151
|
Sun C, Cao XC, Liu ZY, Ma CL, Li BM. Polygalasaponin F protects hippocampal neurons against glutamate-induced cytotoxicity. Neural Regen Res 2022; 17:178-184. [PMID: 34100454 PMCID: PMC8451577 DOI: 10.4103/1673-5374.314321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Excess extracellular glutamate leads to excitotoxicity, which induces neuronal death through the overactivation of N-methyl-D-aspartate receptors (NMDARs). Excitotoxicity is thought to be closely related to various acute and chronic neurological disorders, such as stroke and Alzheimer’s disease. Polygalasaponin F (PGSF) is a triterpenoid saponin monomer that can be isolated from Polygala japonica, and has been reported to protect cells against apoptosis. To investigate the mechanisms underlying the neuroprotective effects of PGSF against glutamate-induced cytotoxicity, PGSF-pretreated hippocampal neurons were exposed to glutamate for 24 hours. The results demonstrated that PGSF inhibited glutamate-induced hippocampal neuron death in a concentration-dependent manner and reduced glutamate-induced Ca2+ overload in the cultured neurons. In addition, PGSF partially blocked the excess activity of NMDARs, inhibited both the downregulation of NMDAR subunit NR2A expression and the upregulation of NMDAR subunit NR2B expression, and upregulated the expression of phosphorylated cyclic adenosine monophosphate-responsive element-binding protein and brain-derived neurotrophic factor. These findings suggest that PGSF protects cultured hippocampal neurons against glutamate-induced cytotoxicity by regulating NMDARs. The study was approved by the Institutional Animal Care Committee of Nanchang University (approval No. 2017-0006) on December 29, 2017.
Collapse
Affiliation(s)
- Chong Sun
- Laboratory of Cognitive Function and Disorder, Institute of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin-Cheng Cao
- Laboratory of Cognitive Function and Disorder, Institute of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Yang Liu
- Laboratory of Cognitive Function and Disorder, Institute of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Chao-Lin Ma
- Laboratory of Cognitive Function and Disorder, Institute of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Bao-Ming Li
- Laboratory of Cognitive Function and Disorder, Institute of Life Science, Nanchang University, Nanchang, Jiangxi Province; Institute of Brain Science and Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
152
|
Maternal supplementation of high-value PUFA-Rich Isochrysis sp. biomass prevents monosodium glutamate-induced neurotoxicity in first-generation Wistar rats. Neurochem Int 2022; 154:105292. [DOI: 10.1016/j.neuint.2022.105292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 11/23/2022]
|
153
|
Matthews DC, Mao X, Dowd K, Tsakanikas D, Jiang CS, Meuser C, Andrews RD, Lukic AS, Lee J, Hampilos N, Shafiian N, Sano M, David Mozley P, Fillit H, McEwen BS, Shungu DC, Pereira AC. Riluzole, a glutamate modulator, slows cerebral glucose metabolism decline in patients with Alzheimer's disease. Brain 2021; 144:3742-3755. [PMID: 34145880 PMCID: PMC8719848 DOI: 10.1093/brain/awab222] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/07/2021] [Accepted: 05/22/2021] [Indexed: 11/14/2022] Open
Abstract
Dysregulation of glutamatergic neural circuits has been implicated in a cycle of toxicity, believed among the neurobiological underpinning of Alzheimer's disease. Previously, we reported preclinical evidence that the glutamate modulator riluzole, which is FDA approved for the treatment of amyotrophic lateral sclerosis, has potential benefits on cognition, structural and molecular markers of ageing and Alzheimer's disease. The objective of this study was to evaluate in a pilot clinical trial, using neuroimaging biomarkers, the potential efficacy and safety of riluzole in patients with Alzheimer's disease as compared to placebo. A 6-month phase 2 double-blind, randomized, placebo-controlled study was conducted at two sites. Participants consisted of males and females, 50 to 95 years of age, with a clinical diagnosis of probable Alzheimer's disease, and Mini-Mental State Examination between 19 and 27. Ninety-four participants were screened, 50 participants who met inclusion criteria were randomly assigned to receive 50 mg riluzole (n = 26) or placebo (n = 24) twice a day. Twenty-two riluzole-treated and 20 placebo participants completed the study. Primary end points were baseline to 6 months changes in (i) cerebral glucose metabolism as measured with fluorodeoxyglucose-PET in prespecified regions of interest (hippocampus, posterior cingulate, precuneus, lateral temporal, inferior parietal, frontal); and (ii) changes in posterior cingulate levels of the neuronal viability marker N-acetylaspartate as measured with in vivo proton magnetic resonance spectroscopy. Secondary outcome measures were neuropsychological testing for correlation with neuroimaging biomarkers and in vivo measures of glutamate in posterior cingulate measured with magnetic resonance spectroscopy as a potential marker of target engagement. Measures of cerebral glucose metabolism, a well-established Alzheimer's disease biomarker and predictor of disease progression, declined significantly less in several prespecified regions of interest with the most robust effect in posterior cingulate, and effects in precuneus, lateral temporal, right hippocampus and frontal cortex in riluzole-treated participants in comparison to the placebo group. No group effect was found in measures of N-acetylaspartate levels. A positive correlation was observed between cognitive measures and regional cerebral glucose metabolism. A group × visit interaction was observed in glutamate levels in posterior cingulate, potentially suggesting engagement of glutamatergic system by riluzole. In vivo glutamate levels positively correlated with cognitive performance. These findings support our main primary hypothesis that cerebral glucose metabolism would be better preserved in the riluzole-treated group than in the placebo group and provide a rationale for more powered, longer duration studies of riluzole as a potential intervention for Alzheimer's disease.
Collapse
Affiliation(s)
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | | | | | - Caroline Meuser
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Ana S Lukic
- ADM Diagnostics Inc., Northbrook, IL 60062, USA
| | - Jihyun Lee
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nicholas Hampilos
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Neeva Shafiian
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Sano
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Howard Fillit
- Alzheimer's Drug Discovery Foundation, New York, NY 10019, USA
| | | | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ana C Pereira
- The Rockefeller University, New York, NY 10065, USA
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
154
|
Turkez H, Arslan ME, Barboza JN, Kahraman CY, de Sousa DP, Mardinoğlu A. Therapeutic Potential of Ferulic Acid in Alzheimer's Disease. Curr Drug Deliv 2021; 19:860-873. [PMID: 34963433 DOI: 10.2174/1567201819666211228153801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is one of the most important neurodegenerative diseases and it covers 60% of whole dementia cases. AD is a constantly progressing neurodegenerative disease as a result of the production of β-amyloid (Aβ) protein and the accumulation of hyper-phosphorylated Tau protein; it causes breakages in the synaptic bonds and neuronal deaths to a large extent. Millions of people worldwide suffer from AD because there is no definitive drug for disease prevention, treatment or slowdown. Over the last decade, multiple target applications have been developed for AD treatments. These targets include Aβ accumulations, hyper-phosphorylated Tau proteins, mitochondrial dysfunction, and oxidative stress resulting in toxicity. Various natural or semisynthetic antioxidant formulations have been shown to protect brain cells from Aβ induced toxicity and provide promising potentials for AD treatment. Ferulic acid (FA), a high-capacity antioxidant molecule, is naturally synthesized from certain plants. FA has been shown to have different substantial biological properties, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and cardioprotective actions, etc. Furthermore, FA exerted neuroprotection via preventing Aβ-fibril formation, acting as an anti-inflammatory agent, and inhibiting free radical generation and acetylcholinesterase (AChE) enzyme activity. In this review, we present key biological roles of FA and several FA derivatives in Aβ-induced neurotoxicity, protection against free radical attacks, and enzyme inhibitions and describe them as possible therapeutic agents for the treatment of AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25200, Erzurum, Turkey
| | - Joice Nascimento Barboza
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Damiao Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17121, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
155
|
Disrupted expression of mitochondrial NCLX sensitizes neuroglial networks to excitotoxic stimuli and renders synaptic activity toxic. J Biol Chem 2021; 298:101508. [PMID: 34942149 PMCID: PMC8808183 DOI: 10.1016/j.jbc.2021.101508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial sodium/calcium/lithium exchanger (NCLX) is an important mediator of calcium extrusion from mitochondria. In this study, we tested the hypothesis that physiological expression levels of NCLX are essential for maintaining neuronal resilience in the face of excitotoxic challenge. Using a short hairpin RNA (shRNA)-mediated approach, we showed that reduced NCLX expression exacerbates neuronal mitochondrial calcium dysregulation, mitochondrial membrane potential (ΔΨm) breakdown, and reactive oxygen species (ROS) generation during excitotoxic stimulation of primary hippocampal cultures. Moreover, NCLX knockdown-which affected both neurons and glia-resulted not only in enhanced neurodegeneration following an excitotoxic insult, but also in neuronal and astrocytic cell death under basal conditions. Our data also revealed that synaptic activity, which promotes neuroprotective signaling, can become lethal upon NCLX depletion; expression of NCLX-targeted shRNA impaired the clearance of mitochondrial calcium following action potential bursts and was associated both with ΔΨmbreakdown and substantial neurodegeneration in hippocampal cultures undergoing synaptic activity. Finally, we showed that NCLX knockdown within the hippocampal cornu ammonis 1 (CA1) region in vivo causes substantial neuro- and astrodegeneration. In summary, we demonstrated that dysregulated NCLX expression not only sensitizes neuroglial networks to excitotoxic stimuli but notably also renders otherwise neuroprotective synaptic activity toxic. These findings may explain the emergence of neuro- and astrodegeneration in patients with disorders characterized by disrupted NCLX expression or function, and suggest that treatments aimed at enhancing or restoring NCLX function may prevent central nervous system damage in these disease states.
