151
|
Zhang B, Lu H, Jiang A, Wu H, Fang L, Lv Y. MerTK Downregulates Lipopolysaccharide-Induced Inflammation Through SOCS1 Protein but Does Not Affect Phagocytosis of Escherichia coli in Macrophages. Inflammation 2018; 42:113-123. [DOI: 10.1007/s10753-018-0877-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
152
|
Expression and modulation of S100A4 protein by human mast cells. Cell Immunol 2018; 332:85-93. [PMID: 30097176 DOI: 10.1016/j.cellimm.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
S100A4 protein is expressed in fibroblasts during tissue remodelling and in cancer stem cells and it induces the metastatic spread of tumor cells. In mast cells (MCs) S100A4 have been found in some pathological conditions, but its function in normal MCs remains to be described. The purpose of this study was to characterize the cellular localization of the S100A4 protein in MCs of human tissues with inflammatory or tumor disorders and, to determine the consequence of reducing its expression in MC response. We found that tissue resident MCs stained positive to S100A4. Both human HMC-1 cell line and resting CD34+-derived MCs expressed S100A4, whose levels were differentially modulated upon MC activation. Downregulation of the S100A4 protein resulted in MC growth inhibition, enhanced apoptosis and deregulation of MMP-1 and MMP-10 production. Our results suggest that S100A4 is also playing a role in the MC life cycle and functions.
Collapse
|
153
|
Ji N, Pan S, Shao C, Chen Y, Zhang Z, Wang R, Qiu Y, Jin M, Kong D. Spinacetin Suppresses the Mast Cell Activation and Passive Cutaneous Anaphylaxis in Mouse Model. Front Pharmacol 2018; 9:824. [PMID: 30104977 PMCID: PMC6077219 DOI: 10.3389/fphar.2018.00824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
We previously reported the anti-inflammatory and anti-asthmatic activities of the extract of the Inula japonica Thunb. Aiming for discovery of a novel anti-inflammatory compound, we isolated spinacetin from the extract and investigated its in vitro and in vivo anti-inflammatory effect and the related mechanism. Effect of spinacetin on the Syk signaling pathway was studied in bone marrow-derived mast cells (BMMCs), and that on the nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) was investigated in Rat basophilic leukemia (RBL)-2H3 cells and human mast cell line (HMC-1). The in vivo anti-inflammatory activity was assessed with passive cutaneous anaphylaxis (PCA) reaction assay. Spinacetin significantly inhibited the release of histamine, and production of inflammatory mediators such as leukotriene C4 (LTC4) and interlukin-6 (IL-6) in IgE/Ag stimulated BMMCs. Analysis of the signaling pathways demonstrated that spinacetin inhibited activation of Syk, linker of activated T cells (LAT), phospholipase Cγ (PLCγ), cytosolic phospholipase A2 (cPLA2), MAPKs, Akt/NF-κB, and intracellular Ca2+ mobilization but with no effect on Fyn and Lyn. On the other hand, spinacetin suppressed IgE/Ag-induced activation of RBL-2H3 cells with inhibition against phosphorylation of extracellular signal regulated-protein kinase (ERK), c-Jun-NH2-terminal kinase (JNK), p38 MAPKs, PLCγ, translocation of cPLA2, and Akt/IκBα/NF-κB signal. However, spinacetin had no effect on PMA and A23187-induced activation of HMC-1. Furthermore, oral administration of spinacetin dose-dependently attenuated IgE/Ag-mediated PCA reaction in mouse model. Taken together, spinacetin showed the activities in preventing inflammatory processes, which might be at least partially attributed to the abolishment of Syk-dependent activation of IgE/Ag-mediated mast cells.
Collapse
Affiliation(s)
- Ning Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shunli Pan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chen Shao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yufen Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Pharmacy Department, Tanggu Hospital of Infectious Diseases of Tianjin Binhai New Area, Tianjin, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
154
|
Hu Frisk JM, Kjellén L, Melo FR, Öhrvik H, Pejler G. Mitogen-Activated Protein Kinase Signaling Regulates Proteoglycan Composition of Mast Cell Secretory Granules. Front Immunol 2018; 9:1670. [PMID: 30073001 PMCID: PMC6060404 DOI: 10.3389/fimmu.2018.01670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/04/2018] [Indexed: 11/25/2022] Open
Abstract
Mast cells (MCs) are characterized by an abundance of lysosome-like secretory granules filled with immunomodulatory compounds including histamine, cytokines, lysosomal hydrolases, MC-restricted proteases, and serglycin proteoglycans. The latter are essential for promoting the storage of other granule compounds and are built up of the serglycin core protein to which highly sulfated and thereby negatively charged glycosaminoglycan (GAG) side chains of heparin or chondroitin sulfate type are attached. In the search for mechanisms operating in regulating MC granule homeostasis, we here investigated the role of mitogen-activated protein kinase (MAPK) signaling. We show that inhibition of MEK1/2 (a MAPK kinase) leads to increased metachromatic staining of MC granules, indicative of increased proteoglycan content. Indeed, MEK1/2 inhibition caused a profound increase in the expression of the gene coding for the serglycin core protein and of genes coding for various enzymes involved in the biosynthesis/sulfation of the GAGs attached to the serglycin core protein. This was accompanied by corresponding increases in the levels of the respective GAGs. Deletion of the serglycin core protein abrogated the induction of enzymes operative in proteoglycan synthesis, indicating that availability of the serglycin proteoglycan core protein has a regulatory function impacting on the expression of the various serglycin-modifying enzymes. MEK1/2 inhibition also caused a substantial increase in the expression of granule-localized, proteoglycan-binding proteases. Altogether, this study identifies a novel role for MAPK signaling in regulating the content of secretory granules in MCs.
Collapse
Affiliation(s)
- Jun Mei Hu Frisk
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Fabio R Melo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Helena Öhrvik
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
155
|
Tsvilovskyy V, Solis-Lopez A, Öhlenschläger K, Freichel M. Isolation of Peritoneum-derived Mast Cells and Their Functional Characterization with Ca2+-imaging and Degranulation Assays. J Vis Exp 2018. [PMID: 30035759 DOI: 10.3791/57222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mast cells (MCs), as a part of the immune system, play a key role in defending the host against several pathogens and in the initiation of the allergic immune response. The activation of MCs via the cross-linking of surface IgE bound to high affinity IgE receptor (FcεRI), as well as through the stimulation of several other receptors, initiates the rise of the free intracellular Ca2+ level ([Ca2+]i) that promotes the release of inflammatory and allergic mediators. The identification of molecular constituents involved in these signaling pathways is crucial for understanding the regulation of MC function. In this article, we describe a protocol for the isolation of murine connective tissue type MCs by peritoneal lavage and cultivation of peritoneal MCs (PMCs). Cultures of MCs from various knockout mouse models by this methodology represent a useful approach to the identification of proteins involved in MC signaling pathways. In addition, we also describe a protocol for single cell Fura-2 imaging as an important technique for the quantification of Ca2+ signaling in MCs. Fluorescence-based monitoring of [Ca2+]i is a reliable and commonly used approach to study Ca2+ signaling events, including store-operated calcium entry, which is of utmost importance for MC activation. For the analysis of MC degranulation, we describe a β-hexosaminidase release assay. The amount of β-hexosaminidase released into the culture medium is considered as a degranulation marker for all three different secretory subsets described in MCs. β-hexosaminidase can easily be quantified by its reaction with a colorigenic substrate in a microtiter plate colorimetric assay. This highly reproducible technique is cost-effective and requires no specialized equipment. Overall, the provided protocol demonstrates a high yield of MCs expressing typical MC surface markers, displaying typical morphological and phenotypic features of MCs, and demonstrating highly reproducible responses to secretagogues in Ca2+-imaging and degranulation assays.
Collapse
Affiliation(s)
| | | | | | - Marc Freichel
- Institute of Pharmacology, Ruprecht-Karls Heidelberg University
| |
Collapse
|
156
|
Yang HW, Liu XY, Shen ZF, Yao W, Gong XB, Huang HX, Ding GH. An investigation of the distribution and location of mast cells affected by the stiffness of substrates as a mechanical niche. Int J Biol Sci 2018; 14:1142-1152. [PMID: 29989093 PMCID: PMC6036734 DOI: 10.7150/ijbs.26738] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022] Open
Abstract
The distribution and location of mast cells are closely related to their physiological and pathological functions, such as allergic responses, immunity, and fibrosis, and are used in acupuncture. In this study, the distribution of mast cells in vivo was observed, and mechanical clues for understanding their distribution based on mechanical niches were explored. By toluidine blue staining and immunohistochemical staining, we examined the distribution and location of mast cells in rat skin and found that mast cells are distributed in a spatially nonuniform manner, preferring to locate at regions in the tissue and extracellular matrix with stiffness changes. In vitro experiments for studying the distribution of rat basophilic leukemia (RBL-2H3) mast cell line on poly-di-methyl-siloxane (PDMS) substrates with stiffness variations were performed. It was found that RBL-2H3 cells migrate and tend to remain in the areas with stiffness variations. The present research suggests that changing the stiffness of local tissues may stimulate mast cell recruitment, which may be the method by which some traditional Chinese medicine treatments, such as acupuncture. On the basis of the origin of mast cells and our experimental results, we predict that mast cells exist in tissues that contain permeable capillaries and prefer regions with stiffness changes. We discussed this prediction using examples of specific tissues from some cases.
