151
|
Cuevas KM, Balbo J, Duval K, Beverly EA. Neurobiology of Sexual Assault and Osteopathic Considerations for Trauma-Informed Care and Practice. J Osteopath Med 2017; 118:e2-e10. [DOI: 10.7556/jaoa.2018.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Sexual assault is a traumatic event with potentially devastating lifelong effects on physical and emotional health. Sexual assault is associated with gastrointestinal, neurologic, and reproductive symptoms, as well as obesity, diabetes, and chronic pain. With 1 in 3 women and 1 in 6 men experiencing some form of unwanted sexual violence in their lifetime, sexual assault is a significant public health problem that necessitates attention in the medical community. This review discusses relevant literature on the neurobiologic changes that occur as a consequence of sexual assault, such as how the brain responds during a traumatic experience and the impact of trauma on memory. Osteopathic considerations for trauma-informed care and practice and how all physicians can better serve patients with a history of sexual assault are also discussed.
Collapse
|
152
|
Bath KG, Russo SJ, Pleil KE, Wohleb ES, Duman RS, Radley JJ. Circuit and synaptic mechanisms of repeated stress: Perspectives from differing contexts, duration, and development. Neurobiol Stress 2017; 7:137-151. [PMID: 29276735 PMCID: PMC5736942 DOI: 10.1016/j.ynstr.2017.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
The current review is meant to synthesize research presented as part of a symposium at the 2016 Neurobiology of Stress workshop in Irvine California. The focus of the symposium was "Stress and the Synapse: New Concepts and Methods" and featured the work of several junior investigators. The presentations focused on the impact of various forms of stress (altered maternal care, binge alcohol drinking, chronic social defeat, and chronic unpredictable stress) on synaptic function, neurodevelopment, and behavioral outcomes. One of the goals of the symposium was to highlight the mechanisms accounting for how the nervous system responds to stress and their impact on outcome measures with converging effects on the development of pathological behavior. Dr. Kevin Bath's presentation focused on the impact of disruptions in early maternal care and its impact on the timing of hippocampus maturation in mice, finding that this form of stress drove accelerated synaptic and behavioral maturation, and contributed to the later emergence of risk for cognitive and emotional disturbance. Dr. Scott Russo highlighted the impact of chronic social defeat stress in adolescent mice on the development and plasticity of reward circuity, with a focus on glutamatergic development in the nucleus accumbens and mesolimbic dopamine system, and the implications of these changes for disruptions in social and hedonic response, key processes disturbed in depressive pathology. Dr. Kristen Pleil described synaptic changes in the bed nuclei of the stria terminalis that underlie the behavioral consequences of allostatic load produced by repeated cycles of alcohol binge drinking and withdrawal. Dr. Eric Wohleb and Dr. Ron Duman provided new data associating decreased mammalian target of rapamycin (mTOR) signaling and neurobiological changes in the synapses in response to chronic unpredictable stress, and highlighted the potential for the novel antidepressant ketamine to rescue synaptic and behavioral effects. In aggregate, these presentations showcased how divergent perspectives provide new insights into the ways in which stress impacts circuit development and function, with implications for understanding emergence of affective pathology.
Collapse
Affiliation(s)
- Kevin G. Bath
- Department of Cognitive Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, United States
| | - Scott J. Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kristen E. Pleil
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, United States
| | - Eric S. Wohleb
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45237, United States
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, United States
| | - Ronald S. Duman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, United States
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
153
|
Subhani AR, Kamel N, Mohamad Saad MN, Nandagopal N, Kang K, Malik AS. Mitigation of stress: new treatment alternatives. Cogn Neurodyn 2017; 12:1-20. [PMID: 29435084 DOI: 10.1007/s11571-017-9460-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 10/23/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022] Open
Abstract
Complaints of stress are common in modern life. Psychological stress is a major cause of lifestyle-related issues, contributing to poor quality of life. Chronic stress impedes brain function, causing impairment of many executive functions, including working memory, decision making and attentional control. The current study sought to describe newly developed stress mitigation techniques, and their influence on autonomic and endocrine functions. The literature search revealed that the most frequently studied technique for stress mitigation was biofeedback (BFB). However, evidence suggests that neurofeedback (NFB) and noninvasive brain stimulation (NIBS) could potentially provide appropriate approaches. We found that recent studies of BFB methods have typically used measures of heart rate variability, respiration and skin conductance. In contrast, studies of NFB methods have typically utilized neurocomputation techniques employing electroencephalography, functional magnetic resonance imaging and near infrared spectroscopy. NIBS studies have typically utilized transcranial direct current stimulation methods. Mitigation of stress is a challenging but important research target for improving quality of life.
Collapse
Affiliation(s)
- Ahmad Rauf Subhani
- 1Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 32610 Bandar, Seri Iskandar, Perak Malaysia
| | - Nidal Kamel
- 1Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 32610 Bandar, Seri Iskandar, Perak Malaysia
| | - Mohamad Naufal Mohamad Saad
- 1Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 32610 Bandar, Seri Iskandar, Perak Malaysia
| | - Nanda Nandagopal
- 2Cognitive Neuro-Engineering Laboratory, Division of IT, Engineering and Environment, University of South Australia, Mawson Lakes Campus, Adelaide, 5001 Australia
| | - Kenneth Kang
- Spectrum Learning Pte Ltd, 81 Clemenceau Avenue #04-15/16, UE Square, Singapore, 239917 Singapore
| | - Aamir Saeed Malik
- 1Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 32610 Bandar, Seri Iskandar, Perak Malaysia
| |
Collapse
|
154
|
Yasmin F, Saxena K, McEwen BS, Chattarji S. The delayed strengthening of synaptic connectivity in the amygdala depends on NMDA receptor activation during acute stress. Physiol Rep 2017; 4:4/20/e13002. [PMID: 27798355 PMCID: PMC5099964 DOI: 10.14814/phy2.13002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 01/21/2023] Open
Abstract
There is growing evidence that stress leads to contrasting patterns of structural plasticity in the hippocampus and amygdala, two brain areas implicated in the cognitive and affective symptoms of stress‐related psychiatric disorders. Acute stress has been shown to trigger a delayed increase in the density of dendritic spines in the basolateral amygdala (BLA) of rodents. However, the physiological correlates of this delayed spinogenesis in the BLA remain unexplored. Furthermore, NMDA receptors (NMDARs) have been known to underlie chronic stress‐induced structural plasticity in the hippocampus, but nothing is known about the role of these receptors in the delayed spinogenesis, and its physiological consequences, in the BLA following acute stress. Here, using whole‐cell recordings in rat brain slices, we find that a single exposure to 2‐h immobilization stress enhances the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs) recorded from principal neurons in the BLA 10 days later. This was also accompanied by faster use‐dependent block of NMDA receptor currents during repeated stimulation of thalamic inputs to the BLA, which is indicative of higher presynaptic release probability at these inputs 10 days later. Furthermore, targeted in vivo infusion of the NMDAR‐antagonist APV into the BLA during the acute stress prevents the increase in mEPSC frequency and spine density 10 days later. Together, these results identify a role for NMDARs during acute stress in both the physiological and morphological strengthening of synaptic connectivity in the BLA in a delayed fashion. These findings also raise the possibility that activation of NMDA receptors during stress may serve as a common molecular mechanism despite the divergent patterns of plasticity that eventually emerge after stress in the amygdala and hippocampus.
