151
|
Bhattacharjee O, Ayyangar U, Kurbet AS, Ashok D, Raghavan S. Unraveling the ECM-Immune Cell Crosstalk in Skin Diseases. Front Cell Dev Biol 2019; 7:68. [PMID: 31134198 PMCID: PMC6514232 DOI: 10.3389/fcell.2019.00068] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins and proteoglycans secreted by keratinocytes, fibroblasts and immune cells. The function of the skin ECM has expanded from being a scaffold that provides structural integrity, to a more dynamic entity that is constantly remodeled to maintain tissue homeostasis. The ECM functions as ligands for cell surface receptors such as integrins, dystroglycans, and toll-like receptors (TLRs) and regulate cellular signaling and immune cell dynamics. The ECM also acts as a sink for growth factors and cytokines, providing critical cues during epithelial morphogenesis. Dysregulation in the organization and deposition of ECMs lead to a plethora of pathophysiological conditions that are exacerbated by aberrant ECM-immune cell interactions. In this review, we focus on the interplay between ECM and immune cells in the context of skin diseases and also discuss state of the art therapies that target the key molecular players involved.
Collapse
Affiliation(s)
- Oindrila Bhattacharjee
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Uttkarsh Ayyangar
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Ambika S. Kurbet
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Driti Ashok
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Srikala Raghavan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| |
Collapse
|
152
|
Pollaris L, Van Den Broucke S, Decaesteker T, Cremer J, Seys S, Devos FC, Provoost S, Maes T, Verbeken E, Vande Velde G, Nemery B, Hoet PHM, Vanoirbeek JAJ. Dermal exposure determines the outcome of repeated airway exposure in a long-term chemical-induced asthma-like mouse model. Toxicology 2019; 421:84-92. [PMID: 31071364 DOI: 10.1016/j.tox.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/24/2019] [Accepted: 05/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Exposure to diisocyanates is an important cause of occupational asthma (OA) in the industrialized world. Since OA occurs after long-term exposure to diisocyanates, we developed a chronic mouse model of chemical-induced asthma where toluene diisocyanate (TDI) was administered at two different exposure sites. OBJECTIVES Evaluating the effect of long-term respiratory isocyanate exposure - with or without prior dermal exposure- on sensitization, inflammatory responses and airway hyperreactivity (AHR). METHODS On days 1 and 8, BALB/c mice were dermally treated (20 μl/ear) with 0.5% 2,4-toluene diisocyanate TDI or the vehicle acetone olive oil (AOO) (3:2). Starting from day 15, mice received intranasal instillations with 0.1% TDI of vehicle five times in a week, for five successive weeks. One day after the last instillation airway hyperreactivity (AHR) to methacholine was assessed, followed by an evaluation of pulmonary inflammation and structural lung changes. Immune-related parameters were assessed in the lungs (BAL and tissue), blood, cervical- and auricular lymph nodes. RESULTS Mice repeatedly intranasally exposed to TDI showed systemic sensitization and a mixed Th1/Th2 type immune response, without the presence of AHR. However, when mice are first dermally sensitized with TDI, followed by repeated intranasal TDI challenges, this results in a pronounced Th2 response and AHR. CONCLUSION Dermal exposure to TDI determines airway hyperreactivity after repeated airway exposure to TDI.
Collapse
Affiliation(s)
- Lore Pollaris
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Sofie Van Den Broucke
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Tatjana Decaesteker
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Sven Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Fien C Devos
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Sharen Provoost
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Erik Verbeken
- Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | | | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Peter H M Hoet
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
| |
Collapse
|
153
|
Cioplea M, Caruntu C, Zurac S, Bastian A, Sticlaru L, Cioroianu A, Boda D, Jugulete G, Nichita L, Popp C. Dendritic cell distribution in mycosis fungoides vs. inflammatory dermatosis and other T-cell skin lymphoma. Oncol Lett 2019; 17:4055-4059. [PMID: 30944598 PMCID: PMC6444333 DOI: 10.3892/ol.2019.10097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/10/2019] [Indexed: 01/05/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells with an important role in the innate and adaptive immune system. In skin lesions, cutaneous DCs (Langerhans cells, dermal DCs and plasmacytoid DCs) are involved in immune activation in inflammatory benign lesions, as well as in malignant lymphoid proliferations. Density and distribution of DCs in the dermal infiltrate can be helpful to differentiate benign, reactive infiltrate from malignant nature of the lymphoid population. We performed a retrospective study including 149 patients: 35 with mycosis fungoides, 35 with spongiotic dermatitis, 35 with psoriasis, 35 with lupus and 9 with cutaneous T-cell lymphomas (other than mycosis fungoides), diagnosed using histopathological and immunohistochemical stains. Density and distribution of DCs were evaluated using specific markers (CD1a, CD11c and langerin). In all cases, numerous DCs were identified in the dermal infiltrate. Their number was significantly increased in mycosis fungoides and T-cell lymphomas and moderately increased in inflammatory lesions. Variable patterns of distribution were identified such as clusters of DCs with arachnoid extension in mycosis fungoides, nodular pattern in inflammatory lesions and dispersed distribution with peripheric accumulation in T-skin lymphomas. Therefore, immunohistochemical characterization of DC distribution can be an adjuvant tool in differential diagnosis in inflammatory dermatosis and skin lymphomas.
Collapse
Affiliation(s)
- Mirela Cioplea
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Costin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Bastian
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Liana Sticlaru
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Alexandra Cioroianu
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Daniel Boda
- Excellence Center in Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute of Diabetes, Nutrition and Metabolic Diseases ‘Prof. Dr. Nicolae Paulescu’, 020475 Bucharest, Romania
| | - Gheorghita Jugulete
- Department of Infectious Diseases, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute of Infectious Diseases ‘Prof. Dr. Matei Bals’, 021105 Bucharest, Romania
| | - Luciana Nichita
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristiana Popp
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| |
Collapse
|
154
|
Richmond JM, Strassner JP, Essien KI, Harris JE. T-cell positioning by chemokines in autoimmune skin diseases. Immunol Rev 2019; 289:186-204. [PMID: 30977191 PMCID: PMC6553463 DOI: 10.1111/imr.12762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Autoimmune skin diseases are complex processes in which autoreactive cells must navigate through the skin tissue to find their targets. Regulatory T cells in the skin help to mitigate autoimmune inflammation and may in fact be responsible for the patchy nature of these conditions. In this review, we will discuss chemokines that are important for global recruitment of T cell populations to the skin during disease, as well as signals that fine-tune their localization and function. We will describe prototypical disease responses and chemokine families that mediate these responses. Lastly, we will include an overview of chemokine-targeting drugs that have been tested as new treatment strategies for autoimmune skin diseases.
Collapse
Affiliation(s)
- Jillian M Richmond
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - James P Strassner
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - Kingsley I Essien
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - John E Harris
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| |
Collapse
|
155
|
Sugiura D, Maruhashi T, Okazaki IM, Shimizu K, Maeda TK, Takemoto T, Okazaki T. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science 2019; 364:558-566. [DOI: 10.1126/science.aav7062] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/05/2019] [Indexed: 12/14/2022]
Abstract
Targeted blockade of PD-1 with immune checkpoint inhibitors can activate T cells to destroy tumors. PD-1 is believed to function mainly at the effector, but not in the activation, phase of T cell responses, yet how PD-1 function is restricted at the activation stage is currently unknown. Here we demonstrate that CD80 interacts with PD-L1 in cis on antigen-presenting cells (APCs) to disrupt PD-L1/PD-1 binding. Subsequently, PD-L1 cannot engage PD-1 to inhibit T cell activation when APCs express substantial amounts of CD80. In knock-in mice in which cis-PD-L1/CD80 interactions do not occur, tumor immunity and autoimmune responses were greatly attenuated by PD-1. These findings indicate that CD80 on APCs limits the PD-1 coinhibitory signal, while promoting CD28-mediated costimulation, and highlight critical components for induction of optimal immune responses.
Collapse
|
156
|
Janela B, Patel AA, Lau MC, Goh CC, Msallam R, Kong WT, Fehlings M, Hubert S, Lum J, Simoni Y, Malleret B, Zolezzi F, Chen J, Poidinger M, Satpathy AT, Briseno C, Wohn C, Malissen B, Murphy KM, Maini AA, Vanhoutte L, Guilliams M, Vial E, Hennequin L, Newell E, Ng LG, Musette P, Yona S, Hacini-Rachinel F, Ginhoux F. A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGFα-Mediated Recruitment of Neutrophils. Immunity 2019; 50:1069-1083.e8. [PMID: 30926233 DOI: 10.1016/j.immuni.2019.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 01/15/2023]
Abstract
Skin conventional dendritic cells (cDCs) exist as two distinct subsets, cDC1s and cDC2s, which maintain the balance of immunity to pathogens and tolerance to self and microbiota. Here, we examined the roles of dermal cDC1s and cDC2s during bacterial infection, notably Propionibacterium acnes (P. acnes). cDC1s, but not cDC2s, regulated the magnitude of the immune response to P. acnes in the murine dermis by controlling neutrophil recruitment to the inflamed site and survival and function therein. Single-cell mRNA sequencing revealed that this regulation relied on secretion of the cytokine vascular endothelial growth factor α (VEGF-α) by a minor subset of activated EpCAM+CD59+Ly-6D+ cDC1s. Neutrophil recruitment by dermal cDC1s was also observed during S. aureus, bacillus Calmette-Guérin (BCG), or E. coli infection, as well as in a model of bacterial insult in human skin. Thus, skin cDC1s are essential regulators of the innate response in cutaneous immunity and have roles beyond classical antigen presentation.
