151
|
Puri A, Viard M, Zakrevsky P, Zampino S, Chen A, Isemann C, Alvi S, Clogston J, Chitgupi U, Lovell JF, Shapiro BA. Photoactivation of sulfonated polyplexes enables localized gene silencing by DsiRNA in breast cancer cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 26:102176. [PMID: 32151748 PMCID: PMC8117728 DOI: 10.1016/j.nano.2020.102176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/23/2020] [Accepted: 02/23/2020] [Indexed: 12/29/2022]
Abstract
Translation potential of RNA interference nanotherapeutics remains challenging due to in vivo off-target effects and poor endosomal escape. Here, we developed novel polyplexes for controlled intracellular delivery of dicer substrate siRNA, using a light activation approach. Sulfonated polyethylenimines covalently linked to pyropheophorbide-α for photoactivation and bearing modified amines (sulfo-pyro-PEI) for regulated endosomal escape were investigated. Gene knock-down by the polymer-complexed DsiRNA duplexes (siRNA-NPs) was monitored in breast cancer cells. Surprisingly, sulfo-pyro-PEI/siRNA-NPs failed to downregulate the PLK1 or eGFP proteins. However, photoactivation of these cell associated-polyplexes with a 661-nm laser clearly restored knock-down of both proteins. In contrast, protein down-regulation by non-sulfonated pyro-PEI/siRNA-NPs occurred without any laser treatments, indicating cytoplasmic disposition of DsiRNA followed a common intracellular release mechanism. Therefore, sulfonated pyro-PEI holds potential as a unique trap and release light-controlled delivery platform for on-demand gene silencing bearing minimal off target effects.
Collapse
Affiliation(s)
- Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Mathias Viard
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Paul Zakrevsky
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Serena Zampino
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Arabella Chen
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Camryn Isemann
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Sohaib Alvi
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Jeff Clogston
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Bruce A Shapiro
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
152
|
Chen YT, Yang H, Chu JW. Structure-mechanics statistical learning unravels the linkage between local rigidity and global flexibility in nucleic acids. Chem Sci 2020; 11:4969-4979. [PMID: 34122953 PMCID: PMC8159235 DOI: 10.1039/d0sc00480d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mechanical properties of nucleic acids underlie biological processes ranging from genome packaging to gene expression, but tracing their molecular origin has been difficult due to the structural and chemical complexity. We posit that concepts from machine learning can help to tackle this long-standing challenge. Here, we demonstrate the feasibility and advantage of this strategy through developing a structure-mechanics statistical learning scheme to elucidate how local rigidity in double-stranded (ds)DNA and dsRNA may lead to their global flexibility in bend, stretch, and twist. Specifically, the mechanical parameters in a heavy-atom elastic network model are computed from the trajectory data of all-atom molecular dynamics simulation. The results show that the inter-atomic springs for backbone and ribose puckering in dsRNA are stronger than those in dsDNA, but are similar in strengths for base-stacking and base-pairing. Our analysis shows that the experimental observation of dsDNA being easier to bend but harder to stretch than dsRNA comes mostly from the respective B- and A-form topologies. The computationally resolved composition of local rigidity indicates that the flexibility of both nucleic acids is mostly due to base-stacking. But for properties like twist-stretch coupling, backbone springs are shown to play a major role instead. The quantitative connection between local rigidity and global flexibility sets foundation for understanding how local binding and chemical modification of genetic materials effectuate longer-ranged regulatory signals. The mechanical properties of nucleic acids underlie biological processes ranging from genome packaging to gene expression. We devise structural mechanics statistical learning method to reveal their molecular origin in terms of chemical interactions.![]()
Collapse
Affiliation(s)
- Yi-Tsao Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University Hsinchu Taiwan 30068 Republic of China
| | - Haw Yang
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Jhih-Wei Chu
- Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University Hsinchu Taiwan 30068 Republic of China +886 3 5712121 ext. 56996
| |
Collapse
|
153
|
Yoon J, Shin M, Lim J, Kim DY, Lee T, Choi J. Nanobiohybrid Material‐Based Bioelectronic Devices. Biotechnol J 2020; 15:e1900347. [DOI: 10.1002/biot.201900347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Minkyu Shin
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Joungpyo Lim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Dong Yeon Kim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Taek Lee
- Department of Chemical EngineeringKwangwoon University Wolgye‐dong Nowon‐gu Seoul 01899 Republic of Korea
| | - Jeong‐Woo Choi
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| |
Collapse
|
154
|
Lv Z, Wang Y, Chen J, Wang J, Zhou Y, Han ST. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chem Rev 2020; 120:3941-4006. [DOI: 10.1021/acs.chemrev.9b00730] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yan Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jingrui Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junjie Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
155
|
Badu S, Prabhakar S, Melnik R, Singh S. Atomistic to continuum model for studying mechanical properties of RNA nanotubes. Comput Methods Biomech Biomed Engin 2020; 23:396-407. [PMID: 32116031 DOI: 10.1080/10255842.2020.1733991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With rapid advancements in the emerging field of RNA nanotechnology, its current and potential applications, new important problems arise in our quest to better understand properties of RNA nanocomplexes. In this paper, our focus is on the modeling of RNA nanotubes which are important for many biological processes. These RNA complexes are also important for human beings, with their theurapeutical and biomedical applications discussed vigorously in the literature over the recent years. Here, we develop a continuum model of RNA nanotubes, originally obtained from self assembly of RNA building blocks in the molecular dynamics simulation. Based on the finite element method, we calculate the elastic properties of these nanostructures and provide a relationship between stress and strain induced in the RNA nanotube. We also analyze the variations in the displacement vector along the assembly axis for RNA nanotubes of different sizes. In particular, we show that oscillations in the amplitudes of strains and displacements significantly differ for such RNA nanotubes. These findings are discussed in the context of atomistic simulations and experimental results in this field.
Collapse
Affiliation(s)
- Shyam Badu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sanjay Prabhakar
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada.,BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
| | - Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
156
|
Jiang Z, Thayumanavan S. Non-cationic Material Design for Nucleic Acid Delivery. ADVANCED THERAPEUTICS 2020; 3:1900206. [PMID: 34164572 PMCID: PMC8218910 DOI: 10.1002/adtp.201900206] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022]
Abstract
Nucleic acid delivery provides effective options to control intracellular gene expression and protein production. Efficient delivery of nucleic acid typically requires delivery vehicles to facilitate the entry of nucleic acid into cells. Among non-viral delivery vehicles, cationic materials are favored because of their high loading capacity of nucleic acids and prominent cellular uptake efficiency through electrostatic interaction. However, cationic moieties at high dosage tend to induce severe cytotoxicity due to the interference on cell membrane integrity. In contrast, non-cationic materials present alternative delivery approaches with less safety concerns than cationic materials. In this Progress Report, principles of non-cationic material design for nucleic acid delivery are discussed. Examples of such non-cationic platforms are highlighted, including complexation or conjugation with nucleic acids and self-assembled nucleic acid structures.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
157
|
Mitchell C, Polanco JA, DeWald L, Kress D, Jaeger L, Grabow WW. Responsive self-assembly of tectoRNAs with loop-receptor interactions from the tetrahydrofolate (THF) riboswitch. Nucleic Acids Res 2020; 47:6439-6451. [PMID: 31045210 PMCID: PMC6614920 DOI: 10.1093/nar/gkz304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/22/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Naturally occurring RNAs are known to exhibit a high degree of modularity, whereby specific structural modules (or motifs) can be mixed and matched to create new molecular architectures. The modular nature of RNA also affords researchers the ability to characterize individual structural elements in controlled synthetic contexts in order to gain new and critical insights into their particular structural features and overall performance. Here, we characterized the binding affinity of a unique loop–receptor interaction found in the tetrahydrofolate (THF) riboswitch using rationally designed self-assembling tectoRNAs. Our work suggests that the THF loop–receptor interaction has been fine-tuned for its particular role as a riboswitch component. We also demonstrate that the thermodynamic stability of this interaction can be modulated by the presence of folinic acid, which induces a local structural change at the level of the loop–receptor. This corroborates the existence of a THF binding site within this tertiary module and paves the way for its potential use as a THF responsive module for RNA nanotechnology and synthetic biology.