Collapse
|
156
|
Hedou E, Douceau S, Chevilley A, Varangot A, Thiebaut AM, Triniac H, Bardou I, Ali C, Maillasson M, Crepaldi T, Comoglio P, Lemarchand E, Agin V, Roussel BD, Vivien D. Two-Chains Tissue Plasminogen Activator Unifies Met and NMDA Receptor Signalling to Control Neuronal Survival. Int J Mol Sci 2021; 22:ijms222413483. [PMID: 34948279 PMCID: PMC8707453 DOI: 10.3390/ijms222413483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Tissue-type plasminogen activator (tPA) plays roles in the development and the plasticity of the nervous system. Here, we demonstrate in neurons, that by opposition to the single chain form (sc-tPA), the two-chains form of tPA (tc-tPA) activates the MET receptor, leading to the recruitment of N-Methyl-d-Aspartate receptors (NMDARs) and to the endocytosis and proteasome-dependent degradation of NMDARs containing the GluN2B subunit. Accordingly, tc-tPA down-regulated GluN2B-NMDAR-driven signalling, a process prevented by blockers of HGFR/MET and mimicked by its agonists, leading to a modulation of neuronal death. Thus, our present study unmasks a new mechanism of action of tPA, with its two-chains form mediating a crosstalk between MET and the GluN2B subunit of NMDARs to control neuronal survival.
Collapse
Affiliation(s)
- Elodie Hedou
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Sara Douceau
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Arnaud Chevilley
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Alexandre Varangot
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Audrey M. Thiebaut
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Hortense Triniac
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Isabelle Bardou
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Carine Ali
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Mike Maillasson
- University of Nantes, CHU Nantes, Inserm UMR1232, CNRS ERL6001, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, CRCINA, Impact Platform, 44200 Nantes, France;
| | - Tiziana Crepaldi
- Candiolo Cancer Institute IRCCS-FPO, Candiolo, 10060 Turin, Italy; (T.C.); (P.C.)
| | - Paolo Comoglio
- Candiolo Cancer Institute IRCCS-FPO, Candiolo, 10060 Turin, Italy; (T.C.); (P.C.)
| | - Eloïse Lemarchand
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, UK;
| | - Véronique Agin
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Benoit D. Roussel
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
- Correspondence: ; Tel.: +33-2-31470166; Fax: +33-2-31470222
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
- Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de la Côte de Nacre, 14000 Caen, France
| |
Collapse
|
157
|
Grochowska KM, Bär J, Gomes GM, Kreutz MR, Karpova A. Jacob, a Synapto-Nuclear Protein Messenger Linking N-methyl-D-aspartate Receptor Activation to Nuclear Gene Expression. Front Synaptic Neurosci 2021; 13:787494. [PMID: 34899262 PMCID: PMC8662305 DOI: 10.3389/fnsyn.2021.787494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons exhibit a complex dendritic tree that is decorated by a huge number of spine synapses receiving excitatory input. Synaptic signals not only act locally but are also conveyed to the nucleus of the postsynaptic neuron to regulate gene expression. This raises the question of how the spatio-temporal integration of synaptic inputs is accomplished at the genomic level and which molecular mechanisms are involved. Protein transport from synapse to nucleus has been shown in several studies and has the potential to encode synaptic signals at the site of origin and decode them in the nucleus. In this review, we summarize the knowledge about the properties of the synapto-nuclear messenger protein Jacob with special emphasis on a putative role in hippocampal neuronal plasticity. We will elaborate on the interactome of Jacob, the signals that control synapto-nuclear trafficking, the mechanisms of transport, and the potential nuclear function. In addition, we will address the organization of the Jacob/NSMF gene, its origin and we will summarize the evidence for the existence of splice isoforms and their expression pattern.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Julia Bär
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Research Group (RG) Neuronal Protein Transport, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.,Research Group (RG) Optobiology, Institute of Biology, HU Berlin, Berlin, Germany
| | - Guilherme M Gomes
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Michael R Kreutz
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,German Research Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anna Karpova
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
158
|
Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med 2021; 49:15. [PMID: 34878154 PMCID: PMC8711586 DOI: 10.3892/ijmm.2021.5070] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Stroke is the leading cause of disabilities and cognitive deficits, accounting for 5.2% of all mortalities worldwide. Transient or permanent occlusion of cerebral vessels leads to ischemic strokes, which constitutes the majority of strokes. Ischemic strokes induce brain infarcts, along with cerebral tissue death and focal neuronal damage. The infarct size and neurological severity after ischemic stroke episodes depends on the time period since occurrence, the severity of ischemia, systemic blood pressure, vein systems and location of infarcts, amongst others. Ischemic stroke is a complex disease, and neuronal injuries after ischemic strokes have been the focus of current studies. The present review will provide a basic pathological background of ischemic stroke and cerebral infarcts. Moreover, the major mechanisms underlying ischemic stroke and neuronal injuries are summarized. This review will also briefly summarize some representative clinical trials and up-to-date treatments that have been applied to stroke and brain infarcts.
Collapse
Affiliation(s)
- Yunfei Zhao
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xiaojing Zhang
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| | - Xinye Chen
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| | - Yun Wei
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| |
Collapse
|
159
|
Bauersachs HG, Bengtson CP, Weiss U, Hellwig A, García-Vilela C, Zaremba B, Kaessmann H, Pruunsild P, Bading H. N-methyl-d-aspartate Receptor-mediated Preconditioning Mitigates Excitotoxicity in Human induced Pluripotent Stem Cell-derived Brain Organoids. Neuroscience 2021; 484:83-97. [DOI: 10.1016/j.neuroscience.2021.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
|
160
|
A role of anterior cingulate cortex in the emergence of worker-parasite relationship. Proc Natl Acad Sci U S A 2021; 118:2111145118. [PMID: 34815341 DOI: 10.1073/pnas.2111145118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
We studied the brain mechanisms underlying action selection in a social dilemma setting in which individuals' effortful gains are unfairly distributed among group members. A stable "worker-parasite" relationship developed when three individually operant-conditioned rats were placed together in a Skinner box equipped with response lever and food dispenser on opposite sides. Specifically, one rat, the "worker," engaged in lever-pressing while the other two "parasitic" rats profited from the worker's effort by crowding the feeder in anticipation of food. Anatomically, c-Fos expression in the anterior cingulate cortex (ACC) was significantly higher in worker rats than in parasite rats. Functionally, ACC inactivation suppressed the worker's lever-press behavior drastically under social, but only mildly under individual, settings. Transcriptionally, GABAA receptor- and potassium channel-related messenger RNA expressions were reliably lower in the worker's, relative to parasite's, ACC. These findings indicate the requirement of ACC activation for the expression of exploitable, effortful behavior, which could be mediated by molecular pathways involving GABAA receptor/potassium channel proteins.
Collapse
|
161
|
Usmanov ES, Chubarova MA, Saidov SK. Emerging Trends in the Use of Therapeutic Hypothermia as a Method for Neuroprotection in Brain Damage (Review). Sovrem Tekhnologii Med 2021; 12:94-104. [PMID: 34796010 PMCID: PMC8596265 DOI: 10.17691/stm2020.12.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 11/14/2022] Open
Abstract
The review analyzes current clinical studies on the use of therapeutic hypothermia as a neuroprotective method for treatment of brain damage. This method yields good outcomes in patients with acute brain injuries and chronic critical conditions. There has been shown the interest of researchers in studying the preventive potential of therapeutic hypothermia in secondary neuronal damage. There has been described participation of new molecules producing positive effect on tissues and cells of the central nervous system - proteins and hormones of cold stress - in the mechanisms of neuroprotection in the brain. The prospects of using targeted temperature management in treatment of brain damage are considered.
Collapse
Affiliation(s)
- E Sh Usmanov
- Researcher, Laboratory of Clinical Neurophysiology; Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| | - M A Chubarova
- Junior Researcher, Laboratory of Clinical Neurophysiology; Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| | - Sh Kh Saidov
- Senior Researcher, Laboratory of Clinical Neurophysiology Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| |
Collapse
|
162
|
Casaril AM, Dantzer R, Bas-Orth C. Neuronal Mitochondrial Dysfunction and Bioenergetic Failure in Inflammation-Associated Depression. Front Neurosci 2021; 15:725547. [PMID: 34790089 PMCID: PMC8592286 DOI: 10.3389/fnins.2021.725547] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023] Open
Abstract
Depression is a leading cause of disability and affects more than 4% of the population worldwide. Even though its pathophysiology remains elusive, it is now well accepted that peripheral inflammation might increase the risk of depressive episodes in a subgroup of patients. However, there is still insufficient knowledge about the mechanisms by which inflammation induces alterations in brain function. In neurodegenerative and neuroinflammatory diseases, extensive studies have reported that inflammation negatively impacts mitochondrial health, contributing to excitotoxicity, oxidative stress, energy deficits, and eventually neuronal death. In addition, damaged mitochondria can release a wide range of damage-associated molecular patterns that are potent activators of the inflammatory response, creating a feed-forward cycle between oxidative stress, mitochondrial impairment, inflammation, and neuronal dysfunction. Surprisingly, the possible involvement of this vicious cycle in the pathophysiology of inflammation-associated depression remains understudied. In this mini-review we summarize the research supporting the association between neuroinflammation, mitochondrial dysfunction, and bioenergetic failure in inflammation-associated depression to highlight the relevance of further studies addressing this crosstalk.
Collapse
Affiliation(s)
- Angela Maria Casaril
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
163
|
Conde-Dusman MJ, Dey PN, Elía-Zudaire Ó, Rabaneda LG, García-Lira C, Grand T, Briz V, Velasco ER, Andero R, Niñerola S, Barco A, Paoletti P, Wesseling JF, Gardoni F, Tavalin SJ, Perez-Otaño I. Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly. eLife 2021; 10:e71575. [PMID: 34787081 PMCID: PMC8598234 DOI: 10.7554/elife.71575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.