Collapse
Affiliation(s)
- Farhana Yasmin
- National Centre for Biological Sciences, Bangalore, India
| | - Kapil Saxena
- National Centre for Biological Sciences, Bangalore, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, USA
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bangalore, India .,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Integrative Physiology, Deanery of Biomedical Sciences, The University of Edinburgh, George Square, Edinburgh, UK
| |
Collapse
|
155
|
Lee SC, Amir A, Haufler D, Pare D. Differential Recruitment of Competing Valence-Related Amygdala Networks during Anxiety. Neuron 2017; 96:81-88.e5. [PMID: 28957678 DOI: 10.1016/j.neuron.2017.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/11/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023]
Abstract
The basolateral amygdala (BL) is involved in fear and anxiety, but it is currently unclear how the same network supports these two states. To address this question, we trained rats on appetitive and aversive conditioning in different contexts. Distinct groups of BL neurons displayed increased activity during appetitive (CS-R) versus aversive (CS-S) conditioned stimuli (R cells and S cells, respectively), and they were typically inhibited by the other CS. When the CS-S was presented in the safe context, rats entered a long-lasting, anxiety-like state characterized by increased inter-CS freezing and impaired reward seeking. During this state, a subset of BL cells ("state cells") showed sustained shifts in baseline activity whose time course matched that of the behavioral changes. Many state cells with increased firing rates were S cells, whereas R cells only included state cells with reduced firing rates. Thus, anxiety involves persistent activity changes that are differentially expressed by subsets of valence-specific BL neurons.
Collapse
Affiliation(s)
- Seung-Chan Lee
- Center for Molecular and Behavioral Neuroscience, 197 University Avenue, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Alon Amir
- Center for Molecular and Behavioral Neuroscience, 197 University Avenue, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Darrell Haufler
- Center for Molecular and Behavioral Neuroscience, 197 University Avenue, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Denis Pare
- Center for Molecular and Behavioral Neuroscience, 197 University Avenue, Rutgers University-Newark, Newark, NJ 07102, USA.
| |
Collapse
|
156
|
Yeh LF, Watanabe M, Sulkes-Cuevas J, Johansen JP. Dysregulation of aversive signaling pathways: a novel circuit endophenotype for pain and anxiety disorders. Curr Opin Neurobiol 2017; 48:37-44. [PMID: 28965072 DOI: 10.1016/j.conb.2017.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022]
Abstract
Aversive experiences activate dedicated neural instructive pathways which trigger memory formation and change behavior. The strength of these aversive memories and the degree to which they alter behavior is proportional to the intensity of the aversive experience. Dysregulation of aversive learning circuits can lead to psychiatric pathology. Here we review recent findings elucidating aversive instructive signaling circuits for fear conditioning. We then examine how chronic pain as well as stress and anxiety disrupt these circuits and the implications this has for understanding and treating psychiatric disease. Together this review synthesizes current work on aversive instructive signaling circuits in health and disease and suggests a novel circuit based framework for understanding pain and anxiety syndromes.
Collapse
Affiliation(s)
- Li-Feng Yeh
- RIKEN Brain Science Institute, Laboratory for Neural Circuitry of Memory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Mayumi Watanabe
- RIKEN Brain Science Institute, Laboratory for Neural Circuitry of Memory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Jessica Sulkes-Cuevas
- RIKEN Brain Science Institute, Laboratory for Neural Circuitry of Memory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Joshua P Johansen
- RIKEN Brain Science Institute, Laboratory for Neural Circuitry of Memory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan; RIKEN BSI-Kao Collaboration Center, Japan.
| |
Collapse
|
157
|
Wu J, Sun X, Wang L, Zhang L, Fernández G, Yao Z. Error consciousness predicts physiological response to an acute psychosocial stressor in men. Psychoneuroendocrinology 2017; 83:84-90. [PMID: 28601751 DOI: 10.1016/j.psyneuen.2017.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 01/29/2023]
Abstract
There are substantial individual differences in the response towards acute stressor. The aim of the current study was to examine how the neural activity after an error response during a non-stressful state, prospectively predicts the magnitude of physiological stress response (e.g., cortisol response and heart rate) and negative affect elicited by a laboratory stress induction procedure in nonclinical participants. Thirty-seven healthy young male adults came to the laboratory for the baseline neurocognitive measurement on the first day during which they performed a Go/Nogo task with their electroencephalogram recorded. On the second day, they came again to be tested on their stress response using an acute psychosocial stress procedure (i.e., the Trier Social Stress Test, the TSST). Results showed that the amplitude of error positivity (Pe) significantly predicted both the heart rate and cortisol response towards the TSST. Our results suggested that baseline cognitive neural activity reflecting error consciousness could be used as a biological predictor of physiological response to an acute psychological stressor in men.