Collapse
Affiliation(s)
- Charles Mitchell
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| | - Julio A Polanco
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Laura DeWald
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| | - Dustin Kress
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Wade W Grabow
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| |
Collapse
|
158
|
Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat Commun 2020; 11:972. [PMID: 32080195 PMCID: PMC7033104 DOI: 10.1038/s41467-020-14780-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
Paclitaxel is widely used in cancer treatments, but poor water-solubility and toxicity raise serious concerns. Here we report an RNA four-way junction nanoparticle with ultra-thermodynamic stability to solubilize and load paclitaxel for targeted cancer therapy. Each RNA nanoparticle covalently loads twenty-four paclitaxel molecules as a prodrug. The RNA-paclitaxel complex is structurally rigid and stable, demonstrated by the sub-nanometer resolution imaging of cryo-EM. Using RNA nanoparticles as carriers increases the water-solubility of paclitaxel by 32,000-fold. Intravenous injections of RNA-paclitaxel nanoparticles with specific cancer-targeting ligand dramatically inhibit breast cancer growth, with nearly undetectable toxicity and immune responses in mice. No fatalities are observed at a paclitaxel dose equal to the reported LD50. The use of ultra-thermostable RNA nanoparticles to deliver chemical prodrugs addresses issues with RNA unfolding and nanoparticle dissociation after high-density drug loading. This finding provides a stable nano-platform for chemo-drug delivery as well as an efficient method to solubilize hydrophobic drugs. Although paclitaxel is widely used as a chemotherapy, it suffers from poor solubility and toxicity issues. Here, the authors develop thermostable RNA nanoparticles and report the RNA-paclitaxel complex to display improved stability, drug loading capacity and solubility for improved targeted cancer therapy and reduced immune responses.
Collapse
|
159
|
Duan J, Wang X, Kizer ME. Biotechnological and Therapeutic Applications of Natural Nucleic Acid Structural Motifs. Top Curr Chem (Cham) 2020; 378:26. [PMID: 32067108 DOI: 10.1007/s41061-020-0290-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/11/2020] [Indexed: 11/28/2022]
Abstract
Genetic information and the blueprint of life are stored in the form of nucleic acids. The primary sequence of DNA, read from the canonical double helix, provides the code for RNA and protein synthesis. Yet these already-information-rich molecules have higher-order structures which play critical roles in transcription and translation. Uncovering the sequences, parameters, and conditions which govern the formation of these structural motifs has allowed researchers to study them and to utilize them in biotechnological and therapeutic applications in vitro and in vivo. This review covers both DNA and RNA structural motifs found naturally in biological systems including catalytic nucleic acids, non-coding RNA, aptamers, G-quadruplexes, i-motifs, and Holliday junctions. For each category, an overview of the structural characteristics, biological prevalence, and function will be discussed. The biotechnological and therapeutic applications of these structural motifs are highlighted. Future perspectives focus on the addition of proteins and unnatural modifications to enhance structural stability for greater applicability.
Collapse
Affiliation(s)
- Jinwei Duan
- Department of Chemistry and Materials Science, College of Sciences, Chang'an University, Xi'an, 710064, Shaanxi, People's Republic of China.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Xing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Megan E Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
160
|
Lee T, Mohammadniaei M, Zhang H, Yoon J, Choi HK, Guo S, Guo P, Choi J. Single Functionalized pRNA/Gold Nanoparticle for Ultrasensitive MicroRNA Detection Using Electrochemical Surface-Enhanced Raman Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902477. [PMID: 32042566 PMCID: PMC7001639 DOI: 10.1002/advs.201902477] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/14/2019] [Indexed: 05/07/2023]
Abstract
Controlling the selective one-to-one conjugation of RNA with nanoparticles is vital for future applications of RNA nanotechnology. Here, the monofunctionalization of a gold nanoparticle (AuNP) with a single copy of RNA is developed for ultrasensitive microRNA-155 quantification using electrochemical surface-enhanced Raman spectroscopy (EC-SERS). A single AuNP is conjugated with one copy of the packaging RNA (pRNA) three-way junction (RNA 3WJ). pRNA 3WJ containing one strand of the 3WJ is connected to a Sephadex G100 aptamer and a biotin group at each arm (SEPapt/3WJ/Bio) which is then immobilized to the Sephadex G100 resin. The resulting complex is connected to streptavidin-coated AuNP (STV/AuNP). Next, the STV/AuNP-Bio/3WJa is purified and reassembled with another 3WJ to form a single-labeled 3WJ/AuNP. Later, the monoconjugate is immobilized onto the AuNP-electrodeposited indium tin oxide coated substrate for detecting microRNA-155 based on EC-SERS. Application of an optimum potential of +0.2 V results in extraordinary amplification (≈7 times) of methylene blue (reporter) SERS signal compared to the normal SERS signal. As a result, a highly sensitive detection of 60 × 10-18 m microRNA-155 in 1 h in serum based on monoconjugated AuNP/RNA is achieved. Thus, the monofunctionalization of RNA onto nanoparticle can provide a new methodology for biosensor construction and diverse RNA nanotechnology development.
Collapse
Affiliation(s)
- Taek Lee
- College of PharmacyCollege of Medicine/Department of Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research InstituteOhio State UniversityColumbusOH43210USA
- Department of Chemical and Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul121‐742Republic of Korea
- Department of Chemical EngineeringKwangwoon University20 Kwangwoon‐Ro, Nowon‐GuSeoul01897Republic of Korea
| | - Mohsen Mohammadniaei
- Department of Chemical and Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul121‐742Republic of Korea
| | - Hui Zhang
- College of PharmacyCollege of Medicine/Department of Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research InstituteOhio State UniversityColumbusOH43210USA
| | - Jinho Yoon
- Department of Chemical and Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul121‐742Republic of Korea
| | - Hye Kyu Choi
- Department of Chemical and Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul121‐742Republic of Korea
| | - Sijin Guo
- College of PharmacyCollege of Medicine/Department of Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research InstituteOhio State UniversityColumbusOH43210USA
| | - Peixuan Guo
- College of PharmacyCollege of Medicine/Department of Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research InstituteOhio State UniversityColumbusOH43210USA
| | - Jeong‐Woo Choi
- Department of Chemical and Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul121‐742Republic of Korea
| |
Collapse
|
161
|
Datta LP, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials 2020; 230:119633. [DOI: 10.1016/j.biomaterials.2019.119633] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
|
162
|
Liu D, Geary CW, Chen G, Shao Y, Li M, Mao C, Andersen ES, Piccirilli JA, Rothemund PWK, Weizmann Y. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nat Chem 2020; 12:249-259. [PMID: 31959958 DOI: 10.1038/s41557-019-0406-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/06/2019] [Indexed: 01/31/2023]
Abstract
In biological systems, large and complex structures are often assembled from multiple simpler identical subunits. This strategy-homooligomerization-allows efficient genetic encoding of structures and avoids the need to control the stoichiometry of multiple distinct units. It also allows the minimal number of distinct subunits when designing artificial nucleic acid structures. Here, we present a robust self-assembly system in which homooligomerizable tiles are formed from intramolecularly folded RNA single strands. Tiles are linked through an artificially designed branched kissing-loop motif, involving Watson-Crick base pairing between the single-stranded regions of a bulged helix and a hairpin loop. By adjusting the tile geometry to gain control over the curvature, torsion and the number of helices, we have constructed 16 different linear and circular structures, including a finite-sized three-dimensional cage. We further demonstrate cotranscriptional self-assembly of tiles based on branched kissing loops, and show that tiles inserted into a transfer RNA scaffold can be overexpressed in bacterial cells.
Collapse
Affiliation(s)
- Di Liu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Cody W Geary
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Departments of Bioengineering, Computational and Mathematical Sciences, and Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| | - Gang Chen
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Yaming Shao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Mo Li
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ebbe S Andersen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Joseph A Piccirilli
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Paul W K Rothemund
- Departments of Bioengineering, Computational and Mathematical Sciences, and Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA.
| | - Yossi Weizmann
- Department of Chemistry, University of Chicago, Chicago, IL, USA. .,Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
163
|
Halman JR, Kim KT, Gwak SJ, Pace R, Johnson MB, Chandler MR, Rackley L, Viard M, Marriott I, Lee JS, Afonin KA. A cationic amphiphilic co-polymer as a carrier of nucleic acid nanoparticles (Nanps) for controlled gene silencing, immunostimulation, and biodistribution. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 23:102094. [PMID: 31669854 PMCID: PMC6942546 DOI: 10.1016/j.nano.2019.102094] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022]
Abstract
Programmable nucleic acid nanoparticles (NANPs) provide controlled coordination of therapeutic nucleic acids (TNAs) and other biological functionalities. Beyond multivalence, recent reports demonstrate that NANP technology can also elicit a specific immune response, adding another layer of customizability to this innovative approach. While the delivery of nucleic acids remains a challenge, new carriers are introduced and tested continuously. Polymeric platforms have proven to be efficient in shielding nucleic acid cargos from nuclease degradation while promoting their delivery and intracellular release. Here, we venture beyond the delivery of conventional TNAs and combine the stable cationic poly-(lactide-co-glycolide)-graft-polyethylenimine with functionalized NANPs. Furthermore, we compare several representative NANPs to assess how their overall structures influence their delivery with the same carrier. An extensive study of various formulations both in vitro and in vivo reveals differences in their immunostimulatory activity, gene silencing efficiency, and biodistribution, with fibrous NANPs advancing for TNA delivery.