Collapse
Affiliation(s)
- María J Conde-Dusman
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- Centre for Developmental Neurobiology, Institute of Psychiatry, King’s College LondonLondonUnited Kingdom
| | - Partha N Dey
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- National Eye Institute, National Institutes of HealthBethesdaUnited States
| | | | - Luis G Rabaneda
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Teddy Grand
- Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERMParisFrance
| | - Victor Briz
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC)MadridSpain
| | - Eric R Velasco
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterraSpain
| | - Raül Andero
- Institut de Neurociències, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos IIIMadridSpain
- ICREABarcelonaSpain
| | | | - Angel Barco
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
| | - Pierre Paoletti
- Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERMParisFrance
| | | | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of MilanMilanItaly
| | - Steven J Tavalin
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science CenterMemphisUnited States
| | - Isabel Perez-Otaño
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
| |
Collapse
|
164
|
de la Rubia Ortí JE, Fernández D, Platero F, García-Pardo MP. Can Ketogenic Diet Improve Alzheimer's Disease? Association With Anxiety, Depression, and Glutamate System. Front Nutr 2021; 8:744398. [PMID: 34778340 PMCID: PMC8579917 DOI: 10.3389/fnut.2021.744398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Alzheimer's disease is the most common neurodegenerative disorder in our society, mainly characterized by loss of cognitive function. However, other symptoms such as anxiety and depression have been described in patients. The process is mediated by alterations in the synaptic and extrasynaptic activity of the neurotransmitter glutamate, which are linked to a hypometabolism of glucose as the main source of brain energy. In that respect, Ketogenic diet (KD) has been proposed as a non-pharmacological treatment serving as an alternative energy source to the neurons increasing the fat percentage and reducing the carbohydrates percentage, showing promising results to improve the cognitive symptoms associated with different neurodegenerative disorders, including AD. However, the association of this type of diet with emotional symptoms and the modulation of glutamate neurotransmission systems after this dietary reduction of carbohydrates are unknown. Objective: The aim of this short review is to provide update studies and discuss about the relationship between KD, anxiety, depression, and glutamate activity in AD patients. Discussion: The main results suggest that the KD is an alternative energy source for neurons in AD with positive consequences for the brain at different levels such as epigenetic, metabolic and signaling, and that the substitution of carbohydrates for fats is also associated with emotional symptoms and glutamate activity in AD.
Collapse
Affiliation(s)
| | - David Fernández
- Department of Nursing, Catholic University of Valencia, Valencia, Spain
| | - Félix Platero
- Department of Medicine, University of Valencia, Valencia, Spain
| | | |
Collapse
|
165
|
Fairless R, Bading H, Diem R. Pathophysiological Ionotropic Glutamate Signalling in Neuroinflammatory Disease as a Therapeutic Target. Front Neurosci 2021; 15:741280. [PMID: 34744612 PMCID: PMC8567076 DOI: 10.3389/fnins.2021.741280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023] Open
Abstract
Glutamate signalling is an essential aspect of neuronal communication involving many different glutamate receptors, and underlies the processes of memory, learning and synaptic plasticity. Despite neuroinflammatory diseases covering a range of maladies with very different biological causes and pathophysiologies, a central role for dysfunctional glutamate signalling is becoming apparent. This is not just restricted to the well-described role of glutamate in mediating neurodegeneration, but also includes a myriad of other influences that glutamate can exert on the vasculature, as well as immune cell and glial regulation, reflecting the ability of neurons to communicate with these compartments in order to couple their activity with neuronal requirements. Here, we discuss the role of pathophysiological glutamate signalling in neuroinflammatory disease, using both multiple sclerosis and Alzheimer's disease as examples, and how current steps are being made to harness our growing understanding of these processes in the development of neuroprotective strategies. This review focuses in particular on N-methyl-D-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methylisooxazol-4-yl) propionate (AMPA) type ionotropic glutamate receptors, although metabotropic, G-protein-coupled glutamate receptors may also contribute to neuroinflammatory processes. Given the indispensable roles of glutamate-gated ion channels in synaptic communication, means of pharmacologically distinguishing between physiological and pathophysiological actions of glutamate will be discussed that allow deleterious signalling to be inhibited whilst minimising the disturbance of essential neuronal function.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
166
|
Differential Effects of Human P301L Tau Expression in Young versus Aged Mice. Int J Mol Sci 2021; 22:ijms222111637. [PMID: 34769068 PMCID: PMC8583766 DOI: 10.3390/ijms222111637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The greatest risk factor for developing Alzheimer’s disease (AD) is increasing age. Understanding the changes that occur in aging that make an aged brain more susceptible to developing AD could result in novel therapeutic targets. In order to better understand these changes, the current study utilized mice harboring a regulatable mutant P301L human tau transgene (rTg(TauP301L)4510), in which P301L tau expression can be turned off or on by the addition or removal of doxycycline in the drinking water. This regulatable expression allowed for assessment of aging independent of prolonged mutant tau expression. Our results suggest that P301L expression in aged mice enhances memory deficits in the Morris water maze task. These behavioral changes may be due to enhanced late-stage tau pathology, as evidenced by immunoblotting and exacerbated hippocampal dysregulation of glutamate release and uptake measured by the microelectrode array technique. We additionally observed changes in proteins important for the regulation of glutamate and tau phosphorylation that may mediate these age-related changes. Thus, age and P301L tau interact to exacerbate tau-induced detrimental alterations in aged animals.
Collapse
|
167
|
Al-Griw MA, Salter MG, Wood IC. Inhibition of ionotropic GluR signaling preserves oligodendrocyte lineage and myelination in an ex vivo rat model of white matter ischemic injury. Acta Neurobiol Exp (Wars) 2021; 81:233-248. [PMID: 34672294 DOI: 10.21307/ane-2021-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Preterm infants have a high risk of neonatal white matter injury (WMI). WMI leads to reduced myelination, inflammation, and clinical neurodevelopmental deficits for which there are no effective treatments. Ionotropic glutamate receptor (iGluR) induced excitotoxicity contributes to oligodendrocyte (OL) lineage cell loss and demyelination in brain models of neonatal and adult WMI. Here, we hypothesized that simulated ischemia (oxygen‑glucose deprivation) damages white matter via activation of iGluR signaling, and that iGluR inhibition shortly after WMI could mitigate OL loss, enhance myelination, and suppress inflammation in an ex vivo cerebellar slice model of developing WMI. Inhibition of iGluR signaling by a combined block of AMPA and NMDA receptors, shortly after simulated ischemia, restored myelination, reduced apoptotic OLs, and enhanced OL precursor cell proliferation and maturation as well as upregulated expression of transcription factors regulating OL development and remyelination. Our findings demonstrate that iGluR inhibition post‑injury alleviates OL lineage cell loss and inflammation and promotes myelination upon developing WMI. The findings may help to develop therapeutic interventions for the WMI treatment.
Collapse
Affiliation(s)
- Mohamed A Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya;
| | | | - Ian C Wood
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
168
|
Shi M, Chen F, Chen Z, Yang W, Yue S, Zhang J, Chen X. Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Front Cell Neurosci 2021; 15:685201. [PMID: 34658788 PMCID: PMC8515188 DOI: 10.3389/fncel.2021.685201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The sigma-1 receptor (Sig-1R) is a chaperone receptor that primarily resides at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) and acts as a dynamic pluripotent modulator regulating cellular pathophysiological processes. Multiple pharmacological studies have confirmed the beneficial effects of Sig-1R activation on cellular calcium homeostasis, excitotoxicity modulation, reactive oxygen species (ROS) clearance, and the structural and functional stability of the ER, mitochondria, and MAM. The Sig-1R is expressed broadly in cells of the central nervous system (CNS) and has been reported to be involved in various neurological disorders. Traumatic brain injury (TBI)-induced secondary injury involves complex and interrelated pathophysiological processes such as cellular apoptosis, glutamate excitotoxicity, inflammatory responses, endoplasmic reticulum stress, oxidative stress, and mitochondrial dysfunction. Thus, given the pluripotent modulation of the Sig-1R in diverse neurological disorders, we hypothesized that the Sig-1R may affect a series of pathophysiology after TBI. This review summarizes the current knowledge of the Sig-1R, its mechanistic role in various pathophysiological processes of multiple CNS diseases, and its potential therapeutic role in TBI.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fanglian Chen
- Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
169
|
Zhang ZH, Chen C, Jia SZ, Cao XC, Liu M, Tian J, Hoffmann PR, Xu HX, Ni JZ, Song GL. Selenium Restores Synaptic Deficits by Modulating NMDA Receptors and Selenoprotein K in an Alzheimer's Disease Model. Antioxid Redox Signal 2021; 35:863-884. [PMID: 32475153 DOI: 10.1089/ars.2019.7990] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: Strong evidence has implicated synaptic failure as a direct contributor to cognitive decline in Alzheimer's disease (AD), and selenium (Se) supplementation has demonstrated potential for AD treatment. However, the exact roles of Se and related selenoproteins in mitigating synaptic deficits remain unclear. Results: Our data show that selenomethionine (Se-Met), as the major organic form of Se in vivo, structurally restored synapses, dendrites, and spines, leading to improved synaptic plasticity and cognitive function in triple transgenic AD (3 × Tg-AD) mice. Furthermore, we found that Se-Met ameliorated synaptic deficits by inhibiting extrasynaptic N-methyl-d-aspartate acid receptors (NMDARs) and stimulating synaptic NMDARs, thereby modulating calcium ion (Ca2+) influx. We observed that a decrease in selenoprotein K (SELENOK) levels was closely related to AD, and a similar disequilibrium was found between synaptic and extrasynaptic NMDARs in SELENOK knockout mice and AD mice. Se-Met treatment upregulated SELENOK levels and restored the balance between synaptic and extrasynaptic NMDAR expression in AD mice. Innovation: These findings establish a key signaling pathway linking SELENOK and NMDARs with synaptic plasticity regulated by Se-Met, and thereby provide insight into mechanisms by which Se compounds mediate synaptic deficits in AD. Conclusion: Our study demonstrates that Se-Met restores synaptic deficits through modulating Ca2+ influx mediated by synaptic and extrasynaptic NMDARs in 3 × Tg-AD mice, and suggests a potentially functional interaction between SELENOK and NMDARs. Antioxid. Redox Signal. 35, 863-884.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shi-Zheng Jia
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xian-Chun Cao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Min Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Hua-Xi Xu
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
170
|
Role of hippocampal NF-κB and GluN2B in the memory acquisition impairment of experiences gathered prior to cocaine administration in rats. Sci Rep 2021; 11:20033. [PMID: 34625609 PMCID: PMC8501066 DOI: 10.1038/s41598-021-99448-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Cocaine can induce severe neurobehavioral changes, among others, the ones involved in learning and memory processes. It is known that during drug consumption, cocaine-associated memory and learning processes take place. However, much less is known about the effects of this drug upon the mechanisms involved in forgetting.The present report focuses on the mechanisms by which cocaine affects memory consolidation of experiences acquired prior to drug administration. We also study the involvement of hippocampus in these processes, with special interest on the role of Nuclear factor kappa B (NF-κB), N-methyl-D-aspartate glutamate receptor 2B (GluN2B), and their relationship with other proteins, such as cyclic AMP response element binding protein (CREB). For this purpose, we developed a rat experimental model of chronic cocaine administration in which spatial memory and the expression or activity of several proteins in the hippocampus were assessed after 36 days of drug administration. We report an impairment in memory acquisition of experiences gathered prior to cocaine administration, associated to an increase in GluN2B expression in the hippocampus. We also demonstrate a decrease in NF-κB activity, as well as in the expression of the active form of CREB, confirming the role of these transcription factors in the cocaine-induced memory impairment.
