte/cortical neuron culture the following day and allowed to differentiate for 28 to 35 days. We demonstrate that this system forms synaptic connections between iPSC-derived neurons and cortical neurons, evident from an increase in the frequency of synaptic currents upon photostimulation of the cortical neurons. This co-culture system provides a novel platform for evaluating the ability of iPSC-derived neurons to create synaptic connections with other neuronal populations.
Collapse
Affiliation(s)
- Colin T E Su
- Neuroscience & Behavioral Disorders, Duke-NUS Graduate Medical School
| | - Su-In Yoon
- Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Guillaume Marcy
- Neuroscience & Behavioral Disorders, Duke-NUS Graduate Medical School
| | - Eunice W M Chin
- Neuroscience & Behavioral Disorders, Duke-NUS Graduate Medical School
| | | | - Eyleen L K Goh
- Neuroscience & Behavioral Disorders, Duke-NUS Graduate Medical School;
| |
Collapse
|
186
|
Packer AM, Russell LE, Dalgleish HWP, Häusser M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 2015; 12:140-6. [PMID: 25532138 PMCID: PMC4933203 DOI: 10.1038/nmeth.3217] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022]
Abstract
We describe an all-optical strategy for simultaneously manipulating and recording the activity of multiple neurons with cellular resolution in vivo. We performed simultaneous two-photon optogenetic activation and calcium imaging by coexpression of a red-shifted opsin and a genetically encoded calcium indicator. A spatial light modulator allows tens of user-selected neurons to be targeted for spatiotemporally precise concurrent optogenetic activation, while simultaneous fast calcium imaging provides high-resolution network-wide readout of the manipulation with negligible optical cross-talk. Proof-of-principle experiments in mouse barrel cortex demonstrate interrogation of the same neuronal population during different behavioral states and targeting of neuronal ensembles based on their functional signature. This approach extends the optogenetic toolkit beyond the specificity obtained with genetic or viral approaches, enabling high-throughput, flexible and long-term optical interrogation of functionally defined neural circuits with single-cell and single-spike resolution in the mouse brain in vivo.
Collapse
Affiliation(s)
- Adam M Packer
- 1] Wolfson Institute for Biomedical Research, University College London, London, UK. [2] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Lloyd E Russell
- 1] Wolfson Institute for Biomedical Research, University College London, London, UK. [2] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Henry W P Dalgleish
- 1] Wolfson Institute for Biomedical Research, University College London, London, UK. [2] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michael Häusser
- 1] Wolfson Institute for Biomedical Research, University College London, London, UK. [2] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
187
|
Hamilton GF, Majdak P, Miller DS, Bucko PJ, Merritt JR, Krebs CP, Rhodes JS. Evaluation of a C57BL/6J × 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis. Brain Plast 2015; 1:83-95. [PMID: 28989863 PMCID: PMC5627510 DOI: 10.3233/bpl-150011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
New neurons are continuously generated in the adult hippocampus but their function remains a mystery. The nestin thymidine kinase (nestin-TK) transgenic method has been used for selective and conditional reduction of neurogenesis for the purpose of testing the functional significance of new neurons in learning, memory and motor performance. Here we explored the nestin-TK model on a hybrid genetic background (to increase heterozygosity, and “hybrid vigor”). Transgenic C57BL/6J (B6) were crossed with 129S1/SvImJ (129) producing hybrid offspring (F1) with the B6 half of the genome carrying a herpes simplex virus thymidine kinase (TK) transgene regulated by a modified nestin promoter. In the presence of exogenously administered valganciclovir, new neurons expressing TK undergo apoptosis. Female B6 nestin-TK mice (n = 80) were evaluated for neurogenesis reduction as a positive control. Male and female F1 nestin-TK mice (n = 223) were used to determine the impact of neurogenesis reduction on the Morris water maze (MWM) and rotarod. All mice received BrdU injections to label dividing cells and either valganciclovir or control chow, with or without a running wheel for 30 days. Both the F1 and B6 background displayed approximately 50% reduction in neurogenesis, a difference that did not impair learning and memory on the MWM or rotarod performance. Running enhanced neurogenesis and performance on the rotarod but not MWM suggesting the F1 background may not be suitable for studying pro-cognitive effects of exercise on MWM. Greater reduction of neurogenesis may be required to observe behavioral impacts. Alternatively, new neurons may not play a critical role in learning, or compensatory mechanisms in pre-existing neurons could have masked the deficits. Further work using these and other models for selectively reducing neurogenesis are needed to establish the functional significance of adult hippocampal neurogenesis in behavior.