Collapse
Affiliation(s)
- Justin R Halman
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ki-Taek Kim
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - So-Jung Gwak
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Richard Pace
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, USA
| | - Morgan R Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Lauren Rackley
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Mathias Viard
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, USA
| | - Jeoung Soo Lee
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA.
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
164
|
Engineering a Floxuridine-integrated RNA Prism as Precise Nanomedicine for Drug Delivery. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-0049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
165
|
Dobrovolskaia MA. Nucleic Acid Nanoparticles at a Crossroads of Vaccines and Immunotherapies. Molecules 2019; 24:molecules24244620. [PMID: 31861154 PMCID: PMC6943637 DOI: 10.3390/molecules24244620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Vaccines and immunotherapies involve a variety of technologies and act through different mechanisms to achieve a common goal, which is to optimize the immune response against an antigen. The antigen could be a molecule expressed on a pathogen (e.g., a disease-causing bacterium, a virus or another microorganism), abnormal or damaged host cells (e.g., cancer cells), environmental agent (e.g., nicotine from a tobacco smoke), or an allergen (e.g., pollen or food protein). Immunogenic vaccines and therapies optimize the immune response to improve the eradication of the pathogen or damaged cells. In contrast, tolerogenic vaccines and therapies retrain or blunt the immune response to antigens, which are recognized by the immune system as harmful to the host. To optimize the immune response to either improve the immunogenicity or induce tolerance, researchers employ different routes of administration, antigen-delivery systems, and adjuvants. Nanocarriers and adjuvants are of particular interest to the fields of vaccines and immunotherapy as they allow for targeted delivery of the antigens and direct the immune response against these antigens in desirable direction (i.e., to either enhance immunogenicity or induce tolerance). Recently, nanoparticles gained particular attention as antigen carriers and adjuvants. This review focuses on a particular subclass of nanoparticles, which are made of nucleic acids, so-called nucleic acid nanoparticles or NANPs. Immunological properties of these novel materials and considerations for their clinical translation are discussed.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
166
|
Nwokeoji AO, Kumar S, Kilby PM, Portwood DE, Hobbs JK, Dickman MJ. Analysis of long dsRNA produced in vitro and in vivo using atomic force microscopy in conjunction with ion-pair reverse-phase HPLC. Analyst 2019; 144:4985-4994. [PMID: 31328735 DOI: 10.1039/c9an00954j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Long double-stranded (ds) RNA is emerging as a novel alternative to chemical and genetically-modified insect and fungal management strategies. The ability to produce large quantities of dsRNA in either bacterial systems, by in vitro transcription, in cell-free systems or in planta for RNA interference applications has generated significant demand for the development and application of analytical tools for analysis of dsRNA. We have utilised atomic force microscopy (AFM) in conjunction with ion-pair reverse-phase high performance liquid chromatography (IP-RP-HPLC) to provide novel insight into dsRNA for RNAi applications. The AFM analysis enabled direct structural characterisation of the A-form duplex dsRNA and accurate determination of the dsRNA duplex length. Moreover, further analysis under non-denaturing conditions revealed the presence of heterogeneous dsRNA species. IP-RP-HPLC fractionation and AFM analysis revealed that these alternative RNA species do not arise from different lengths of individual dsRNA molecules in the product, but represent misannealed RNA species that present as larger assemblies or multimeric forms of the RNA. These results for the first time provide direct structural insight into dsRNA produced both in vivo in bacterial systems and in vitro, highlighting the structural heterogeneity of RNA produced. These results are the first example of detailed characterisation of the different forms of dsRNA from two production systems and establish atomic force microscopy as an important tool for the characterisation of long dsRNA.
Collapse
Affiliation(s)
- Alison O Nwokeoji
- Department of Chemical and Biological Engineering, Mappin Street, University of Sheffield, S1 3JD, UK.
| | | | | | | | | | | |
Collapse
|
167
|
Leonard M, Zhang X. Estrogen receptor coactivator Mediator Subunit 1 (MED1) as a tissue-specific therapeutic target in breast cancer. J Zhejiang Univ Sci B 2019; 20:381-390. [PMID: 31090264 DOI: 10.1631/jzus.b1900163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Breast cancer, one of the most frequent cancer types, is a leading cause of death in women worldwide. Estrogen receptor (ER) α is a nuclear hormone receptor that plays key roles in mammary gland development and breast cancer. About 75% of breast cancer cases are diagnosed as ER-positive; however, nearly half of these cancers are either intrinsically or inherently resistant to the current anti-estrogen therapies. Recent studies have identified an ER coactivator, Mediator Subunit 1 (MED1), as a unique, tissue-specific cofactor that mediates breast cancer metastasis and treatment resistance. MED1 is overexpressed in over 50% of human breast cancer cases and co-amplifies with another important breast cancer gene, receptor tyrosine kinase HER2. Clinically, MED1 expression highly correlates with poor disease-free survival of breast cancer patients, and recent studies have reported an increased frequency of MED1 mutations in the circulating tumor cells of patients after treatment. In this review, we discuss the biochemical characterization of MED1 and its associated MED1/Mediator complex, its crosstalk with HER2 in anti-estrogen resistance, breast cancer stem cell formation, and metastasis both in vitro and in vivo. Furthermore, we elaborate on the current advancements in targeting MED1 using state-of-the-art RNA nanotechnology and discuss the future perspectives as well.
Collapse
Affiliation(s)
- Marissa Leonard
- Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| |
Collapse
|
168
|
Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M, Afonin KA. Aptamers as Modular Components of Therapeutic Nucleic Acid Nanotechnology. ACS NANO 2019; 13:12301-12321. [PMID: 31664817 PMCID: PMC7382785 DOI: 10.1021/acsnano.9b06522] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nucleic acids play a central role in all domains of life, either as genetic blueprints or as regulators of various biochemical pathways. The chemical makeup of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), generally represented by a sequence of four monomers, also provides precise instructions for folding and higher-order assembly of these biopolymers that, in turn, dictate biological functions. The sequence-based specific 3D structures of nucleic acids led to the development of the directed evolution of oligonucleotides, SELEX (systematic evolution of ligands by exponential enrichment), against a chosen target molecule. Among the variety of functions, selected oligonucleotides named aptamers also allow targeting of cell-specific receptors with antibody-like precision and can deliver functional RNAs without a transfection agent. The advancements in the field of customizable nucleic acid nanoparticles (NANPs) opened avenues for the design of nanoassemblies utilizing aptamers for triggering or blocking cell signaling pathways or using aptamer-receptor combinations to activate therapeutic functionalities. A recent selection of fluorescent aptamers enables real-time tracking of NANP formation and interactions. The aptamers are anticipated to contribute to the future development of technologies, enabling an efficient assembly of functional NANPs in mammalian cells or in vivo. These research topics are of top importance for the field of therapeutic nucleic acid nanotechnology with the promises to scale up mass production of NANPs suitable for biomedical applications, to control the intracellular organization of biological materials to enhance the efficiency of biochemical pathways, and to enhance the therapeutic potential of NANP-based therapeutics while minimizing undesired side effects and toxicities.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice 04154, Slovak Republic
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jessica McMillan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Ekaterina A. Goncharova
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 191002, Russian Federation
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
169
|
Sandanaraj BS, Bhandari PJ, Reddy MM, Lohote AB, Sahoo B. Design, Synthesis, and Self‐Assembly Studies of a Suite of Monodisperse, Facially Amphiphilic, Protein–Dendron Conjugates. Chembiochem 2019; 21:408-416. [DOI: 10.1002/cbic.201900341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Britto S. Sandanaraj
- Departments of Chemistry & BiologyIndian Institute of Science Education and Research (IISER) Pune 411 008 India
| | | | - Mullapudi Mohan Reddy
- Departments of Chemistry & BiologyIndian Institute of Science Education and Research (IISER) Pune 411 008 India
| | - Akshay Bhagwan Lohote
- Departments of Chemistry & BiologyIndian Institute of Science Education and Research (IISER) Pune 411 008 India
| | - Bankanidhi Sahoo
- Tata Institute of Fundamental Research Hyderabad (TIFR Hyd) Hyderabad 500019 India
| |
Collapse
|
170
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
171
|
Fujino T, Suzuki T, Ooi T, Ikemoto K, Isobe H. Duplex-forming Oligonucleotide of Triazole-linked RNA. Chem Asian J 2019; 14:3380-3385. [PMID: 31478313 DOI: 10.1002/asia.201901112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Indexed: 02/02/2023]
Abstract
An oligonucleotide of triazole-linked RNA (TL RNA) was synthesized by performing consecutive copper-catalyzed azide-alkyne cycloaddition reactions for elongation. The reaction conditions that had been optimized for the synthesis of 3-mer TL RNA were found to be inappropriate for longer oligonucleotides, and the conditions were reoptimized for the solid-phase synthesis of an 11-mer TL RNA oligonucleotide. Duplex formation of the 11-mer TL RNA oligonucleotide was examined with the complementary oligonucleotide of natural RNA to reveal the effects of the 2'-OH groups on the duplex stability.