Collapse
|
171
|
Carvajal FJ, Cerpa W. Regulation of Phosphorylated State of NMDA Receptor by STEP 61 Phosphatase after Mild-Traumatic Brain Injury: Role of Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101575. [PMID: 34679709 PMCID: PMC8533270 DOI: 10.3390/antiox10101575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023] Open
Abstract
Traumatic Brain Injury (TBI) mediates neuronal death through several events involving many molecular pathways, including the glutamate-mediated excitotoxicity for excessive stimulation of N-methyl-D-aspartate receptors (NMDARs), producing activation of death signaling pathways. However, the contribution of NMDARs (distribution and signaling-associated to the distribution) remains incompletely understood. We propose a critical role of STEP61 (Striatal-Enriched protein tyrosine phosphatase) in TBI; this phosphatase regulates the dephosphorylated state of the GluN2B subunit through two pathways: by direct dephosphorylation of tyrosine-1472 and indirectly via dephosphorylation and inactivation of Fyn kinase. We previously demonstrated oxidative stress’s contribution to NMDAR signaling and distribution using SOD2+/− mice such a model. We performed TBI protocol using a controlled frontal impact device using C57BL/6 mice and SOD2+/− animals. After TBI, we found alterations in cognitive performance, NMDAR-dependent synaptic function (decreased synaptic form of NMDARs and decreased synaptic current NMDAR-dependent), and increased STEP61 activity. These changes are reduced partially with the STEP61-inhibitor TC-2153 treatment in mice subjected to TBI protocol. This study contributes with evidence about the role of STEP61 in the neuropathological progression after TBI and also the alteration in their activity, such as an early biomarker of synaptic damage in traumatic lesions.
Collapse
Affiliation(s)
- Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Correspondence: ; Tel.: +56-2-2354-2656; Fax: +56-2-2354-2660
| |
Collapse
|
172
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 343] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
173
|
Mira RG, Cerpa W. Building a Bridge Between NMDAR-Mediated Excitotoxicity and Mitochondrial Dysfunction in Chronic and Acute Diseases. Cell Mol Neurobiol 2021; 41:1413-1430. [PMID: 32700093 PMCID: PMC11448584 DOI: 10.1007/s10571-020-00924-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain, and it is widely accepted to play a role in synaptic plasticity and excitotoxic cell death. Glutamate binds to several receptors, including ionotropic N-methyl-D-Aspartate receptor (NMDAR), which is essential in synaptic plasticity and excitotoxicity. This receptor is a calcium channel that is located in synaptic and extrasynaptic sites, triggering different signalling cascades in each case. The calcium entry through extrasynaptic NMDARs is linked to calcium overload in the mitochondria in neurons in vitro. The mitochondria, besides their role in ATP production in the cell, participate in calcium homeostasis, acting as a buffering organelle. Disruption of mitochondrial calcium homeostasis has been linked to neuronal death either by triggering apoptosis or driven by the opening of the mitochondrial transition pore. These cell-death mechanisms contribute to the pathophysiology of diverse diseases such as neurodegenerative Alzheimer's disease or Parkinson's disease, and acute neuropathological conditions such as stroke or traumatic brain injury. In this review, we will address the available evidence that positions the mitochondria as an essential organelle in the control of calcium-mediated toxicity, highlighting its role from the perspective of specific NMDAR signalling microdomains at the level of the central synapse.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de función y patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de función y patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
174
|
Wisłowska-Stanek A, Kołosowska K, Maciejak P. Neurobiological Basis of Increased Risk for Suicidal Behaviour. Cells 2021; 10:cells10102519. [PMID: 34685499 PMCID: PMC8534256 DOI: 10.3390/cells10102519] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
According to the World Health Organization (WHO), more than 700,000 people die per year due to suicide. Suicide risk factors include a previous suicide attempt and psychiatric disorders. The highest mortality rate in suicide worldwide is due to depression. Current evidence suggests that suicide etiopathogenesis is associated with neuroinflammation that activates the kynurenine pathway and causes subsequent serotonin depletion and stimulation of glutamate neurotransmission. These changes are accompanied by decreased BDNF (brain-derived neurotrophic factor) levels in the brain, which is often linked to impaired neuroplasticity and cognitive deficits. Most suicidal patients have a hyperactive hypothalamus–pituitary–adrenal (HPA) axis. Epigenetic mechanisms control the above-mentioned neurobiological changes associated with suicidal behaviour. Suicide risk could be attenuated by appropriate psychological treatment, electroconvulsive treatment, and drugs: lithium, ketamine, esketamine, clozapine. In this review, we present the etiopathogenesis of suicide behaviour and explore the mechanisms of action of anti-suicidal treatments, pinpointing similarities among them.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland;
- Correspondence: ; Tel.: +48-221166160
| | - Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland;
| | - Piotr Maciejak
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland;
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland;
| |
Collapse
|
175
|
do Prado-Lima PAS, Costa-Ferro ZSM, Souza BSDF, da Cruz IBM, Lab B. Is there a place for cellular therapy in depression? World J Psychiatry 2021; 11:553-567. [PMID: 34631460 PMCID: PMC8474995 DOI: 10.5498/wjp.v11.i9.553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Although efforts have been made to improve the pharmacological treatment of depression, approximately one-third of patients with depression do not respond to conventional therapy using antidepressants. Other potential non-pharmacological therapies have been studied in the last years, including the use of mesenchymal stem cell therapies to treat depression. These therapies are reviewed here since it is clinically relevant to develop innovative therapeutics to treat psychiatric patients. Experimental data corroborate that mesenchymal stem cell therapy could be considered a potential treatment for depression based on its anti-inflammatory and neurotrophic properties. However, some clinical trials involving treatment of depression with stem cells are in progress, but with no published results. These studies and other future clinical investigations will be crucial to define how much mesenchymal stem cells can effectively be used in psychiatric clinics as a strategy for supporting depression treatment.
Collapse
Affiliation(s)
- Pedro Antônio Schmidt do Prado-Lima
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Zaquer Suzana Munhoz Costa-Ferro
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Rio Grande do Sul, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Bahia, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, Bahia, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Bahia, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, Bahia, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Fiocruz, Salvador 40296-710, Bahia, Brazil
| | | | - Biogenomics Lab
- Health Sciences Center, Federal University of Santa Maria, Santa Maria 97105900, RS, Brazil
| |
Collapse
|
176
|
Tilianin Ameliorates Cognitive Dysfunction and Neuronal Damage in Rats with Vascular Dementia via p-CaMKII/ERK/CREB and ox-CaMKII-Dependent MAPK/NF- κB Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6673967. [PMID: 34527176 PMCID: PMC8437593 DOI: 10.1155/2021/6673967] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022]
Abstract
Vascular dementia (VaD) is a common cause of cognitive decline and dementia of vascular origin, but the precise pathological mechanisms are unknown, and so effective clinical treatments have not been established. Tilianin, the principal active compound of total flavonoid extract from Dracocephalum moldavica L., is a candidate therapy for cardio-cerebrovascular diseases in China. However, its potential in the treatment of VaD is unclear. The present study is aimed at investigating the protective effects of tilianin on VaD and exploring the underlying mechanism of the action. A model of VaD was established by permanent 2-vessel occlusion (2VO) in rats. Human neurons (hNCs) differentiated from human-induced pluripotent stem cells were used to establish an oxygen-glucose deprivation (OGD) model. The therapeutic effects and potential mechanisms of tilianin were identified using behavioral tests, histochemistry, and multiple molecular biology techniques such as Western blot analysis and gene silencing. The results demonstrated that tilianin modified spatial cognitive impairment, neurodegeneration, oxidation, and apoptosis in rats with VaD and protected hNCs against OGD by increasing cell viability and decreasing apoptosis rates. A study of the mechanism indicated that tilianin restored p-CaMKII/ERK1/2/CREB signaling in the hippocampus, maintaining hippocampus-independent memory. In addition, tilianin inhibited an ox-CaMKII/p38 MAPK/JNK/NF-κB associated inflammatory response caused by cerebral oxidative stress imbalance in rats with VaD. Furthermore, specific CaMKIIα siRNA action revealed that tilianin-exerted neuroprotection involved increase of neuronal viability, inhibition of apoptosis, and suppression of inflammation, which was dependent on CaMKIIα. In conclusion, the results suggested the neuroprotective effect of tilianin in VaD and the potential mechanism associated with dysfunction in the regulation of p-CaMKII-mediated long-term memory and oxidation and inflammation involved with ox-CaMKII, which may lay the foundation for clinical trials of tilianin for the treatment of VaD in the future.