Collapse
Affiliation(s)
- Hong-Wei Yang
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Xin-Yue Liu
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhou-Feng Shen
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Wei Yao
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Xiao-Bo Gong
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua-Xiong Huang
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Guang-Hong Ding
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| |
Collapse
|
157
|
Meyer N, Zenclussen AC. Mast cells-Good guys with a bad image? Am J Reprod Immunol 2018; 80:e13002. [DOI: 10.1111/aji.13002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Nicole Meyer
- Experimental Obstetrics and Gynecology; Medical Faculty; Otto-von-Guericke University; Magdeburg Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology; Medical Faculty; Otto-von-Guericke University; Magdeburg Germany
| |
Collapse
|
158
|
Debroas G, Hoeffel G, Reynders A, Ugolini S. [Neuroimmune interactions in the skin: a link between pain and immunity]. Med Sci (Paris) 2018; 34:432-438. [PMID: 29900846 DOI: 10.1051/medsci/20183405016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Upon infection, our ability to eliminate pathogens depends mostly on our immune system. However, recent studies have shown that the nervous system plays a role in controlling infectious and inflammatory processes. Bidirectional functional interactions are established between the nervous and immune systems to protect tissue integrity. The skin is one of the first lines of defense against external threats and has a particularly well-developed neuroimmune system. Challenges to the skin activate neurons specialized in pain perception, which regulate immune cell functions and recruitment to tissues. We illustrate the importance of such neuroimmune regulation here, through the example of several skin diseases.
Collapse
Affiliation(s)
- Guilhaume Debroas
- Aix-Marseille-université, CNRS, Inserm, centre d'immunologie de Marseille-Luminy (CIML), 13288 Marseille, France
| | - Guillaume Hoeffel
- Aix-Marseille-université, CNRS, Inserm, centre d'immunologie de Marseille-Luminy (CIML), 13288 Marseille, France
| | - Ana Reynders
- Aix-Marseille-université, CNRS, institut de biologie du développement de Marseille, UMR 7288, Case 907, 13288 Marseille, France
| | - Sophie Ugolini
- Aix-Marseille-université, CNRS, Inserm, centre d'immunologie de Marseille-Luminy (CIML), 13288 Marseille, France
| |
Collapse
|
159
|
Gaudenzio N, Marichal T, Galli SJ, Reber LL. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity. Front Immunol 2018; 9:1275. [PMID: 29922295 PMCID: PMC5996070 DOI: 10.3389/fimmu.2018.01275] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
Contact hypersensitivity (CHS) is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs) are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo. Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation) and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM, Université de Toulouse, Toulouse, France
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liège, Belgium
- Faculty of Veterinary Medicine, Liege University, Liège, Belgium
- WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Immunology and Microbiology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Laurent L. Reber
- Unit of Antibodies in Therapy and Pathology, INSERM Unit 1222, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
160
|
Ryu KJ, Yoou MS, Seo Y, Yoon KW, Kim HM, Jeong HJ. Therapeutic effects of Artemisia scoparia
Waldst. et Kitaib in a murine model of atopic dermatitis. Clin Exp Dermatol 2018; 43:798-805. [DOI: 10.1111/ced.13565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 01/21/2023]
Affiliation(s)
- K. J. Ryu
- Department of Pharmacology; College of Korean Medicine; Kyung Hee University; Seoul Korea
| | - M. S. Yoou
- Department of Pharmacology; College of Korean Medicine; Kyung Hee University; Seoul Korea
| | - Y. Seo
- Division of Marine Environment and Bioscience; Korea Maritime University; Busan Korea
| | - K. W. Yoon
- Department of Biotechnology; Hoseo University; Asan Chungnam Korea
| | - H. M. Kim
- Department of Pharmacology; College of Korean Medicine; Kyung Hee University; Seoul Korea
| | - H. J. Jeong
- Department of Food Science and Technology; Hoseo University; Asan Chungnam Korea
| |
Collapse
|
161
|
Ocana JA, Romer E, Sahu R, Pawelzik SC, FitzGerald GA, Kaplan MH, Travers JB. Platelet-Activating Factor-Induced Reduction in Contact Hypersensitivity Responses Is Mediated by Mast Cells via Cyclooxygenase-2-Dependent Mechanisms. THE JOURNAL OF IMMUNOLOGY 2018; 200:4004-4011. [PMID: 29695417 DOI: 10.4049/jimmunol.1701145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Platelet-activating factor (PAF) stimulates numerous cell types via activation of the G protein-coupled PAF receptor (PAFR). PAFR activation not only induces acute proinflammatory responses, but it also induces delayed systemic immunosuppressive effects by modulating host immunity. Although enzymatic synthesis and degradation of PAF are tightly regulated, oxidative stressors, such as UVB, chemotherapy, and cigarette smoke, can generate PAF and PAF-like molecules in an unregulated fashion via the oxidation of membrane phospholipids. Recent studies have demonstrated the relevance of the mast cell (MC) PAFR in PAFR-induced systemic immunosuppression. The current study was designed to determine the exact mechanisms and mediators involved in MC PAFR-mediated systemic immunosuppression. By using a contact hypersensitivity model, the MC PAFR was not only found to be necessary, but also sufficient to mediate the immunosuppressive effects of systemic PAF. Furthermore, activation of the MC PAFR induces MC-derived histamine and PGE2 release. Importantly, PAFR-mediated systemic immunosuppression was defective in mice that lacked MCs, or in MC-deficient mice transplanted with histidine decarboxylase- or cyclooxygenase-2-deficient MCs. Lastly, it was found that PGs could modulate MC migration to draining lymph nodes. These results support the hypothesis that MC PAFR activation promotes the immunosuppressive effects of PAF in part through histamine- and PGE2-dependent mechanisms.
Collapse
Affiliation(s)
- Jesus A Ocana
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Eric Romer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Ravi Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Sven-Christian Pawelzik
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Mark H Kaplan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435; .,Department of Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435; and.,Dayton Veterans Affairs Medical Center, Dayton, OH 45428
| |
Collapse
|
162
|
Brennan TA, Lindborg CM, Bergbauer CR, Wang H, Kaplan FS, Pignolo RJ. Mast cell inhibition as a therapeutic approach in fibrodysplasia ossificans progressiva (FOP). Bone 2018; 109:259-266. [PMID: 28851540 PMCID: PMC7805128 DOI: 10.1016/j.bone.2017.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Episodic flare-ups of fibrodysplasia ossificans progressiva (FOP) are characterized clinically by severe, often posttraumatic, connective tissue swelling and intramuscular edema, followed histologically by an intense and highly angiogenic fibroproliferative reaction. This early inflammatory and angiogenic fibroproliferative response is accompanied by the presence of abundant mast cells far in excess of other reported myopathies. RESULTS Using an injury-induced, constitutively-active transgenic mouse model of FOP we show that mast cell inhibition by cromolyn, but not aprepitant, results in a dramatic reduction of heterotopic ossification. Cromolyn, but not aprepitant, significantly decreases the total number of mast cells in FOP lesions. Furthermore, cromolyn specifically diminishes the number of degranulating and resting degranulated mast cells in pre-osseous lesions. CONCLUSIONS This work demonstrates that consideration of FOP as a type of localized mastocytosis may offer new therapeutic interventions for treatment of this devastating condition.
Collapse
Affiliation(s)
- Tracy A Brennan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Carter M Lindborg
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Christian R Bergbauer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Haitao Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Frederick S Kaplan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
163
|
Xue L, Geng Y, Li M, Jin YF, Ren HX, Li X, Wu F, Wang B, Cheng WY, Chen T, Chen YJ. Inhibitory effects of methamphetamine on mast cell activation and cytokine/chemokine production stimulated by lipopolysaccharide in C57BL/6J mice. Exp Ther Med 2018; 15:3544-3550. [PMID: 29545881 PMCID: PMC5841010 DOI: 10.3892/etm.2018.5837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/13/2017] [Indexed: 01/09/2023] Open
Abstract
Previous studies have demonstrated that methamphetamine (MA) influences host immunity; however, the effect of MA on lipopolysaccharide (LPS)-induced immune responses remains unknown. Mast cells (MCs) are considered to serve an important role in the innate and acquired immune response, but it remains unknown whether MA modulates MC activation and LPS-stimulated cytokine production. The present study aimed to investigate the effect of MA on LPS-induced MC activation and the production of MC-derived cytokines in mice. Markers for MC activation, including cluster of differentiation 117 and the type I high affinity immunoglobulin E receptor, were assessed in mouse intestines. Levels of MC-derived cytokines in the lungs and thymus were also examined. The results demonstrated that cytokines were produced in the bone marrow-derived mast cells (BMMCs) of mice. The present study demonstrated that MA suppressed the LPS-mediated MC activation in mouse intestines. MA also altered the release of MC cytokines in the lung and thymus following LPS stimulation. In addition, LPS-stimulated cytokines were decreased in the BMMCs of mice following treatment with MA. The present study demonstrated that MA may regulate LPS-stimulated MC activation and cytokine production.