Collapse
Affiliation(s)
- Tomoko Fujino
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
- Present address: Institute for Solid State Physics, The University of Tokyo, Kashiwanoha 5-1-5, Chiba, 277-8581, Japan
| | - Takeru Suzuki
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Tsugumi Ooi
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koki Ikemoto
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
- JST, ERATO Isobe Degenerate π-Integration Project, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
- JST, ERATO Isobe Degenerate π-Integration Project, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
172
|
Yesselman JD, Eiler D, Carlson ED, Gotrik MR, d'Aquino AE, Ooms AN, Kladwang W, Carlson PD, Shi X, Costantino DA, Herschlag D, Lucks JB, Jewett MC, Kieft JS, Das R. Computational design of three-dimensional RNA structure and function. NATURE NANOTECHNOLOGY 2019; 14:866-873. [PMID: 31427748 PMCID: PMC7324284 DOI: 10.1038/s41565-019-0517-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 06/24/2019] [Indexed: 05/30/2023]
Abstract
RNA nanotechnology seeks to create nanoscale machines by repurposing natural RNA modules. The field is slowed by the current need for human intuition during three-dimensional structural design. Here, we demonstrate that three distinct problems in RNA nanotechnology can be reduced to a pathfinding problem and automatically solved through an algorithm called RNAMake. First, RNAMake discovers highly stable single-chain solutions to the classic problem of aligning a tetraloop and its sequence-distal receptor, with experimental validation from chemical mapping, gel electrophoresis, solution X-ray scattering and crystallography with 2.55 Å resolution. Second, RNAMake automatically generates structured tethers that integrate 16S and 23S ribosomal RNAs into single-chain ribosomal RNAs that remain uncleaved by ribonucleases and assemble onto messenger RNA. Third, RNAMake enables the automated stabilization of small-molecule binding RNAs, with designed tertiary contacts that improve the binding affinity of the ATP aptamer and improve the fluorescence and stability of the Spinach RNA in cell extracts and in living Escherichia coli cells.
Collapse
Affiliation(s)
- Joseph D Yesselman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Eiler
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Erik D Carlson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Michael R Gotrik
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Anne E d'Aquino
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
| | - Alexandra N Ooms
- Department of Cancer Genetics & Genomics, Stanford University School of Medicine, Stanford, CA, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul D Carlson
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Xuesong Shi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Costantino
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University School of Medicine, Stanford, CA, USA
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, CA, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Physics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
173
|
Calkins ER, Zakrevsky P, Keleshian VL, Aguilar EG, Geary C, Jaeger L. Deducing putative ancestral forms of GNRA/receptor interactions from the ribosome. Nucleic Acids Res 2019; 47:480-494. [PMID: 30418638 PMCID: PMC6326782 DOI: 10.1093/nar/gky1111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/22/2018] [Indexed: 01/02/2023] Open
Abstract
Stable RNAs rely on a vast repertoire of long-range interactions to assist in the folding of complex cellular machineries such as the ribosome. The universally conserved L39/H89 interaction is a long-range GNRA-like/receptor interaction localized in proximity to the peptidyl transferase center of the large subunit of the ribosome. Because of its central location, L39/H89 likely originated at an early evolutionary stage of the ribosome and played a significant role in its early function. However, L39/H89 self-assembly is impaired outside the ribosomal context. Herein, we demonstrate that structural modularity principles can be used to re-engineer L39/H89 to self-assemble in vitro. The new versions of L39/H89 improve affinity and loop selectivity by several orders of magnitude and retain the structural and functional features of their natural counterparts. These versions of L39/H89 are proposed to be ancestral forms of L39/H89 that were capable of assembling and folding independently from proteins and post-transcriptional modifications. This work demonstrates that novel RNA modules can be rationally designed by taking advantage of the modular syntax of RNA. It offers the prospect of creating new biochemical models of the ancestral ribosome and increases the tool kit for RNA nanotechnology and synthetic biology.
Collapse
Affiliation(s)
- Erin R Calkins
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Paul Zakrevsky
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Vasken L Keleshian
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Eduardo G Aguilar
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Cody Geary
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| |
Collapse
|
174
|
Guo S, Xu C, Yin H, Hill J, Pi F, Guo P. Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1582. [PMID: 31456362 DOI: 10.1002/wnan.1582] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
The past decade has shown exponential growth in the field of RNA nanotechnology. The rapid advances of using RNA nanoparticles for biomedical applications, especially targeted cancer therapy, suggest its potential as a new generation of drug. After the first milestone of small molecule drugs and the second milestone of antibody drugs, it was predicted that RNA drugs, either RNA itself or chemicals/ligands that target RNA, will be the third milestone in drug development. Thus, a comprehensive assessment of the current therapeutic RNA nanoparticles is urgently needed to meet the drug evaluation criteria. Specifically, the pharmacological and immunological profiles of RNA nanoparticles need to be systematically studied to provide insights in rational design of RNA-based therapeutics. By virtue of its programmability and biocompatibility, RNA molecules can be designed to construct sophisticated nanoparticles with versatile functions/applications and highly tunable physicochemical properties. This intrinsic characteristic allows the systemic study of the effects of various properties of RNA nanoparticles on their in vivo behaviors such as cancer targeting and immune responses. This review will focus on the recent progress of RNA nanoparticles in cancer targeting, and summarize the effects of common physicochemical properties such as size and shape on the RNA nanoparticles' biodistribution and immunostimulation profiles. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| | | | | | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
175
|
Naskar S, Joshi H, Chakraborty B, Seeman NC, Maiti PK. Atomic structures of RNA nanotubes and their comparison with DNA nanotubes. NANOSCALE 2019; 11:14863-14878. [PMID: 31355845 DOI: 10.1039/c9nr00786e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a computational framework to model RNA based nanostructures and study their microscopic structures. We model hexagonal nanotubes made of 6 dsRNA (RNTs) connected by double crossover (DX) at different positions. Using several hundred nano-second (ns) long all-atom molecular dynamics simulations, we study the atomic structure, conformational change and elastic properties of RNTs in the presence of explicit water and ions. Based on several structural quantities such as root mean square deviation (RMSD) and root mean square fluctuation (RMSF), we find that the RNTs are almost as stable as DNA nanotubes (DNTs). Although the central portion of the RNTs maintain its cylindrical shape, both the terminal regions open up to give rise to a gating like behavior which can play a crucial role in drug delivery. From the bending angle distribution, we observe that the RNTs are more flexible than DNTs. The calculated persistence length of the RNTs is in the micron range which is an order of magnitude higher than that of a single dsRNA. The stretch modulus of the RNTs from the contour length distribution is in the range of 4-7 nN depending on the sequence. The calculated persistence length and stretch modulus are in the same range of values as in the case of DNTs. To understand the structural properties of RNTs at the individual base-pair level we have also calculated all the helicoidal parameters and analyzed the relative flexibility and rigidity of RNTs having a different sequence. These findings emphasized the fascinating properties of RNTs which will expedite further theoretical and experimental studies in this field.
Collapse
Affiliation(s)
- Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
176
|
Li H, Wang S, Ji Z, Xu C, Shlyakhtenko LS, Guo P. Construction of RNA nanotubes. NANO RESEARCH 2019; 12:1952-1958. [PMID: 32153728 PMCID: PMC7062307 DOI: 10.1007/s12274-019-2463-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nanotubes are miniature materials with significant potential applications in nanotechnological, medical, biological and material sciences. The quest for manufacturing methods of nano-mechanical modules is in progress. For example, the application of carbon nanotubes has been extensively investigated due to the precise width control, but the precise length control remains challenging. Here we report two approaches for the one-pot self-assembly of RNA nanotubes. For the first approach, six RNA strands were used to assemble the nanotube by forming a 11 nm long hollow channel with the inner diameter of 1.7 nm and the outside diameter of 6.3 nm. For the second approach, six RNA strands were designed to hybridize with their neighboring strands by complementary base pairing and formed a nanotube with a six-helix hollow channel similar to the nanotube assembled by the first approach. The fabricated RNA nanotubes were characterized by gel electrophoresis and atomic force microscopy (AFM), confirming the formation of nanotube-shaped RNA nanostructures. Cholesterol molecules were introduced into RNA nanotubes to facilitate their incorporation into lipid bilayer. Incubation of RNA nanotube complex with the free-standing lipid bilayer membrane under applied voltage led to discrete current signatures. Addition of peptides into the sensing chamber revealed discrete steps of current blockage. Polyarginine peptides with different lengths can be detected by current signatures, suggesting that the RNA-cholesterol complex holds the promise of achieving single molecule sensing of peptides.