Collapse
Affiliation(s)
- G F Hamilton
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P Majdak
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - D S Miller
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P J Bucko
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J R Merritt
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - C P Krebs
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J S Rhodes
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
188
|
Detection of optogenetic stimulation in somatosensory cortex by non-human primates--towards artificial tactile sensation. PLoS One 2014; 9:e114529. [PMID: 25541938 PMCID: PMC4277269 DOI: 10.1371/journal.pone.0114529] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 11/03/2014] [Indexed: 01/06/2023] Open
Abstract
Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest.
Collapse
|
189
|
Becchetti A. Empirically founded genotype-phenotype maps from mammalian cyclic nucleotide-gated ion channels. J Theor Biol 2014; 363:205-15. [PMID: 25172772 DOI: 10.1016/j.jtbi.2014.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/22/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
A major barrier between evolutionary and functional biology is the difficulty of determining appropriate genotype-phenotype-fitness maps, particularly in metazoans. Concrete perspectives towards unifying these approaches are offered by studies on the physiological systems that depend on ion channel dynamics. I focus on the cyclic nucleotide-gated (CNG) channels implicated in the photoreceptor's response to light. From an evolutionary standpoint, sensory systems offers interpretative advantages, as the relation between the sensory response and environment is relatively straightforward. For CNG and other ion channels, extensive data are available about the physiological consequences of scanning mutagenesis on sensitive protein domains, such as the conduction pore. Mutant ion channels can be easily studied in living cells, so that the relation between genotypes and phenotypes is less speculative than usual. By relying on relatively simple theoretical frameworks, I used these data to relate the sequence space with phenotypes at increasing hierarchical levels. These empirical genotype-phenotype and phenotype-phenotype landscapes became smoother at higher integration levels, especially in heterozygous condition. The epistatic interaction between sites was analyzed from double mutant constructs. Magnitude epistasis was common. Moreover, evidence of reciprocal sign epistasis and the presence of permissive mutations were also observed, which suggest how adaptive regions can be connected across maladaptive valleys. The approach I describe suggests a way to better relate the evolutionary dynamics with the underlying physiology.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
190
|
Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology. Curr Opin Neurobiol 2014; 32:53-9. [PMID: 25528614 DOI: 10.1016/j.conb.2014.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 01/19/2023]
Abstract
One often-overlooked factor when selecting a platform for large-scale electrophysiology is whether or not a particular data acquisition system is 'open' or 'closed': that is, whether or not the system's schematics and source code are available to end users. Open systems have a reputation for being difficult to acquire, poorly documented, and hard to maintain. With the arrival of more powerful and compact integrated circuits, rapid prototyping services, and web-based tools for collaborative development, these stereotypes must be reconsidered. We discuss some of the reasons why multichannel extracellular electrophysiology could benefit from open-source approaches and describe examples of successful community-driven tool development within this field. In order to promote the adoption of open-source hardware and to reduce the need for redundant development efforts, we advocate a move toward standardized interfaces that connect each element of the data processing pipeline. This will give researchers the flexibility to modify their tools when necessary, while allowing them to continue to benefit from the high-quality products and expertise provided by commercial vendors.
Collapse
|
191
|
AzimiHashemi N, Erbguth K, Vogt A, Riemensperger T, Rauch E, Woodmansee D, Nagpal J, Brauner M, Sheves M, Fiala A, Kattner L, Trauner D, Hegemann P, Gottschalk A, Liewald JF. Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools. Nat Commun 2014; 5:5810. [PMID: 25503804 DOI: 10.1038/ncomms6810] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022] Open
Abstract
Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals.