Collapse
Affiliation(s)
- Jianhui Wu
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China
| | - Xiaofang Sun
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Liang Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behavior, Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Zhuxi Yao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Donders Institute for Brain, Cognition and Behavior, Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
158
|
Pattwell SS, Bath KG. Emotional learning, stress, and development: An ever-changing landscape shaped by early-life experience. Neurobiol Learn Mem 2017; 143:36-48. [PMID: 28458034 PMCID: PMC5540880 DOI: 10.1016/j.nlm.2017.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
The capacity to learn to associate cues with negative outcomes is a highly adaptive process that appears to be conserved across species. However, when the cue is no longer a valid predictor of danger, but the emotional response persists, this can result in maladaptive behaviors, and in humans contribute to debilitating emotional disorders. Over the past several decades, work in neuroscience, psychiatry, psychology, and biology have uncovered key processes underlying, and structures governing, emotional responding and learning, as well as identified disruptions in the structural and functional integrity of these brain regions in models of pathology. In this review, we highlight some of this elegant body of work as well as incorporate emerging findings from the field of developmental neurobiology to emphasize how development contributes to changes in the ability to learn and express emotional responses, and how early experiences, such as stress, shape the development and functioning of these circuits.
Collapse
Affiliation(s)
- Siobhan S Pattwell
- Department of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, United States.
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, United States
| |
Collapse
|
159
|
Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Prog Neurobiol 2017; 156:164-188. [DOI: 10.1016/j.pneurobio.2017.05.004] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
|
160
|
Hippocampal MicroRNA-124 Enhances Chronic Stress Resilience in Mice. J Neurosci 2017; 36:7253-67. [PMID: 27383599 DOI: 10.1523/jneurosci.0319-16.2016] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/02/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Chronic stress-induced aberrant gene expression in the brain and subsequent dysfunctional neuronal plasticity have been implicated in the etiology and pathophysiology of mood disorders. In this study, we examined whether altered expression of small, regulatory, noncoding microRNAs (miRNAs) contributes to the depression-like behaviors and aberrant neuronal plasticity associated with chronic stress. Mice exposed to chronic ultra-mild stress (CUMS) exhibited increased depression-like behaviors and reduced hippocampal expression of the brain-enriched miRNA-124 (miR-124). Aberrant behaviors and dysregulated miR-124 expression were blocked by chronic treatment with an antidepressant drug. The depression-like behaviors are likely not conferred directly by miR-124 downregulation because neither viral-mediated hippocampal overexpression nor intrahippocampal infusion of an miR-124 inhibitor affected depression-like behaviors in nonstressed mice. However, viral-mediated miR-124 overexpression in hippocampal neurons conferred behavioral resilience to CUMS, whereas inhibition of miR-124 led to greater behavioral susceptibility to a milder stress paradigm. Moreover, we identified histone deacetylase 4 (HDAC4), HDAC5, and glycogen synthase kinase 3β (GSK3β) as targets for miR-124 and found that intrahippocampal infusion of a selective HDAC4/5 inhibitor or GSK3 inhibitor had antidepressant-like actions on behavior. We propose that miR-124-mediated posttranscriptional controls of HDAC4/5 and GSK3β expressions in the hippocampus have pivotal roles in susceptibility/resilience to chronic stress. SIGNIFICANCE STATEMENT Depressive disorders are a major public health concern worldwide. Although a clear understanding of the etiology of depression is still lacking, chronic stress-elicited aberrant neuronal plasticity has been implicated in the pathophysiology of depression. We show that the hippocampal expression of microRNA-124 (miR-124), an endogenous small, noncoding RNA that represses gene expression posttranscriptionally, controls resilience/susceptibility to chronic stress-induced depression-like behaviors. These effects on depression-like behaviors may be mediated through regulation of the mRNA or protein expression levels of histone deacetylases HDAC4/5 and glycogen synthase kinase 3β, all highly conserved miR-124 targets. Moreover, miR-124 contributes to stress-induced dendritic hypotrophy and reduced spine density of dentate gyrus granule neurons. Modulation of hippocampal miR-124 pathways may have potential antidepressant effects.
Collapse
|
161
|
Caetano L, Pinheiro H, Patrício P, Mateus-Pinheiro A, Alves ND, Coimbra B, Baptista FI, Henriques SN, Cunha C, Santos AR, Ferreira SG, Sardinha VM, Oliveira JF, Ambrósio AF, Sousa N, Cunha RA, Rodrigues AJ, Pinto L, Gomes CA. Adenosine A 2A receptor regulation of microglia morphological remodeling-gender bias in physiology and in a model of chronic anxiety. Mol Psychiatry 2017; 22:1035-1043. [PMID: 27725661 DOI: 10.1038/mp.2016.173] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/01/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
Abstract
Developmental risk factors, such as the exposure to stress or high levels of glucocorticoids (GCs), may contribute to the pathogenesis of anxiety disorders. The immunomodulatory role of GCs and the immunological fingerprint found in animals prenatally exposed to GCs point towards an interplay between the immune and the nervous systems in the etiology of these disorders. Microglia are immune cells of the brain, responsive to GCs and morphologically altered in stress-related disorders. These cells are regulated by adenosine A2A receptors, which are also involved in the pathophysiology of anxiety. We now compare animal behavior and microglia morphology in males and females prenatally exposed to the GC dexamethasone. We report that prenatal exposure to dexamethasone is associated with a gender-specific remodeling of microglial cell processes in the prefrontal cortex: males show a hyper-ramification and increased length whereas females exhibit a decrease in the number and in the length of microglia processes. Microglial cells re-organization responded in a gender-specific manner to the chronic treatment with a selective adenosine A2A receptor antagonist, which was able to ameliorate microglial processes alterations and anxiety behavior in males, but not in females.
Collapse
Affiliation(s)
- L Caetano
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - H Pinheiro
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal
| | - P Patrício
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - A Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - N D Alves
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - B Coimbra
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - F I Baptista
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal
| | - S N Henriques
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - C Cunha
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - A R Santos
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - S G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal
| | - V M Sardinha
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - J F Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - A F Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - R A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - A J Rodrigues
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - L Pinto
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - C A Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
162
|
Affiliation(s)
- Jianhui Wu
- Institute of Affective and Social Neuroscience, Shenzhen UniversityShenzhen, China
| | - Jin Yan
- School of Psychology and Mental Health, Second Military Medical UniversityShanghai, China
| |
Collapse
|
163
|
Abstract
Anxiety disorders constitute the largest group of mental disorders in most western societies and are a leading cause of disability. The essential features of anxiety disorders are excessive and enduring fear, anxiety or avoidance of perceived threats, and can also include panic attacks. Although the neurobiology of individual anxiety disorders is largely unknown, some generalizations have been identified for most disorders, such as alterations in the limbic system, dysfunction of the hypothalamic-pituitary-adrenal axis and genetic factors. In addition, general risk factors for anxiety disorders include female sex and a family history of anxiety, although disorder-specific risk factors have also been identified. The diagnostic criteria for anxiety disorders varies for the individual disorders, but are generally similar across the two most common classification systems: the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and the International Classification of Diseases, Tenth Edition (ICD-10). Despite their public health significance, the vast majority of anxiety disorders remain undetected and untreated by health care systems, even in economically advanced countries. If untreated, these disorders are usually chronic with waxing and waning symptoms. Impairments associated with anxiety disorders range from limitations in role functioning to severe disabilities, such as the patient being unable to leave their home.