Collapse
Affiliation(s)
- Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Shaoying Wang
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Lyudmila S Shlyakhtenko
- UNMC Nanoimaging Core Facility, Department of Pharmaceutical Sciences, College of Pharmacy University of Nebraska Medical Center, Omaha, NE, 68182, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
177
|
Bezerra KS, Fulco UL, Esmaile SC, Lima Neto JX, Machado LD, Freire VN, Albuquerque EL, Oliveira JIN. Ribosomal RNA-Aminoglycoside Hygromycin B Interaction Energy Calculation within a Density Functional Theory Framework. J Phys Chem B 2019; 123:6421-6429. [PMID: 31283875 DOI: 10.1021/acs.jpcb.9b04468] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We intend to investigate the drug-binding energy of each nucleotide inside the aminoglycoside hygromycin B (hygB) binding site of 30S ribosomal RNA (rRNA) subunit by using the molecular fractionation with conjugate caps (MFCC) strategy based on the density functional theory (DFT), considering the functional LDA/PWC, OBS, and the dielectric constant parametrization. Aminoglycosides are bactericidal antibiotics that have high affinity to the prokaryotic rRNA, inhibiting the synthesis of proteins by acting on the main stages of the translation mechanism, whereas binding to rRNA 16S, a component of the 30S ribosomal subunit in prokaryotes. The identification of the nucleotides presenting the most negative binding energies allows us to stabilize hygB in a suitable binding pocket of the 30S ribosomal subunit. In addition, it should be highlighted that mutations in these residues may probably lead to resistance to ribosome-targeting antibiotics. Quantum calculations of aminoglycoside hygromycin B-ribosome complex might contribute to further quantum studies with antibiotics like macrolides and other aminoglycosides.
Collapse
Affiliation(s)
- Katyanna S Bezerra
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - Umberto L Fulco
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - Stephany C Esmaile
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - José X Lima Neto
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - Leonardo D Machado
- Departamento de Física Teórica e Experimental , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - Valder N Freire
- Departamento de Física , Universidade Federal do Ceará , 60455-760 Fortaleza-CE , Brazil
| | - Eudenilson L Albuquerque
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - Jonas I N Oliveira
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| |
Collapse
|
178
|
Wang Y, Kim E, Lin Y, Kim N, Kit-Anan W, Gopal S, Agarwal S, Howes PD, Stevens MM. Rolling Circle Transcription-Amplified Hierarchically Structured Organic-Inorganic Hybrid RNA Flowers for Enzyme Immobilization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22932-22940. [PMID: 31252470 PMCID: PMC6613047 DOI: 10.1021/acsami.9b04663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/03/2019] [Indexed: 05/07/2023]
Abstract
Programmable nucleic acids have emerged as powerful building blocks for the bottom-up fabrication of two- or three-dimensional nano- and microsized constructs. Here we describe the construction of organic-inorganic hybrid RNA flowers (hRNFs) via rolling circle transcription (RCT), an enzyme-catalyzed nucleic acid amplification reaction. These hRNFs are highly adaptive structures with controlled sizes, specific nucleic acid sequences, and a highly porous nature. We demonstrated that hRNFs are applicable as potential biological platforms, where the hRNF scaffold can be engineered for versatile surface functionalization and the inorganic component (magnesium ions) can serve as an enzyme cofactor. For surface functionalization, we proposed robust and straightforward approaches including in situ synthesis of functional hRNFs and postfunctionalization of hRNFs that enable facile conjugation with various biomolecules and nanomaterials (i.e., proteins, enzymes, organic dyes, inorganic nanoparticles) using selective chemistries (i.e., avidin-biotin interaction, copper-free click reaction). In particular, we showed that hRNFs can serve as soft scaffolds for β-galactosidase immobilization and greatly enhance enzymatic activity and stability. Therefore, the proposed concepts and methodologies are not only fundamentally interesting when designing RNA scaffolds or RNA bionanomaterials assembled with enzymes but also have significant implications on their future utilization in biomedical applications ranging from enzyme cascades to biosensing and drug delivery.
Collapse
Affiliation(s)
| | | | - Yiyang Lin
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nayoung Kim
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Worrapong Kit-Anan
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sahana Gopal
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Shweta Agarwal
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Molly M. Stevens
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
179
|
Yuan Y, Gu Z, Yao C, Luo D, Yang D. Nucleic Acid-Based Functional Nanomaterials as Advanced Cancer Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900172. [PMID: 30972963 DOI: 10.1002/smll.201900172] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Nucleic acid-based functional nanomaterials (NAFN) have been widely used as emerging drug delivery nanocarriers for cancer therapeutics. Considerable works have demonstrated that NAFN can effectively load and protect therapeutic agents, and particularly enable targeting delivery to the tumor site and stimuli-responsive release. These outstanding performances are due to NAFN's unique properties including inherent biological functions and sequence programmability as well as biocompatibility and biodegradability. In this Review, the recent progress on NAFN as advanced cancer therapeutics is highlighted. Three main cancer therapy approaches are categorized including chemo-, immuno-, and gene-therapy. Examples are presented to show how NAFN are rationally and exquisitely designed to address problems in cancer therapy. The challenges and future development of NAFN are also discussed toward future more practical biomedical applications.
Collapse
Affiliation(s)
- Ye Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chi Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
180
|
Endoh T, Ohyama T, Sugimoto N. RNA-Capturing Microsphere Particles (R-CAMPs) for Optimization of Functional Aptamers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805062. [PMID: 30773785 DOI: 10.1002/smll.201805062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/23/2019] [Indexed: 06/09/2023]
Abstract
RNA aptamers are useful building blocks for constructing functional nucleic acid-based nanoarchitectures. The abilities of aptamers to recognize specific ligands have also been utilized for various biotechnological applications. Solution conditions, which can differ depending on the application, impact the affinity of the aptamers, and thus it is important to optimize the aptamers for the solution conditions to be employed. To simplify the aptamer optimization process, an efficient method that enables re-selection of an aptamer from a partially randomized library is developed. The process relies on RNA-capturing microsphere particles (R-CAMPs): each particle displays different clones of identical DNA and RNA sequences. Using a fluorescence-activated cell sorter, the R-CAMPs that are linked to functional aptamers are sorted. It is demonstrated that after a single round of reselection, several functional aptamers, including the wild-type, are selected from a library of 16 384 sequences. The selection using R-CAMPs is further performed under the solution containing high concentration of ethylene glycol, suggesting applicability in various conditions to optimize an aptamer for a particular application. As any type of RNA clone can be displayed on the microspheres, the technology demonstrated here will be useful for the selection of RNAs based on diverse functions.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
181
|
Tsou Y, Wang B, Ho W, Hu B, Tang P, Sweet S, Zhang X, Xu X. Nanotechnology-Mediated Drug Delivery for the Treatment of Obesity and Its Related Comorbidities. Adv Healthc Mater 2019; 8:e1801184. [PMID: 30938934 DOI: 10.1002/adhm.201801184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/14/2019] [Indexed: 12/14/2022]
Abstract
Obesity is a serious health issue affecting humanity on a global scale. Recognized by the American Medical Association as a chronic disease, the incidence of obesity continues to grow at an accelerating rate and obesity has become one of the major threats to human health. Excessive weight gain is tied to metabolic syndrome, which is shown to increase the risk of chronic diseases, such as heart disease and type 2 diabetes, taxing an already overburdened healthcare system and increasing mortality worldwide. Available treatments such as bariatric surgery and pharmacotherapy are often accompanied by adverse side effects and poor patient compliance. Nanotechnology, an emerging technology with a wide range of biomedical applications, has provided an unprecedented opportunity to improve the treatment of many diseases, including obesity. This review provides an introduction to obesity and obesity-related comorbidities. The most recent developments of nanotechnology-based drug delivery strategies are highlighted and discussed. Additionally, challenges and consideration for the development of nanoformulations with translational potential are discussed. The overall objective of this review is to enhance the understanding of the design and development of nanomedicine for treatments of obesity and related comorbidities.