Collapse
Affiliation(s)
- Baptiste Janela
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A(∗)STAR), 11 Mandalay Rd., Singapore 308232, Singapore
| | - Amit A Patel
- Division of Medicine, University College London, University of London, London WC1E 6BT, England, UK
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Rasha Msallam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Michael Fehlings
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Sandra Hubert
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Yannick Simoni
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Nestlé Skin Health R&D/GALDERMA, La Tour-de-Peilz 1814, Switzerland
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Ansuman T Satpathy
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Carlos Briseno
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Christian Wohn
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille 13288, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille 13288, France; Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille 13288, France
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Alexander A Maini
- Division of Medicine, University College London, University of London, London WC1E 6BT, England, UK
| | - Leen Vanhoutte
- Transgenic Mouse Core Facility, VIB-UGnet Center for Inflammation Research, Technologiepark 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, Ghent 9052, Belgium
| | - Martin Guilliams
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, Ghent 9052, Belgium; Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGnet Center for Inflammation Research, Technologiepark 71, Ghent 9052, Belgium
| | - Emmanuel Vial
- Nestlé Skin Health R&D/GALDERMA, La Tour-de-Peilz 1814, Switzerland
| | | | - Evan Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Philippe Musette
- Department of Dermatology, Avicenne Hospital and INSERM U1125, Bobigny 93000, France
| | - Simon Yona
- Division of Medicine, University College London, University of London, London WC1E 6BT, England, UK
| | | | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A(∗)STAR), 11 Mandalay Rd., Singapore 308232, Singapore.
| |
Collapse
|
157
|
Backer RA, Diener N, Clausen BE. Langerin +CD8 + Dendritic Cells in the Splenic Marginal Zone: Not So Marginal After All. Front Immunol 2019; 10:741. [PMID: 31031751 PMCID: PMC6474365 DOI: 10.3389/fimmu.2019.00741] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) fulfill an essential sentinel function within the immune system, acting at the interface of innate and adaptive immunity. The DC family, both in mouse and man, shows high functional heterogeneity in order to orchestrate immune responses toward the immense variety of pathogens and other immunological threats. In this review, we focus on the Langerin+CD8+ DC subpopulation in the spleen. Langerin+CD8+ DC exhibit a high ability to take up apoptotic/dying cells, and therefore they are essential to prime and shape CD8+ T cell responses. Next to the induction of immunity toward blood-borne pathogens, i.e., viruses, these DC are important for the regulation of tolerance toward cell-associated self-antigens. The ontogeny and differentiation pathways of CD8+CD103+ DC should be further explored to better understand the immunological role of these cells as a prerequisite of their therapeutic application.
Collapse
Affiliation(s)
- Ronald A Backer
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nathalie Diener
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn E Clausen
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
158
|
The Dynamics of the Skin's Immune System. Int J Mol Sci 2019; 20:ijms20081811. [PMID: 31013709 PMCID: PMC6515324 DOI: 10.3390/ijms20081811] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The skin is a complex organ that has devised numerous strategies, such as physical, chemical, and microbiological barriers, to protect the host from external insults. In addition, the skin contains an intricate network of immune cells resident to the tissue, crucial for host defense as well as tissue homeostasis. In the event of an insult, the skin-resident immune cells are crucial not only for prevention of infection but also for tissue reconstruction. Deregulation of immune responses often leads to impaired healing and poor tissue restoration and function. In this review, we will discuss the defensive components of the skin and focus on the function of skin-resident immune cells in homeostasis and their role in wound healing.
Collapse
|
159
|
Hayes AJ, Rane S, Scales HE, Meehan GR, Benson RA, Maroof A, Schroeder J, Tomura M, Gozzard N, Yates AJ, Garside P, Brewer JM. Spatiotemporal Modeling of the Key Migratory Events During the Initiation of Adaptive Immunity. Front Immunol 2019; 10:598. [PMID: 31024523 PMCID: PMC6460458 DOI: 10.3389/fimmu.2019.00598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Initiation of adaptive immunity involves distinct migratory cell populations coming together in a highly dynamic and spatially organized process. However, we lack a detailed spatiotemporal map of these events due to our inability to track the fate of cells between anatomically distinct locations or functionally identify cell populations as migratory. We used photo-convertible transgenic mice (Kaede) to spatiotemporally track the fate and composition of the cell populations that leave the site of priming and enter the draining lymph node to initiate immunity. We show that following skin priming, the lymph node migratory population is principally composed of cells recruited to the site of priming, with a minor contribution from tissue resident cells. In combination with the YAe/Eα system, we also show that the majority of cells presenting antigen are CD103+CD11b+ dendritic cells that were recruited to the site of priming during the inflammatory response. This population has previously only been described in relation to mucosal tissues. Comprehensive phenotypic profiling of the cells migrating from the skin to the draining lymph node by mass cytometry revealed that in addition to dendritic cells, the migratory population also included CD4+ and CD8+ T cells, B cells, and neutrophils. Taking our complex spatiotemporal data set, we then generated a model of cell migration that quantifies and describes the dynamics of arrival, departure, and residence times of cells at the site of priming and in the draining lymph node throughout the time-course of the initiation of adaptive immunity. In addition, we have identified the mean migration time of migratory dendritic cells as they travel from the site of priming to the draining lymph node. These findings represent an unprecedented, detailed and quantitative map of cell dynamics and phenotypes during immunization, identifying where, when and which cells to target for immunomodulation in autoimmunity and vaccination strategies.
Collapse
Affiliation(s)
- Alan J Hayes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Sanket Rane
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom.,Department of Pathology and Cell Biology, Columbia University Medical Centre, New York, NY, United States
| | - Hannah E Scales
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Gavin R Meehan
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Robert A Benson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | | | - Juliane Schroeder
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | | | - Andrew J Yates
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom.,Department of Pathology and Cell Biology, Columbia University Medical Centre, New York, NY, United States
| | - Paul Garside
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
160
|
Wang Y, Edelmayer R, Wetter J, Salte K, Gauvin D, Leys L, Paulsboe S, Su Z, Weinberg I, Namovic M, Gauld SB, Honore P, Scott VE, McGaraughty S. Monocytes/Macrophages play a pathogenic role in IL-23 mediated psoriasis-like skin inflammation. Sci Rep 2019; 9:5310. [PMID: 30926837 PMCID: PMC6441056 DOI: 10.1038/s41598-019-41655-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease that affects millions worldwide. Studying immune cells involved in psoriasis pathogenesis is essential to identify effective and safe therapeutics for the disease. Using human psoriasis skin, activated macrophages were observed in both lesional and non-lesional skin, but were elevated in lesional skin. Activation of the IL-23/IL-17 pathway is integral to the development of psoriasis. To further characterize the monocyte/macrophage (Mon/Mac) population when the IL-23 pathway is activated, a murine model of intradermal injection of IL-23 was used. Flow cytometry revealed that Mon/Mac cells were the dominant immune population, particularly late in the model, highlighted by strong presence of Ly6ChiMHC IIhi cells. The Mon/Mac cells were also shown to have high expression for TNFα but not IL-17A. Prophylactic dosing of a CSF-1R inhibitor to deplete Mon/Mac cells significantly reduced several inflammatory mediators from the skin tissue suggesting a pathogenic role for Mon/Mac. Treatment dosing of the inhibitor produced a less robust effect. Mon/Mac cells were also differentiated by levels of Ki67 and TNFα expression. These data point to an important contribution of Mon/Mac cells in IL-23 related skin inflammation and suggest that these cells are a significant player in the underlying pathophysiology of psoriasis.
Collapse
Affiliation(s)
- Yibing Wang
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA.
| | - Rebecca Edelmayer
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Joe Wetter
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Katherine Salte
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Donna Gauvin
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Laura Leys
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Stephanie Paulsboe
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Zhi Su
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Isaac Weinberg
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Marian Namovic
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Stephen B Gauld
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Prisca Honore
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Victoria E Scott
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Steve McGaraughty
- Dermatology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| |
Collapse
|
161
|
Tintelnot J, Ufer F, Engler JB, Winkler H, Lücke K, Mittrücker HW, Friese MA. Arc/Arg3.1 defines dendritic cells and Langerhans cells with superior migratory ability independent of phenotype and ontogeny in mice. Eur J Immunol 2019; 49:724-736. [PMID: 30786014 DOI: 10.1002/eji.201847797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/14/2018] [Accepted: 02/18/2019] [Indexed: 01/22/2023]
Abstract
The key function of migratory dendritic cells (migDCs) is to take up antigens in peripheral tissues and migrate to draining lymph nodes (dLN) to initiate immune responses. Recently, we discovered that in the mouse immune system activity-regulated cytoskeleton associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) is exclusively expressed by migDCs and is a central driver of fast inflammatory migration. However, the frequency of Arc/Arg3.1-expressing cells in different migDC subsets and Langerhans cells (LCs), their phylogenetic origin, transcription factor dependency, and functional role remain unclear. Here, we found that Arc/Arg3.1+ migDCs derived from common DC precursors and radio-resistant LCs. We detected Arc/Arg3.1+ migDCs in varying frequencies within each migDC subset and LCs. Consistently, they showed superiority in inflammatory migration. Arc/Arg3.1 expression was independent of the transcription factors Irf4 or Batf3 in vivo. In intradermal Staphylococcus aureus infection that relies on inflammatory antigen transport, Arc/Arg3.1 deletion reduced T-cell responses. By contrast, Arc/Arg3.1 deficiency did not hamper the immune response to systemic Listeria monocytogenes infection, which does not require antigen transport. Thus, Arc/Arg3.1 expression is independent of ontogeny and phenotype and although it is restricted to a small fraction within each migDC subset and LCs, Arc/Arg3.1+ migDCs are important to facilitate infectious migration.
Collapse
Affiliation(s)
- Joseph Tintelnot
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Ufer
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hana Winkler
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Karsten Lücke
- Institut für Immunologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
162
|
Qin S, Zheng JH, Xia ZH, Qian J, Deng CL, Yang SL. CTHRC1 promotes wound repair by increasing M2 macrophages via regulating the TGF-β and notch pathways. Biomed Pharmacother 2019; 113:108594. [PMID: 30849639 DOI: 10.1016/j.biopha.2019.01.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
The healing of acute wounds is vital to humans and is a well-orchestrated process that involves systemic and local factors. However, there is a lack of effective and safe clinical therapies. The collagen triple helix repeat containing 1 (CTHRC1) protein is a type of exocrine protein that has been recently reported to contribute to tissue repair. Our aim is to validate the promoting effects of CTHRC1 on the healing of acute wounds and to elucidate the underlying molecular mechanism. Therefore, we first established acute wound healing mouse models and confirmed that CTHRC1 accelerates the healing process of acute wounds. Then, we characterized wound macrophages using a polyvinylalcohol (PVA) sponge model and used Western blotting to investigate the molecular mechanism. We found that CTHRC1 increased the M2 macrophage population and the TGF-β expression level as a result of the activation of the TGF-β and Notch pathways, which eventually contributed to the promotion of wound healing. Inhibition of the Notch pathway showed attenuated M2 macrophage recruitment, and it decreased the TGF-β expression level. These results substantiate our hypothesis that CTHRC1 promotes wound healing by recruiting M2 macrophages and regulating the TGF-β and Notch pathways.