Collapse
Affiliation(s)
- N AzimiHashemi
- 1] Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University, Max-von-Laue-Straße 15, 60438 Frankfurt, Germany [2] Institute of Biochemistry, Goethe-University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - K Erbguth
- 1] Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University, Max-von-Laue-Straße 15, 60438 Frankfurt, Germany [2] Institute of Biochemistry, Goethe-University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - A Vogt
- Institute for Biology-Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - T Riemensperger
- Department of Molecular Neurobiology of Behavior, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - E Rauch
- Endotherm, Science-Park II, 66123 Saarbrücken, Germany
| | - D Woodmansee
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - J Nagpal
- 1] Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University, Max-von-Laue-Straße 15, 60438 Frankfurt, Germany [2] Institute of Biochemistry, Goethe-University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - M Brauner
- Institute of Biochemistry, Goethe-University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - M Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - A Fiala
- Department of Molecular Neurobiology of Behavior, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - L Kattner
- Endotherm, Science-Park II, 66123 Saarbrücken, Germany
| | - D Trauner
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - P Hegemann
- Institute for Biology-Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - A Gottschalk
- 1] Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University, Max-von-Laue-Straße 15, 60438 Frankfurt, Germany [2] Institute of Biochemistry, Goethe-University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany [3] Cluster of Excellence Frankfurt Macromolecular Complexes (CEF-MC), Goethe University, Max-von-Laue Straße 15 60438, Frankfurt, Germany
| | - J F Liewald
- 1] Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University, Max-von-Laue-Straße 15, 60438 Frankfurt, Germany [2] Institute of Biochemistry, Goethe-University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| |
Collapse
|
192
|
Wiley LA, Burnight ER, Mullins RF, Stone EM, Tucker BA. Stem cells as tools for studying the genetics of inherited retinal degenerations. Cold Spring Harb Perspect Med 2014; 5:a017160. [PMID: 25502747 DOI: 10.1101/cshperspect.a017160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ability to provide early clinical intervention for inherited disorders is heavily dependent on knowledge of a patient's disease-causing mutations and the resultant pathophysiologic mechanism(s). Without knowing a patient's disease-causing gene, and how gene mutations alter the health and functionality of affected cells, it would be difficult to develop and deliver patient-specific molecular or small molecule therapies. Many believe that the field of stem cell biology holds the keys to the future development of disease-, patient-, and cell-specific therapies. In the case of the eye, which is susceptible to an extremely common late-onset degenerative disease known as age-related macular degeneration, stem cell-based therapies could increase the quality of life for millions of patients worldwide. Furthermore, autologous, patient-specific induced pluripotent stem cells could be a viable source to treat rare Mendelian retinal degenerative diseases such as retinitis pigmentosa, Stargardt disease, and Best disease, to name a few.
Collapse
Affiliation(s)
- Luke A Wiley
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Erin R Burnight
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Robert F Mullins
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Edwin M Stone
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242 Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa 52242
| | - Budd A Tucker
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
193
|
Optical dissection of brain circuits with patterned illumination through the phase modulation of light. J Neurosci Methods 2014; 241:66-77. [PMID: 25497065 DOI: 10.1016/j.jneumeth.2014.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
Brain function relies on electrical signaling among ensembles of neurons. These signals are encoded in space - neurons are organized in complex three-dimensional networks - and in time-cells generate electrical signals on a millisecond scale. How the spatial and temporal structure of these signals controls higher brain functions is largely unknown. The recent advent of novel molecules that manipulate and monitor electrical activity in genetically identified cells provides, for the first time, the ability to causally test the contribution of specific cell subpopulations in these complex brain phenomena. However, most of the commonly used approaches are limited in their ability to illuminate brain tissue with high spatial and temporal precision. In this review article, we focus on one technique, patterned illumination through the phase modulation of light using liquid crystal spatial light modulators (LC-SLMs), which has the potential to overcome some of the major limitations of current experimental approaches.