Collapse
Affiliation(s)
- Michelle G Craske
- Department of Psychology, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| | - Thalia C Eley
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Mohammed R Milad
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Charleston, Massachusetts, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| | - Ronald M Rapee
- Department of Psychology, Centre for Emotional Health, Macquarie University, Sydney, New South Wales, Australia
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Faculty of Science, Technische Universitaet Dresden, Dresden, Germany
| |
Collapse
|
164
|
Wen DJ, Poh JS, Ni SN, Chong YS, Chen H, Kwek K, Shek LP, Gluckman PD, Fortier MV, Meaney MJ, Qiu A. Influences of prenatal and postnatal maternal depression on amygdala volume and microstructure in young children. Transl Psychiatry 2017; 7:e1103. [PMID: 28440816 PMCID: PMC5416711 DOI: 10.1038/tp.2017.74] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
Maternal depressive symptoms influence neurodevelopment in the offspring. Such effects may appear to be gender-dependent. The present study examined contributions of prenatal and postnatal maternal depressive symptoms to the volume and microstructure of the amygdala in 4.5-year-old boys and girls. Prenatal maternal depressive symptoms were measured using the Edinburgh Postnatal Depression Scale (EPDS) at 26 weeks of gestation. Postnatal maternal depression was assessed at 3 months using the EPDS and at 1, 2, 3 and 4.5 years using the Beck's Depression Inventory-II. Structural magnetic resonance imaging and diffusion tensor imaging were performed with 4.5-year-old children to extract the volume and fractional anisotropy (FA) values of the amygdala. Our results showed that greater prenatal maternal depressive symptoms were associated with larger right amygdala volume in girls, but not in boys. Increased postnatal maternal depressive symptoms were associated with higher right amygdala FA in the overall sample and girls, but not in boys. These results support the role of variation in right amygdala structure in transmission of maternal depression to the offspring, particularly to girls. The differential effects of prenatal and postnatal maternal depressive symptoms on the volume and FA of the right amygdala suggest the importance of the timing of exposure to maternal depressive symptoms in brain development of girls. This further underscores the need for intervention targeting both prenatal and postnatal maternal depression to girls in preventing adverse child outcomes.
Collapse
Affiliation(s)
- D J Wen
- Department of Biomedical Engineering, Clinical Imaging Research Center, National University of Singapore, Singapore, Singapore
| | - J S Poh
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - S N Ni
- Department of Biomedical Engineering, Clinical Imaging Research Center, National University of Singapore, Singapore, Singapore
| | - Y-S Chong
- Singapore Institute for Clinical Sciences, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - H Chen
- KK Women's and Children's Hospital, Singapore, Singapore
| | - K Kwek
- KK Women's and Children's Hospital, Singapore, Singapore
| | - L P Shek
- Department of Pediatrics, Khoo Teck Puat – National University Children's Medical Institute, National University of Singapore, Singapore, Singapore
| | - P D Gluckman
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - M V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore, Singapore
| | - M J Meaney
- Singapore Institute for Clinical Sciences, Singapore, Singapore
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada
| | - A Qiu
- Department of Biomedical Engineering, Clinical Imaging Research Center, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| |
Collapse
|
165
|
The Research on the Relationship of RAGE, LRP-1, and Aβ Accumulation in the Hippocampus, Prefrontal Lobe, and Amygdala of STZ-Induced Diabetic Rats. J Mol Neurosci 2017; 62:1-10. [PMID: 28401370 DOI: 10.1007/s12031-017-0892-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 01/24/2017] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus (DM) has been regarded as an important risk factor for Alzheimer's disease (AD), and diabetic patients and animals have shown cognitive dysfunction. More research has shown that the amyloid-β (Aβ), which is a hallmark of AD, was found deposited in the hippocampus of diabetic rats. This Aβ accumulation is regulated by the receptor for advanced glycation end products (RAGE) and low-density lipoprotein receptor-related protein (LRP-1). However, the expression of RAGE and LRP-1 in diabetic rats is not very clear. In the present study, we used streptozotocin (STZ)-induced diabetic rats to investigate whether the expression of RAGE and LRP-1 is related to Aβ1-42 deposition at the hippocampus, prefrontal lobe, and amygdala in DM. We found that diabetic rats had longer escape latency and less frequency of entrance into the target zone than that of the control group (P < 0.05) in the Morris water maze (MWM) test. The Aβ1-42 expression in the hippocampus and prefrontal lobe significantly increased in the DM group compared to the control group (P < 0.05). RAGE increased (P < 0.05), while LRP-1 decreased (P < 0.05) in the hippocampus tissue and prefrontal lobe tissue of DM rats. The Aβ1-42 deposition was correlated with RAGE positively (P < 0.05), but with LRP-1 negatively (P < 0.05). Further, the expression levels of Aβ1-42, RAGE, and LRP-1 were not changed in the amygdala between the diabetic rats and the control group. These findings indicated that upregulating RAGE and/or downregulating LRP-1 at the hippocampus and the prefrontal lobe contributed to the Aβ1-42 accumulation and then further promoted the cognitive impairment of diabetic rats.
Collapse
|
166
|
Abstract
The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor, which promote adaptation ("allostasis") but also contribute to pathophysiology ("allostatic load/overload") when overused and dysregulated. The adult as well as developing brain possesses a remarkable ability to show structural and functional plasticity in response to stressful and other experiences, including neuronal replacement, dendritic remodeling and synapse turnover. Stress can cause an imbalance of neural circuitry subserving cognition, decision making, anxiety and mood that can increase or decrease expression of those behaviors and behavioral states. This imbalance, in turn, affects systemic physiology via neuroendocrine, autonomic, immune and metabolic mediators. In the short term, these changes may be adaptive; but, if the threat passes and the behavioral state persists along with the changes in neural circuitry, such maladaptation requires intervention with a combination of pharmacological and behavioral therapies. There are important sex differences in how the brain responds to stressors. Moreover, adverse early life experience, interacting with alleles of certain genes, produces lasting effects on brain and body via epigenetic mechanisms. While prevention is key, the plasticity of the brain gives hope for therapies that utilize brain-body interactions. Policies of government and the private sector are important to promote health and increase "healthspan."