Collapse
|
177
|
Wong-Riley MTT. The critical period: neurochemical and synaptic mechanisms shared by the visual cortex and the brain stem respiratory system. Proc Biol Sci 2021; 288:20211025. [PMID: 34493083 DOI: 10.1098/rspb.2021.1025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The landmark studies of Wiesel and Hubel in the 1960's initiated a surge of investigations into the critical period of visual cortical development, when abnormal visual experience can alter cortical structures and functions. Most studies focused on the visual cortex, with relatively little attention to subcortical structures. The goal of the present review is to elucidate neurochemical and synaptic mechanisms common to the critical periods of the visual cortex and the brain stem respiratory system in the normal rat. In both regions, the critical period is a time of (i) heightened inhibition; (ii) reduced expression of brain-derived neurotrophic factor (BDNF); and (iii) synaptic imbalance, with heightened inhibition and suppressed excitation. The last two mechanisms are contrary to the conventional premise. Synaptic imbalance renders developing neurons more vulnerable to external stressors. However, the critical period is necessary to enable each system to strengthen its circuitry, adapt to its environment, and transition from immaturity to maturity, when a state of relative synaptic balance is attained. Failure to achieve such a balance leads to neurological disorders.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
178
|
Chen X, Beltran DJ, Tsygankova VD, Woolwine BJ, Patel T, Baer W, Felger JC, Miller AH, Haroon E. Kynurenines increase MRS metabolites in basal ganglia and decrease resting-state connectivity in frontostriatal reward circuitry in depression. Transl Psychiatry 2021; 11:456. [PMID: 34482366 PMCID: PMC8418602 DOI: 10.1038/s41398-021-01587-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Inflammation is associated with the development of anhedonia in major depression (MD), but the pathway by which inflammatory molecules gain access to the brain and lead to anhedonia is not clear. Molecules of the kynurenine pathway (KP), which is activated by inflammation, readily influx into the brain and generate end products that alter brain chemistry, disrupt circuit functioning, and result in the expression of inflammatory behaviors such as anhedonia. We examined the impact of plasma and CSF KP metabolites on brain chemistry and neural function using multimodal neuroimaging in 49 depressed subjects. We measured markers of glial dysfunction and distress including glutamate (Glu) and myo-inositol in the left basal ganglia using magnetic resonance spectroscopy (MRS); metrics of local activity coherence (regional homogeneity, ReHo) and functional connectivity from resting-state functional MRI measures; and anhedonia from the Inventory for Depressive Symptoms-Self Report Version (IDS-SR). Plasma kynurenine/tryptophan (KYN/TRP) ratio and cerebrospinal fluid (CSF) 3-hydroxykynurenine (3HK) were associated with increases in left basal ganglia myo-inositol. Plasma kynurenic acid (KYNA) and KYNA/QA were associated with decreases and quinolinic acid (QA) with increases in left basal ganglia Glu. Plasma and CSF KP were associated with decreases in ReHo in the basal ganglia and dorsomedial prefrontal regions (DMPFC) and impaired functional connectivity between these two regions. DMPFC-basal ganglia mediated the effect of plasma and CSF KP on anhedonia. These findings highlight the pathological impact of KP system dysregulation in mediating inflammatory behaviors such as anhedonia.
Collapse
Affiliation(s)
- Xiangchuan Chen
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Diana J Beltran
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Valeriya D Tsygankova
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Bobbi J Woolwine
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Trusharth Patel
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wendy Baer
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Jennifer C Felger
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Andrew H Miller
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Ebrahim Haroon
- Emory Behavioral Immunology Program, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA.
| |
Collapse
|
179
|
Abstract
The susceptibility of the brain to ischaemic injury dramatically limits its viability following interruptions in blood flow. However, data from studies of dissociated cells, tissue specimens, isolated organs and whole bodies have brought into question the temporal limits within which the brain is capable of tolerating prolonged circulatory arrest. This Review assesses cell type-specific mechanisms of global cerebral ischaemia, and examines the circumstances in which the brain exhibits heightened resilience to injury. We suggest strategies for expanding such discoveries to fuel translational research into novel cytoprotective therapies, and describe emerging technologies and experimental concepts. By doing so, we propose a new multimodal framework to investigate brain resuscitation following extended periods of circulatory arrest.
Collapse
|
180
|
Cuestas Torres DM, Cardenas FP. Synaptic plasticity in Alzheimer's disease and healthy aging. Rev Neurosci 2021; 31:245-268. [PMID: 32250284 DOI: 10.1515/revneuro-2019-0058] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
The strength and efficiency of synaptic connections are affected by the environment or the experience of the individual. This property, called synaptic plasticity, is directly related to memory and learning processes and has been modeled at the cellular level. These types of cellular memory and learning models include specific stimulation protocols that generate a long-term strengthening of the synapses, called long-term potentiation, or a weakening of the said long-term synapses, called long-term depression. Although, for decades, researchers have believed that the main cause of the cognitive deficit that characterizes Alzheimer's disease (AD) and aging was the loss of neurons, the hypothesis of an imbalance in the cellular and molecular mechanisms of synaptic plasticity underlying this deficit is currently widely accepted. An understanding of the molecular and cellular changes underlying the process of synaptic plasticity during the development of AD and aging will direct future studies to specific targets, resulting in the development of much more efficient and specific therapeutic strategies. In this review, we classify, discuss, and describe the main findings related to changes in the neurophysiological mechanisms of synaptic plasticity in excitatory synapses underlying AD and aging. In addition, we suggest possible mechanisms in which aging can become a high-risk factor for the development of AD and how its development could be prevented or slowed.
Collapse
Affiliation(s)
- Diana Marcela Cuestas Torres
- Departamento de Psicología and Departamento de Biología, Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Cra 1 N° 18A-12, CP 111711, Bogotá, Colombia
| | - Fernando P Cardenas
- Departamento de Psicología, Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Cra 1 N° 18A-12, CP 111711, Bogotá, Colombia
| |
Collapse
|
181
|
Lum JS, Bird KM, Wilkie J, Millard SJ, Pallimulla S, Newell KA, Wright IM. Prenatal methadone exposure impairs adolescent cognition and GABAergic neurodevelopment in a novel rat model of maternal methadone treatment. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110281. [PMID: 33571606 DOI: 10.1016/j.pnpbp.2021.110281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Methadone maintenance treatment (MMT) is the most common treatment for opioid-dependent pregnant women worldwide. Despite its widespread use, MMT is associated with a variety of adverse neurodevelopmental outcomes in exposed offspring, particularly cognitive impairments. The neurobiological abnormalities underlying these cognitive impairments are, however, poorly understood. This is, in part, due to a lack of animal models that represents the standard of care that methadone is administered in the clinic, with inconsistencies in the timing, doses and durations of treatment. Here we describe the characterisation of a clinically relevant rat model of MMT in which the long-term behavioural and neurobiological effects of prenatal methadone exposure can be assessed in adolescent offspring. Female Sprague-Dawley rats were treated orally with an ascending methadone dosage schedule (5, 10, 15, 20, 25 and 30 mg/kg/day), self-administered in drinking water prior to conception, throughout gestation and lactation. Pregnancy success, maternal gestational weight gain, litter survival and size were not significantly altered in methadone-exposed animals. Methadone-exposed offspring body and brain weights were significantly lower at birth. Novel object recognition tests performed at adolescence revealed methadone-exposed offspring had impaired recognition memory. Furthermore, the rewarded T-maze alternation task demonstrated that methadone-exposed female, but not male, offspring also exhibit working memory and learning deficits. Immunoblots of the adolescent prefrontal cortex and hippocampus showed methadone-exposed offspring displayed reduced levels of mature BDNF, in addition to the GABAergic proteins, GAD67 and parvalbumin, in a sex- and brain region-specific fashion. This rat model closely emulates the clinical scenario in which methadone is administered to opioid-dependent pregnant woman and provides evidence MMT can cause cognitive impairments in adolescent offspring that may be underlined by perturbed neurodevelopment of the GABAergic system.
Collapse
Affiliation(s)
- Jeremy S Lum
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Katrina M Bird
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jennifer Wilkie
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong University of Wollongong, Wollongong, NSW 2522, Australia
| | - Samuel J Millard
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong University of Wollongong, Wollongong, NSW 2522, Australia
| | - Sachie Pallimulla
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kelly A Newell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ian M Wright
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong University of Wollongong, Wollongong, NSW 2522, Australia; University of Queensland Centre for Clinical Research, University of Queensland, Herston, QLD 4029, Australia; College of Medicine and Dentistry, James Cook University, Cairns, QLD 4870, Australia
| |
Collapse
|
182
|
Shi X, Zhang Q, Li J, Liu X, Zhang Y, Huang M, Fang W, Xu J, Yuan T, Xiao L, Tang YQ, Wang XD, Luo J, Yang W. Disrupting phosphorylation of Tyr-1070 at GluN2B selectively produces resilience to depression-like behaviors. Cell Rep 2021; 36:109612. [PMID: 34433031 DOI: 10.1016/j.celrep.2021.109612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/12/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
Drugs targeting N-methyl-D-aspartate receptors (NMDARs) have been approved to treat major depressive disorder (MDD); however, the presence of undesirable psychotomimetic and cognitive side effects may limit their utility. In this study, we show that the phosphorylation levels of the GluN2B subunit at tyrosine (Y) 1070 increase in mice after both acute and chronic restraint stress (CRS) exposure. Preventing GluN2B-Y1070 phosphorylation via Y1070F mutation knockin produces effects similar to those of antidepressants but does not affect cognitive or anxiety-related behaviors in subject mice. Mechanistically, the Y1070F mutation selectively reduces non-synaptic NMDAR currents and increases the number of excitatory synapses in the layer 5 pyramidal neurons of medial prefrontal cortex (mPFC) but not in the hippocampus. Altogether, our study identifies phosphorylation levels of GluN2B-Y1070 in the mPFC as a dynamic, master switch guarding depressive behaviors, suggesting that disrupting the Y1070 phosphorylation of GluN2B subunit has the potential for developing new antidepressants.