Collapse
Affiliation(s)
- Shu Qin
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Jiang-Hong Zheng
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Zi-Huan Xia
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Jin Qian
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Chen-Liang Deng
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Song-Lin Yang
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
163
|
Jones AT, Shen X, Walter KL, LaBranche CC, Wyatt LS, Tomaras GD, Montefiori DC, Moss B, Barouch DH, Clements JD, Kozlowski PA, Varadarajan R, Amara RR. HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge. Nat Commun 2019; 10:798. [PMID: 30778066 PMCID: PMC6379385 DOI: 10.1038/s41467-019-08739-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/25/2019] [Indexed: 02/08/2023] Open
Abstract
The oral mucosa is an attractive site for mucosal vaccination, however the thick squamous epithelium limits antigen uptake. Here we utilize a modified needle-free injector to deliver immunizations to the sublingual and buccal (SL/B) tissue of rhesus macaques. Needle-free SL/B vaccination with modified vaccinia Ankara (MVA) and a recombinant trimeric gp120 protein generates strong vaccine-specific IgG responses in serum as well as vaginal, rectal and salivary secretions. Vaccine-induced IgG responses show a remarkable breadth against gp70-V1V2 sequences from multiple clades of HIV-1. In contrast, topical SL/B immunizations generates minimal IgG responses. Following six intrarectal pathogenic SHIV-SF162P3 challenges, needle-free but not topical immunization results in a significant delay of acquisition of infection. Delay of infection correlates with non-neutralizing antibody effector function, Env-specific CD4+ T-cell responses, and gp120 V2 loop specific antibodies. These results demonstrate needle-free MVA/gp120 oral vaccination as a practical and effective route to induce protective immunity against HIV-1.
Collapse
Affiliation(s)
- Andrew T Jones
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, 30329, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Korey L Walter
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Linda S Wyatt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 8638, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Rama Rao Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, 30329, USA.
| |
Collapse
|
164
|
Paaso A, Jaakola A, Syrjänen S, Louvanto K. From HPV Infection to Lesion Progression: The Role of HLA Alleles and Host Immunity. Acta Cytol 2019; 63:148-158. [PMID: 30783048 DOI: 10.1159/000494985] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 01/27/2023]
Abstract
Persistent high-risk human papillomavirus (HPV) infection has been associated with increased risk for cervical precancerous lesions and cancer. The host's genetic variability is known to play a role in the development of cervical cancer. The human leukocyte antigen (HLA) genes are highly polymorphic and have shown to be important risk determinants of HPV infection persistence and disease progression. HLA class I and II cell surface molecules regulate the host's immune system by presenting HPV-derived peptides to T-cells. The activation of T-cell response may vary depending on the HLA allele polymorphism. The engagement of the T-cell receptor with the HPV peptide-HLA complex to create an active costimulatory signal is essential for the activation of the T-cell response. Functional peptide presentation by both HLA class I and II molecules is needed to activate efficient helper and effector T-cell responses in HPV infection recognition and clearance. Some of these HLA risk alleles could also be used as preventive tools in the detection of HPV-induced cervical lesions and cancer. These HLA alleles, together with HPV vaccines, could potentially offer possible solutions for reducing HPV-induced cervical cancer as well as other HPV-related cancers.
Collapse
Affiliation(s)
- Anna Paaso
- Department of Oral Pathology, Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland,
- Department of Obstetrics and Gynecology, Turku University Hospital, University of Turku, Turku, Finland,
| | - Anna Jaakola
- Department of Obstetrics and Gynecology, Turku University Hospital, University of Turku, Turku, Finland
- Department of Obstetrics and Gynecology, Kymenlaakso Central Hospital, Kotka, Finland
| | - Stina Syrjänen
- Department of Oral Pathology, Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
| | - Karolina Louvanto
- Department of Oral Pathology, Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland
- Department of Obstetrics and Gynecology, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
165
|
Esteves E, Bizzarro B, Costa FB, Ramírez-Hernández A, Peti APF, Cataneo AHD, Wowk PF, Timóteo RP, Labruna MB, Silva Junior PI, Silva CL, Faccioli LH, Fogaça AC, Sorgi CA, Sá-Nunes A. Amblyomma sculptum Salivary PGE 2 Modulates the Dendritic Cell- Rickettsia rickettsii Interactions in vitro and in vivo. Front Immunol 2019; 10:118. [PMID: 30778355 PMCID: PMC6369204 DOI: 10.3389/fimmu.2019.00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Amblyomma sculptum is an important vector of Rickettsia rickettsii, causative agent of Rocky Mountain spotted fever and the most lethal tick-borne pathogen affecting humans. To feed on the vertebrate host's blood, A. sculptum secretes a salivary mixture, which may interact with skin resident dendritic cells (DCs) and modulate their function. The present work was aimed at depicting the A. sculptum saliva-host DC network and the biochemical nature of the immunomodulatory component(s) involved in this interface. A. sculptum saliva inhibits the production of inflammatory cytokines by murine DCs stimulated with LPS. The fractionation of the low molecular weight salivary content by reversed-phase chromatography revealed active fractions eluting from 49 to 55% of the acetonitrile gradient. Previous studies suggested that this pattern of elution matches with that observed for prostaglandin E2 (PGE2) and the molecular identity of this lipid mediator was unambiguously confirmed by a new high-resolution mass spectrometry methodology. A productive infection of murine DCs by R. rickettsii was demonstrated for the first time leading to proinflammatory cytokine production that was inhibited by both A. sculptum saliva and PGE2, a result also achieved with human DCs. The adoptive transfer of murine DCs incubated with R. rickettsii followed by treatment with A. sculptum saliva or PGE2 did not change the cytokine profile associated to cellular recall responses while IgG2a-specific antibodies were decreased in the serum of these mice. Together, these findings emphasize the role of PGE2 as a universal immunomodulator of tick saliva. In addition, it contributes to new approaches to explore R. rickettsii-DC interactions both in vitro and in vivo.
Collapse
Affiliation(s)
- Eliane Esteves
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Bizzarro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francisco Borges Costa
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Alejandro Ramírez-Hernández
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Ferranti Peti
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Pryscilla Fanini Wowk
- Laboratory of Molecular Virology, Carlos Chagas Institute, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Rodolfo Pessato Timóteo
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Marcelo Bahia Labruna
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Célio Lopes Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Andréa Cristina Fogaça
- Department de Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| | - Carlos Arterio Sorgi
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| |
Collapse
|
166
|
Uttarkar S, Brembilla NC, Boehncke WH. Regulatory cells in the skin: Pathophysiologic role and potential targets for anti-inflammatory therapies. J Allergy Clin Immunol 2019; 143:1302-1310. [PMID: 30664891 DOI: 10.1016/j.jaci.2018.12.1011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
Abstract
Inflammation is a fundamental defense mechanism to protect the body from danger, which becomes potentially harmful if it turns chronic. Therapeutic strategies aimed at specifically blocking proinflammatory signals, particularly cytokines, such as IL-4, IL-6, IL-13, IL-17A, or TNF-α, have substantially improved our ability to effectively and safely treat chronic inflammatory diseases. Much less effort has been made to better understand the role of potential anti-inflammatory mechanisms. Here we summarize the current understanding of regulatory cell populations in the context of chronic inflammation, namely macrophages, Langerhans cells, myeloid-derived suppressor cells, and regulatory T and B lymphocytes. Emphasis is given to the skin because many different immune-related diseases occur in the skin. Development, phenotype, function, and evidence for their role in animal models of inflammation, as well as in the corresponding human diseases, are described. Finally, the feasibility of using regulatory cells as targets for potentially disease-modifying therapeutic strategies is discussed.
Collapse
Affiliation(s)
- Sagar Uttarkar
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, Geneva University Hospitals and School of Medicine, Geneva, Switzerland.
| |
Collapse
|
167
|
Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight 2019; 4:123947. [PMID: 30626752 DOI: 10.1172/jci.insight.123947] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the skin, complex cellular networks maintain barrier function and immune homeostasis. Tightly regulated multicellular cascades are required to initiate innate and adaptive immune responses. Innate immune cells, particularly DCs and mast cells, are central to these networks. Early studies evaluated the function of these cells in isolation, but recent studies clearly demonstrate that cutaneous DCs (dermal DCs and Langerhans cells) physically interact with neighboring cells and are receptive to activation signals from surrounding cells, such as mast cells. These interactions amplify immune activation. In this review, we discuss the known functions of cutaneous DC populations and mast cells and recent studies highlighting their roles within cellular networks that determine cutaneous immune responses.
Collapse
Affiliation(s)
| | | | - Daniel H Kaplan
- Department of Dermatology and.,Department of Immunology, University of Pittsburgh School of Medicine,Pittsburgh, Pennsylvania, USA
| |
Collapse
|
168
|
Theisen DJ, Ferris ST, Briseño CG, Kretzer N, Iwata A, Murphy KM, Murphy TL. Batf3-Dependent Genes Control Tumor Rejection Induced by Dendritic Cells Independently of Cross-Presentation. Cancer Immunol Res 2019; 7:29-39. [PMID: 30482745 DOI: 10.1158/2326-6066.cir-18-0138] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/12/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022]
Abstract
The BATF3-dependent cDC1 lineage of conventional dendritic cells (cDC) is required for rejection of immunogenic sarcomas and for rejection of progressive sarcomas during checkpoint blockade therapy. One unique function of the cDC1 lineage is the efficient cross-presentation of tumor-derived neoantigens to CD8+ T cells, but it is not clear that this is the only unique function of cDC1 required for tumor rejection. We previously showed that BATF3 functions during cDC1 lineage commitment to maintain IRF8 expression in the specified cDC1 progenitor. However, since cDC1 progenitors do not develop into mature cDC1s in Batf3 -/- mice, it is still unclear whether BATF3 has additional functions in mature cDC1 cells. A transgenic Irf8-Venus reporter allele increases IRF8 protein concentration sufficiently to allow autonomous cDC1 development in spleens of Batf3 -/- mice. These restored Batf3 -/- cDC1s are transcriptionally similar to control wild-type cDC1s but have reduced expression of a restricted set of cDC1-specific genes. Restored Batf3 -/- cDC1s are able to cross-present cell-associated antigens both in vitro and in vivo However, Batf3 -/- cDC1 exhibit altered characteristics in vivo and are unable to mediate tumor rejection. These results show that BATF3, in addition to regulating Irf8 expression to stabilize cDC1 lineage commitment, also controls expression of a small set of genes required for cDC1-mediated tumor rejection. These BATF3-regulated genes may be useful targets in immunotherapies aimed at promoting tumor rejection.