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
167
|
|
168
|
Abstract
The future of medicine is discussed in the context of epigenetic influences during the entire life course and the lived experiences of each person, avoiding as much as possible the "medicalization" of the individual and taking a more humanistic view. The reciprocal communication between brain and body via the neuroendocrine, autonomic, metabolic and immune systems and the plasticity of brain architecture provide the basis for devising better "top down" interventions that engage the whole person in working towards his or her welfare. The life course perspective emphasizes the importance of intervening early in life to prevent adverse early life experiences, including the effects of poverty, that can have lifelong consequences, referred to as "biological embedding". In the spirit of integrative, humanistic medicine, treatments that "open windows of plasticity" allow targeted behavioral interventions to redirect brain and body functions and behavior in healthier directions. Policies of government and the private sector, particularly at the local, community level, can create a supporting environment for such interventions. See "Common Ground for Health: Personalized, Precision and Social Medicine McEwen & Getz - https://www.youtube.com/watch?v=IRy_uUWyrEw.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065.
| |
Collapse
|
169
|
Homberg JR, Kozicz T, Fernández G. Large-scale network balances in the transition from adaptive to maladaptive stress responses. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
170
|
|
171
|
Anxiety-Related Behaviours Associated with microRNA-206-3p and BDNF Expression in Pregnant Female Mice Following Psychological Social Stress. Mol Neurobiol 2017; 55:1097-1111. [DOI: 10.1007/s12035-016-0378-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
|
172
|
Albrecht A, Müller I, Ardi Z, Çalışkan G, Gruber D, Ivens S, Segal M, Behr J, Heinemann U, Stork O, Richter-Levin G. Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. Neurosci Biobehav Rev 2017; 74:21-43. [PMID: 28088535 DOI: 10.1016/j.neubiorev.2017.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 01/18/2023]
Abstract
ALBRECHT, A., MÜLLER, I., ARDI, Z., ÇALIŞKAN, G., GRUBER, D., IVENS, S., SEGAL, M., BEHR, J., HEINEMANN, U., STORK, O., and RICHTER-LEVIN, G. Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. NEUROSCI BIOBEHAV REV XXX-XXX, 2016.- Childhood adversity is among the most potent risk factors for developing mood and anxiety disorders later in life. Therefore, understanding how stress during childhood shapes and rewires the brain may optimize preventive and therapeutic strategies for these disorders. To this end, animal models of stress exposure in rodents during their post-weaning and pre-pubertal life phase have been developed. Such 'juvenile stress' has a long-lasting impact on mood and anxiety-like behavior and on stress coping in adulthood, accompanied by alterations of the GABAergic system within core regions for the stress processing such as the amygdala, prefrontal cortex and hippocampus. While many regionally diverse molecular and electrophysiological changes are observed, not all of them correlate with juvenile stress-induced behavioral disturbances. It rather seems that certain juvenile stress-induced alterations reflect the system's attempts to maintain homeostasis and thus promote stress resilience. Analysis tools such as individual behavioral profiling may allow the association of behavioral and neurobiological alterations more clearly and the dissection of alterations related to the pathology from those related to resilience.
Collapse
Affiliation(s)
- Anne Albrecht
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Iris Müller
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ziv Ardi
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| | - Gürsel Çalışkan
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - David Gruber
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Sebastian Ivens
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Herzl St 234, 7610001 Rehovot, Israel
| | - Joachim Behr
- Research Department of Experimental and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Garystraße 5, 14195 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic, Brandenburg Medical School - Campus Neuruppin, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
| | - Uwe Heinemann
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Department of Psychology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| |
Collapse
|
173
|
How age, sex and genotype shape the stress response. Neurobiol Stress 2016; 6:44-56. [PMID: 28229108 PMCID: PMC5314441 DOI: 10.1016/j.ynstr.2016.11.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
Exposure to chronic stress is a leading pre-disposing factor for several neuropsychiatric disorders as it often leads to maladaptive responses. The response to stressful events is heterogeneous, underpinning a wide spectrum of distinct changes amongst stress-exposed individuals'. Several factors can underlie a different perception to stressors and the setting of distinct coping strategies that will lead to individual differences on the susceptibility/resistance to stress. Beyond the factors related to the stressor itself, such as intensity, duration or predictability, there are factors intrinsic to the individuals that are relevant to shape the stress response, such as age, sex and genetics. In this review, we examine the contribution of such intrinsic factors to the modulation of the stress response based on experimental rodent models of response to stress and discuss to what extent that knowledge can be potentially translated to humans. Effect of age in the stress response. Effect of sex in the stress response. Effect of genotype in the stress response.