Collapse
Affiliation(s)
- Xiaofang Shi
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China
| | - Qi Zhang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Jie Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China
| | - Xingyu Liu
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Yi Zhang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Minhua Huang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Weiqing Fang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P.R. China
| | - Junyu Xu
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China
| | - Tifei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Xiao
- Institute for Brain Research and Rehabilitation, South China Normal University, Key Laboratory of Brain Cognition and Education Sciences, Ministry of Education, 510631 Guangzhou, China
| | - Yi-Quan Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao-Dong Wang
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Jianhong Luo
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China.
| | - Wei Yang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China.
| |
Collapse
|
183
|
RyR-mediated Ca 2+ release elicited by neuronal activity induces nuclear Ca 2+ signals, CREB phosphorylation, and Npas4/RyR2 expression. Proc Natl Acad Sci U S A 2021; 118:2102265118. [PMID: 34389673 DOI: 10.1073/pnas.2102265118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of several hippocampal genes implicated in learning and memory processes requires that Ca2+ signals generated in dendritic spines, dendrites, or the soma in response to neuronal stimulation reach the nucleus. The diffusion of Ca2+ in the cytoplasm is highly restricted, so neurons must use other mechanisms to propagate Ca2+ signals to the nucleus. Here, we present evidence showing that Ca2+ release mediated by the ryanodine receptor (RyR) channel type-2 isoform (RyR2) contributes to the generation of nuclear Ca2+ signals induced by gabazine (GBZ) addition, glutamate uncaging in the dendrites, or high-frequency field stimulation of primary hippocampal neurons. Additionally, GBZ treatment significantly increased cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation-a key event in synaptic plasticity and hippocampal memory-and enhanced the expression of Neuronal Per Arnt Sim domain protein 4 (Npas4) and RyR2, two central regulators of these processes. Suppression of RyR-mediated Ca2+ release with ryanodine significantly reduced the increase in CREB phosphorylation and the enhanced Npas4 and RyR2 expression induced by GBZ. We propose that RyR-mediated Ca2+ release induced by neuronal activity, through its contribution to the sequential generation of nuclear Ca2+ signals, CREB phosphorylation, Npas4, and RyR2 up-regulation, plays a central role in hippocampal synaptic plasticity and memory processes.
Collapse
|
184
|
Jin J, Wang R, Lin Q. The Increased Channel Activity of N-Methyl-D-Aspartate Receptors at Extrasynaptic Sites in the Anterior Cingulate Cortex of Neonatal Rats Following Prolonged Ketamine Exposure. J Pain Res 2021; 14:2381-2389. [PMID: 34393508 PMCID: PMC8360360 DOI: 10.2147/jpr.s320674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Ketamine is a dissociative anesthetic, commonly used for analgesia and anesthesia in a variety of pediatric procedures. It acts as a non-competitive antagonist to block ion channels of the N-methyl-D-aspartate receptors (NMDARs). Our previous study showed that repeated ketamine exposure developed a compensatory increase in NMDAR-mediated currents in neurons of the anterior cingulate cortex (ACC) of neonatal rats, and this increase was largely mediated by the GluN2B subunit-containing receptors, a predominant type of NMDARs during embryonic and early development of the brain. These data provide the molecular evidence to support that immature neurons are highly vulnerable to the development of apoptotic cell death after prolonged ketamine exposure. Methods Using whole-cell patch-clamp electrophysiology in an in vitro preparation of rat forebrain slices containing the ACC, the present study aimed at further determining whether GluN2B-containing NMDARs at extrasynaptic sites of immature neurons were the major target of ketamine for developing a compensatory increase in NMDAR-mediated synaptic transmission. Results Our major findings were that GluN2B subunits played a significant role in mediating ketamine-induced blockade of NMDAR-mediated currents in neonatal neurons and GluN2B-containing NMDARs expressed at extrasynaptic sites in neonatal neurons were the major player in compensatory enhancement of NMDAR-mediated currents after repeated ketamine exposure. Conclusion These results provide new evidence to strongly indicate that GluN2B-containing NMDARs at extrasynaptic sites are the key molecule contributing to the high vulnerability of the neonatal brain to ketamine-induced neurotoxic effects.
Collapse
Affiliation(s)
- Jianhui Jin
- Department of pain Management, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA
| | - Ruirui Wang
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA
| | - Qing Lin
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
185
|
Ying Y, Wang JZ. Illuminating Neural Circuits in Alzheimer's Disease. Neurosci Bull 2021; 37:1203-1217. [PMID: 34089505 PMCID: PMC8353043 DOI: 10.1007/s12264-021-00716-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/06/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and there is currently no cure. Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with AD. Therefore, it is important to understand the structural features and mechanisms underlying the deregulated circuits during AD progression, by which new tools for intervention can be developed. Here, we briefly summarize the most recently established cutting-edge experimental approaches and key techniques that enable neural circuit tracing and manipulation of their activity. We also discuss the advantages and limitations of these approaches. Finally, we review the applications of these techniques in the discovery of circuit mechanisms underlying β-amyloid and tau pathologies during AD progression, and as well as the strategies for targeted AD treatments.
Collapse
Affiliation(s)
- Yang Ying
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
186
|
Wu KC, Lee CY, Chern Y, Lin CJ. Amelioration of lipopolysaccharide-induced memory impairment in equilibrative nucleoside transporter-2 knockout mice is accompanied by the changes in glutamatergic pathways. Brain Behav Immun 2021; 96:187-199. [PMID: 34058310 DOI: 10.1016/j.bbi.2021.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation has been implicated in cognitive deficits in neurological and neurodegenerative diseases. Lipopolysaccharide (LPS)-induced neuroinflammation and the breakdown of the blood-brain barrier can be attenuated in mice with equilibrative nucleoside transporter-2 (ENT2/Ent2) deletion. The present study was aimed to investigate the role of ENT2 in cognitive and neuronal functions under physiological and inflammatory conditions, in terms of behavioral performance and synaptic plasticity in saline- and LPS-treated Ent2 knockout (KO) mice and their wild-type (WT) littermate controls. Repeated administrations of LPS significantly impaired spatial memory formation in Morris water maze and hippocampal-dependent long-term potentiation (LTP) in WT mice. The LPS-treated WT mice exhibited significant synaptic and neuronal damage in the hippocampus. Notably, the LPS-induced impairment in spatial memory and LTP performance were attenuated in Ent2 KO mice, along with the preservation of neuronal survival. The beneficial effects were accompanied by the normalization of excessive extracellular glutamate and aberrant downstream signaling of glutamate receptor activation, including the upregulation of phosphorylated p38 mitogen-activated protein kinase and the downregulation of phosphorylated cyclic adenosine monophosphate-response element-binding protein. There was no significant difference in behavioral outcome and all tested parameters between these two genotypes under physiological condition. These results suggest that ENT2 plays an important role in regulating inflammation-associated cognitive decline and neuronal damage.
Collapse
Affiliation(s)
- Kuo-Chen Wu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
187
|
Soni A, Klütsch D, Hu X, Houtman J, Rund N, McCloskey A, Mertens J, Schafer ST, Amin H, Toda T. Improved Method for Efficient Generation of Functional Neurons from Murine Neural Progenitor Cells. Cells 2021; 10:1894. [PMID: 34440662 PMCID: PMC8392300 DOI: 10.3390/cells10081894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Neuronal culture was used to investigate neuronal function in physiological and pathological conditions. Despite its inevitability, primary neuronal culture remained a gold standard method that requires laborious preparation, intensive training, and animal resources. To circumvent the shortfalls of primary neuronal preparations and efficiently give rise to functional neurons, we combine a neural stem cell culture method with a direct cell type-conversion approach. The lucidity of this method enables the efficient preparation of functional neurons from mouse neural progenitor cells on demand. We demonstrate that induced neurons (NPC-iNs) by this method make synaptic connections, elicit neuronal activity-dependent cellular responses, and develop functional neuronal networks. This method will provide a concise platform for functional neuronal assessments. This indeed offers a perspective for using these characterized neuronal networks for investigating plasticity mechanisms, drug screening assays, and probing the molecular and biophysical basis of neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Abhinav Soni
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| | - Diana Klütsch
- Biohybrid Neuroelectronics (BIONICS), German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (D.K.); (X.H.)
| | - Xin Hu
- Biohybrid Neuroelectronics (BIONICS), German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (D.K.); (X.H.)
| | - Judith Houtman
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| | - Nicole Rund
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| | - Asako McCloskey
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Jerome Mertens
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Tyrol, Austria;
| | - Simon T. Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Hayder Amin
- Biohybrid Neuroelectronics (BIONICS), German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (D.K.); (X.H.)