Collapse
Affiliation(s)
- Li Xue
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yao-Feng Jin
- Department of Pathology, The Second Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui-Xun Ren
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Xia Li
- VIP Internal Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Feng Wu
- Graduate Teaching and Experiment Centre, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Wei-Ying Cheng
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of The Health Ministry for Forensic Medicine, Key Laboratory of The Ministry of Education for Environment and Genes Related to Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Yan-Jiong Chen
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
164
|
Genomic and transcriptomic comparison of allergen and silver nanoparticle-induced mast cell degranulation reveals novel non-immunoglobulin E mediated mechanisms. PLoS One 2018; 13:e0193499. [PMID: 29566008 PMCID: PMC5863960 DOI: 10.1371/journal.pone.0193499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.
Collapse
|
165
|
Öhrvik H, Grujic M, Waern I, Gustafson AM, Ernst N, Roers A, Hartmann K, Pejler G. Mast cells promote melanoma colonization of lungs. Oncotarget 2018; 7:68990-69001. [PMID: 27602499 PMCID: PMC5356606 DOI: 10.18632/oncotarget.11837] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/26/2016] [Indexed: 12/19/2022] Open
Abstract
Mast cells have been implicated in malignant processes, mainly through clinical correlative studies and by experiments performed using animals lacking mast cells due to defective c-kit signaling. However, mast cell-deficient mouse models based on c-kit defects have recently been questioned for their relevance. Here we addressed the effect of mast cells in a tumor setting by using transgenic Mcpt5-Cre+ R-DTA+ mice, in which the deficiency of mast cells is independent of c-kit defects. Melanoma cells (B16.F10) were administered either subcutaneously or intravenously into Mcpt5-Cre+ R-DTA+ mice or Mcpt5-Cre− R-DTA+ littermate controls, followed by the assessment of formed tumors. In the subcutaneous model, mast cells were abundant in the tumor stroma of control mice but were absent in Mcpt5-Cre+ R-DTA+ mice. However, the absence of mast cells did not affect tumor size. In contrast, after intravenous administration of B16.F10 cells, melanoma colonization of the lungs was markedly reduced in Mcpt5-Cre+ R-DTA+ vs. Mcpt5-Cre− R-DTA+ animals. Decreased melanoma colonization of the lungs in Mcpt5-Cre+ R-DTA+ animals was accompanied by increased inflammatory cell recruitment into the bronchoalveolar lavage fluid, suggesting that mast cells suppress inflammation in this setting. Further, qPCR analysis revealed significant alterations in the expression of Twist and E-cadherin in lungs of Mcpt5-Cre+ R-DTA+ vs. control Mcpt5-Cre− R-DTA+ animals, suggesting an impact of mast cells on epithelial-mesenchymal transition. In conclusion, this study reveals that mast cells promote melanoma colonization of the lung.
Collapse
Affiliation(s)
- Helena Öhrvik
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ann-Marie Gustafson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Nancy Ernst
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Axel Roers
- Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Karin Hartmann
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
166
|
Atiakshin D, Buchwalow I, Samoilova V, Tiemann M. Tryptase as a polyfunctional component of mast cells. Histochem Cell Biol 2018. [PMID: 29532158 DOI: 10.1007/s00418-018-1659-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mast cells are haematopoietic cells that arise from pluripotent precursors of the bone marrow. They play immunomodulatory roles in both health and disease. When appropriately activated, mast cells undergo degranulation, and preformed granule compounds are rapidly released into the surroundings. In many cases, the effects that mast cells have on various inflammatory settings are closely associated with the enzymatic characteristics of tryptase, the main granule compound of mast cells. Tryptase degranulation is often linked with the development of an immune response, allergy, inflammation, and remodelling of tissue architecture. Tryptase also represents an informative diagnostic marker of certain diseases and a prospective target for pharmacotherapy. In this review, we discuss the current knowledge about mast cell tryptase as one of the mast cell secretome proteases. The main points of the reviewed publications are highlighted with our microscopic images of mast cell tryptases visualized using immunohistochemical staining.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - Igor Buchwalow
- Institute for Hematopathology, Fangdieckstr. 75a, 22547, Hamburg, Germany.
| | - Vera Samoilova
- Institute for Hematopathology, Fangdieckstr. 75a, 22547, Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547, Hamburg, Germany
| |
Collapse
|
167
|
The combined action of mast cell chymase, tryptase and carboxypeptidase A3 protects against melanoma colonization of the lung. Oncotarget 2018; 8:25066-25079. [PMID: 28212574 PMCID: PMC5421910 DOI: 10.18632/oncotarget.15339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 11/25/2022] Open
Abstract
Mast cell secretory granules are densely packed with various bioactive mediators including proteases of chymase, tryptase and CPA3 type. Previous studies have indicated that mast cells can affect the outcome of melanoma but the contribution of the mast cell granule proteases to such effects has not been clear. Here we addressed this issue by assessing mice lacking either the chymase Mcpt4, the tryptase Mcpt6 or carboxypeptidase A3 (Cpa3), as well as mice simultaneously lacking all three proteases, in a model of melanoma dissemination from blood to the lung. Although mice with individual deficiency in the respective proteases did not differ significantly from wildtype mice in the extent of melanoma colonization, mice with multiple protease deficiency (Mcpt4/Mcpt6/Cpa3-deficient) exhibited a higher extent of melanoma colonization in lungs as compared to wildtype animals. This was supported by higher expression of melanoma-specific genes in lungs of Mcpt4/Mcpt6/CPA3-deficient vs. wildtype mice. Cytokine profiling showed that the levels of CXCL16, a chemokine with effects on T cell populations and NKT cells, were significantly lower in lungs of Mcpt4/Mcpt6/Cpa3-deficient animals vs. controls, suggesting that multiple mast cell protease deficiency might affect T cell or NKT cell populations. In line with this, we found that the Mcpt4/Mcpt6/Cpa3-deficiency was associated with a reduction in cells expressing CD1d, a MHC class 1-like molecule that is crucial for presenting antigen to invariant NKT (iNKT) cells. Together, these findings indicate a protective role of mast cell-specific proteases in melanoma dissemination, and suggest that this effect involves a CXCL16/CD1d/NKT cell axis.
Collapse
|
168
|
Naskar P, Naqvi N, Puri N. Blocking dephosphorylation at Serine 120 residue in t-SNARE SNAP-23 leads to massive inhibition in exocytosis from mast cells. J Biosci 2018; 43:127-138. [PMID: 29485121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mast cells (MCs) respond to allergen challenge by release of pre-stored inflammatory mediators from their secretory granules, on cross-linking of Fc(epsilon) receptor I (Fc(epsilon)RI) receptors. The target-SNARE (t-SNARE) SNAP-23 has been shown to play an important role in MC exocytosis and undergoes transient phosphorylation at Serine 95 (S95) and Serine 120 (S120), concomitant with mediator release. During current study we explored the importance of transient nature of phosphorylation at S120 in MC exocytosis. A phosphomimetic SNAP-23-S120D mutant of rodent SNAP-23 was cloned into EGFP vector and its effect on the exocytosis and the mechanisms involved was studied in RBL-2H3 MC line. Secretion reporter assay with SNAP-23-S120D transfected MCs revealed a very significant inhibition of exocytosis, and reduced ruffling in response to Fc(epsilon)RI cross-linking. Further, the effect of this mutation on localization of SNAP-23 in MCs was studied. Immunofluorescence microscopy studies and membrane-cytosol fractionation of green fluorescent protein-tagged SNAP- 23-S120D (GFP-SNAP-23-S120D) transfected MCs showed that a large proportion of GFP-SNAP-23-S120D was residing in cytosol unlike wild-type SNAP-23, in resting and activated MCs and even the membrane associated portion was on internal lysosomal membranes than plasma membrane. These studies imply that dephosphorylation of S120 is important for SNAP-23 membrane association dynamics and subsequently MC degranulation.
Collapse
Affiliation(s)
- Pieu Naskar
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
169
|
Fang H, Zhang Y, Li N, Wang G, Liu Z. The Autoimmune Skin Disease Bullous Pemphigoid: The Role of Mast Cells in Autoantibody-Induced Tissue Injury. Front Immunol 2018; 9:407. [PMID: 29545809 PMCID: PMC5837973 DOI: 10.3389/fimmu.2018.00407] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/14/2018] [Indexed: 01/09/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune and inflammatory skin disease associated with subepidermal blistering and autoantibodies directed against the hemidesmosomal components BP180 and BP230. Animal models of BP were developed by passively transferring anti-BP180 IgG into mice, which recapitulates the key features of human BP. By using these in vivo model systems, key cellular and molecular events leading to the BP disease phenotype are identified, including binding of pathogenic IgG to its target, complement activation of the classical pathway, mast cell degranulation, and infiltration and activation of neutrophils. Proteinases released by infiltrating neutrophils cleave BP180 and other hemidesmosome-associated proteins, causing DEJ separation. Mast cells and mast cell-derived mediators including inflammatory cytokines and proteases are increased in lesional skin and blister fluids of BP. BP animal model evidence also implicates mast cells in the pathogenesis of BP. However, recent studies questioned the pathogenic role of mast cells in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and epidermolysis bullosa acquisita. This review highlights the current knowledge on BP pathophysiology with a focus on a potential role for mast cells in BP and mast cell-related critical issues needing to be addressed in the future.