Collapse
Affiliation(s)
- Derek J Theisen
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Stephen T Ferris
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Nicole Kretzer
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Arifumi Iwata
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
- Howard Hughes Medical Institute, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri.
| |
Collapse
|
169
|
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev 2019; 99:665-706. [PMID: 30475656 PMCID: PMC6442927 DOI: 10.1152/physrev.00067.2017] [Citation(s) in RCA: 1284] [Impact Index Per Article: 256.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Nina Kosaric
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Clark A Bonham
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
170
|
Harpur CM, Kato Y, Dewi ST, Stankovic S, Johnson DN, Bedoui S, Whitney PG, Lahoud MH, Caminschi I, Heath WR, Brooks AG, Gebhardt T. Classical Type 1 Dendritic Cells Dominate Priming of Th1 Responses to Herpes Simplex Virus Type 1 Skin Infection. THE JOURNAL OF IMMUNOLOGY 2018; 202:653-663. [PMID: 30598513 DOI: 10.4049/jimmunol.1800218] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
Abstract
CD4+ T cell responses are crucial for the control of many intracellular pathogens, yet the requirements for their induction are not fully understood. To better understand the role that various dendritic cell (DC) subtypes play in CD4+ T cell priming, we compared in vivo T cell responses to skin inoculation of mice with infectious or UV-inactivated HSV type 1. Localized infection elicited a Th1 response that was primed in skin-draining lymph nodes involving Ag presentation by migratory dermal and lymph node-resident DC. However, expansion and Th1 differentiation was impaired in response to UV-inactivated virus (UV-HSV), and this defect correlated with a restriction of Ag presentation to migratory CD103- dermal DC. A similar differentiation defect was seen in infected mice lacking CD8α+ and CD103+ classical type 1 DC (cDC1). Finally, Th1 differentiation after UV-HSV inoculation was rescued by targeted Ag delivery to CD8α+ and CD103+ cDC1 using an anti-Clec9A Ab construct. This suggests that Ag presentation by cDC1 is crucial for optimal Th1 immunity to HSV type 1 infection and potentially other pathogens of the skin.
Collapse
Affiliation(s)
- Christopher M Harpur
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Yu Kato
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Shinta T Dewi
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sanda Stankovic
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Darryl N Johnson
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Paul G Whitney
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Mireille H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Irina Caminschi
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - William R Heath
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia;
| |
Collapse
|
171
|
Babaei S, Nakhaei M, Ansarihadipour H, Sakhaei M, Hosseini S, Nikgoftar A. Omegaven Improves Skin Morphometric Indices in Diabetic Rat Model Wound Healing. J Am Coll Clin Wound Spec 2018; 9:39-45. [PMID: 30591901 DOI: 10.1016/j.jccw.2018.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The global prevalence of diabetes is estimated to be 200 million people, and it is likely to increase to 333 million people by 2025. Different cells, are known to participate in three main phases of wound healing. Omega-3 fatty acids influence cytokines and growth factors which affects the presence of inflammatory cells in wound area as well, but how this event specifically influences the role of fibroblasts, macrophages and angiogenesis in wound healing is not obviously understood. In this experimental study seventy male Wistar rats after induction of diabetes type-one by streptozotocin (STZ) (55 mg/kg) were divided into two groups, Experimental group receiving omegaven intraperitoneally and control group which underwent the injection of mineral oil. Streptozotocin was used for the induction of diabetes type 1. Diabetic male wistar rats were scarified at 1, 3, 5, 7 and 15 days after the excision was made. To estimate orphometric indices, histological sections were provided by stereological methods. It was found that wound area significantly decreased on day 7 in experimental group by omega-3 fatty acids. The number of fibroblasts increased significantly on days 5 and 7 in the experimental group. The number of neovascular significantly decreased on day 7 in the experimental group. This study implied that it seems omegaven is able to improve morphometric indices during wound healing and make healing faster.
Collapse
Affiliation(s)
- Saeid Babaei
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences Arak, Iran
| | - Mahmoodreza Nakhaei
- Department of Biochemistry and Nutrition, Faculty of Medicine, Arak University of Medical Sciences Arak, Iran
| | - Hadi Ansarihadipour
- Department of Biochemistry and Nutrition, Faculty of Medicine, Arak University of Medical Sciences Arak, Iran
| | - Mohammadhassan Sakhaei
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences Arak, Iran
| | - Sirvan Hosseini
- Faculty of Nursing, Arak University of Medical Sciences Arak, Iran
| | - Amene Nikgoftar
- Arak University of Medical Sciences, Faculty of Medicine Arak, Iran
| |
Collapse
|
172
|
Kimizuka Y, Katagiri W, Locascio JJ, Shigeta A, Sasaki Y, Shibata M, Morse K, Sîrbulescu RF, Miyatake M, Reeves P, Suematsu M, Gelfand J, Brauns T, Poznansky MC, Tsukada K, Kashiwagi S. Brief Exposure of Skin to Near-Infrared Laser Modulates Mast Cell Function and Augments the Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3587-3603. [PMID: 30420435 PMCID: PMC6289684 DOI: 10.4049/jimmunol.1701687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
The treatment of skin with a low-power continuous-wave (CW) near-infrared (NIR) laser prior to vaccination is an emerging strategy to augment the immune response to intradermal vaccine, potentially substituting for chemical adjuvant, which has been linked to adverse effects of vaccines. This approach proved to be low cost, simple, small, and readily translatable compared with the previously explored pulsed-wave medical lasers. However, little is known on the mode of laser-tissue interaction eliciting the adjuvant effect. In this study, we sought to identify the pathways leading to the immunological events by examining the alteration of responses resulting from genetic ablation of innate subsets including mast cells and specific dendritic cell populations in an established model of intradermal vaccination and analyzing functional changes of skin microcirculation upon the CW NIR laser treatment in mice. We found that a CW NIR laser transiently stimulates mast cells via generation of reactive oxygen species, establishes an immunostimulatory milieu in the exposed tissue, and provides migration cues for dermal CD103+ dendritic cells without inducing prolonged inflammation, ultimately augmenting the adaptive immune response. These results indicate that use of an NIR laser with distinct wavelength and power is a safe and effective tool to reproducibly modulate innate programs in skin. These mechanistic findings would accelerate the clinical translation of this technology and warrant further explorations into the broader application of NIR lasers to the treatment of immune-related skin diseases.
Collapse
Affiliation(s)
- Yoshifumi Kimizuka
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Wataru Katagiri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129
- Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, 14152 Huddinge, Sweden
| | - Joseph J Locascio
- Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
| | - Ayako Shigeta
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Yuri Sasaki
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Mai Shibata
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Kaitlyn Morse
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Mizuki Miyatake
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan; and
| | - Patrick Reeves
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-0016, Japan
| | - Jeffrey Gelfand
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Timothy Brauns
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Kosuke Tsukada
- Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan; and
| | - Satoshi Kashiwagi
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129;
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129
| |
Collapse
|
173
|
Islam MA, Firdous J, Badruddoza AZM, Reesor E, Azad M, Hasan A, Lim M, Cao W, Guillemette S, Cho CS. M cell targeting engineered biomaterials for effective vaccination. Biomaterials 2018; 192:75-94. [PMID: 30439573 DOI: 10.1016/j.biomaterials.2018.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/28/2018] [Indexed: 02/08/2023]
Abstract
Vaccines are one of the greatest medical interventions of all time and have been successful in controlling and eliminating a myriad of diseases over the past two centuries. Among several vaccination strategies, mucosal vaccines have wide clinical applications and attract considerable interest in research, showing potential as innovative and novel therapeutics. In mucosal vaccination, targeting (microfold) M cells is a frontline prerequisite for inducing effective antigen-specific immunostimulatory effects. In this review, we primarily focus on materials engineered for use as vaccine delivery platforms to target M cells. We also describe potential M cell targeting areas, methods to overcome current challenges and limitations of the field. Furthermore, we present the potential of biomaterials engineering as well as various natural and synthetic delivery technologies to overcome the challenges of M cell targeting, all of which are absent in current literature. Finally, we briefly discuss manufacturing and regulatory processes to bring a robust perspective on the feasibility and potential of this next-generation vaccine technology.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jannatul Firdous
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abu Zayed Md Badruddoza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emma Reesor
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Mohammad Azad
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Michael Lim
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Wuji Cao
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Simon Guillemette
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Chong Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
174
|
Golahdooz M, Eybpoosh S, Bashar R, Taherizadeh M, Pourhossein B, Shirzadi M, Amiri B, Fazeli M. Comparison of Immune Responses following Intradermal and Intramuscular Rabies Vaccination Methods. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2018. [DOI: 10.29252/jommid.6.4.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
175
|
Wang W, Qu R, Wang X, Zhang M, Zhang Y, Chen C, Chen X, Qiu C, Li J, Pan X, Li W, Zhao Y. GDF11 Antagonizes Psoriasis-like Skin Inflammation via Suppression of NF-κB Signaling Pathway. Inflammation 2018; 42:319-330. [DOI: 10.1007/s10753-018-0895-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
176
|
RARα supports the development of Langerhans cells and langerin-expressing conventional dendritic cells. Nat Commun 2018; 9:3896. [PMID: 30254197 PMCID: PMC6156335 DOI: 10.1038/s41467-018-06341-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 08/29/2018] [Indexed: 01/11/2023] Open
Abstract
Langerhans cells (LC) are the prototype langerin-expressing dendritic cells (DC) that reside specifically in the epidermis, but langerin-expressing conventional DCs also reside in the dermis and other tissues, yet the factors that regulate their development are unclear. Because retinoic acid receptor alpha (RARα) is highly expressed by LCs, we investigate the functions of RARα and retinoic acid (RA) in regulating the langerin-expressing DCs. Here we show that the development of LCs from embryonic and bone marrow-derived progenitors and langerin+ conventional DCs is profoundly regulated by the RARα-RA axis. During LC differentiation, RARα is required for the expression of a LC-promoting transcription factor Runx3, but suppresses that of LC-inhibiting C/EBPβ. RARα promotes the development of LCs and langerin+ conventional DCs only in hypo-RA conditions, a function effectively suppressed at systemic RA levels. Our findings identify positive and negative regulatory mechanisms to tightly regulate the development of the specialized DC populations. Langerhans cells (LC) and langerin-expressing conventional dendritic cells are made from distinct progenitors and enriched in the distinct microenvironments of the skin. Here the authors show that these immune cells are regulated by retinoic acid receptor alpha (RARα) via simultaneous induction of LC-promoting Runx3 and repression of LC-inhibiting C/EBPβ.