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| |
Collapse
|
188
|
Sun H, Wan N. Genotype-Phenotype Analysis of 8q24.3 Duplication and 21q22.3 Deletion in a Chinese Patient and Literature Review. Public Health Genomics 2021; 24:218-228. [PMID: 34265769 DOI: 10.1159/000515547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/28/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Copy number variants (CNVs) are responsible for many patients with short stature of unknown etiology. This study aims to analyze clinical phenotypes and identify pathogenic CNVs in a patient with short stature, intellectual disability, craniofacial deformities, and anal imperforation. METHODS G-banded karyotyping and chromosomal microarray analysis (CMA) was used on the patient to identify pathogenic causes. Fluorescence in situ hybridization (FISH) was applied to explore the abnormal genetic origin. Literatures were searched using identified CNVs as keywords in the PubMed database to perform genotype-phenotype analysis. RESULTS Cytogenetic analysis revealed a normal karyotype 46,XY. CMA detected a 6.1 Mb duplication at 8q24.3 and a 3.6 Mb deletion at 21q22.3. FISH confirmed that the abnormal chromosomes were inherited from paternal balanced translocation. We compared phenotypes of our patient with 6 patients with 8q24.3 duplication and 7 cases with 21q22.3 deletion respectively. CONCLUSIONS A novel 8q24.3 duplication and 21q22.3 deletion was identified in a Chinese patient. Genotype-phenotype analysis demonstrated that patients with 8q24.3 duplication and 21q22.3 deletion had specific facial features, intellectual disability, short stature, and multiple malformations.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Naijun Wan
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
189
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
190
|
Astrocytes in the Ventromedial Hypothalamus Involve Chronic Stress-Induced Anxiety and Bone Loss in Mice. Neural Plast 2021; 2021:7806370. [PMID: 34306063 PMCID: PMC8282369 DOI: 10.1155/2021/7806370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic stress is one of the main risk factors of bone loss. While the neurons and neural circuits of the ventromedial hypothalamus (VMH) mediate bone loss induced by chronic stress, the detailed intrinsic mechanisms within the VMH nucleus still need to be explored. Astrocytes in brain regions play important roles in the regulation of metabolism and anxiety-like behavior through interactions with surrounding neurons. However, whether astrocytes in the VMH affect neuronal activity and therefore regulate chronic stress-induced anxiety and bone loss remain elusive. In this study, we found that VMH astrocytes were activated during chronic stress-induced anxiety and bone loss. Pharmacogenetic activation of the Gi and Gq pathways in VMH astrocytes reduced and increased the levels of anxiety and bone loss, respectively. Furthermore, activation of VMH astrocytes by optogenetics induced depolarization in neighboring steroidogenic factor-1 (SF-1) neurons, which was diminished by administration of N-methyl-D-aspartic acid (NMDA) receptor blocker but not by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blocker. These results suggest that there may be a functional "glial-neuron microcircuit" in VMH nuclei that mediates anxiety and bone loss induced by chronic stress. This study not only advances our understanding of glial cell function but also provides a potential intervention target for chronic stress-induced anxiety and bone loss therapy.
Collapse
|
191
|
Kellner S, Abbasi A, Carmi I, Heinrich R, Garin-Shkolnik T, Hershkovitz T, Giladi M, Haitin Y, Johannesen KM, Steensbjerre Møller R, Berlin S. Two de novo GluN2B mutations affect multiple NMDAR-functions and instigate severe pediatric encephalopathy. eLife 2021; 10:67555. [PMID: 34212862 PMCID: PMC8260228 DOI: 10.7554/elife.67555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
The N-methyl-D-aspartate receptors (NMDARs; GluNRS) are glutamate receptors, commonly located at excitatory synapses. Mutations affecting receptor function often lead to devastating neurodevelopmental disorders. We have identified two toddlers with different heterozygous missense mutations of the same, and highly conserved, glycine residue located in the ligand-binding-domain of GRIN2B: G689C and G689S. Structure simulations suggest severely impaired glutamate binding, which we confirm by functional analysis. Both variants show three orders of magnitude reductions in glutamate EC50, with G689S exhibiting the largest reductions observed for GRIN2B (~2000-fold). Moreover, variants multimerize with, and upregulate, GluN2Bwt-subunits, thus engendering a strong dominant-negative effect on mixed channels. In neurons, overexpression of the variants instigates suppression of synaptic GluNRs. Lastly, while exploring spermine potentiation as a potential treatment, we discovered that the variants fail to respond due to G689’s novel role in proton-sensing. Together, we describe two unique variants with extreme effects on channel function. We employ protein-stability measures to explain why current (and future) LBD mutations in GluN2B primarily instigate Loss-of-Function.
Collapse
Affiliation(s)
- Shai Kellner
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abeer Abbasi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, the Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Rikke Steensbjerre Møller
- Department of Epilepsy Genetics and Personalized Treatment, the Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
192
|
Ferreira-Neto HC, Antunes VR, Stern JE. Purinergic P2 and glutamate NMDA receptor coupling contributes to osmotically driven excitability in hypothalamic magnocellular neurosecretory neurons. J Physiol 2021; 599:3531-3547. [PMID: 34053068 DOI: 10.1113/jp281411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/28/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Purinergic and glutamatergic signalling pathways play a key role in regulating the activity of hypothalamic magnocellular neurosecretory neurons (MNNs). However, the precise cellular mechanisms by which ATP and glutamate act in concert to regulate osmotically driven MNN neuronal excitability remains unknown. Here, we report that ATP acts on purinergic P2 receptors in MNNs to potentiate in a Ca2+ -dependent manner extrasynaptic NMDAR function. The P2-NMDAR coupling is engaged in response to an acute hyperosmotic stimulation, contributing to osmotically driven firing activity in MNNs. These results help us to better understand the precise mechanisms contributing to the osmotic regulation of firing activity and hormone release from MNNs. ABSTRACT The firing activity of hypothalamic magnocellular neurosecretory neurons (MNNs) located in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) is coordinated by the combined, fine-tuned action of intrinsic membrane properties, synaptic and extrasynaptic signalling. Among these, purinergic and glutamatergic signalling pathways have been shown to play a key role regulating the activity of MNNs. However, the precise cellular mechanisms by which ATP and glutamate act in concert to regulate osmotically driven MNN neuronal excitability remains unknown. Whole-cell patch-clamp recordings obtained from MNNs showed that ATP (100 μM) induced an increase in firing rate, an effect that was blocked by either 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]2-pyridinyl]azo]1,3-benzenedisulfonic acid tetrasodium salt (PPADS) (10 μM) or kynurenic acid (1 mm). While ATP did not affect the frequency or magnitude of glutamatergic excitatory postsynaptic currents (EPSCs), it induced an inward shift in the holding current that was prevented by PPADS or kynurenic acid treatment, suggesting that ATP enhances a tonic extrasynaptic glutamatergic excitatory current. We observed that ATP-potentiated glutamatergic receptor-mediated currents were evoked by focal application of L-glu (1 mm) and NMDA (50 μM), but not AMPA (50 μM). ATP potentiation of NMDA-evoked currents was blocked by PPADS (10 μM) and by chelation of intracellular Ca2+ with BAPTA (10 mm). Finally, we report that a hyperosmotic stimulus (mannitol 1%, +55 mOsm/kgH2 O) potentiated NMDA-evoked currents and increased MNN firing activity, effects that were blocked by PPADS. Taken together, our data support a functional excitatory coupling between P2 and extrasynaptic NMDA receptors in MNNs, which is engaged in response to an acute hyperosmotic stimulus.
Collapse
Affiliation(s)
- H C Ferreira-Neto
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - V R Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - J E Stern
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
193
|
Wang H, Hu S, Gao S, Chen K, Sun X, Fang H. Long Noncoding RNA Expression Profiles of Rat Extrasynaptic and Synaptic Neurons Expressing the N-methyl-D-Aspartate Receptor Revealed by Microarray Analysis. World Neurosurg 2021; 153:e168-e178. [PMID: 34166824 DOI: 10.1016/j.wneu.2021.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To study the 24-hour expression of long noncoding RNAs (lncRNAs) in synaptic and extrasynaptic neurons expressing N-methyl-D-aspartate receptor (NMDAR), and normal neuronal cultures, via microarray analysis. MATERIALS AND METHODS Cortical neurons from embryonic (day E18) Sprague-Dawley rats were used for primary neuronal culture. NMDAR activation was blocked and the cells were then incubated for 6 hours. Total RNA was extracted, quantified, and analyzed for purity and integrity. Double-stranded cDNA was synthesized, followed by quantile normalization, quantitative polymerase chain reaction validation, and data analysis. The interactions between transcription factors and lncRNAs were analyzed by Pearson correlation. RESULTS The lncRNA profiles were obtained after synaptic and extrasynaptic NMDAR activation of rat cortical neuron cultures for 24 hours. In total, 251 lncRNAs were consistently upregulated, and 335 were downregulated, after extrasynaptic NMDAR activation compared with normal neurons. After synaptic NMDAR activation, only 9 lncRNAs were upregulated and 2 were downregulated. CONCLUSIONS Differential expression of lncRNAs after synaptic and extrasynaptic NMDAR activation suggests that lncRNAs may be responsible for extrasynaptic NMDAR-induced neurodegeneration.