Collapse
Affiliation(s)
- Yung‐Hao Tsou
- Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Bin Wang
- Engineering Research Center of Cell and Therapeutic Antibody Ministry of Education School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Bin Hu
- Engineering Research Center of Cell and Therapeutic Antibody Ministry of Education School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Pei Tang
- Engineering Research Center of Cell and Therapeutic Antibody Ministry of Education School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Sydney Sweet
- Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell and Therapeutic Antibody Ministry of Education School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| |
Collapse
|
182
|
Affiliation(s)
- Zhe Zheng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Wen‐Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Zhe Xu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
183
|
Kim J, Narayana A, Patel S, Sahay G. Advances in intracellular delivery through supramolecular self-assembly of oligonucleotides and peptides. Theranostics 2019; 9:3191-3212. [PMID: 31244949 PMCID: PMC6567962 DOI: 10.7150/thno.33921] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cells utilize natural supramolecular assemblies to maintain homeostasis and biological functions. Naturally inspired modular assembly of biomaterials are now being exploited for understanding or manipulating cell biology for treatment, diagnosis, and detection of diseases. Supramolecular biomaterials, in particular peptides and oligonucleotides, can be precisely tuned to have diverse structural, mechanical, physicochemical and biological properties. These merits of oligonucleotides and peptides as building blocks have given rise to the evolution of numerous nucleic acid- and peptide-based self-assembling nanomaterials for various medical applications, including drug delivery, tissue engineering, regenerative medicine, and immunotherapy. In this review, we provide an extensive overview of the intracellular delivery approaches using supramolecular self-assembly of DNA, RNA, and peptides. Furthermore, we discuss the current challenges related to subcellular delivery and provide future perspectives of the application of supramolecular biomaterials for intracellular delivery in theranostics.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR
| | - Ashwanikumar Narayana
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR
| | - Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health Science University, Portland, OR
| |
Collapse
|
184
|
Oliver RC, Rolband LA, Hutchinson-Lundy AM, Afonin KA, Krueger JK. Small-Angle Scattering as a Structural Probe for Nucleic Acid Nanoparticles (NANPs) in a Dynamic Solution Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E681. [PMID: 31052508 PMCID: PMC6566709 DOI: 10.3390/nano9050681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Nucleic acid-based technologies are an emerging research focus area for pharmacological and biological studies because they are biocompatible and can be designed to produce a variety of scaffolds at the nanometer scale. The use of nucleic acids (ribonucleic acid (RNA) and/or deoxyribonucleic acid (DNA)) as building materials in programming the assemblies and their further functionalization has recently established a new exciting field of RNA and DNA nanotechnology, which have both already produced a variety of different functional nanostructures and nanodevices. It is evident that the resultant architectures require detailed structural and functional characterization and that a variety of technical approaches must be employed to promote the development of the emerging fields. Small-angle X-ray and neutron scattering (SAS) are structural characterization techniques that are well placed to determine the conformation of nucleic acid nanoparticles (NANPs) under varying solution conditions, thus allowing for the optimization of their design. SAS experiments provide information on the overall shapes and particle dimensions of macromolecules and are ideal for following conformational changes of the molecular ensemble as it behaves in solution. In addition, the inherent differences in the neutron scattering of nucleic acids, lipids, and proteins, as well as the different neutron scattering properties of the isotopes of hydrogen, combined with the ability to uniformly label biological macromolecules with deuterium, allow one to characterize the conformations and relative dispositions of the individual components within an assembly of biomolecules. This article will review the application of SAS methods and provide a summary of their successful utilization in the emerging field of NANP technology to date, as well as share our vision on its use in complementing a broad suite of structural characterization tools with some simulated results that have never been shared before.
Collapse
Affiliation(s)
- Ryan C Oliver
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Lewis A Rolband
- UNC Charlotte Chemistry Department, Charlotte, NC 28223, USA.
| | | | - Kirill A Afonin
- UNC Charlotte Chemistry Department, Charlotte, NC 28223, USA.
| | | |
Collapse
|
185
|
Yin H, Xiong G, Guo S, Xu C, Xu R, Guo P, Shu D. Delivery of Anti-miRNA for Triple-Negative Breast Cancer Therapy Using RNA Nanoparticles Targeting Stem Cell Marker CD133. Mol Ther 2019; 27:1252-1261. [PMID: 31085078 DOI: 10.1016/j.ymthe.2019.04.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 11/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with a short median time from relapse to death. The increased aggressiveness, drug resistance, disease relapse, and metastasis are associated with the presence of stem cells within tumors. Several stem cell markers, such as CD24, CD44, CD133, ALDH1, and ABCG2, have been reported, but their roles in breast cancer tumorigenesis remain unclear. Herein, we apply RNA nanotechnology to deliver anti-microRNA (miRNA) for TNBC therapy. The thermodynamically and chemically stable three-way junction (3WJ) motif was utilized as the scaffold to carry an RNA aptamer binding to CD133 receptor and a locked nuclei acid (LNA) sequence for miRNA21 inhibition. Binding assays revealed the specific uptake of the nanoparticles to breast cancer stem cells (BCSCs) and TNBC cells. Functional assays showed that cancer cell migration was reduced, miR21 expression was inhibited, and downstream tumor suppressor PTEN and PDCD4 expressions were upregulated. In vitro and in vivo studies revealed that these therapeutic RNA nanoparticles did not induce cytokine secretion. Systemic injection of these RNA nanoparticles in animal trial demonstrated high specificity in TNBC tumor targeting and high efficacy for tumor growth inhibition. These results revealed the clinical translation potential of these RNA nanoparticles for TNBC therapy.
Collapse
Affiliation(s)
- Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Gaofeng Xiong
- Department of Molecular and Biomedical Pharmacology, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ren Xu
- Department of Molecular and Biomedical Pharmacology, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
186
|
Jasinski DL, Binzel DW, Guo P. One-Pot Production of RNA Nanoparticles via Automated Processing and Self-Assembly. ACS NANO 2019; 13:4603-4612. [PMID: 30888787 PMCID: PMC6542271 DOI: 10.1021/acsnano.9b00649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
From the original sequencing of the human genome, it was found that about 98.5% of the genome did not code for proteins. Subsequent studies have now revealed that a much larger portion of the genome is related to short or long noncoding RNAs that regulate cellular activities. In addition to the milestones of chemical and protein drugs, it has been proposed that RNA drugs or drugs targeting RNA will become the third milestone in drug development ( Shu , Y. ; Adv. Drug Deliv. Rev. 2014 , 66 , 74 . ). Currently, the yield and cost for RNA nanoparticle or RNA drug production requires improvement in order to advance the RNA field in both research and clinical translation by reducing the multiple tedious manufacturing steps. For example, with 98.5% incorporation efficiency of chemical synthesis of a 100 nucleotide RNA strand, RNA oligos will result with 78% contamination of aborted byproducts. Thus, RNA nanotechnology is one of the remedies, because large RNA can be assembled from small RNA fragments via bottom-up self-assembly. Here we report the one-pot production of RNA nanoparticles via automated processing and self-assembly. The continuous production of RNA by rolling circle transcription (RCT) using a circular dsDNA template is coupled with self-cleaving ribozymes encoded in the concatemeric RNA transcripts. Production was monitored in real-time. Automatic production of RNA fragments enabled their assembly either in situ or via one-pot co-transcription to obtain RNA nanoparticles of desired motifs and functionalities from bottom-up assembly of multiple RNA fragments. In combination with the RNA nanoparticle construction process, a purification method using a large-scale electrophoresis column was also developed.
Collapse
Affiliation(s)
| | | | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
187
|
Yourston LE, Lushnikov AY, Shevchenko OA, Afonin KA, Krasnoslobodtsev AV. First Step Towards Larger DNA-Based Assemblies of Fluorescent Silver Nanoclusters: Template Design and Detailed Characterization of Optical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E613. [PMID: 31013933 PMCID: PMC6523636 DOI: 10.3390/nano9040613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Besides being a passive carrier of genetic information, DNA can also serve as an architecture template for the synthesis of novel fluorescent nanomaterials that are arranged in a highly organized network of functional entities such as fluorescent silver nanoclusters (AgNCs). Only a few atoms in size, the properties of AgNCs can be tuned using a variety of templating DNA sequences, overhangs, and neighboring duplex regions. In this study, we explore the properties of AgNCs manufactured on a short DNA sequence-an individual element designed for a construction of a larger DNA-based functional assembly. The effects of close proximity of the double-stranded DNA, the directionality of templating single-stranded sequence, and conformational heterogeneity of the template are presented. We observe differences between designs containing the same AgNC templating sequence-twelve consecutive cytosines, (dC)12. AgNCs synthesized on a single "basic" templating element, (dC)12, emit in "red". The addition of double-stranded DNA core, required for the larger assemblies, changes optical properties of the silver nanoclusters by adding a new population of clusters emitting in "green". A new population of "blue" emitting clusters forms only when ssDNA templating sequence is placed on the 5' end of the double-stranded core. We also compare properties of silver nanoclusters, which were incorporated into a dimeric structure-a first step towards a larger assembly.