Collapse
|
177
|
Wang F, Xiao W, Elbahnasawy MA, Bao X, Zheng Q, Gong L, Zhou Y, Yang S, Fang A, Farag MMS, Wu J, Song X. Optimization of the Linker Length of Mannose-Cholesterol Conjugates for Enhanced mRNA Delivery to Dendritic Cells by Liposomes. Front Pharmacol 2018; 9:980. [PMID: 30233368 PMCID: PMC6134263 DOI: 10.3389/fphar.2018.00980] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
Liposomes (LPs) as commonly used mRNA delivery systems remain to be rationally designed and optimized to ameliorate the antigen expression of mRNA vaccine in dendritic cells (DCs). In this study, we synthesized mannose-cholesterol conjugates (MPn-CHs) by click reaction using different PEG units (PEG100, PEG1000, and PEG2000) as linker molecules. MPn-CHs were fully characterized and subsequently used to prepare DC-targeting liposomes (MPn-LPs) by a thin-film dispersion method. MPn-LPs loaded with mRNA (MPn-LPX) were finally prepared by a simple self-assembly method. MPn-LPX displayed bigger diameter (about 135 nm) and lower zeta potential (about 40 mV) compared to MPn-LPs. The in vitro transfection experiment on DC2.4 cells demonstrated that the PEG length of mannose derivatives had significant effect on the expression of GFP-encoding mRNA. MP1000-LPX containing MP1000-CH can achieve the highest transfection efficiency (52.09 ± 4.85%), which was significantly superior to the commercial transfection reagent Lipo 3K (11.47 ± 2.31%). The optimal DC-targeting MP1000-LPX showed an average size of 132.93 ± 4.93 nm and zeta potential of 37.93 ± 2.95 mV with nearly spherical shape. Moreover, MP1000-LPX can protect mRNA against degradation in serum with high efficacy. The uptake study indicated that MP1000-LPX enhanced mRNA expression mainly through the over-expressing mannose receptor (CD206) on the surface of DCs. In conclusion, mannose modified LPs might be a potential DC-targeting delivery system for mRNA vaccine after rational design and deserve further study on the in vivo delivery profile and anti-tumor efficacy.
Collapse
Affiliation(s)
- Fazhan Wang
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Wen Xiao
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Mostafa A Elbahnasawy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Xingting Bao
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Qian Zheng
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Linhui Gong
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Shuping Yang
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Aiping Fang
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Mohamed M S Farag
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Jinhui Wu
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy, Geriatrics and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
178
|
|
179
|
Pakshir P, Hinz B. The big five in fibrosis: Macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol 2018; 68-69:81-93. [DOI: 10.1016/j.matbio.2018.01.019] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 02/07/2023]
|
180
|
Zhu W, Li S, Wang C, Yu G, Prausnitz MR, Wang BZ. Enhanced Immune Responses Conferring Cross-Protection by Skin Vaccination With a Tri-Component Influenza Vaccine Using a Microneedle Patch. Front Immunol 2018; 9:1705. [PMID: 30105019 PMCID: PMC6077188 DOI: 10.3389/fimmu.2018.01705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023] Open
Abstract
Skin vaccination using biodegradable microneedle patch (MNP) technology in vaccine delivery is a promising strategy showing significant advantages over conventional flu shots. In this study, we developed an MNP encapsulating a 4M2e-tFliC fusion protein and two types of whole inactivated influenza virus vaccines (H1N1 and H3N2) as a universal vaccine candidate. We demonstrated that mice receiving this tri-component influenza vaccine via MNP acquired improved IgG1 antibody responses with more balanced IgG1/IgG2a antibody responses and enhanced cellular immune responses, including increased populations of IL-4 and IFN-γ producing cells and higher frequencies of antigen-specific plasma cells compared with intramuscular injection. In addition, stronger germinal center reactions, increased numbers of Langerin-positive migratory dendritic cells, and increased cytokine secretion were observed in the skin-draining lymph nodes after immunization with the tri-component influenza MNP vaccine. The MNP-immunized group also possessed enhanced protection against a heterologous reassortant A/Shanghai/2013 H7N9 (rSH) influenza virus infection. Furthermore, the sera collected from 4M2e-tFliC MNP-immunized mice were demonstrated to have antiviral efficacy against reassortant A/Vietnam/1203/2004 H5N1 (rVet) and A/Shanghai/2013 H7N9 (rSH) virus challenges. The immunological advantages of skin vaccination with this tri-component MNP vaccine could offer a promising approach to develop an easily applicable and broadly protective universal influenza vaccine.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| | - Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chao Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| | - Guoying Yu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| |
Collapse
|
181
|
Bąbała N, Bovens A, de Vries E, Iglesias-Guimarais V, Ahrends T, Krummel MF, Borst J, Bins AD. Subcellular Localization of Antigen in Keratinocytes Dictates Delivery of CD4 + T-cell Help for the CTL Response upon Therapeutic DNA Vaccination into the Skin. Cancer Immunol Res 2018; 6:835-847. [PMID: 29764836 DOI: 10.1158/2326-6066.cir-17-0408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/28/2018] [Accepted: 05/09/2018] [Indexed: 11/16/2022]
Abstract
In a mouse model of therapeutic DNA vaccination, we studied how the subcellular localization of vaccine protein impacts antigen delivery to professional antigen-presenting cells and efficiency of CTL priming. Cytosolic, membrane-bound, nuclear, and secretory versions of ZsGreen fluorescent protein, conjugated to MHC class I and II ovalbumin (OVA) epitopes, were expressed in keratinocytes by DNA vaccination into the skin. ZsGreen-OVA versions reached B cells in the skin-draining lymph node (dLN) that proved irrelevant for CTL priming. ZsGreen-OVA versions were also actively transported to the dLN by dendritic cells (DC). In the dLN, vaccine proteins localized to classical (c)DCs of the migratory XCR1+ and XCR- subtypes, and-to a lesser extent-to LN-resident cDCs. Secretory ZsGreen-OVA induced the best antitumor CTL response, even though its delivery to cDCs in the dLN was significantly less efficient than for other vaccine proteins. Secretory ZsGreen-OVA protein proved superior in CTL priming, because it led to in vivo engagement of antigen-loaded XCR1+, but not XCR1-, cDCs. Secretory ZsGreen-OVA also maximally solicited CD4+ T-cell help. The suboptimal CTL response to the other ZsGreen-OVA versions was improved by engaging costimulatory receptor CD27, which mimics CD4+ T-cell help. Thus, in therapeutic DNA vaccination into the skin, mere inclusion of helper epitopes does not ensure delivery of CD4+ T-cell help for the CTL response. Targeting of the vaccine protein to the secretory route of keratinocytes is required to engage XCR1+ cDC and CD4+ T-cell help and thus to promote CTL priming. Cancer Immunol Res; 6(7); 835-47. ©2018 AACR.
Collapse
Affiliation(s)
- Nikolina Bąbała
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Astrid Bovens
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Evert de Vries
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Victoria Iglesias-Guimarais
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Tomasz Ahrends
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Jannie Borst
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands.
| | - Adriaan D Bins
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| |
Collapse
|
182
|
Santos e Sousa P, Bennett CL, Chakraverty R. Unraveling the Mechanisms of Cutaneous Graft-Versus-Host Disease. Front Immunol 2018; 9:963. [PMID: 29770141 PMCID: PMC5940745 DOI: 10.3389/fimmu.2018.00963] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
The skin is the most common target organ affected by graft-versus-host disease (GVHD), with severity and response to therapy representing important predictors of patient survival. Although many of the initiating events in GVHD pathogenesis have been defined, less is known about why treatment resistance occurs or why there is often a permanent failure to restore tissue homeostasis. Emerging data suggest that the unique immune microenvironment in the skin is responsible for defining location- and context-specific mechanisms of injury that are distinct from those involved in other target organs. In this review, we address recent advances in our understanding of GVHD biology in the skin and outline the new research themes that will ultimately enable design of precision therapies.
Collapse
Affiliation(s)
- Pedro Santos e Sousa
- UCL Cancer Institute, University College London, London, United Kingdom
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Clare L. Bennett
- UCL Cancer Institute, University College London, London, United Kingdom
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Ronjon Chakraverty
- UCL Cancer Institute, University College London, London, United Kingdom
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
183
|
Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front Physiol 2018; 9:419. [PMID: 29765329 PMCID: PMC5938667 DOI: 10.3389/fphys.2018.00419] [Citation(s) in RCA: 775] [Impact Index Per Article: 129.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
Macrophages play key roles in all phases of adult wound healing, which are inflammation, proliferation, and remodeling. As wounds heal, the local macrophage population transitions from predominantly pro-inflammatory (M1-like phenotypes) to anti-inflammatory (M2-like phenotypes). Non-healing chronic wounds, such as pressure, arterial, venous, and diabetic ulcers indefinitely remain in inflammation—the first stage of wound healing. Thus, local macrophages retain pro-inflammatory characteristics. This review discusses the physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models. We also discuss aberrations that occur in macrophage populations in chronic wounds, and attempts to restore macrophage function by therapeutic approaches. These include endogenous M1 attenuation, exogenous M2 supplementation and endogenous macrophage modulation/M2 promotion via mesenchymal stem cells, growth factors, biomaterials, heme oxygenase-1 (HO-1) expression, and oxygen therapy. We recognize the challenges and controversies that exist in this field, such as standardization of macrophage phenotype nomenclature, definition of their distinct roles and understanding which phenotype is optimal in order to promote healing in chronic wounds.