Collapse
|
174
|
Arango-Lievano M, Peguet C, Catteau M, Parmentier ML, Wu S, Chao MV, Ginsberg SD, Jeanneteau F. Deletion of Neurotrophin Signaling through the Glucocorticoid Receptor Pathway Causes Tau Neuropathology. Sci Rep 2016; 6:37231. [PMID: 27849045 PMCID: PMC5110980 DOI: 10.1038/srep37231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/26/2016] [Indexed: 01/29/2023] Open
Abstract
Glucocorticoid resistance is a risk factor for Alzheimer's disease (AD). Molecular and cellular mechanisms of glucocorticoid resistance in the brain have remained unknown and are potential therapeutic targets. Phosphorylation of glucocorticoid receptors (GR) by brain-derived neurotrophic factor (BDNF) signaling integrates both pathways for remodeling synaptic structure and plasticity. The goal of this study is to test the role of the BDNF-dependent pathway on glucocorticoid signaling in a mouse model of glucocorticoid resistance. We report that deletion of GR phosphorylation at BDNF-responding sites and downstream signaling via the MAPK-phosphatase DUSP1 triggers tau phosphorylation and dendritic spine atrophy in mouse cortex. In human cortex, DUSP1 protein expression correlates with tau phosphorylation, synaptic defects and cognitive decline in subjects diagnosed with AD. These findings provide evidence for a causal role of BDNF-dependent GR signaling in tau neuropathology and indicate that DUSP1 is a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Margarita Arango-Lievano
- Inserm, U1191, Institute of Functional Genomics, F-34000 Montpellier, France
- CNRS, UMR-5203, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Camille Peguet
- Inserm, U1191, Institute of Functional Genomics, F-34000 Montpellier, France
- CNRS, UMR-5203, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Matthias Catteau
- Inserm, U1191, Institute of Functional Genomics, F-34000 Montpellier, France
- CNRS, UMR-5203, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Marie-Laure Parmentier
- Inserm, U1191, Institute of Functional Genomics, F-34000 Montpellier, France
- CNRS, UMR-5203, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Synphen Wu
- Skirball Institute of biomolecular medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Moses V Chao
- Skirball Institute of biomolecular medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Departments of Psychiatry, Neuroscience & Physiology, New York University Langone Medical Center, Orangeburg, NY 10962, USA
| | - Freddy Jeanneteau
- Inserm, U1191, Institute of Functional Genomics, F-34000 Montpellier, France
- CNRS, UMR-5203, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| |
Collapse
|
175
|
Liu HY, Chou KH, Lee PL, Fuh JL, Niddam DM, Lai KL, Hsiao FJ, Lin YY, Chen WT, Wang SJ, Lin CP. Hippocampus and amygdala volume in relation to migraine frequency and prognosis. Cephalalgia 2016; 37:1329-1336. [PMID: 27919022 DOI: 10.1177/0333102416678624] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives To investigate the structural changes of hippocampus and amygdala and their relationships with migraine frequency and prognosis. Methods Hippocampus and amygdala volumes were measured by 3-T brain magnetic resonance imaging (MRI) in 31 controls and 122 migraine patients who were categorized into eight groups by headache frequency: group 1 (1-2 headache days/month), 2 (3-4), 3 (5-7), 4 (8-10), 5 (11-14), 6 (15-19), 7 (20-24), and 8 (25-30). Headache frequency was reassessed 2 years later and a frequency reduction ≥50% was regarded a good outcome. Results Hippocampus and amygdala volumes fluctuated in patient groups but did not differ from the controls. In migraine patients, the bilateral hippocampus volumes peaked in group 3. The volumes and headache frequencies correlated positively in groups 2-3 on bilateral sides (L: r = 0.44, p = 0.007; R: r = 0.35, p = 0.037), and negatively in groups 3-7 on the left side (5-24 days/month; L: r = -0.31, p = 0.004) and groups 3-8 on the right side ( r = -0.31, p = 0.002). The left amygdala volume also peaked in group 3, and correlated with headache frequency in groups 1-3 ( r = 0.34, p = 0.020) and groups 3-6 ( r = -0.30, p = 0.012). The volumetric changes of the right amygdala with headache frequency did not reach statistical significance. At 2-year follow-up, the right hippocampus volume was positively associated with a good migraine outcome after adjustment of headache frequency (OR 4.72, p = 0.024). Conclusions Hippocampus and amygdala display a structural plasticity linked to both headache frequency and clinical outcome of migraine.
Collapse
Affiliation(s)
- Hung-Yu Liu
- 1 Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- 2 School of Medicine, National Yang-Ming University, Taipei, Taiwan
- 3 Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kun-Hsien Chou
- 4 Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Lin Lee
- 5 Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jong-Ling Fuh
- 2 School of Medicine, National Yang-Ming University, Taipei, Taiwan
- 3 Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - David M Niddam
- 1 Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- 4 Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- 6 Laboratory of Integrated Brain Research, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuan-Lin Lai
- 2 School of Medicine, National Yang-Ming University, Taipei, Taiwan
- 7 Department of Neurology, Taipei Municipal Gandau Hospital, Taipei, Taiwan
| | - Fu-Jung Hsiao
- 4 Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Yang Lin
- 1 Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- 2 School of Medicine, National Yang-Ming University, Taipei, Taiwan
- 3 Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- 4 Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Ta Chen
- 1 Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- 2 School of Medicine, National Yang-Ming University, Taipei, Taiwan
- 3 Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- 4 Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- 1 Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- 2 School of Medicine, National Yang-Ming University, Taipei, Taiwan
- 3 Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- 4 Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- 5 Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
- 8 Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
176
|
Human amygdala engagement moderated by early life stress exposure is a biobehavioral target for predicting recovery on antidepressants. Proc Natl Acad Sci U S A 2016; 113:11955-11960. [PMID: 27791054 DOI: 10.1073/pnas.1606671113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amygdala circuitry and early life stress (ELS) are both strongly and independently implicated in the neurobiology of depression. Importantly, animal models have revealed that the contribution of ELS to the development and maintenance of depression is likely a consequence of structural and physiological changes in amygdala circuitry in response to stress hormones. Despite these mechanistic foundations, amygdala engagement and ELS have not been investigated as biobehavioral targets for predicting functional remission in translational human studies of depression. Addressing this question, we integrated human neuroimaging and measurement of ELS within a controlled trial of antidepressant outcomes. Here we demonstrate that the interaction between amygdala activation engaged by emotional stimuli and ELS predicts functional remission on antidepressants with a greater than 80% cross-validated accuracy. Our model suggests that in depressed people with high ELS, the likelihood of remission is highest with greater amygdala reactivity to socially rewarding stimuli, whereas for those with low-ELS exposure, remission is associated with lower amygdala reactivity to both rewarding and threat-related stimuli. This full model predicted functional remission over and above the contribution of demographics, symptom severity, ELS, and amygdala reactivity alone. These findings identify a human target for elucidating the mechanisms of antidepressant functional remission and offer a target for developing novel therapeutics. The results also offer a proof-of-concept for using neuroimaging as a target for guiding neuroscience-informed intervention decisions at the level of the individual person.
Collapse
|
177
|
Abstract
Major depressive disorder (MDD) is a debilitating disease that is characterized by depressed mood, diminished interests, impaired cognitive function and vegetative symptoms, such as disturbed sleep or appetite. MDD occurs about twice as often in women than it does in men and affects one in six adults in their lifetime. The aetiology of MDD is multifactorial and its heritability is estimated to be approximately 35%. In addition, environmental factors, such as sexual, physical or emotional abuse during childhood, are strongly associated with the risk of developing MDD. No established mechanism can explain all aspects of the disease. However, MDD is associated with alterations in regional brain volumes, particularly the hippocampus, and with functional changes in brain circuits, such as the cognitive control network and the affective-salience network. Furthermore, disturbances in the main neurobiological stress-responsive systems, including the hypothalamic-pituitary-adrenal axis and the immune system, occur in MDD. Management primarily comprises psychotherapy and pharmacological treatment. For treatment-resistant patients who have not responded to several augmentation or combination treatment attempts, electroconvulsive therapy is the treatment with the best empirical evidence. In this Primer, we provide an overview of the current evidence of MDD, including its epidemiology, aetiology, pathophysiology, diagnosis and treatment.