Collapse
Affiliation(s)
- Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Zhang
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Dermatology, The Second Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Ning Li
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhi Liu
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
170
|
Blocking dephosphorylation at Serine 120 residue in t-SNARE SNAP-23 leads to massive inhibition in exocytosis from mast cells. J Biosci 2018. [DOI: 10.1007/s12038-018-9740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
171
|
Yu X, Kasprick A, Hartmann K, Petersen F. The Role of Mast Cells in Autoimmune Bullous Dermatoses. Front Immunol 2018. [PMID: 29541076 PMCID: PMC5835758 DOI: 10.3389/fimmu.2018.00386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Skin mast cells (MCs), a resident immune cell type with broad regulatory capacity, play an important role in sensing danger signals as well as in the control of the local immune response. It is conceivable to expect that skin MCs regulate autoimmune response and are thus involved in autoimmune diseases in the skin, e.g., autoimmune bullous dermatoses (AIBD). Therefore, exploring the role of MCs in AIBD will improve our understanding of the disease pathogenesis and the search for novel therapeutic targets. Previously, in clinical studies with AIBD, particularly bullous pemphigoid, patients' samples have demonstrated that MCs are likely involved in the development of the diseases. However, using MC-deficient mice, studies with mouse models of AIBD have obtained inconclusive or even discrepant results. Therefore, it is necessary to clarify the observed discrepancies and to elucidate the role of MCs in AIBD. Here, in this review, we aim to clarify discrepant findings and finally elucidate the role of MCs in AIBD by summarizing and discussing the findings in both clinical and experimental studies.
Collapse
Affiliation(s)
- Xinhua Yu
- Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karin Hartmann
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Frank Petersen
- Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
172
|
Immunomodulatory and Inhibitory Effect of Immulina ®, and Immunloges ® in the Ig-E Mediated Activation of RBL-2H3 Cells. A New Role in Allergic Inflammatory Responses. PLANTS 2018; 7:plants7010013. [PMID: 29495393 PMCID: PMC5874602 DOI: 10.3390/plants7010013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/22/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022]
Abstract
Immulina®, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis (Spirulina) is a potent activator of innate immune cells. On the other hand, it is well documented that Spirulina exerts anti-inflammatory effects and showed promising effects with respect to the relief of allergic rhinitis symptoms. Taking into account these findings, we decided to elucidate whether Immulina®, and immunLoges® (a commercial available multicomponent nutraceutical with Immulina® as a main ingredient) beyond immune-enhancing effects, might also exert inhibitory effects in the induced allergic inflammatory response and on histamine release from RBL-2H3 mast cells. Our findings show that Immulina® and immunLoges® inhibited the IgE-antigen complex-induced production of TNF-α, IL-4, leukotrienes and histamine. The compound 48/80 stimulated histamine release in RBL-2H3 cells was also inhibited. Taken together, our results showed that Immulina® and immunLoges® exhibit anti-inflammatory properties and inhibited the release of histamine from mast cells.
Collapse
|
173
|
Bonnekoh H, Scheffel J, Kambe N, Krause K. The role of mast cells in autoinflammation. Immunol Rev 2018; 282:265-275. [DOI: 10.1111/imr.12633] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hanna Bonnekoh
- Department of Dermatology and Allergy; Allergie-Centrum-Charité; Charité - Universitätsmedizin Berlin; Berlin Germany
- Autoinflammation Reference Center Charité (ARC2); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Jörg Scheffel
- Department of Dermatology and Allergy; Allergie-Centrum-Charité; Charité - Universitätsmedizin Berlin; Berlin Germany
- Autoinflammation Reference Center Charité (ARC2); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Naotomo Kambe
- Department of Dermatology; Kansai Medical University; Hirakata Japan
- Allergy Center; Kansai Medical University; Hirakata Japan
| | - Karoline Krause
- Department of Dermatology and Allergy; Allergie-Centrum-Charité; Charité - Universitätsmedizin Berlin; Berlin Germany
- Autoinflammation Reference Center Charité (ARC2); Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
174
|
Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev 2018; 282:87-113. [DOI: 10.1111/imr.12629] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank A. Redegeld
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Yingxin Yu
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Nicolas Charles
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
| | - Ulrich Blank
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
- Inflamex Laboratory of Excellence; Paris France
| |
Collapse
|
175
|
New roles and controls of mast cells. Curr Opin Immunol 2018; 50:39-47. [DOI: 10.1016/j.coi.2017.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/14/2022]
|
176
|
Hu Frisk JM, Kjellén L, Kaler SG, Pejler G, Öhrvik H. Copper Regulates Maturation and Expression of an MITF:Tryptase Axis in Mast Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:4132-4141. [PMID: 29127151 PMCID: PMC5728160 DOI: 10.4049/jimmunol.1700786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022]
Abstract
Copper has previously been implicated in the regulation of immune responses, but the impact of this metal on mast cells is poorly understood. In this article, we address this issue and show that copper starvation of mast cells causes increased granule maturation, as indicated by higher proteoglycan content, stronger metachromatic staining, and altered ultrastructure in comparison with nontreated cells, whereas copper overload has the opposite effects. In contrast, copper status did not impact storage of histamine in mast cells, nor did alterations in copper levels affect the ability of mast cells to degranulate in response to IgER cross-linking. A striking finding was decreased tryptase content in mast cells with copper overload, whereas copper starvation increased tryptase content. These effects were associated with corresponding shifts in tryptase mRNA levels, suggesting that copper affects tryptase gene regulation. Mechanistically, we found that alterations in copper status affected the expression of microphthalmia-associated transcription factor, a transcription factor critical for driving tryptase expression. We also found evidence supporting the concept that the effects on microphthalmia-associated transcription factor are dependent on copper-mediated modulation of MAPK signaling. Finally, we show that, in MEDNIK syndrome, a condition associated with low copper levels and a hyperallergenic skin phenotype, including pruritis and dermatitis, the number of tryptase-positive mast cells is increased. Taken together, our findings reveal a hitherto unrecognized role for copper in the regulation of mast cell gene expression and maturation.
Collapse
Affiliation(s)
- Jun Mei Hu Frisk
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Stephen G Kaler
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Helena Öhrvik
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden;
| |
Collapse
|
177
|
Kapur R, Shi J, Ghosh J, Munugalavadla V, Sims E, Martin H, Wei L, Mali RS. ROCK1 via LIM kinase regulates growth, maturation and actin based functions in mast cells. Oncotarget 2017; 7:16936-47. [PMID: 26943578 PMCID: PMC4941361 DOI: 10.18632/oncotarget.7851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/29/2016] [Indexed: 12/31/2022] Open
Abstract
Understanding mast cell development is essential due to their critical role in regulating immunity and autoimmune diseases. Here, we show how Rho kinases (ROCK) regulate mast cell development and can function as therapeutic targets for treating allergic diseases. Rock1 deficiency results in delayed maturation of bone marrow derived mast cells (BMMCs) in response to IL-3 stimulation and reduced growth in response to stem cell factor (SCF) stimulation. Further, integrin-mediated adhesion and migration, and IgE-mediated degranulation are all impaired in Rock1-deficient BMMCs. To understand the mechanism behind altered mast cell development in Rock1-/- BMMCs, we analyzed the activation of ROCK and its downstream targets including LIM kinase (LIMK). We observed reduced activation of ROCK, LIMK, AKT and ERK1/2 in Rock1-deficient BMMCs in response to SCF stimulation. Further, loss of either Limk1 or Limk2 also demonstrated altered BMMC maturation and growth; combined deletion of both Limk1 and Limk2 resulted in further reduction in BMMC maturation and growth. In passive cutaneous anaphylaxis model, deficiency of Rock1 or treatment with ROCK inhibitor Fasudil protected mice against IgE-mediated challenge. Our results identify ROCK/LIMK pathway as a novel therapeutic target for treating allergic diseases involving mast cells.
Collapse
Affiliation(s)
- Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianjian Shi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joydeep Ghosh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Emily Sims
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holly Martin
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lei Wei
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghuveer Singh Mali
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
178
|
Manohar M, Verma AK, Upparahalli Venkateshaiah S, Goyal H, Mishra A. Food-Induced Acute Pancreatitis. Dig Dis Sci 2017; 62:3287-3297. [PMID: 29086330 PMCID: PMC5718054 DOI: 10.1007/s10620-017-4817-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022]
Abstract
Food allergy, a commonly increasing problem worldwide, defined as an adverse immune response to food. A variety of immune-related effector cells such as mast cells, eosinophils, neutrophils, and T cells are involved in food-related allergic responses categorized as IgE mediated, non-IgE mediated, and mixed (IgE and non-IgE) depending upon underlying immunological mechanisms. The dietary antigens mainly target the gastrointestinal tract including pancreas that gets inflamed due to food allergy and leads acute pancreatitis. Reports indicate several food proteins induce pancreatitis; however, detailed underlying mechanism of food-induced pancreatitis is unexplored. The aim of the review is to understand and update the current scenario of food-induced pancreatitis. A comprehensive literature search of relevant research articles has been performed through PubMed, and articles were chosen based on their relevance to food allergen-mediated pancreatitis. Several cases in the literature indicate that acute pancreatitis has been provoked after the consumption of mustard, milk, egg, banana, fish, and kiwi fruits. Food-induced pancreatitis is an ignored and unexplored area of research. The review highlights the significance of food in the development of pancreatitis and draws the attention of physicians and scientists to consider food allergies as a possible cause for initiation of pancreatitis pathogenesis.