Collapse
Affiliation(s)
- Paulina Krzyszczyk
- Biomedical Engineering, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Rene Schloss
- Biomedical Engineering, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Andre Palmer
- Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - François Berthiaume
- Biomedical Engineering, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
184
|
Ogai N, Nonaka I, Toda Y, Ono T, Minegishi S, Inou A, Hachiya M, Fukamizu H. Enhanced immunity in intradermal vaccination by novel hollow microneedles. Skin Res Technol 2018; 24:630-635. [PMID: 29707828 DOI: 10.1111/srt.12576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The intradermal (ID) route for vaccination represents an effective alternative to subcutaneous (SC)/intramuscular administration to induce protective immunity. However, a critical issue associated with ID vaccination is the precise delivery of solution in the upper dermis, which ensures enhanced immunity. METHODS We fabricated a hollow microneedle unit made of poly-glycolic acid by injection molding and bonding, and created a dedicated prototype injector. To ensure ID delivery of solution, the injected site was macroscopically and microscopically examined. Serum immunoglobulin G antibody production was measured by enzyme immunoassay and compared in groups of rats following either ID delivery with microneedles or SC administration with a 27-G stainless needle of graded vaccine doses. RESULTS The unit used a tandem array of six microneedles, each with a side delivery hole, and a conduit inside for solution. Microneedles installed in the injector punctured the skin with the aid of a spring. Injection of solution formed a wheal due to ID distribution. Histologically, a wedge-shaped skin defect in the upper skin corresponded to each puncture site. Antibody titers following vaccinations on days 1 and 8 were significantly higher with ID injection than with SC delivery on day 15 and every 7 days thereafter until day 36 with mumps vaccination, and until day 36 with varicella vaccination. CONCLUSIONS The microneedle unit presented here delivered solution intradermally without any difficulty and evoked antibody responses against viruses even with the reduced vaccine volume. Our findings confirm promising results of ID delivery as an immunogenic option to enhance vaccination efficacy.
Collapse
Affiliation(s)
- N Ogai
- ASTI Corporation, Hamamatsu, Japan
| | - I Nonaka
- ASTI Corporation, Hamamatsu, Japan
| | - Y Toda
- ASTI Corporation, Hamamatsu, Japan
| | - T Ono
- ASTI Corporation, Hamamatsu, Japan
| | | | - A Inou
- ASTI Corporation, Hamamatsu, Japan
| | | | - H Fukamizu
- Department of Plastic and Reconstructive Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
185
|
Brown M, Johnson LA, Leone DA, Majek P, Vaahtomeri K, Senfter D, Bukosza N, Schachner H, Asfour G, Langer B, Hauschild R, Parapatics K, Hong YK, Bennett KL, Kain R, Detmar M, Sixt M, Jackson DG, Kerjaschki D. Lymphatic exosomes promote dendritic cell migration along guidance cues. J Cell Biol 2018; 217:2205-2221. [PMID: 29650776 PMCID: PMC5987709 DOI: 10.1083/jcb.201612051] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/16/2018] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Inflammation stimulates lymphatic endothelial cells to release exosomes, which accumulate in the perivascular stroma. Brown et al. show that these exosomes promote the directional migration of dendritic cells along guidance cues in complex environments by enhancing dynamic cellular protrusions in a CX3CL1-dependent manner. Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified >1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments.
Collapse
Affiliation(s)
- Markus Brown
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria.,Institute of Science and Technology, Klosterneuburg, Austria
| | - Louise A Johnson
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, England, UK
| | - Dario A Leone
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Peter Majek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kari Vaahtomeri
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nora Bukosza
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Helga Schachner
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Asfour
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Langer
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Katja Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Young-Kwon Hong
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Renate Kain
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Sixt
- Institute of Science and Technology, Klosterneuburg, Austria
| | - David G Jackson
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, England, UK
| | - Dontscho Kerjaschki
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
186
|
Lee M, Kim SH, Kim TG, Park J, Lee JW, Lee MG. Resident and monocyte-derived Langerhans cells are required for imiquimod-induced psoriasis-like dermatitis model. J Dermatol Sci 2018; 91:52-59. [PMID: 29655588 DOI: 10.1016/j.jdermsci.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/18/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Langerhans cells (LCs) are dendritic cells that reside in the epidermis and local inflammation results in an increased differentiation of monocyte-derived LCs. Only few studies have investigated on the role of LCs in psoriasis-like dermatitis model, but the results are variable and the exact role of LCs in psoriasis model remains to be elucidated. OBJECTIVE To explore the functional role of resident (rLCs) and monocyte-derived LCs (mLCs) in imiquimod (IMQ)-induced psoriasis-like inflammation using human Langerin-diphtheria toxin subunit A (huLang-DTA) mice. METHODS 5% IMQ cream was topically applied on the skins. Clinical and histopathological features were evaluated. Psoriasis-related gene expression was analyzed by quantitative polymerase chain reaction. The production of psoriasis-related cytokines including IL-17A and IL-22 by T cells were assessed by flow cytometry from the lesional skins. RESULTS huLang-DTA mice showed a common depletion of both rLCs and mLCs in the IMQ-treated skins. huLang-DTA mice had a reduced IMQ-induced psoriasis-like inflammation featuring erythema, scale, and thickness compared with wild-type mice. Psoriatic lesions from huLang-DTA mice had a decreased level of Il23a and accordingly demonstrated an attenuated cytokine production of IL-17A and IL-22 from γδlow T cells. mLCs revealed a significantly greater level of IL-23 expression compared to rLCs in response to topical IMQ treatment. CONCLUSION Although both rLCs and mLCs are involved in the development of IMQ-induced psoriasis-like dermatitis, inflammation-induced mLCs present a superior capacity for producing IL-23 in this murine experimental model of psoriasis.
Collapse
Affiliation(s)
- Minseok Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hee Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeyun Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Won Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Geol Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
187
|
Silent infection of human dendritic cells by African and Asian strains of Zika virus. Sci Rep 2018; 8:5440. [PMID: 29615676 PMCID: PMC5882923 DOI: 10.1038/s41598-018-23734-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
While Zika virus (ZIKV) circulated for decades (African lineage strains) without report of outbreaks and severe complications, its emergence in French Polynesia and subsequently in the Americas (Asian lineage strains) was associated with description of severe neurological defects in newborns/neonates and adults. With the aim to identify virus lineage-dependent factors, we compared cell susceptibility, virus replication, cell death and innate immune responses following infection with two African and three contemporary Asian lineage strains of ZIKV. To this end, we used green monkey Vero and Aedes albopictus C6/36 cells and human monocyte-derived dendritic cells (DCs). The latter are involved in the pathogenesis of several mosquito-borne Flavivirus infections. In Vero and C6/36 cells, we observed strain- but not lineage-dependent differences in infection profiles. Nevertheless, in human DCs, no significant differences in susceptibility and virus replication were found between lineages and strains. ZIKV induced antiviral interferon type I/III in a limited fashion, with the exception of one African strain. None of the strains induced cell death or DC maturation in terms of MHC II, CD40, CD80/86 or CCR7 expression. Taken together, our data suggest that a large collection of virus isolates needs to be investigated before conclusions on lineage differences can be made.
Collapse
|
188
|
Purves J, Thomas J, Riboldi GP, Zapotoczna M, Tarrant E, Andrew PW, Londoño A, Planet PJ, Geoghegan JA, Waldron KJ, Morrissey JA. A horizontally gene transferred copper resistance locus confers hyper-resistance to antibacterial copper toxicity and enables survival of community acquired methicillin resistant Staphylococcus aureus USA300 in macrophages. Environ Microbiol 2018. [PMID: 29521441 PMCID: PMC5947656 DOI: 10.1111/1462-2920.14088] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Excess copper is highly toxic and forms part of the host innate immune system's antibacterial arsenal, accumulating at sites of infection and acting within macrophages to kill engulfed pathogens. We show for the first time that a novel, horizontally gene transferred copper resistance locus (copXL), uniquely associated with the SCCmec elements of the highly virulent, epidemic, community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) USA300, confers copper hyper-resistance. These genes are additional to existing core genome copper resistance mechanisms, and are not found in typical S. aureus lineages, but are increasingly identified in emerging pathogenic isolates. Our data show that CopX, a putative P1B-3 -ATPase efflux transporter, and CopL, a novel lipoprotein, confer copper hyper-resistance compared to typical S. aureus strains. The copXL genes form an operon that is tightly repressed in low copper environments by the copper regulator CsoR. Significantly, CopX and CopL are important for S. aureus USA300 intracellular survival within macrophages. Therefore, the emergence of new S. aureus clones with the copXL locus has significant implications for public health because these genes confer increased resistance to antibacterial copper toxicity, enhancing bacterial fitness by altering S. aureus interaction with innate immunity.
Collapse
Affiliation(s)
- Joanne Purves
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Jamie Thomas
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Gustavo P Riboldi
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Marta Zapotoczna
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Ireland
| | - Emma Tarrant
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 9HN, UK
| | | | - Paul J Planet
- Department of Pediatrics, Columbia University, New York, NY, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Ireland
| | - Kevin J Waldron
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Julie A Morrissey
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
189
|
Zhao W, Xiao S, Li H, Zheng T, Huang J, Hu R, Zhang B, Liu X, Huang G. MAPK Phosphatase-1 Deficiency Exacerbates the Severity of Imiquimod-Induced Psoriasiform Skin Disease. Front Immunol 2018; 9:569. [PMID: 29619028 PMCID: PMC5873221 DOI: 10.3389/fimmu.2018.00569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/06/2018] [Indexed: 01/12/2023] Open
Abstract
Persistent activation of mitogen-activated protein kinase (MAPK) is believed to be involved in psoriasis pathogenesis. MAPK phosphatase-1 (MKP-1) is an important negative regulator of MAPK activity, but the cellular and molecular mechanisms of MKP-1 in psoriasis development are largely unknown. In this study, we found that the expression of MKP-1 was decreased in the imiquimod (IMQ)-induced psoriasiform mouse skin. MKP-1-deficient (MKP-1-/-) mice were highly susceptible to IMQ-induced skin inflammation, which was associated with increased production of inflammatory cytokines and chemokines. MKP-1 acted on both hematopoietic and non-hematopoietic cells to regulate psoriasis pathogenesis. MKP-1 deficiency in macrophages led to enhanced p38 activation and higher expression of interleukin (IL)-1β, CXCL2, and S100a8 upon R848 stimulation. Moreover, MKP-1 deficiency in the non-hematopoietic compartments led to an enhanced IL-22 receptor signaling and higher expression of CXCL1 and CXCL2 upon IMQ treatment. Collectively, our data suggest a critical role for MKP-1 in the regulation of skin inflammation.