Collapse
Affiliation(s)
- Christian Otte
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Stefan M Gold
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Brenda W Penninx
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Carmine M Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Amit Etkin
- Department of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David C Mohr
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
178
|
Kumar JR, Rajkumar R, Jayakody T, Marwari S, Hong JM, Ma S, Gundlach AL, Lai MKP, Dawe GS. Relaxin' the brain: a case for targeting the nucleus incertus network and relaxin-3/RXFP3 system in neuropsychiatric disorders. Br J Pharmacol 2016; 174:1061-1076. [PMID: 27597467 PMCID: PMC5406295 DOI: 10.1111/bph.13564] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
Relaxin‐3 has been proposed to modulate emotional–behavioural functions such as arousal and behavioural activation, appetite regulation, stress responses, anxiety, memory, sleep and circadian rhythm. The nucleus incertus (NI), in the midline tegmentum close to the fourth ventricle, projects widely throughout the brain and is the primary site of relaxin‐3 neurons. Over recent years, a number of preclinical studies have explored the function of the NI and relaxin‐3 signalling, including reports of mRNA or peptide expression changes in the NI in response to behavioural or pharmacological manipulations, effects of lesions or electrical or pharmacological manipulations of the NI, effects of central microinfusions of relaxin‐3 or related agonist or antagonist ligands on physiology and behaviour, and the impact of relaxin‐3 gene deletion or knockdown. Although these individual studies reveal facets of the likely functional relevance of the NI and relaxin‐3 systems for human physiology and behaviour, the differences observed in responses between species (e.g. rat vs. mouse), the clearly identified heterogeneity of NI neurons and procedural differences between laboratories are some of the factors that have prevented a precise understanding of their function. This review aims to draw attention to the current preclinical evidence available that suggests the relevance of the NI/relaxin‐3 system to the pathology and/or symptoms of certain neuropsychiatric disorders and to provide cognizant directions for future research to effectively and efficiently uncover its therapeutic potential. Linked Articles This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc
Collapse
Affiliation(s)
- Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore.,NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore
| | - Tharindunee Jayakody
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore
| | - Subhi Marwari
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore
| | - Jia Mei Hong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore.,NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore.,NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| |
Collapse
|
179
|
Stelly CE, Pomrenze MB, Cook JB, Morikawa H. Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning. eLife 2016; 5. [PMID: 27374604 PMCID: PMC4931908 DOI: 10.7554/elife.15448] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/07/2016] [Indexed: 11/13/2022] Open
Abstract
Enduring memories of sensory cues associated with drug intake drive addiction. It is well known that stressful experiences increase addiction vulnerability. However, it is not clear how repeated stress promotes learning of cue-drug associations, as repeated stress generally impairs learning and memory processes unrelated to stressful experiences. Here, we show that repeated social defeat stress in rats causes persistent enhancement of long-term potentiation (LTP) of NMDA receptor-mediated glutamatergic transmission in the ventral tegmental area (VTA). Protein kinase A-dependent increase in the potency of inositol 1,4,5-triphosphate-induced Ca2+ signaling underlies LTP facilitation. Notably, defeated rats display enhanced learning of contextual cues paired with cocaine experience assessed using a conditioned place preference (CPP) paradigm. Enhancement of LTP in the VTA and cocaine CPP in behaving rats both require glucocorticoid receptor activation during defeat episodes. These findings suggest that enhanced glutamatergic plasticity in the VTA may contribute, at least partially, to increased addiction vulnerability following repeated stressful experiences. DOI:http://dx.doi.org/10.7554/eLife.15448.001 Daily stress increases the likelihood that people who take drugs will become addicted. A very early step in the development of addiction is learning that certain people, places, or paraphernalia are associated with obtaining drugs. These ‘cues’ – drug dealers, bars, cigarette advertisements, etc. – become powerful motivators to seek out drugs and can trigger relapse in recovering addicts. It is thought that learning happens when synapses (the connections between neurons in the brain) that relay information about particular cues become stronger. However, it is not clear how stress promotes the learning of cue-drug associations. Stelly et al. investigated whether repeated episodes of stress make it easier to strengthen synapses on dopamine neurons, which are involved in processing rewards and addiction. For the experiments, rats were repeatedly exposed to a stressful situation – an encounter with an unfamiliar aggressive rat – every day for five days. Stelly et al. found that these stressed rats formed stronger associations between the drug cocaine and the place where they were given the drug (the cue). Furthermore, a mechanism that strengthens synapses was more sensitive in the stressed rats than in unstressed rats. These changes persisted for 10-30 days after the stressful situation, suggesting that stress might begin a period of time during which the individual is more vulnerable to addiction. The experiments also show that a hormone called corticosterone – which is released during stressful experiences – is necessary for stress to trigger the changes in the synapses and behavior of the rats. However, corticosterone must work with other factors because giving this hormone to unstressed rats was not sufficient to trigger the changes seen in the stressed rats. Future experiments will investigate what these other stress factors are and how they work together with corticosterone. DOI:http://dx.doi.org/10.7554/eLife.15448.002
Collapse
Affiliation(s)
- Claire E Stelly
- Department of Neuroscience, University of Texas, Austin, United States.,Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States
| | - Matthew B Pomrenze
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States.,Division of Pharmacology and Toxicology, University of Texas, Austin, United States
| | - Jason B Cook
- Department of Neuroscience, University of Texas, Austin, United States.,Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States
| | - Hitoshi Morikawa
- Department of Neuroscience, University of Texas, Austin, United States.,Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States
| |
Collapse
|
180
|
Rahman MM, Callaghan CK, Kerskens CM, Chattarji S, O'Mara SM. Early hippocampal volume loss as a marker of eventual memory deficits caused by repeated stress. Sci Rep 2016; 6:29127. [PMID: 27374165 PMCID: PMC4931588 DOI: 10.1038/srep29127] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Exposure to severe and prolonged stress has detrimental effects on the hippocampus. However, relatively little is known about the gradual changes in hippocampal structure, and its behavioral consequences, over the course of repeated stress. Behavioral analyses during 10 days of chronic stress pointed to a delayed decline in spatial memory, the full impact of which is evident only after the end of stress. In contrast, concurrent volumetric measurements in the same animals revealed significant reduction in hippocampal volumes in stressed animals relative to their unstressed counterparts, as early as the third day of stress. Notably, animals that were behaviorally the worst affected at the end of chronic stress suffered the most pronounced early loss in hippocampal volume. Together, these findings support the view that not only is smaller hippocampal volume linked to stress-induced memory deficits, but it may also act as an early risk factor for the eventual development of cognitive impairments seen in stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Mohammed Mostafizur Rahman