Collapse
Affiliation(s)
- Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Alok K Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hemant Goyal
- Department of Internal Medicine, Mercer University School of Medicine, 707 Pine St., Macon, GA, 31201, USA
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
179
|
Moeser AJ, Pohl CS, Rajput M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2017; 3:313-321. [PMID: 29767141 PMCID: PMC5941262 DOI: 10.1016/j.aninu.2017.06.003] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022]
Abstract
The gastrointestinal (GI) barrier serves a critical role in survival and overall health of animals and humans. Several layers of barrier defense mechanisms are provided by the epithelial, immune and enteric nervous systems. Together they act in concert to control normal gut functions (e.g., digestion, absorption, secretion, immunity, etc.) whereas at the same time provide a barrier from the hostile conditions in the luminal environment. Breakdown of these critical GI functions is a central pathophysiological mechanism in the most serious GI disorders in pigs. This review will focus on the development and functional properties of the GI barrier in pigs and how common early life production stressors, such as weaning, can alter immediate and long-term barrier function and disease susceptibility. Specific stress-related pathophysiological mechanisms responsible for driving GI barrier dysfunction induced by weaning and the implications to animal health and performance will be discussed.
Collapse
Affiliation(s)
- Adam J. Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author.
| | - Calvin S. Pohl
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Mrigendra Rajput
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
180
|
Lee HN, Shin SA, Choo GS, Kim HJ, Park YS, Kim BS, Kim SK, Cho SD, Nam JS, Choi CS, Che JH, Park BK, Jung JY. Anti‑inflammatory effect of quercetin and galangin in LPS‑stimulated RAW264.7 macrophages and DNCB‑induced atopic dermatitis animal models. Int J Mol Med 2017; 41:888-898. [PMID: 29207037 PMCID: PMC5752163 DOI: 10.3892/ijmm.2017.3296] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022] Open
Abstract
Flavonols are compounds that have been shown to possess potent anti-inflammatory effects in cellular and animal models of inflammation. In the present study, the anti-inflammatory effects and mechanisms of two natural flavonols, quercetin and galangin, in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were investigated. It was identified that quercetin and galangin markedly reduced the production of nitric oxide (NO), inducible NO synthase and interleukin-6, and the nuclear translocation of nuclear factor-κB (NF-κB). In addition, LPS-induced activation of extracellular signal-regulated kinase 1/2 (Erk1/2) and c-Jun N-terminal kinase (JNK) was suppressed by quercetin and galangin. Taken together, these data implied that NF-κB, Erk1/2 and JNK may be potential molecular targets of quercetin and galangin in an LPS-induced inflammatory response. Subsequently, the effects of oral administration of quercetin or galangin, either alone or in combination, in a 2,4-dinitrochlorobenzene-induced atopic dermatitis (AD) mouse model were investigated. As a result, measurements of ear thickness and the levels of serum immunoglobulin E, and histological analysis revealed that the two flavonols led to a decrease in inflammation, whereas, in combination, they were even more effective. These results suggested that quercetin and galangin may be promising therapeutic agents for AD. Additionally, their combination may be a novel therapeutic strategy for the prevention of AD.
Collapse
Affiliation(s)
- Hae Nim Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Seong Ah Shin
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Gang Sik Choo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Hyeong Jin Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Young Seok Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Byeong Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Sang Ki Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Sung Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Jeong Seok Nam
- Gwangju Institute of Science and Technology, School of Life Sciences, Gwangju 500712, Republic of Korea
| | - Chang Sun Choi
- School of Food Science and Technology, Chung‑Ang University, Ansung 456756, Republic of Korea
| | - Jeong Hwan Che
- Biomedical Center for Animal Resource Development, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Byung Kwon Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Ji Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| |
Collapse
|
181
|
SNARE phosphorylation: a control mechanism for insulin-stimulated glucose transport and other regulated exocytic events. Biochem Soc Trans 2017; 45:1271-1277. [PMID: 29101310 DOI: 10.1042/bst20170202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 11/17/2022]
Abstract
Trafficking within eukaryotic cells is a complex and highly regulated process; events such as recycling of plasma membrane receptors, formation of multivesicular bodies, regulated release of hormones and delivery of proteins to membranes all require directionality and specificity. The underpinning processes, including cargo selection, membrane fusion, trafficking flow and timing, are controlled by a variety of molecular mechanisms and engage multiple families of lipids and proteins. Here, we will focus on control of trafficking processes via the action of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) family of proteins, in particular their regulation by phosphorylation. We will describe how these proteins are controlled in a range of regulated trafficking events, with particular emphasis on the insulin-stimulated delivery of glucose transporters to the surface of adipose and muscle cells. Here, we focus on a few examples of SNARE phosphorylation which exemplify distinct ways in which SNARE machinery phosphorylation may regulate membrane fusion.
Collapse
|
182
|
Kadiri S, Auclair M, Capeau J, Antoine B. Depot-Specific Response of Adipose Tissue to Diet-Induced Inflammation: The Retinoid-Related Orphan Receptor α (RORα) Involved? Obesity (Silver Spring) 2017; 25:1948-1955. [PMID: 28941206 DOI: 10.1002/oby.22006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/22/2017] [Accepted: 08/10/2017] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Epididymal adipose tissue (EAT), a visceral fat depot, is more closely associated with metabolic dysfunction than inguinal adipose tissue (IAT), a subcutaneous depot. This study evaluated whether the nuclear receptor RORα, which controls inflammatory processes, could be implicated. METHODS EAT and IAT were compared in a RORα loss-of-function mouse (sg/sg) and in wild-type (WT) littermates, fed a standard diet (SD) or a Western diet (WD), to evaluate the impact of RORα expression on inflammatory status and on insulin sensitivity (IS) of each fat depot according to the diet. RESULTS Sg/sg mice fed the SD exhibited a decreased inflammatory status and a higher IS in their fat depots than WT mice. WD-induced obesity had distinct effects on the two fat depots. In WT mice, EAT exhibited increased inflammation and insulin resistance while IAT showed reduced inflammation and improved IS, together with a depot-specific increase of RORα, and its target gene IκBα, in the stroma vascular fraction (SVF). Conversely, in sg/sg mice, WD increased inflammation and lowered IS of IAT but not of EAT. CONCLUSIONS These findings suggest an anti-inflammatory role for RORα in response to WD, which occurs at the level of SVF of IAT, thus possibly contributing to the "healthy" expansion of IAT.
Collapse
Affiliation(s)
- Sarah Kadiri
- Sorbonne Universites, UPMC Universite Paris 06, INSERM, CNRS, Centre de Recherces St. Antoine (CRSA), Paris, France
| | - Martine Auclair
- Sorbonne Universites, UPMC Universite Paris 06, INSERM, CNRS, Centre de Recherces St. Antoine (CRSA), Paris, France
| | - Jacqueline Capeau
- Sorbonne Universites, UPMC Universite Paris 06, INSERM, CNRS, Centre de Recherces St. Antoine (CRSA), Paris, France
| | - Bénédicte Antoine
- Sorbonne Universites, UPMC Universite Paris 06, INSERM, CNRS, Centre de Recherces St. Antoine (CRSA), Paris, France
| |
Collapse
|
183
|
Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 2017; 15:11-24. [PMID: 29089606 DOI: 10.1038/nrurol.2017.167] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inflammation promotes the development of several types of solid cancers and might contribute to prostate carcinogenesis. This hypothesis partly originates in the frequent observation of inflammatory cells in the prostate microenvironment of adult men. Inflammation is associated with putative prostate cancer precursor lesions, termed proliferative inflammatory atrophy. Inflammation might drive prostate carcinogenesis via oxidative stress and generation of reactive oxygen species that induce mutagenesis. Additionally, inflammatory stress might cause epigenetic alterations that promote neoplastic transformation. Proliferative inflammatory atrophy is enriched for proliferative luminal epithelial cells of intermediate phenotype that might be prone to genomic alterations leading to prostatic intraepithelial neoplasia and prostate cancer. Studies in animals suggest that inflammatory changes in the prostate microenvironment contribute to reprogramming of prostate epithelial cells, a possible step in tumour initiation. Prostatic infection, concurrent with epithelial barrier disruption, might be a key driver of an inflammatory microenvironment; the discovery of a urinary microbiome indicates a potential source of frequent exposure of the prostate to a diverse number of microorganisms. Hence, current evidence suggests that inflammation and atrophy are involved in prostate carcinogenesis and suggests a role for the microbiome in establishing an inflammatory prostate microenvironment that might promote prostate cancer development and progression.
Collapse
Affiliation(s)
- Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA
| | - William G Nelson
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| |
Collapse
|
184
|
Mast cell involvement in glucose tolerance impairment caused by chronic mild stress with sleep disturbance. Sci Rep 2017; 7:13640. [PMID: 29057915 PMCID: PMC5651881 DOI: 10.1038/s41598-017-14162-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/05/2017] [Indexed: 12/03/2022] Open
Abstract
We have developed a chronic mild stress (MS) mouse model by simply rearing mice on a wire net for 3 weeks and investigated the effects of MS on glucose homeostasis and sleep. MS mice showed impaired glucose tolerance and disturbed sleep. One-week treatment with a histamine H1 receptor antagonist (H1RA) ameliorated the glucose intolerance and improved sleep quality in MS mice. MS mice showed an increased number of mast cells in both adipose tissue and the brain. Inhibition of mast cell function ameliorated the impairment in both glucose tolerance and sleep. Together, these findings indicate that mast cells may represent an important pathophysiological mediator in sleep and energy homeostasis.