Collapse
Affiliation(s)
- Weiheng Zhao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxiu Xiao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjin Li
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Ran Hu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baohua Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Gonghua Huang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
190
|
Ali N, Zirak B, Truong HA, Maurano MM, Gratz IK, Abbas AK, Rosenblum MD. Skin-Resident T Cells Drive Dermal Dendritic Cell Migration in Response to Tissue Self-Antigen. THE JOURNAL OF IMMUNOLOGY 2018; 200:3100-3108. [PMID: 29563179 DOI: 10.4049/jimmunol.1701206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/22/2018] [Indexed: 01/03/2023]
Abstract
Migratory dendritic cell (DC) subsets deliver tissue Ags to draining lymph nodes (DLNs) to either initiate or inhibit T cell-mediated immune responses. The signals mediating DC migration in response to tissue self-antigen are largely unknown. Using a mouse model of inducible skin-specific self-antigen expression, we demonstrate that CD103+ dermal DCs (DDCs) rapidly migrate from skin to skin DLN (SDLNs) within the first 48 h after Ag expression. This window of time was characterized by the preferential activation of tissue-resident Ag-specific effector T cells (Teffs), with no concurrent activation of Ag-specific Teffs in SDLNs. Using genetic deletion and adoptive transfer approaches, we show that activation of skin-resident Teffs is required to drive CD103+ DDC migration in response to tissue self-antigen and this Batf3-dependent DC population is necessary to mount a fulminant autoimmune response in skin. Conversely, activation of Ag-specific Teffs in SDLNs played no role in DDC migration. Our studies reveal a crucial role for skin-resident T cell-derived signals, originating at the site of self-antigen expression, to drive DDC migration during the elicitation phase of an autoimmune response.
Collapse
Affiliation(s)
- Niwa Ali
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143.,Cutaneous Medicine Unit, St. John's Institute of Dermatology, King's College London, London SE1 9RT, United Kingdom
| | - Bahar Zirak
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143
| | - Hong-An Truong
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143
| | - Megan M Maurano
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143
| | - Iris K Gratz
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143.,Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria; and
| | - Abul K Abbas
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143;
| |
Collapse
|
191
|
Burstein VL, Guasconi L, Beccacece I, Theumer MG, Mena C, Prinz I, Cervi L, Herrero M, Masih DT, Chiapello LS. IL-17-Mediated Immunity Controls Skin Infection and T Helper 1 Response during Experimental Microsporum canis Dermatophytosis. J Invest Dermatol 2018; 138:1744-1753. [PMID: 29571944 DOI: 10.1016/j.jid.2018.02.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 01/07/2023]
Abstract
Despite worldwide prevalence of superficial mycoses, the immune response in dermatophytosis has scarcely been investigated. In this study, we developed a model of superficial skin infection in C57BL/6 mice with Microsporum canis, a highly prevalent human pathogen. This model mimics mild inflammatory human dermatophytosis, characterized by neutrophil recruitment and fungal invasion limited to the epidermis and exhibits the establishment of a specific T helper type 17 immune response during infection. By using IL-17RA- or IL-17A/F-deficient mice we showed that, in the absence of a functional IL-17 pathway, M. canis extensively colonizes the epidermis and promotes an exaggerated skin inflammation and a shift to an IFN-γ-mediated (T helper type 1) response. IL-17 signaling was not involved in neutrophil influx to skin or fungal invasion to deeper tissues. Finally, this study shows that skin langerin-expressing cells contribute to the antifungal T helper type 17 response in vivo. In conclusion, these data directly show a dual function of IL-17 cytokines in dermatophytosis by controlling superficial infection and down-modulating a T helper type 1 antifungal response.
Collapse
Affiliation(s)
- Verónica L Burstein
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Lorena Guasconi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Ignacio Beccacece
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Martin G Theumer
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cristian Mena
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | | | - Diana T Masih
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Laura S Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.
| |
Collapse
|
192
|
Zheng T, Zhao W, Li H, Xiao S, Hu R, Han M, Liu H, Liu Y, Otsu K, Liu X, Huang G. p38α signaling in Langerhans cells promotes the development of IL-17-producing T cells and psoriasiform skin inflammation. Sci Signal 2018. [PMID: 29535261 DOI: 10.1126/scisignal.aao1685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dendritic cells (DCs) contribute to psoriasis pathogenesis. In a mouse model of imiquimod-induced psoriasiform skin inflammation, we found that p38α activity in Langerhans cells (LCs), a skin-resident subset of DCs, promoted the generation of T cells that produce IL-17, a proinflammatory cytokine that is implicated in autoimmune disease. Deletion of p38α in LCs, but not in other skin or circulating DC subsets or T cells, decreased T cell-mediated psoriasiform skin inflammation in mice. The activity of p38α in LCs specifically promoted IL-17 production from γδ and CD4+ T cells by increasing the abundance of IL-23 and IL-6, two cytokines that stimulate IL-17 secretion. Inhibition of p38 activity through either pharmacological inhibition or genetic deletion also reduced the severity of established psoriasiform skin inflammation. Together, our findings indicate a critical role for p38α signaling in LCs in promoting inflammatory responses in the skin and suggest that targeting p38α signaling in LCs may offer an effective therapeutic approach to treat psoriasis.
Collapse
Affiliation(s)
- Tingting Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiheng Zhao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongjin Li
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuxiu Xiao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Hu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Miaomiao Han
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Heng Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Tongji University, Shanghai 200443, China
| | - Kinya Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Cardiovascular Division, King's College London, London WC2R 2LS, UK
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Gonghua Huang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
193
|
Santos e Sousa P, Ciré S, Conlan T, Jardine L, Tkacz C, Ferrer IR, Lomas C, Ward S, West H, Dertschnig S, Blobner S, Means TK, Henderson S, Kaplan DH, Collin M, Plagnol V, Bennett CL, Chakraverty R. Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease. JCI Insight 2018; 3:97011. [PMID: 29515032 PMCID: PMC5922296 DOI: 10.1172/jci.insight.97011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic stem cell transplantation induced by the influx of donor-derived effector T cells (TE) into peripheral tissues. Current treatment strategies rely on targeting systemic T cells; however, the precise location and nature of instructions that program TE to become pathogenic and trigger injury are unknown. We therefore used weighted gene coexpression network analysis to construct an unbiased spatial map of TE differentiation during the evolution of GVHD and identified wide variation in effector programs in mice and humans according to location. Idiosyncrasy of effector programming in affected organs did not result from variation in T cell receptor repertoire or the selection of optimally activated TE. Instead, TE were reprogrammed by tissue-autonomous mechanisms in target organs for site-specific proinflammatory functions that were highly divergent from those primed in lymph nodes. In the skin, we combined the correlation-based network with a module-based differential expression analysis and showed that Langerhans cells provided in situ instructions for a Notch-dependent T cell gene cluster critical for triggering local injury. Thus, the principal determinant of TE pathogenicity in GVHD is the final destination, highlighting the need for target organ-specific approaches to block immunopathology while avoiding global immune suppression.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Bone Marrow Transplantation/adverse effects
- Cells, Cultured
- Cellular Reprogramming/genetics
- Cellular Reprogramming/immunology
- Disease Models, Animal
- Female
- Gene Expression Regulation/immunology
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Langerhans Cells/immunology
- Langerhans Cells/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Multigene Family/genetics
- Multigene Family/immunology
- Primary Cell Culture
- Receptors, Notch/metabolism
- Skin/cytology
- Skin/immunology
- Skin/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Transplantation Chimera
- Transplantation, Homologous/adverse effects
Collapse
Affiliation(s)
- Pedro Santos e Sousa
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Séverine Ciré
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Thomas Conlan
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Laura Jardine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Ivana R. Ferrer
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Cara Lomas
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Sophie Ward
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Heather West
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Simone Dertschnig
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Sven Blobner
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Terry K. Means
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | - Daniel H. Kaplan
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Clare L. Bennett
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Ronjon Chakraverty
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| |
Collapse
|
194
|
Baranska A, Shawket A, Jouve M, Baratin M, Malosse C, Voluzan O, Vu Manh TP, Fiore F, Bajénoff M, Benaroch P, Dalod M, Malissen M, Henri S, Malissen B. Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. J Exp Med 2018; 215:1115-1133. [PMID: 29511065 PMCID: PMC5881467 DOI: 10.1084/jem.20171608] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 12/24/2022] Open
Abstract
Here we describe a new mouse model that exploits the pattern of expression of the high-affinity IgG receptor (CD64) and allows diphtheria toxin (DT)-mediated ablation of tissue-resident macrophages and monocyte-derived cells. We found that the myeloid cells of the ear skin dermis are dominated by DT-sensitive, melanin-laden cells that have been missed in previous studies and correspond to macrophages that have ingested melanosomes from neighboring melanocytes. Those cells have been referred to as melanophages in humans. We also identified melanophages in melanocytic melanoma. Benefiting of our knowledge on melanophage dynamics, we determined the identity, origin, and dynamics of the skin myeloid cells that capture and retain tattoo pigment particles. We showed that they are exclusively made of dermal macrophages. Using the possibility to delete them, we further demonstrated that tattoo pigment particles can undergo successive cycles of capture-release-recapture without any tattoo vanishing. Therefore, congruent with dermal macrophage dynamics, long-term tattoo persistence likely relies on macrophage renewal rather than on macrophage longevity.