Collapse
Affiliation(s)
- Liam E Yourston
- Department of Physics, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Alexander Y Lushnikov
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Oleg A Shevchenko
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Alexey V Krasnoslobodtsev
- Department of Physics, University of Nebraska Omaha, Omaha, NE 68182, USA.
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
188
|
Chandler M, Afonin KA. Smart-Responsive Nucleic Acid Nanoparticles (NANPs) with the Potential to Modulate Immune Behavior. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E611. [PMID: 31013847 PMCID: PMC6523571 DOI: 10.3390/nano9040611] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Nucleic acids are programmable and biocompatible polymers that have beneficial uses in nanotechnology with broad applications in biosensing and therapeutics. In some cases, however, the development of the latter has been impeded by the unknown immunostimulatory properties of nucleic acid-based materials, as well as a lack of functional dynamicity due to stagnant structural design. Recent research advancements have explored these obstacles in tandem via the assembly of three-dimensional, planar, and fibrous cognate nucleic acid-based nanoparticles, called NANPs, for the conditional activation of embedded and otherwise quiescent functions. Furthermore, a library of the most representative NANPs was extensively analyzed in human peripheral blood mononuclear cells (PBMCs), and the links between the programmable architectural and physicochemical parameters of NANPs and their immunomodulatory properties have been established. This overview will cover the recent development of design principles that allow for fine-tuning of both the physicochemical and immunostimulatory properties of dynamic NANPs and discuss the potential impacts of these novel strategies.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
189
|
Dong Y, Siegwart DJ, Anderson DG. Strategies, design, and chemistry in siRNA delivery systems. Adv Drug Deliv Rev 2019; 144:133-147. [PMID: 31102606 DOI: 10.1016/j.addr.2019.05.004] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Emerging therapeutics that utilize RNA interference (RNAi) have the potential to treat broad classes of diseases due to their ability to reversibly silence target genes. In August 2018, the FDA approved the first siRNA therapeutic, called ONPATTRO™ (Patisiran), for the treatment of transthyretin-mediated amyloidosis. This was an important milestone for the field of siRNA delivery that opens the door for additional siRNA drugs. Currently, >20 small interfering RNA (siRNA)-based therapies are in clinical trials for a wide variety of diseases including cancers, genetic disorders, and viral infections. To maximize therapeutic benefits of siRNA-based drugs, a number of chemical strategies have been applied to address issues associated with efficacy, specificity, and safety. This review focuses on the chemical perspectives behind non-viral siRNA delivery systems, including siRNA synthesis, siRNA conjugates, and nanoparticle delivery using nucleotides, lipids, and polymers. Tracing and understanding the chemical development of strategies to make siRNAs into drugs is important to guide development of additional clinical candidates and enable prolonged success of siRNA therapeutics.
Collapse
Affiliation(s)
- Yizhou Dong
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| | - Daniel J Siegwart
- Simmons Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| | - Daniel G Anderson
- Deparment of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Department of Chemistry, Institute for Medical Engineering and Science, and Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
190
|
Hong E, Halman JR, Shah A, Cedrone E, Truong N, Afonin KA, Dobrovolskaia MA. Toll-Like Receptor-Mediated Recognition of Nucleic Acid Nanoparticles (NANPs) in Human Primary Blood Cells. Molecules 2019; 24:E1094. [PMID: 30897721 PMCID: PMC6470694 DOI: 10.3390/molecules24061094] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Infusion reactions (IRs) create a translational hurdle for many novel therapeutics, including those utilizing nanotechnology. Nucleic acid nanoparticles (NANPs) are a novel class of therapeutics prepared by rational design of relatively short oligonucleotides to self-assemble into various programmable geometric shapes. While cytokine storm, a common type of IR, has halted clinical development of several therapeutic oligonucleotides, NANP technologies hold tremendous potential to bring these reactions under control by tuning the particle's physicochemical properties to the desired type and magnitude of the immune response. Recently, we reported the very first comprehensive study of the structure⁻activity relationship between NANPs' shape, size, composition, and their immunorecognition in human cells, and identified the phagolysosomal pathway as the major route for the NANPs' uptake and subsequent immunostimulation. Here, we explore the molecular mechanism of NANPs' recognition by primary immune cells, and particularly the contributing role of the Toll-like receptors. Our current study expands the understanding of the immune recognition of engineered nucleic acid-based therapeutics and contributes to the improvement of the nanomedicine safety profile.
Collapse
Affiliation(s)
- Enping Hong
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| | - Justin R Halman
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Ankit Shah
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| | - Nguyen Truong
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
191
|
|
192
|
Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. Nat Commun 2019; 10:1006. [PMID: 30824698 PMCID: PMC6397255 DOI: 10.1038/s41467-019-09004-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Formation of biological filaments via intracellular supramolecular polymerization of proteins or protein/nucleic acid complexes is under programmable and spatiotemporal control to maintain cellular and genomic integrity. Here we devise a bioinspired, catassembly-like isothermal chain-growth approach to copolymerize DNA hairpin tiles (DHTs) into nanofilaments with desirable composition, chain length and function. By designing metastable DNA hairpins with shape-defining intramolecular hydrogen bonds, we generate two types of DHT monomers for copolymerization with high cooperativity and low dispersity indexes. Quantitative single-molecule dissection methods reveal that catalytic opening of a DHT motif harbouring a toehold triggers successive branch migration, which autonomously propagates to form copolymers with alternate tile units. We find that these shape-defined supramolecular nanostructures become substrates for efficient endocytosis by living mammalian cells in a stiffness-dependent manner. Hence, this catassembly-like in-vitro reconstruction approach provides clues for understanding structure-function relationship of biological filaments under physiological and pathological conditions.
Collapse
|
193
|
Gessner I, Yu X, Jüngst C, Klimpel A, Wang L, Fischer T, Neundorf I, Schauss AC, Odenthal M, Mathur S. Selective Capture and Purification of MicroRNAs and Intracellular Proteins through Antisense-vectorized Magnetic Nanobeads. Sci Rep 2019; 9:2069. [PMID: 30765836 PMCID: PMC6375918 DOI: 10.1038/s41598-019-39575-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding nucleotides playing a crucial role in posttranscriptional expression and regulation of target genes in nearly all kinds of cells. In this study, we demonstrate a reliable and efficient capture and purification of miRNAs and intracellular proteins using magnetic nanoparticles functionalized with antisense oligonucleotides. For this purpose, a tumor suppressor miRNA (miR-198), deregulated in several human cancer types, was chosen as the model oligonucleotide. Magnetite nanoparticles carrying the complementary sequence of miR-198 (miR-198 antisense) on their surface were delivered into cells and subsequently used for the extracellular transport of miRNA and proteins. The successful capture of miR-198 was demonstrated by isolating RNA from magnetic nanoparticles followed by real-time PCR quantification. Our experimental data showed that antisense-coated particles captured 5-fold higher amounts of miR-198 when compared to the control nanoparticles. Moreover, several proteins that could play a significant role in miR-198 biogenesis were found attached to miR-198 conjugated nanoparticles and analyzed by mass spectrometry. Our findings demonstrate that a purpose-driven vectorization of magnetic nanobeads with target-specific recognition ligands is highly efficient in selectively transporting miRNA and disease-relevant proteins out of cells and could become a reliable and useful tool for future diagnostic, therapeutic and analytical applications.