Collapse
|
185
|
Naskar P, Puri N. Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis. Biol Open 2017; 6:1257-1269. [PMID: 28784843 PMCID: PMC5612236 DOI: 10.1242/bio.025791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Upon allergen challenge, mast cells (MCs) respond by releasing pre-stored mediators from their secretory granules by the transient mechanism of porosome-mediated cell secretion. The target SNARE SNAP-23 has been shown to be important for MC exocytosis, and our previous studies revealed the presence of one basal (Thr102) and two induced (Ser95 and Ser120) phosphorylation sites in its linker region. To study the role of SNAP-23 phosphorylation in the regulation of exocytosis, green fluorescence protein-tagged wild-type SNAP-23 (GFP-SNAP-23) and its phosphorylation mutants were transfected into rat basophilic leukemia (RBL-2H3) MCs. Studies on GFP-SNAP-23 transfected MCs revealed some dynamic changes in SNAP-23 membrane association. SNAP-23 was associated with plasma membrane in resting MCs, however, on activation a portion of it translocated to cytosol and internal membranes. These internal locations were secretory granule membranes. This dynamic change in the membrane association of SNAP-23 in MCs may be important for mediating internal granule-granule fusions in compound exocytosis. Further studies with SNAP-23 phosphorylation mutants revealed an important role for the phosphorylation at Thr102 in its initial membrane association, and of induced phosphorylation at Ser95 and Ser120 in its internal membrane association, during MC exocytosis. Summary: The current study has revealed the phosphorylation-dependent dynamic nature of membrane association of SNAP-23 for mediation of different fusion steps in compound exocytosis from mast cells during allergen challenge.
Collapse
Affiliation(s)
- Pieu Naskar
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Niti Puri
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
186
|
Bulfone-Paus S, Nilsson G, Draber P, Blank U, Levi-Schaffer F. Positive and Negative Signals in Mast Cell Activation. Trends Immunol 2017; 38:657-667. [DOI: 10.1016/j.it.2017.01.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 01/05/2023]
|
187
|
Yin JJ, Hu XQ, Mao ZF, Bao J, Qiu W, Lu ZQ, Wu HT, Zhong XN. Neutralization of Interleukin-9 Decreasing Mast Cells Infiltration in Experimental Autoimmune Encephalomyelitis. Chin Med J (Engl) 2017; 130:964-971. [PMID: 28397727 PMCID: PMC5407044 DOI: 10.4103/0366-6999.204110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Th9 cells are a newly discovered CD4+ T helper cell subtype, characterized by high interleukin (IL)-9 secretion. Growing evidences suggest that Th9 cells are involved in the pathogenic mechanism of multiple sclerosis (MS). Mast cells are multifunctional innate immune cells, which are perhaps best known for their role as dominant effector cells in allergies and asthma. Several lines of evidence point to an important role for mast cells in MS and its animal models. Simultaneously, there is dynamic “cross-talk” between Th9 and mast cells. The aim of the present study was to examine the IL-9-mast cell axis in experimental autoimmune encephalomyelitis (EAE) and determine its interaction after neutralizing anti-IL-9 antibody treatment. Methods: Female C57BL/6 mice were randomly divided into three groups (n = 5 in each group): mice with myelin oligodendrocyte glycoprotein (MOG)-induced EAE (EAE group), EAE mice treated with anti-IL-9 antibody (anti-IL-9 Abs group), and EAE mice treated with IgG isotype control (IgG group). EAE clinical score was evaluated. Mast cells from central nervous system (CNS) were detected by flow cytometry. The production of chemokine recruiting mast cells in the CNS was explored by reverse transcription-polymerase chain reaction (RT-PCR). In mice with MOG-induced EAE, the expression of IL-9 receptor (IL-9R) complexes in CNS and spleen mast cells was also explored by RT-PCR, and then was repeating validated by immunocytochemistry. In vitro, spleen cells from EAE mice were cultured with anti-IL-9 antibody, and quantity of mast cells was counted by flow cytometry after co-culture. Results: Compared with IgG group, IL-9 blockade delayed clinical disease onset and ameliorated EAE severity (t = −2.217, P = 0.031), accompany with mast cells infiltration decreases (day 5: t = −8.005, P < 0.001; day 15: t = −11.857, P < 0.001; day 20: t = −5.243, P = 0.001) in anti-IL-9 Abs group. The messenger RNA expressions of C-C motif chemokine ligand 5 (t = −5.932, P = 0.003) and vascular cell adhesion molecule-1 (t = −4.029, P = 0.004) were significantly decreased after IL-9 neutralization in anti-IL-9 Abs group, compared with IgG group. In MOG-induced EAE, the IL-9R complexes were expressed in CNS and spleen mast cells. In vitro, splenocytes cultured with anti-IL-9 antibody showed significantly lower levels of mast cells in a dose-dependent manner, compared with splenocytes cultured with anti-mouse IgG (5 μg/ml: t = −0.894, P = 0.397; 10 μg/ml: t = −3.348, P = 0.019; 20 μg/ml: t = −7.639, P < 0.001). Conclusions: This study revealed that IL-9 neutralization reduced mast cell infiltration in CNS and ameliorated EAE, which might be relate to the interaction between IL-9 and mast cells.
Collapse
Affiliation(s)
- Jun-Jie Yin
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xue-Qiang Hu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zhi-Feng Mao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Jian Bao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zheng-Qi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Hao-Tian Wu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiao-Nan Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
188
|
Niu R, Xiao X, Liu B, Li Y, Zhong Y, Ma L. Inhibition of airway inflammation in a cockroach allergen model of asthma by agonists of miRNA-33b. Sci Rep 2017; 7:7409. [PMID: 28785038 PMCID: PMC5547138 DOI: 10.1038/s41598-017-07882-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 07/06/2017] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) play powerful roles in immune function by regulating target genes that mediate cell behavior. It is well known that mast cells have essential effector and immune regulatory functions in IgE-associated allergic disorders and in innate and adaptive immune responses. However, the role of miRNAs in mediating mast cell functions and the relevant mechanisms require further exploration. The roles of miR-33b in airway inflammation and mast cell functions are still unknown. To examine the role of miR-33b in mouse mast cells in cockroach allergen-induced asthma, we developed a lentiviral system for miRNA-33b overexpression to examine whether miRNA-33b mediates airway inflammation by regulating mast cell function and to evaluate the underlying mechanism. The results showed that miR-33b inhibited cockroach allergen-induced asthma in vivo: in particular, it inhibited TH2 cytokine production. In addition, we found that in cells in which miRNA-33b had been transfected, mast cell degranulation was inhibited through suppression of the calcium release and IgE/FcεRI pathway. Our study provides new insight into the roles of miR-33b in asthma and mast cell biology and identifies novel mechanisms that may contribute to mast cell-related pathological conditions in airway inflammation.
Collapse
Affiliation(s)
- Ruichao Niu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Xuping Xiao
- Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410008, P.R. China
| | - Bin Liu
- Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410008, P.R. China
| | - Yunqiu Li
- Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410008, P.R. China
| | - Yu Zhong
- Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410008, P.R. China
| | - Lijuan Ma
- Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410008, P.R. China.
| |
Collapse
|
189
|
Jarido V, Kennedy L, Hargrove L, Demieville J, Thomson J, Stephenson K, Francis H. The emerging role of mast cells in liver disease. Am J Physiol Gastrointest Liver Physiol 2017; 313:G89-G101. [PMID: 28473331 PMCID: PMC5582878 DOI: 10.1152/ajpgi.00333.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 01/31/2023]
Abstract
The depth of our knowledge regarding mast cells has widened exponentially in the last 20 years. Once thought to be only important for allergy-mediated events, mast cells are now recognized to be important regulators of a number of pathological processes. The revelation that mast cells can influence organs, tissues, and cells has increased interest in mast cell research during liver disease. The purpose of this review is to refresh the reader's knowledge of the development, type, and location of mast cells and to review recent work that demonstrates the role of hepatic mast cells during diseased states. This review focuses primarily on liver diseases and mast cells during autoimmune disease, hepatitis, fatty liver disease, liver cancer, and aging in the liver. Overall, these studies demonstrate the potential role of mast cells in disease progression.