Collapse
Affiliation(s)
- Anna Baranska
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Alaa Shawket
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | | | - Myriam Baratin
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Camille Malosse
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Odessa Voluzan
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | | | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| |
Collapse
|
195
|
Schultze JL, Aschenbrenner AC. Systems immunology allows a new view on human dendritic cells. Semin Cell Dev Biol 2018; 86:15-23. [PMID: 29448068 DOI: 10.1016/j.semcdb.2018.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/23/2017] [Accepted: 02/10/2018] [Indexed: 01/12/2023]
Abstract
As the most important antigen-presenting cells, dendritic cells connect the innate and adaptive part of our immune system and play a pivotal role in our course of action against invading pathogens as well as during successful vaccination. Immunologists have therefore studied these cells in great detail using flow cytometry-based analyses, in vitro assays and in vivo models, both in murine models and in humans. Albeit, sophisticated, classical immunological, and molecular approaches were often unable to unequivocally determine the subpopulation structure of the dendritic cell lineage and not surprisingly, conflicting results about dendritic cell subsets co-existed throughout the last decades. With the advent of systems approaches and the most recent introduction of -omics approaches on the single cell level combined with multi-colour flow cytometry or mass cytometry, we now enter an era allowing us to define cell population structures with an unprecedented precision. We will report here on the most recent studies applying these technologies to human dendritic cells. Proper delineation of and definition of molecular signatures for the different human dendritic cell subsets will greatly facilitate studying these cells in the future: understanding their function under physiological as well as pathological conditions.
Collapse
Affiliation(s)
- Joachim L Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Sigmund-Freud-Str. 27, 53175 Bonn, Germany.
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany.
| |
Collapse
|
196
|
Zhang X, Liu Q, Wang J, Li G, Weiland M, Yu FS, Mi QS, Gu J, Zhou L. TIM-4 is differentially expressed in the distinct subsets of dendritic cells in skin and skin-draining lymph nodes and controls skin Langerhans cell homeostasis. Oncotarget 2018; 7:37498-37512. [PMID: 27224924 PMCID: PMC5122327 DOI: 10.18632/oncotarget.9546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/09/2016] [Indexed: 12/28/2022] Open
Abstract
T cell immunoglobulin and mucin-4 (TIM-4), mainly expressed on dendritic cells (DC) and macrophages, plays an essential role in regulating immune responses. Langerhans cells (LC), which are the sole DC subpopulation residing at the epidermis, are potent mediators of immune surveillance and tolerance. However, the significance of TIM-4 on epidermal LCs, along with other cutaneous DCs, remains totally unexplored. For the first time, we discovered that epidermal LCs expressed TIM-4 and displayed an increased level of TIM-4 expression upon migration. We also found that dermal CD207+ DCs and lymph node (LN) resident CD207−CD4+ DCs highly expressed TIM-4, while dermal CD207− DCs and LN CD207−CD4− DCs had limited TIM-4 expressions. Using TIM-4-deficient mice, we further demonstrated that loss of TIM-4 significantly upregulated the frequencies of epidermal LCs and LN resident CD207−CD4+ DCs. In spite of this, the epidermal LCs of TIM-4-deficient mice displayed normal phagocytic and migratory abilities, comparable maturation status upon the stimulation as well as normal repopulation under the inflamed state. Moreover, lack of TIM-4 did not affect dinitrofluorobenzene-induced contact hypersensitivity response. In conclusion, our results indicated that TIM-4 was differentially expressed in the distinct subsets of DCs in skin and skin-draining LNs, and specifically regulated epidermal LC and LN CD207−CD4+ DC homeostasis.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Second Military Medical University Changhai Hospital, Shanghai, China.,Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Queping Liu
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Guihua Li
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Matthew Weiland
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Fu-Shin Yu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| | - Jun Gu
- Department of Dermatology, Second Military Medical University Changhai Hospital, Shanghai, China
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| |
Collapse
|
197
|
Woodham AW, Yan L, Skeate JG, van der Veen D, Brand HH, Wong MK, Da Silva DM, Kast WM. T cell ignorance is bliss: T cells are not tolerized by Langerhans cells presenting human papillomavirus antigens in the absence of costimulation. PAPILLOMAVIRUS RESEARCH 2018; 2:21-30. [PMID: 27182559 PMCID: PMC4862606 DOI: 10.1016/j.pvr.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human papillomavirus type 16 (HPV16) infections are intra-epithelial, and thus, HPV16 is known to interact with Langerhans cells (LCs), the resident epithelial antigen-presenting cells (APCs). The current paradigm for APC-mediated induction of T cell anergy is through delivery of T cell receptor signals via peptides on MHC molecules (signal 1), but without costimulation (signal 2). We previously demonstrated that LCs exposed to HPV16 in vitro present HPV antigens to T cells without costimulation, but it remained uncertain if such T cells would remain ignorant, become anergic, or in the case of CD4+ T cells, differentiate into Tregs. Here we demonstrate that Tregs were not induced by LCs presenting only signal 1, and through a series of in vitro immunizations show that CD8+ T cells receiving signal 1+2 from LCs weeks after consistently receiving signal 1 are capable of robust effector functions. Importantly, this indicates that T cells are not tolerized but instead remain ignorant to HPV, and are activated given the proper signals.
Collapse
Affiliation(s)
- Andrew W Woodham
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Lisa Yan
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Joseph G Skeate
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, United States of America
| | | | - Heike H Brand
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Michael K Wong
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Diane M Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California, United States of America
| | - W Martin Kast
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, United States of America; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
198
|
Raker VK, Ook KY, Haub J, Lorenz N, Schmidt T, Stegemann A, Böhm M, Schuppan D, Steinbrink K. Myeloid cell populations and fibrogenic parameters in bleomycin- and HOCl-induced fibrosis. Exp Dermatol 2018; 25:887-894. [PMID: 27307019 DOI: 10.1111/exd.13124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 12/11/2022]
Abstract
Mouse models resembling systemic sclerosis can be chemically induced by application of bleomycin or hypochloric acid (HOCl). To date, little is known about inflammatory cells and their potential role in scleroderma (Scl)-related fibrosis. Therefore, we compared both Scl models to define the early immune cell subsets in relation to fibrosis-related parameters. Both agents induced a significant increase in dermal thickness and collagen deposition after 4 weeks, as hallmarks of Scl. However, clinical skin thickness, densely packed, sirius red-stained collagen bundles and collagen cross-links were more pronounced in HOCl-induced Scl. In parallel, there was a significant upregulation of procollagen α1(I), α-SMA and TGF-β transcripts in HOCl animals, whereas IL-1β and MMP-13 mRNA levels were significantly increased in bleomycin-treated mice. Flow cytometric analysis of the Scl skin demonstrated an early cellular infiltrate containing mainly CD19+ B cells, CD4+ T cells, CD11c+ DC and CD11b+ myeloid cells, the latter ones being significantly more prominent after HOCl injection. Subanalysis revealed that Scl mice exhibited a significant increase of inflammatory myeloid CD11b+ Ly6Clow-high CD64low-high cells (HOCl>bleomycin). In particular, in the HOCl model, activated dermal macrophages (CCR2low MHCIIhigh ) and monocyte-derived DC (CCR2high MHCIIhigh ) predominated over less activated CD11b+ myeloid cells. In conclusion, the two models differ in certain aspects of the murine and human scleroderma but in the HOCl model, myeloid CD11b+ MHCIIhigh cells correlate with some fibrosis-related parameters. Therefore, analysis of both models is suggested to cover a comprehensive profile of Scl symptoms but with focus on the HOCl model when the role of early myeloid immune cells will be evaluated.
Collapse
Affiliation(s)
- Verena K Raker
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany. .,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Kim Y Ook
- Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jessica Haub
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadine Lorenz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Talkea Schmidt
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Markus Böhm
- University Medical Center Münster, Munster, Germany
| | - Detlef Schuppan
- Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
199
|
Effective Priming of Herpes Simplex Virus-Specific CD8 + T Cells In Vivo Does Not Require Infected Dendritic Cells. J Virol 2018; 92:JVI.01508-17. [PMID: 29142130 DOI: 10.1128/jvi.01508-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022] Open
Abstract
Resolution of virus infections depends on the priming of virus-specific CD8+ T cells by dendritic cells (DC). While this process requires major histocompatibility complex (MHC) class I-restricted antigen presentation by DC, the relative contribution to CD8+ T cell priming by infected DC is less clear. We have addressed this question in the context of a peripheral infection with herpes simplex virus 1 (HSV). Assessing the endogenous, polyclonal HSV-specific CD8+ T cell response, we found that effective in vivo T cell priming depended on the presence of DC subsets specialized in cross-presentation, while Langerhans cells and plasmacytoid DC were dispensable. Utilizing a novel mouse model that allows for the in vivo elimination of infected DC, we also demonstrated in vivo that this requirement for cross-presenting DC was not related to their infection but instead reflected their capacity to cross-present HSV-derived antigen. Taking the results together, this study shows that infected DC are not required for effective CD8+ T cell priming during a peripheral virus infection.IMPORTANCE The ability of some DC to present viral antigen to CD8+ T cells without being infected is thought to enable the host to induce killer T cells even when viruses evade or kill infected DC. However, direct experimental in vivo proof for this notion has remained elusive. The work described in this study characterizes the role that different DC play in the induction of virus-specific killer T cell responses and, critically, introduces a novel mouse model that allows for the selective elimination of infected DC in vivo Our finding that HSV-specific CD8+ T cells can be fully primed in the absence of DC infection shows that cross-presentation by DC is indeed sufficient for effective CD8+ T cell priming during a peripheral virus infection.
Collapse
|
200
|
Rodrigues M, Gurtner G. Black, White, and Gray: Macrophages in Skin Repair and Disease. CURRENT PATHOBIOLOGY REPORTS 2017; 5:333-342. [PMID: 30288366 PMCID: PMC6166434 DOI: 10.1007/s40139-017-0152-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Macrophages alter their responses during the temporal stages of wound healing. During the inflammatory phase macrophages perform phagocytosis. During neovascularization macrophages activate angiogenesis. In the proliferation phase of wound healing, macrophages deposit extracellular matrix and during wound resolution macrophages phagocytize excessive cellular components. This review addresses how these changing phenotypes affect skin repair and disease. RECENT FINDINGS Macrophages can determine the outcome of repair and can shift the normal wound healing response into fibrosis or chronic wounds. Emerging single cell technologies for the first time provide us with tools to uncover macrophage origin, heterogeneity and function. SUMMARY Macrophages may exist as one population where all cells alter their phenotype in response to signals from the microenvironment. Alternatively, macrophages may exist as distinct subsets that can control wound outcomes. A clarified understanding will strengthen our knowledge of skin biology and aid in the development of wound healing therapies.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, USA
| | - Geoffrey Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, USA
| |
Collapse
|