Collapse
Affiliation(s)
- Isabel Gessner
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Xiaojie Yu
- Institute for Pathology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Christian Jüngst
- Cluster of Excellence - Cellular Stress Responses in Aging-Associated Diseases (CECAD), Imaging Facility, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Annika Klimpel
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, 50674, Cologne, Germany
| | - Lingyu Wang
- Institute for Pathology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Thomas Fischer
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Ines Neundorf
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, 50674, Cologne, Germany
| | - Astrid C Schauss
- Cluster of Excellence - Cellular Stress Responses in Aging-Associated Diseases (CECAD), Imaging Facility, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Margarete Odenthal
- Institute for Pathology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany.,Center of Integrative Oncology, University Clinic of Cologne and Bonn, Cologne and Bonn, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany.
| |
Collapse
|
194
|
Rossetti M, Del Grosso E, Ranallo S, Mariottini D, Idili A, Bertucci A, Porchetta A. Programmable RNA-based systems for sensing and diagnostic applications. Anal Bioanal Chem 2019; 411:4293-4302. [PMID: 30734852 DOI: 10.1007/s00216-019-01622-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 11/28/2022]
Abstract
The emerging field of RNA nanotechnology harnesses the versatility of RNA molecules to generate nature-inspired systems with programmable structure and functionality. Such methodology has therefore gained appeal in the fields of biosensing and diagnostics, where specific molecular recognition and advanced input/output processing are demanded. The use of RNA modules and components allows for achieving diversity in structure and function, for processing information with molecular precision, and for programming dynamic operations on the grounds of predictable non-covalent interactions. When RNA nanotechnology meets bioanalytical chemistry, sensing of target molecules can be performed by harnessing programmable interactions of RNA modules, advanced field-ready biosensors can be manufactured by interfacing RNA-based devices with supporting portable platforms, and RNA sensors can be engineered to be genetically encoded allowing for real-time imaging of biomolecules in living cells. In this article, we report recent advances in RNA-based sensing technologies and discuss current trends in RNA nanotechnology-enabled biomedical diagnostics. In particular, we describe programmable sensors that leverage modular designs comprising dynamic aptamer-based units, synthetic RNA nanodevices able to perform target-responsive regulation of gene expression, and paper-based sensors incorporating artificial RNA networks. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Marianna Rossetti
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Simona Ranallo
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Davide Mariottini
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Andrea Idili
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Alessandro Bertucci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy. .,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
195
|
Monferrer A, Zhang D, Lushnikov AJ, Hermann T. Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules. Nat Commun 2019; 10:608. [PMID: 30723214 PMCID: PMC6363791 DOI: 10.1038/s41467-019-08521-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/16/2019] [Indexed: 11/09/2022] Open
Abstract
DNA and RNA have emerged as a material for nanotechnology applications that take advantage of the nucleic acids' ability to encode folding and programmable self-assembly through mainly base pairing. The two types of nucleic acid have rarely been used in combination to enhance structural diversity or for partitioning of functional and architectural roles. Here, we report a design and screening strategy to integrate combinations of RNA motifs as architectural joints and DNA building blocks as functional modules for programmable self-assembly of a versatile toolkit of polygonal nucleic acid nanoshapes. Clean incorporation of diverse DNA modules with various topologies attest to the extraordinary robustness of the RNA-DNA hybrid framework. The design and screening strategy enables systematic development of RNA-DNA hybrid nanoshapes as programmable platforms for applications in molecular recognition, sensor and catalyst development as well as protein interaction studies.
Collapse
Affiliation(s)
- Alba Monferrer
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Douglas Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | | | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Center for Drug Discovery Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
196
|
Yin H, Wang H, Li Z, Shu D, Guo P. RNA Micelles for the Systemic Delivery of Anti-miRNA for Cancer Targeting and Inhibition without Ligand. ACS NANO 2019; 13:706-717. [PMID: 30543397 PMCID: PMC6542267 DOI: 10.1021/acsnano.8b07948] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Displaying the advantage of nanoparticles in cancer targeting and drug delivery, micelles have shown great potential in cancer therapy. The mechanism for micelle targeting to cancer without the need for ligands is due to the size advantage of micelles within the lower end of the nanometer scale that is the optimal size for favoring the enhanced permeability and retention (EPR) effect while escaping trapping by macrophages. MicroRNAs are ubiquitous and play critical roles in regulating gene expression, cell growth, and cancer development. However, their in vivo delivery in medical applications is still challenging. Here, we report the targeted delivery of anti-miRNA to cancers via RNA micelles. The phi29 packaging RNA three-way junction (pRNA-3WJ) was used as a scaffold to construct micelles. An oligo with 8nt locked nucleic acid (LNA) complementary to the seed region of microRNA21(miR21) was included in the micelles as an interference molecule for cancer inhibition. These RNA micelles carrying anti-miR21 exhibited strong binding and internalization to cancer cells, inhibited the function of oncogenic miR21, enhanced the expression of the pro-apoptotic factor, and induced cell apoptosis. Animal trials revealed effective tumor targeting and inhibition in xenograft models. The inclusion of folate as a targeting ligand in the micelles did not show significant improvement of the therapeutic efficacy in vivo, suggesting that micelles can carry therapeutics to a target tumor and inhibit its growth without ligands.
Collapse
Affiliation(s)
- Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
| | - Hongzhi Wang
- Center for RNA Nanobiotechnology and Nanomedicine
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
| | - Zhefeng Li
- Center for RNA Nanobiotechnology and Nanomedicine
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
- Corresponding Authors; phone: 614-293-2114. ; phone: 614-293-2118
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
- Dorothy M. Davis Heart and Lung Research Institute
- James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Corresponding Authors; phone: 614-293-2114. ; phone: 614-293-2118
| |
Collapse
|
197
|
Sousa D, Ferreira D, Rodrigues JL, Rodrigues LR. Nanotechnology in Targeted Drug Delivery and Therapeutics. APPLICATIONS OF TARGETED NANO DRUGS AND DELIVERY SYSTEMS 2019:357-409. [DOI: 10.1016/b978-0-12-814029-1.00014-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
198
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
199
|
Cultrara CN, Shah S, Kozuch SD, Patel MR, Sabatino D. Solid phase synthesis and self-assembly of higher-order siRNAs and their bioconjugates. Chem Biol Drug Des 2018; 93:999-1010. [PMID: 30480355 DOI: 10.1111/cbdd.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/10/2018] [Accepted: 11/11/2018] [Indexed: 12/20/2022]
Abstract
New methods for the synthesis of higher-order siRNA motifs and their bioconjugates have recently gained widespread attention in the development of new and improved gene therapeutics. Our efforts aim to produce new chemical tools and protocols for the generation of modified siRNAs that screen for important oncogene targets as well as silence their activity for effective gene therapy in cancer models. More specifically, we have developed an efficient solution-phase synthesis for the production of a ribouridine branchpoint synthon that can be effectively incorporated by solid phase synthesis within higher-order RNA structures, including those adopting V-, and Y- and >-< shape RNA templates. Self-assembly of complementary RNA to the template strands produced higher-order siRNA nanostructures that were characterized by a combination of PAGE, DLS, and TEM techniques. In an effort to extend the repertoire of functionally diverse siRNAs, we have also developed solid phase bioconjugation strategies for incorporating bio-active probes such as fatty acid appendages and fluorescent reporters. Taken together, these methods highlight the ability to generate higher-order siRNAs and their bioconjugates for exploring the influence of modified siRNA structure on anti-cancer activity.
Collapse
Affiliation(s)
- Christopher N Cultrara
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey
| | - Sunil Shah
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey
| | - Stephen D Kozuch
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey
| | | | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey
| |
Collapse
|
200
|
Xu Y, Pang L, Wang H, Xu C, Shah H, Guo P, Shu D, Qian SY. Specific delivery of delta-5-desaturase siRNA via RNA nanoparticles supplemented with dihomo-γ-linolenic acid for colon cancer suppression. Redox Biol 2018; 21:101085. [PMID: 30584980 PMCID: PMC6305700 DOI: 10.1016/j.redox.2018.101085] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
We have previously demonstrated that DGLA treatment along with Delta-5-Desaturase (D5D) siRNA in various types of cancer cells enhances the formation of 8-HOA from COX-2-catalyzed DGLA peroxidation, which in turn inhibits cancer cell growth and migration. However, delivery of naked siRNA remains a formidable challenge due to its "off-target" effect. In this study, we employed RNA nanotechnology for specific delivery of D5D-siRNA to xenograft colon tumors using 3WJ RNA nanoparticles. When a targeting module, i.e., the EpCAM aptamer, was incorporated, the 3WJ pRNA nanoparticles were able specifically deliver D5D siRNA to human colon cancer HCA-7 cells both in vitro and in vivo, resulting in significant downregulation of D5D expression. Co-treatment with DGLA in combination with 3WJ-EpCAM-siRNA induced a higher DGLA/AA ratio and enhanced formation of 8-HOA at a threshold level, and in HCA-7 tumor-bearing mice, induced significant tumor suppression. We further confirmed that 8-HOA formation, promoted by COX-2-catalyzed DGLA peroxidation, inhibited HDAC and consequently induced apoptosis in tumor cells. Therefore, the 3WJ RNA nanoparticle system holds great promise as a suitable therapeutic delivery platform for colon cancer therapy.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Lizhi Pang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Hongzhi Wang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Harshit Shah
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven Y Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|