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.,Institute of Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland
| | | | - Christian M Kerskens
- Institute of Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shane M O'Mara
- Institute of Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
181
|
Fareri DS, Tottenham N. Effects of early life stress on amygdala and striatal development. Dev Cogn Neurosci 2016; 19:233-47. [PMID: 27174149 PMCID: PMC4912892 DOI: 10.1016/j.dcn.2016.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 03/28/2016] [Accepted: 04/27/2016] [Indexed: 12/13/2022] Open
Abstract
Species-expected caregiving early in life is critical for the normative development and regulation of emotional behavior, the ability to effectively evaluate affective stimuli in the environment, and the ability to sustain social relationships. Severe psychosocial stressors early in life (early life stress; ELS) in the form of the absence of species expected caregiving (i.e., caregiver deprivation), can drastically impact one's social and emotional success, leading to the onset of internalizing illness later in life. Development of the amygdala and striatum, two key regions supporting affective valuation and learning, is significantly affected by ELS, and their altered developmental trajectories have important implications for cognitive, behavioral and socioemotional development. However, an understanding of the impact of ELS on the development of functional interactions between these regions and subsequent behavioral effects is lacking. In this review, we highlight the roles of the amygdala and striatum in affective valuation and learning in maturity and across development. We discuss their function separately as well as their interaction. We highlight evidence across species characterizing how ELS induced changes in the development of the amygdala and striatum mediate subsequent behavioral changes associated with internalizing illness, positing a particular import of the effect of ELS on their interaction.
Collapse
Affiliation(s)
- Dominic S Fareri
- Gordon F. Derner Institute for Advanced Psychological Studies, Adelphi University, Garden City, NY 11530, United States.
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY 10027, United States
| |
Collapse
|
182
|
LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior. Proc Natl Acad Sci U S A 2016; 113:3651-6. [PMID: 26976584 DOI: 10.1073/pnas.1511974113] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Behavioral changes in response to stressful stimuli can be controlled via adaptive epigenetic changes in neuronal gene expression. Here we indicate a role for the transcriptional corepressor Lysine-Specific Demethylase 1 (LSD1) and its dominant-negative splicing isoform neuroLSD1, in the modulation of emotional behavior. In mouse hippocampus, we show that LSD1 and neuroLSD1 can interact with transcription factor serum response factor (SRF) and set the chromatin state of SRF-targeted genes early growth response 1 (egr1) and c-fos Deletion or reduction of neuro LSD1 in mutant mice translates into decreased levels of activating histone marks at egr1 and c-fos promoters, dampening their psychosocial stress-induced transcription and resulting in low anxiety-like behavior. Administration of suberoylanilide hydroxamine to neuroLSD1(KO)mice reactivates egr1 and c-fos transcription and restores the behavioral phenotype. These findings indicate that LSD1 is a molecular transducer of stressful stimuli as well as a stress-response modifier. Indeed, LSD1 expression itself is increased acutely at both the transcriptional and splicing levels by psychosocial stress, suggesting that LSD1 is involved in the adaptive response to stress.
Collapse
|
183
|
Abstract
The brain is the central organ for adaptation to experiences, including stressors, which are capable of changing brain architecture as well as altering systemic function through neuroendocrine, autonomic, immune, and metabolic systems. Because the brain is the master regulator of these systems, as well as of behavior, alterations in brain function by chronic stress can have direct and indirect effects on cumulative allostatic overload, which refers to the cost of adaptation. There is much new knowledge on the neural control of systemic physiology and the feedback actions of physiologic mediators on brain regions regulating higher cognitive function, emotional regulation, and self-regulation. The healthy brain has a considerable capacity for resilience, based upon its ability to respond to interventions designed to open "windows of plasticity" and redirect its function toward better health. As a result, plasticity-facilitating treatments should be given within the framework of a positive behavioral intervention; negative experiences during this window may even make matters worse. Indeed, there are no magic bullets and drugs cannot substitute for targeted interventions that help an individual become resilient, of which mindfulness-based stress reduction and meditation are emerging as useful tools.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| |
Collapse
|
184
|
McEwen BS. Stress-induced remodeling of hippocampal CA3 pyramidal neurons. Brain Res 2015; 1645:50-4. [PMID: 26740399 DOI: 10.1016/j.brainres.2015.12.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
The discovery of steroid hormone receptors in brain regions that mediate virtually every aspect of brain function has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the brain and the body via hormonal and neural pathways. The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as determining the behavioral and physiological responses to the stressor. The adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neurogenesis leading to neuronal replacement, dendritic remodeling, and synapse turnover. Stress causes an imbalance of neural circuitry subserving cognition, decision-making, anxiety and mood that can alter expression of those behaviors and behavioral states. The two Brain Research papers noted in this review played an important role in triggering these advances. This article is part of a Special Issue entitled SI:50th Anniversary Issue.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
185
|
Lazaroni TLDN, Bastos CP, Moraes MFD, Santos RS, Pereira GS. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice. Neurobiol Learn Mem 2015; 127:27-33. [PMID: 26642920 DOI: 10.1016/j.nlm.2015.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/23/2015] [Accepted: 11/17/2015] [Indexed: 01/02/2023]
Abstract
Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Thiago Luiz do Nascimento Lazaroni
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Cristiane Perácio Bastos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Robson Souza Santos
- Laboratório de Hipertensão, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Grace Schenatto Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
186
|
Sapolsky RM. Stress and the brain: individual variability and the inverted-U. Nat Neurosci 2015; 18:1344-6. [DOI: 10.1038/nn.4109] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|