Collapse
Affiliation(s)
- Huan Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunze Hu
- Department of Pathology, Maternal and Children's Hospital of Hubei Province, Wuhan, China
| | - Shutao Gao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
194
|
Mahaman YAR, Huang F, Embaye KS, Wang X, Zhu F. The Implication of STEP in Synaptic Plasticity and Cognitive Impairments in Alzheimer's Disease and Other Neurological Disorders. Front Cell Dev Biol 2021; 9:680118. [PMID: 34195199 PMCID: PMC8236946 DOI: 10.3389/fcell.2021.680118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a tyrosine phosphatase that has been implicated in Alzheimer’s disease (AD), the most common form of dementia, and many other neurological diseases. The protein level and activity of STEP have been found to be elevated in most of these disorders, and specifically in AD as a result of dysregulation of different pathways including PP2B/DARPP32/PP1, PKA as well as impairments of both proteasomal and lysosomal systems. The upregulation in STEP leads to increased binding to, and dephosphorylation of, its substrates which are mainly found to be synaptic plasticity and thus learning and memory related proteins. These proteins include kinases like Fyn, Pyk2, ERK1/2 and both NMDA and AMPA receptor subunits GluN2B and GluA2. The dephosphorylation of these molecules results in inactivation of these kinases and internalization of NMDA and AMPA receptor complexes leading to synapse loss and cognitive impairments. In this study, we aim to review STEP regulation and its implications in AD as well as other neurological disorders and then summarize data on targeting STEP as therapeutic strategy in these diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kidane Siele Embaye
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
195
|
Back MK, Ruggieri S, Jacobi E, von Engelhardt J. Amyloid Beta-Mediated Changes in Synaptic Function and Spine Number of Neocortical Neurons Depend on NMDA Receptors. Int J Mol Sci 2021; 22:ijms22126298. [PMID: 34208315 PMCID: PMC8231237 DOI: 10.3390/ijms22126298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Onset and progression of Alzheimer's disease (AD) pathophysiology differs between brain regions. The neocortex, for example, is a brain region that is affected very early during AD. NMDA receptors (NMDARs) are involved in mediating amyloid beta (Aβ) toxicity. NMDAR expression, on the other hand, can be affected by Aβ. We tested whether the high vulnerability of neocortical neurons for Aβ-toxicity may result from specific NMDAR expression profiles or from a particular regulation of NMDAR expression by Aβ. Electrophysiological analyses suggested that pyramidal cells of 6-months-old wildtype mice express mostly GluN1/GluN2A NMDARs. While synaptic NMDAR-mediated currents are unaltered in 5xFAD mice, extrasynaptic NMDARs seem to contain GluN1/GluN2A and GluN1/GluN2A/GluN2B. We used conditional GluN1 and GluN2B knockout mice to investigate whether NMDARs contribute to Aβ-toxicity. Spine number was decreased in pyramidal cells of 5xFAD mice and increased in neurons with 3-week virus-mediated Aβ-overexpression. NMDARs were required for both Aβ-mediated changes in spine number and functional synapses. Thus, our study gives novel insights into the Aβ-mediated regulation of NMDAR expression and the role of NMDARs in Aβ pathophysiology in the somatosensory cortex.
Collapse
|
196
|
Harsing LG, Szénási G, Zelles T, Köles L. Purinergic-Glycinergic Interaction in Neurodegenerative and Neuroinflammatory Disorders of the Retina. Int J Mol Sci 2021; 22:ijms22126209. [PMID: 34201404 PMCID: PMC8228622 DOI: 10.3390/ijms22126209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative–neuroinflammatory disorders of the retina seriously hamper human vision. In searching for key factors that contribute to the development of these pathologies, we considered potential interactions among purinergic neuromodulation, glycinergic neurotransmission, and microglia activity in the retina. Energy deprivation at cellular levels is mainly due to impaired blood circulation leading to increased release of ATP and adenosine as well as glutamate and glycine. Interactions between these modulators and neurotransmitters are manifold. First, P2Y purinoceptor agonists facilitate reuptake of glycine by glycine transporter 1, while its inhibitors reduce reverse-mode operation; these events may lower extracellular glycine levels. The consequential changes in extracellular glycine concentration can lead to parallel changes in the activity of NR1/NR2B type NMDA receptors of which glycine is a mandatory agonist, and thereby may reduce neurodegenerative events in the retina. Second, P2Y purinoceptor agonists and glycine transporter 1 inhibitors may indirectly inhibit microglia activity by decreasing neuronal or glial glycine release in energy-compromised retina. These inhibitions may have a role in microglia activation, which is present during development and progression of neurodegenerative disorders such as glaucomatous and diabetic retinopathies and age-related macular degeneration or loss of retinal neurons caused by thromboembolic events. We have hypothesized that glycine transporter 1 inhibitors and P2Y purinoceptor agonists may have therapeutic importance in neurodegenerative–neuroinflammatory disorders of the retina by decreasing NR1/NR2B NMDA receptor activity and production and release of a series of proinflammatory cytokines from microglial cells.
Collapse
Affiliation(s)
- Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Correspondence: ; Tel.: +36-1-210-4416
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, H-1089 Budapest, Hungary;
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|
197
|
Oxidative Dysregulation in Early Life Stress and Posttraumatic Stress Disorder: A Comprehensive Review. Brain Sci 2021; 11:brainsci11060723. [PMID: 34072322 PMCID: PMC8228973 DOI: 10.3390/brainsci11060723] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Traumatic stress may chronically affect master homeostatic systems at the crossroads of peripheral and central susceptibility pathways and lead to the biological embedment of trauma-related allostatic trajectories through neurobiological alterations even decades later. Lately, there has been an exponential knowledge growth concerning the effect of traumatic stress on oxidative components and redox-state homeostasis. This extensive review encompasses a detailed description of the oxidative cascade components along with their physiological and pathophysiological functions and a systematic presentation of both preclinical and clinical, genetic and epigenetic human findings on trauma-related oxidative stress (OXS), followed by a substantial synthesis of the involved oxidative cascades into specific and functional, trauma-related pathways. The bulk of the evidence suggests an imbalance of pro-/anti-oxidative mechanisms under conditions of traumatic stress, respectively leading to a systemic oxidative dysregulation accompanied by toxic oxidation byproducts. Yet, there is substantial heterogeneity in findings probably relative to confounding, trauma-related parameters, as well as to the equivocal directionality of not only the involved oxidative mechanisms but other homeostatic ones. Accordingly, we also discuss the trauma-related OXS findings within the broader spectrum of systemic interactions with other major influencing systems, such as inflammation, the hypothalamic-pituitary-adrenal axis, and the circadian system. We intend to demonstrate the inherent complexity of all the systems involved, but also put forth associated caveats in the implementation and interpretation of OXS findings in trauma-related research and promote their comprehension within a broader context.
Collapse
|
198
|
Fan YY, Huo J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int 2021; 148:105080. [PMID: 34048845 DOI: 10.1016/j.neuint.2021.105080] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Astrocytes play a pivotal role in maintaining the central nervous system (CNS) homeostasis and function. In response to CNS injuries and diseases, reactive astrocytes are triggered. By purifying and genetically profiling reactive astrocytes, it has been now found that astrocytes can be activated into two polarization states: the neurotoxic or pro-inflammatory phenotype (A1) and the neuroprotective or anti-inflammatory phenotype (A2). Although the simple dichotomy of the A1/A2 phenotypes does not reflect the wide range of astrocytic phenotypes, it facilitates our understanding of the reactive state of astrocytes in various CNS disorders. This article reviews the recent evidences regarding A1/A2 astrocytes, including (a) the specific markers and morphological characteristics, (b) the effects of A1/A2 astrocytes on the neurovascular unit, and (c) the molecular mechanisms involved in the phenotypic switch of astrocytes. Although many questions remain, a deeper understanding of different phenotypic astrocytes will eventually help us to explore effective strategies for neurological disorders by targeting astrocytes.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jing Huo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
199
|
Postconditioning with Sevoflurane or Propofol Alleviates Lipopolysaccharide-Induced Neuroinflammation but Exerts Dissimilar Effects on the NR2B Subunit and Cognition. Mol Neurobiol 2021; 58:4251-4267. [PMID: 33970453 DOI: 10.1007/s12035-021-02402-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation can cause cognitive deficits, and preexisting neuroinflammation is observed frequently in the clinic after trauma, surgery, and infection. Patients with preexisting neuroinflammation often need further medical treatment under general anesthesia. However, the effects of postconditioning with general anesthetics on preexisting neuroinflammation have not been determined. In this study, adult rats were posttreated with sevoflurane or propofol after intracerebroventricular administration of lipopolysaccharide. The effects of sevoflurane or propofol postconditioning on neuroinflammation-induced recognition memory deficits were detected. Our results found that postconditioning with sevoflurane but not propofol reversed the selective spatial recognition memory impairment induced by neuroinflammation, and these differential effects did not appear to be associated with the similar anti-neuroinflammatory responses of general anesthetics. However, postconditioning with propofol induced a selective long-lasting upregulation of extrasynaptic NR2B-containing N-methyl-D-aspartate receptors in the dorsal hippocampus, which downregulated the cAMP response element-binding signaling pathway and impaired spatial recognition memory. Additionally, the NR2B antagonists memantine and Ro25-6981 reversed this neurotoxicity induced by propofol postconditioning. Taken together, these results indicate that under preexisting neuroinflammation, postconditioning with sevoflurane can provide reliable neuroprotection by attenuating lipopolysaccharide-induced neuroinflammation, apoptosis, and neuronal loss and eventually improving spatial recognition deficits. However, although posttreatment with propofol also has the same anti-neuroinflammatory effects, the neurotoxicity caused by propofol postconditioning following neuroinflammation warrants further consideration.
Collapse
|
200
|
Targeting the dysfunction of glutamate receptors for the development of novel antidepressants. Pharmacol Ther 2021; 226:107875. [PMID: 33901503 DOI: 10.1016/j.pharmthera.2021.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Increasing evidence indicates that dysfunction of glutamate receptors is involved in the pathophysiology of major depressive disorder (MDD). Although accumulating efforts have been made to elucidate the applications and mechanisms underlying antidepressant-like effects of ketamine, a non-selective antagonist of N-methyl-d-aspartate receptor (NMDAR), the role of specific glutamate receptor subunit in regulating depression is not completely clear. The current review aims to discuss the relationships between glutamate receptor subunits and depressive-like behaviors. Research literatures were searched from inception to July 2020. We summarized the alterations of glutamate receptor subunits in patients with MDD and animal models of depression. Animal behaviors in response to dysfunction of glutamate receptor subunits were also surveyed. To fully understand mechanisms underlying antidepressant-like effects of modulators targeting glutamate receptors, we discussed effects of each glutamate receptor subunit on serotonin system, synaptic plasticity, neurogenesis and neuroinflammation. Finally, we collected most recent clinical applications of glutamate receptor modulators and pointed out the limitations of these candidates in the treatment of MDD.
Collapse
|