Collapse
Affiliation(s)
- Veronica Jarido
- Baylor Scott & White Health and Medicine, Temple, Texas; and
| | - Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Texas A & M Health Science Center, Temple, Texas
| | | | | | - Joanne Thomson
- Research, Central Texas Veterans Health Care System, Temple, Texas
| | | | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas;
- Baylor Scott & White Health and Medicine, Temple, Texas; and
- Texas A & M Health Science Center, Temple, Texas
| |
Collapse
|
190
|
Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, Zahoor H, Saeed D, Natteru PA, Iyer S, Zaheer A. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2017; 11:216. [PMID: 28790893 PMCID: PMC5522882 DOI: 10.3389/fncel.2017.00216] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson’s disease (PD), Alzheimer’s disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1–42 (Aβ1–42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Govindhasamy P Selvakumar
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Smita Zaheer
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Mohammad E Ahmed
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Haris Zahoor
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Daniyal Saeed
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Prashant A Natteru
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Shankar Iyer
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Asgar Zaheer
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| |
Collapse
|
191
|
Abdel-Latif M, El-Shahawi G, Aboelhadid SM, Abdel-Tawab H. Immunoprotective Effect of Chitosan Particles onHymenolepis nana- Infected Mice. Scand J Immunol 2017; 86:83-90. [DOI: 10.1111/sji.12568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/08/2017] [Indexed: 01/04/2023]
Affiliation(s)
- M. Abdel-Latif
- Department of Zoology; Faculty of Science; Beni-Suef University; Beni-Suef Egypt
| | - G. El-Shahawi
- Department of Zoology; Faculty of Science; Beni-Suef University; Beni-Suef Egypt
| | - S. M. Aboelhadid
- Department of Parasitology; Faculty of Veterinary Medicine; Beni-Suef University; Beni-Suef Egypt
| | - H. Abdel-Tawab
- Department of Zoology; Faculty of Science; Beni-Suef University; Beni-Suef Egypt
| |
Collapse
|
192
|
Inaba Y, Kanazawa N, Yoshimasu T, Shimokawa T, Nosaka M, Kondo T, Furukawa F. Severer lupus erythematosus-like skin lesions in MRL/lpr mice with homozygous Kit wsh/wsh mutation. Mod Rheumatol 2017; 28:319-326. [PMID: 28696798 DOI: 10.1080/14397595.2017.1341591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To clarify the roles of mast cells (MCs) on the pathogenesis of lupus erythematosus (LE)-like skin lesions on MRL/lpr mice. METHODS MRL/lpr mice were mated with C57BL/6-Kitwsh/wsh mice and the heterozygous F1 mice were 10 times backcrossed with the parental MRL/lpr to generate MRL/lpr-Kitwsh/wsh mice. MC-deficient MRL/lpr-Kitwsh/wsh mice were compared with MRL/lpr-Kit+/+ and MRL/lpr-Kitwsh/+ mice with intact MCs. RESULTS MRL/lpr-Kitwsh/wsh mice developed skin lesions without infiltrating MCs. As similar skin lesions on MRL/lpr-Kit+/+ mice and MRL/lpr-Kitwsh/+ mice contain comparable number of MCs, these mice were collectively analyzed as MRL/lpr mice with MCs. Compared with MRL/lpr mice with MCs, skin lesions developed earlier and showed consistently higher severity, with significantly higher mRNA expressions of many inflammatory cytokines in the dorsal skin on MRL/lpr mice without MCs. Furthermore, survival rate was significantly lower in MRL/lpr mice without MCs. The number of infiltrating MCs significantly increased in association with the severity of skin lesions in MRL/lpr mice with MCs. CONCLUSIONS These results demonstrated that MCs are infiltrated to suppress the progression of LE-like skin lesions in MRL/lpr mice.
Collapse
Affiliation(s)
- Yutaka Inaba
- a Department of Dermatology , Wakayama Medical University , Wakayama , Japan
| | - Nobuo Kanazawa
- a Department of Dermatology , Wakayama Medical University , Wakayama , Japan
| | - Takashi Yoshimasu
- a Department of Dermatology , Wakayama Medical University , Wakayama , Japan.,b Department of Dermatology , Arida Municipal Hospital , Wakayama , Japan
| | - Toshio Shimokawa
- c Clinical Study Support Center , Wakayama Medical University , Wakayama , Japan
| | - Mizuho Nosaka
- d Department of Forensic Medicine , Wakayama Medical University , Wakayama , Japan
| | - Toshikazu Kondo
- d Department of Forensic Medicine , Wakayama Medical University , Wakayama , Japan
| | - Fukumi Furukawa
- a Department of Dermatology , Wakayama Medical University , Wakayama , Japan
| |
Collapse
|
193
|
Chakraborty S, Kar N, Kumari L, De A, Bera T. Inhibitory effect of a new orally active cedrol-loaded nanostructured lipid carrier on compound 48/80-induced mast cell degranulation and anaphylactic shock in mice. Int J Nanomedicine 2017; 12:4849-4868. [PMID: 28744120 PMCID: PMC5511028 DOI: 10.2147/ijn.s132114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Type I hypersensitivity is an allergic reaction characterized by the overactivity of the immune system provoked by normally harmless substances. Glucocorticoids, anti-histamines, or mast cell stabilizers are the choices of treatment for type I hypersensitivity. Even though these drugs have the anti-allergic effect, they can have several side effects in prolong use. Cedrol is the main bioactive compound of Cedrus atlantica with anti-tumor, anti-oxidative, and platelet-activating factor inhibiting properties. METHODS In this study, the preparation and anti-anaphylactic effect of cedrol-loaded nanostructured lipid carriers (NLCs) were evaluated. NLCs were prepared using Compritol® 888 ATO and triolein as lipid phase and vitamin E d-α-tocopherylpolyethyleneglycol 1000 succinate, soya lecithin, and sodium deoxycholate as nanoparticle stabilizers. RESULTS The average diameter of cedrol-NLCs (CR-NLCs) was 71.2 nm (NLC-C1) and 91.93 nm (NLC-C2). The particle had negative zeta potential values of -31.9 mV (NLC-C1) and -44.5 mV (NLC-C2). Type I anaphylactoid reaction in the animal model is significantly reduced by cedrol and cedrol-NLC. This in vivo activity of cedrol resulted that cedrol suppressed compound 48/80-induced peritoneal mast cell degranulation and histamine release from mast cells. Furthermore, compound 48/80-evoked Ca2+ uptake into mast cells was reduced in a dose-dependent manner by cedrol and cedrol-NLC. Studies confirmed that the inhibition of type I anaphylactoid response in vivo in mice and compound 48/80-induced mast cell activation in vitro are greatly enhanced by the loading of cedrol into the NLCs. The safety of cedrol and CR-NLC was evaluated as selectivity index (SI) with prednisolone and cromolyn sodium as positive control. SI of CR-NLC-C2 was found to be 11.5-fold greater than both prednisolone and cromolyn sodium. CONCLUSION Administration of CR-NLC 24 hours before the onset of anaphylaxis can prevent an anaphylactoid reaction. NLCs could be a promising vehicle for the oral delivery of cedrol to protect anaphylactic reactions.
Collapse
Affiliation(s)
- Shreyasi Chakraborty
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Nabanita Kar
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Leena Kumari
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Asit De
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Tanmoy Bera
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
194
|
Breedveld A, Groot Kormelink T, van Egmond M, de Jong EC. Granulocytes as modulators of dendritic cell function. J Leukoc Biol 2017. [DOI: 10.1189/jlb.4mr0217-048rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
195
|
Hasby Saad MA, Radi DA, Hasby EA. Oral contraceptive pills: Risky or protective in case of Trichinella spiralis infection? Parasite Immunol 2017; 39. [PMID: 28524239 DOI: 10.1111/pim.12444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/16/2017] [Indexed: 02/05/2023]
Abstract
The aim of this study was to investigate how Trichinella spiralis infection can be affected by contraceptive pills in vivo. Methods included six groups of female Wistar rats; healthy, Trichinella infected, receiving combined contraceptive pills (COCPs), receiving progestin only pills (POPs), infected receiving COCPs and infected receiving POPs. Parasite burden was measured; adult worm counts, gravidity, larvae and reproductive capacity index). Histopathological examination, immunohistochemical detection of C-kit+ mast cells and Foxp3+ T-reg. cells in intestinal sections, eosinophils muscle infiltration and CPK level were performed. Rats infected and receiving COCPs showed a significant increase in parasitic burden, and infected receiving POPs showed a significant reduction compared to infected only, with a significant increase in nongravid females (Mean total worms=964.40±55.9, 742±52.63, 686±31.68, larvae/g=5030±198.75, 2490±143.18 and 4126±152,91, respectively). Intestinal sections from infected receiving COCPs showed intact mucosa (though the high inflammatory cells infiltrate), and significant increase in C-kit+ mast cells number and intensity (30.20±4.15 and 60.40±8.29), and Foxp3+ T-reg. cells (10±1.58). Infected receiving POPs showed a significantly less CPK (5886±574.40) and eosinophilic muscle infiltration (58±13.51). Oestrogen-containing pills established a favourable intestinal environment for Trichinella by enhancing Foxp+T-reg. cells and stabilizing C-kit+mast cells, while POPs gave a potential protection with less gravidity, larval burden and eosinophilic infiltrate.