Collapse
|
194
|
Broussard GJ, Liang R, Tian L. Monitoring activity in neural circuits with genetically encoded indicators. Front Mol Neurosci 2014; 7:97. [PMID: 25538558 PMCID: PMC4256991 DOI: 10.3389/fnmol.2014.00097] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/15/2014] [Indexed: 12/18/2022] Open
Abstract
Recent developments in genetically encoded indicators of neural activity (GINAs) have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning. Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators (GCaMPs), sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function.
Collapse
Affiliation(s)
- Gerard J Broussard
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA ; Neuroscience Graduate Group, University of California Davis Davis, CA, USA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA ; Neuroscience Graduate Group, University of California Davis Davis, CA, USA
| |
Collapse
|
195
|
Affiliation(s)
- Michael Häusser
- Wolfson Institute for Biomedical Research and in the Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
196
|
Horwitz GD. What studies of macaque monkeys have told us about human color vision. Neuroscience 2014; 296:110-5. [PMID: 25445192 DOI: 10.1016/j.neuroscience.2014.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 11/29/2022]
Abstract
Animal models are a necessary component of systems neuroscience research. Determining which animal model to use for a given study involves a complicated calculus. Some experimental manipulations are easily made in some animal models but impossible in others. Some animal models are similar to humans with respect to particular scientific questions, and others are less so. In this review, I discuss work done in my laboratory to investigate the neural mechanisms of color vision in the rhesus macaque. The emphasis is on the strengths of the macaque model, but shortcomings are also discussed.
Collapse
Affiliation(s)
- G D Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States; Washington National Primate Research Center, Seattle, WA, United States.
| |
Collapse
|
197
|
Hernandez VH, Gehrt A, Jing Z, Hoch G, Jeschke M, Strenzke N, Moser T. Optogenetic stimulation of the auditory nerve. J Vis Exp 2014:e52069. [PMID: 25350571 DOI: 10.3791/52069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Direct electrical stimulation of spiral ganglion neurons (SGNs) by cochlear implants (CIs) enables open speech comprehension in the majority of implanted deaf subjects(1-) (6). Nonetheless, sound coding with current CIs has poor frequency and intensity resolution due to broad current spread from each electrode contact activating a large number of SGNs along the tonotopic axis of the cochlea(7-) (9). Optical stimulation is proposed as an alternative to electrical stimulation that promises spatially more confined activation of SGNs and, hence, higher frequency resolution of coding. In recent years, direct infrared illumination of the cochlea has been used to evoke responses in the auditory nerve(10). Nevertheless it requires higher energies than electrical stimulation(10,11) and uncertainty remains as to the underlying mechanism(12). Here we describe a method based on optogenetics to stimulate SGNs with low intensity blue light, using transgenic mice with neuronal expression of channelrhodopsin 2 (ChR2)(13) or virus-mediated expression of the ChR2-variant CatCh(14). We used micro-light emitting diodes (µLEDs) and fiber-coupled lasers to stimulate ChR2-expressing SGNs through a small artificial opening (cochleostomy) or the round window. We assayed the responses by scalp recordings of light-evoked potentials (optogenetic auditory brainstem response: oABR) or by microelectrode recordings from the auditory pathway and compared them with acoustic and electrical stimulation.