Collapse
Affiliation(s)
- M A Hasby Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - D A Radi
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - E A Hasby
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
196
|
Benedé S, Garrido-Arandia M, Martín-Pedraza L, Bueno C, Díaz-Perales A, Villalba M. Multifactorial Modulation of Food-Induced Anaphylaxis. Front Immunol 2017; 8:552. [PMID: 28559894 PMCID: PMC5432630 DOI: 10.3389/fimmu.2017.00552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023] Open
Abstract
Prevalence of food-induced anaphylaxis increases progressively and occurs in an unpredictable manner, seriously affecting the quality of life of patients. Intrinsic factors including age, physiological, and genetic features of the patient as well as extrinsic factors such as the intake of drugs and exposure to environmental agents modulate this disorder. It has been proven that diseases, such as mastocytosis, defects in HLA, or filaggrin genes, increase the risk of severe allergic episodes. Certain allergen families such as storage proteins, lipid transfer proteins, or parvalbumins have also been linked to anaphylaxis. Environmental factors such as inhaled allergens or sensitization through the skin can exacerbate or trigger acute anaphylaxis. Moreover, the effect of dietary habits such as the early introduction of certain foods in the diet, and the advantage of the breastfeeding remain as yet unresolved. Interaction of allergens with the intestinal cell barrier together with a set of effector cells represents the primary pathways of food-induced anaphylaxis. After an antigen cross-links the IgEs on the membrane of effector cells, a complex intracellular signaling cascade is initiated, which leads cells to release preformed mediators stored in their granules that are responsible for the acute symptoms of anaphylaxis. Afterward, they can also rapidly synthesize lipid compounds such as prostaglandins or leukotrienes. Cytokines or chemokines are also released, leading to the recruitment and activation of immune cells in the inflammatory microenvironment. Multiple factors that affect food-induced anaphylaxis are discussed in this review, paying special attention to dietary habits and environmental and genetic conditions.
Collapse
Affiliation(s)
- Sara Benedé
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Laura Martín-Pedraza
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Bueno
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Mayte Villalba
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
197
|
Acidic pH is essential for maintaining mast cell secretory granule homeostasis. Cell Death Dis 2017; 8:e2785. [PMID: 28492555 PMCID: PMC5584528 DOI: 10.1038/cddis.2017.206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/30/2022]
Abstract
It has been recognized for a long time that the secretory granules of mast cells are acidic, but the functional importance of maintaining an acidic pH in the mast cell granules is not fully understood. Here we addressed this issue by examining the effects of raising the pH of the mast cell secretory granules. Mast cells were incubated with bafilomycin A1, an inhibitor of the vacuolar-type ATPase proton pump. Supporting a role of vacuolar-type ATPase in mast cell granule acidification, bafilomycin A1 treatment caused a robust increase in granule pH. This was accompanied by marked effects on mast cell granules, including swelling and acquisition of vacuole-like morphology. Moreover, bafilomycin A1 caused extensive, yet selective effects on the granule content. These included aberrant processing of pro-carboxypeptidase A3 and a reduction in the level of intracellular histamine, the latter being accompanied by an increase in extracellular histamine. In contrast, the storage of β-hexosaminidase, a prototype lysosomal hydrolase known to be stored in mast cell granules, was not affected by abrogation of granule acidification. Moreover, bafilomycin A1 caused a reduction of tryptase enzymatic activity and appearance of tryptase degradation products. Tryptase inhibition prevented the formation of such degradation products, suggesting that the pH elevation causes tryptase to undergo autoproteolysis. Taken together, our findings reveal that mast cell secretory granule homeostasis is critically dependent on an acidic milieu.
Collapse
|
198
|
Vogel P, Janke L, Gravano DM, Lu M, Sawant DV, Bush D, Shuyu E, Vignali DAA, Pillai A, Rehg JE. Globule Leukocytes and Other Mast Cells in the Mouse Intestine. Vet Pathol 2017; 55:76-97. [PMID: 28494703 DOI: 10.1177/0300985817705174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Only 2 major mast cell (MC) subtypes are commonly recognized in the mouse: the large connective tissue mast cells (CTMCs) and the mucosal mast cells (MMCs). Interepithelial mucosal inflammatory cells, most commonly identified as globule leukocytes (GLs), represent a third MC subtype in mice, which we term interepithelial mucosal mast cells (ieMMCs). This term clearly distinguishes ieMMCs from lamina proprial MMCs (lpMMCs) while clearly communicating their common MC lineage. Both lpMMCs and ieMMCs are rare in normal mouse intestinal mucosa, but increased numbers of ieMMCs are seen as part of type 2 immune responses to intestinal helminth infections and in food allergies. Interestingly, we found that increased ieMMCs were consistently associated with decreased mucosal inflammation and damage, suggesting that they might have a role in controlling helminth-induced immunopathology. We also found that ieMMC hyperplasia can develop in the absence of helminth infections, for example, in Treg-deficient mice, Arf null mice, some nude mice, and certain graft-vs-host responses. Since tuft cell hyperplasia plays a critical role in type 2 immune responses to intestinal helminths, we looked for (but did not find) any direct relationship between ieMMC and tuft cell numbers in the intestinal mucosa. Much remains to be learned about the differing functions of ieMMCs and lpMMCs in the intestinal mucosa, but an essential step in deciphering their roles in mucosal immune responses will be to apply immunohistochemistry methods to consistently and accurately identify them in tissue sections.
Collapse
Affiliation(s)
- Peter Vogel
- 1 Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Laura Janke
- 1 Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Meifen Lu
- 1 Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Deepali V Sawant
- 3 Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dorothy Bush
- 1 Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - E Shuyu
- 4 University of Miami School of Medicine, Miami, FL, USA
| | - Dario A A Vignali
- 3 Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Asha Pillai
- 4 University of Miami School of Medicine, Miami, FL, USA
| | - Jerold E Rehg
- 1 Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
199
|
Reber LL, Sibilano R, Starkl P, Roers A, Grimbaldeston MA, Tsai M, Gaudenzio N, Galli SJ. Imaging protective mast cells in living mice during severe contact hypersensitivity. JCI Insight 2017; 2:92900. [PMID: 28469089 PMCID: PMC5414565 DOI: 10.1172/jci.insight.92900] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 01/22/2023] Open
Abstract
Contact hypersensitivity (CHS) is a common skin disease induced by epicutaneous sensitization to haptens. Conflicting results have been obtained regarding pathogenic versus protective roles of mast cells (MCs) in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. Here we describe a fluorescent imaging approach that enables in vivo selective labeling and tracking of MC secretory granules by real-time intravital 2-photon microscopy in living mice, and permits the identification of such MCs as a potential source of cytokines in different disease models. We show using this method that dermal MCs release their granules progressively into the surrounding microenvironment, but also represent an initial source of the antiinflammatory cytokine IL-10, during the early phase of severe CHS reactions. Finally, using 3 different types of MC-deficient mice, as well as mice in which IL-10 is ablated specifically in MCs, we show that IL-10 production by MCs can significantly limit the inflammation and tissue pathology observed in severe CHS reactions.
Collapse
Affiliation(s)
- Laurent L. Reber
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France; INSERM, U1222, Paris, France
- Department of Pathology
| | - Riccardo Sibilano
- Department of Pathology
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California, USA
| | - Philipp Starkl
- Department of Pathology
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Axel Roers
- Institute for Immunology, University of Technology Dresden, Medical Faculty Carl-Gustav Carus, Dresden, Germany
| | | | - Mindy Tsai
- Department of Pathology
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California, USA
| | - Nicolas Gaudenzio
- Department of Pathology
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California, USA
| | - Stephen J. Galli
- Department of Pathology
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California, USA
- Department of Microbiology & Immunology Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
200
|
Jin M, Kim S, Qin N, Chen X, Ji N, Tang SA, Kong D, Lee E, Duan H. 1,6-O,O-Diacetylbritannilactone suppresses activation of mast cell and airway hyper-responsiveness. Immunopharmacol Immunotoxicol 2017; 39:173-179. [PMID: 28447503 DOI: 10.1080/08923973.2017.1318911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mast cells play critical roles in allergic disorders such as atopic dermatitis and allergic asthma. The aim of this study was to investigate the anti-inflammatory and anti-asthmatic activities of 1,6-O,O-diacetylbritannilactone (OODBL) isolated from Inula japonica Thunb. (I. japonica) in a murine asthma model and bone marrow-derived mast cells (BMMCs). In an ovalbumin-induced asthma model, OODBL administration attenuated the airway hyper-responsiveness induced by aerosolized methacholine and serum IgE level in asthmatic mice. In vitro system, we found that OODBL reduced leukotriene C4 production and degranulation through the suppression of cytosolic phospholipase A2 phosphorylation and phospholipase Cγ-mediated Ca2+ influx in IgE/antigen-stimulated BMMCs. Taken together, OODBL may have therapeutic potential in the treatment of allergic diseases such as asthma.
Collapse
Affiliation(s)
- Meihua Jin
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China
| | - Sungun Kim
- b Traditional Korean Medicine Technology Division, National Development Institute of Korean Medicine , Gyeongsan , Republic of Korea
| | - Nan Qin
- c Research Center of Basic Medical Sciences, Tianjin Medical University , Tianjin , People's Republic of China
| | - Xi Chen
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China.,d Tianjin Key Laboratory of Ophthalmology and Visual Science , Tianjin Eye Hospital , Tianjin , People's Republic of China
| | - Ning Ji
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China
| | - Sheng-An Tang
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China
| | - Dexin Kong
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China.,c Research Center of Basic Medical Sciences, Tianjin Medical University , Tianjin , People's Republic of China
| | - Eunkyung Lee
- b Traditional Korean Medicine Technology Division, National Development Institute of Korean Medicine , Gyeongsan , Republic of Korea
| | - Hongquan Duan
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China.,c Research Center of Basic Medical Sciences, Tianjin Medical University , Tianjin , People's Republic of China
| |
Collapse
|