Collapse
Affiliation(s)
- Victor H Hernandez
- InnerEarLab, Department of Otolaryngology, University Medical Center Goettingen; Bernstein Focus for Neurotechnology, University of Goettingen; Department of Chemical, Electronic, and Biomedical Engineering, University of Guanajuato
| | - Anna Gehrt
- InnerEarLab, Department of Otolaryngology, University Medical Center Goettingen; Auditory Systems Physiology Group, Department of Otolaryngology, University Medical Center Goettingen
| | - Zhizi Jing
- Auditory Systems Physiology Group, Department of Otolaryngology, University Medical Center Goettingen
| | - Gerhard Hoch
- InnerEarLab, Department of Otolaryngology, University Medical Center Goettingen
| | - Marcus Jeschke
- InnerEarLab, Department of Otolaryngology, University Medical Center Goettingen
| | - Nicola Strenzke
- Auditory Systems Physiology Group, Department of Otolaryngology, University Medical Center Goettingen
| | - Tobias Moser
- InnerEarLab, Department of Otolaryngology, University Medical Center Goettingen; Bernstein Focus for Neurotechnology, University of Goettingen; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Goettingen;
| |
Collapse
|
198
|
Watakabe A, Takaji M, Kato S, Kobayashi K, Mizukami H, Ozawa K, Ohsawa S, Matsui R, Watanabe D, Yamamori T. Simultaneous visualization of extrinsic and intrinsic axon collaterals in Golgi-like detail for mouse corticothalamic and corticocortical cells: a double viral infection method. Front Neural Circuits 2014; 8:110. [PMID: 25278843 PMCID: PMC4166322 DOI: 10.3389/fncir.2014.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/22/2014] [Indexed: 11/21/2022] Open
Abstract
Here we present a novel tracing technique to stain projection neurons in Golgi-like detail by double viral infection. We used retrograde lentiviral vectors and adeno-associated viral vectors (AAV) to drive “TET-ON/TET-OFF system” in neurons connecting two regions. Using this method, we successfully labeled the corticothalamic (CT) cells of the mouse somatosensory barrel field (S1BF) and motor cortex (M1) in their entirety. We also labeled contra- and ipsilaterally-projecting corticocortical (CC) cells of M1 by targeting contralateral M1 or ipsilateral S1 for retrograde infection. The strength of this method is that we can observe the morphology of specific projection neuron subtypes en masse. We found that the group of CT cells extends their dendrites and intrinsic axons extensively below but not within the thalamorecipient layer in both S1BF and M1, suggesting that the primary target of this cell type is not layer 4. We also found that both ipsi- and contralateral targeting CC cells in M1 commonly exhibit widespread collateral extensions to contralateral M1 (layers 1–6), bilateral S1 and S2 (layers 1, 5 and 6), perirhinal cortex (layers 1, 2/3, 5, and 6), striatum and claustrum. These findings not only strengthened the previous findings of single cell tracings but also extended them by enabling cross-area comparison of CT cells or comparison of CC cells of two different labeling.
Collapse
Affiliation(s)
- Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Masafumi Takaji
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University Shimotsuke, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University Shimotsuke, Japan
| | - Sonoko Ohsawa
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Ryosuke Matsui
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | - Dai Watanabe
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| |
Collapse
|
199
|
Goshen I. The optogenetic revolution in memory research. Trends Neurosci 2014; 37:511-22. [DOI: 10.1016/j.tins.2014.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/02/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
200
|
BARRETT JOHNMARTIN, BERLINGUER-PALMINI ROLANDO, DEGENAAR PATRICK. Optogenetic approaches to retinal prosthesis. Vis Neurosci 2014; 31:345-54. [PMID: 25100257 PMCID: PMC4161214 DOI: 10.1017/s0952523814000212] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/07/2014] [Indexed: 01/14/2023]
Abstract
The concept of visual restoration via retinal prosthesis arguably started in 1992 with the discovery that some of the retinal cells were still intact in those with the retinitis pigmentosa disease. Two decades later, the first commercially available devices have the capability to allow users to identify basic shapes. Such devices are still very far from returning vision beyond the legal blindness. Thus, there is considerable continued development of electrode materials, and structures and electronic control mechanisms to increase both resolution and contrast. In parallel, the field of optogenetics--the genetic photosensitization of neural tissue holds particular promise for new approaches. Given that the eye is transparent, photosensitizing remaining neural layers of the eye and illuminating from the outside could prove to be less invasive, cheaper, and more effective than present approaches. As we move toward human trials in the coming years, this review explores the core technological and biological challenges related to the gene therapy and the high radiance optical stimulation requirement.
Collapse
Affiliation(s)
- JOHN MARTIN BARRETT
- Institute of Neuroscience,
Newcastle University, Newcastle upon
Tyne, United Kingdom
| | | | - PATRICK DEGENAAR
- School of EEE,
Newcastle University, Newcastle upon
Tyne, United Kingdom
| |
Collapse
|