151
|
Placidi G, Mattu C, Ciardelli G, Campa CC. Small molecules targeting endocytic uptake and recycling pathways. Front Cell Dev Biol 2023; 11:1125801. [PMID: 36968200 PMCID: PMC10036367 DOI: 10.3389/fcell.2023.1125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Over the past years a growing number of studies highlighted the pivotal role of intracellular trafficking in cell physiology. Among the distinct transport itineraries connecting the endocytic system, both internalization (endocytosis) and recycling (endocytic recycling) pathways were found fundamental to ensure cellular sensing, cell-to-cell communication, cellular division, and collective cell migration in tissue specific-contexts. Consistently, the dysregulation of endocytic trafficking pathways is correlated with several human diseases including both cancers and neurodegeneration. Aimed at suppress specific intracellular trafficking routes involved in disease onset and progression, huge efforts have been made to identify small molecule inhibitors with suitable pharmacological properties for in vivo administration. Here, we review most used drugs and recently discovered small molecules able to block endocytosis and endocytic recycling pathways. We characterize such pharmacological inhibitors by emphasizing their target specificity, molecular affinity, biological activity and efficacy in both in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Chemical-Physical Processes, National Research Council (CNR-IPCF), Pisa, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
152
|
Krishnan S, Klingauf J. The readily retrievable pool of synaptic vesicles. Biol Chem 2023; 404:385-397. [PMID: 36867726 DOI: 10.1515/hsz-2022-0298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
In the CNS communication between neurons occurs at synapses by secretion of neurotransmitter via exocytosis of synaptic vesicles (SVs) at the active zone. Given the limited number of SVs in presynaptic boutons a fast and efficient recycling of exocytosed membrane and proteins by triggered compensatory endocytosis is required to maintain neurotransmission. Thus, pre-synapses feature a unique tight coupling of exo- and endocytosis in time and space resulting in the reformation of SVs with uniform morphology and well-defined molecular composition. This rapid response requires early stages of endocytosis at the peri-active zone to be well choreographed to ensure reformation of SVs with high fidelity. The pre-synapse can address this challenge by a specialized membrane microcompartment, where a pre-sorted and pre-assembled readily retrievable pool (RRetP) of endocytic membrane patches is formed, consisting of the vesicle cargo, presumably bound within a nucleated Clathrin and adaptor complex. This review considers evidence for the RRetP microcompartment to be the primary organizer of presynaptic triggered compensatory endocytosis.
Collapse
Affiliation(s)
- Sai Krishnan
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch Strasse 31, D-48149, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch Strasse 31, D-48149, Münster, Germany.,Center for Soft Nanoscience, Busso-Peus Strasse 10, D-48149, Münster, Germany
| |
Collapse
|
153
|
Woolfson DN. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J Biol Chem 2023; 299:104579. [PMID: 36871758 PMCID: PMC10124910 DOI: 10.1016/j.jbc.2023.104579] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Protein science is being transformed by powerful computational methods for structure prediction and design: AlphaFold2 can predict many natural protein structures from sequence, and other AI methods are enabling the de novo design of new structures. This raises a question: how much do we understand the underlying sequence-to-structure/function relationships being captured by these methods? This perspective presents our current understanding of one class of protein assembly, the α-helical coiled coils. At first sight, these are straightforward: sequence repeats of hydrophobic (h) and polar (p) residues, (hpphppp)n, direct the folding and assembly of amphipathic α helices into bundles. However, many different bundles are possible: they can have two or more helices (different oligomers); the helices can have parallel, antiparallel or mixed arrangements (different topologies); and the helical sequences can be the same (homomers) or different (heteromers). Thus, sequence-to-structure relationships must be present within the hpphppp repeats to distinguish these states. I discuss the current understanding of this problem at three levels: First, physics gives a parametric framework to generate the many possible coiled-coil backbone structures. Second, chemistry provides a means to explore and deliver sequence-to-structure relationships. Third, biology shows how coiled coils are adapted and functionalized in nature, inspiring applications of coiled coils in synthetic biology. I argue that the chemistry is largely understood; the physics is partly solved, though the considerable challenge of predicting even relative stabilities of different coiled-coil states remains; but there is much more to explore in the biology and synthetic biology of coiled coils.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom; BrisEngBio, School of Chemistry, University of Bristol, Bristol, United Kingdom; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
154
|
Tu Q, Pu M, Li Y, Wang Y, Li M, Song L, Li M, An X, Fan H, Tong Y. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses 2023; 15:v15030673. [PMID: 36992382 PMCID: PMC10057898 DOI: 10.3390/v15030673] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.
Collapse
Affiliation(s)
- Qihang Tu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| |
Collapse
|
155
|
TaSYP137 and TaVAMP723, the SNAREs Proteins from Wheat, Reduce Resistance to Blumeria graminis f. sp. tritici. Int J Mol Sci 2023; 24:ijms24054830. [PMID: 36902258 PMCID: PMC10003616 DOI: 10.3390/ijms24054830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
SNARE protein is an essential factor driving vesicle fusion in eukaryotes. Several SNAREs have been shown to play a crucial role in protecting against powdery mildew and other pathogens. In our previous study, we identified SNARE family members and analyzed their expression pattern in response to powdery mildew infection. Based on quantitative expression and RNA-seq results, we focused on TaSYP137/TaVAMP723 and hypothesized that they play an important role in the interaction between wheat and Blumeria graminis f. sp. Tritici (Bgt). In this study, we measured the expression patterns of TaSYP132/TaVAMP723 genes in wheat post-infection with Bgt and found that the expression pattern of TaSYP137/TaVAMP723 was opposite in resistant and susceptible wheat samples infected by Bgt. The overexpression of TaSYP137/TaVAMP723 disrupted wheat's defense against Bgt infection, while silencing these genes enhanced its resistance to Bgt. Subcellular localization studies revealed that TaSYP137/TaVAMP723 are present in both the plasma membrane and nucleus. The interaction between TaSYP137 and TaVAMP723 was confirmed using the yeast two-hybrid (Y2H) system. This study offers novel insights into the involvement of SNARE proteins in the resistance of wheat against Bgt, thereby enhancing our comprehension of the role of the SNARE family in the pathways related to plant disease resistance.
Collapse
|
156
|
Spleis H, Sandmeier M, Claus V, Bernkop-Schnürch A. Surface design of nanocarriers: Key to more efficient oral drug delivery systems. Adv Colloid Interface Sci 2023; 313:102848. [PMID: 36780780 DOI: 10.1016/j.cis.2023.102848] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
As nanocarriers (NCs) can improve the solubility of drugs, prevent their degradation by gastrointestinal (GI) enzymes and promote their transport across the mucus gel layer and absorption membrane, the oral bioavailability of these drugs can be substantially enhanced. All these properties of NCs including self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, polymeric nanoparticles, inorganic nanoparticles and polymeric micelles depend mainly on their surface chemistry. In particular, interaction with food, digestive enzymes, bile salts and electrolytes, diffusion behaviour across the mucus gel layer and fate on the absorption membrane are determined by their surface. Bioinert surfaces limiting interactions with gastrointestinal fluid and content as well as with mucus, adhesive surfaces providing an intimate contact with the GI mucosa and absorption enhancing surfaces can be designed. Furthermore, charge converting surfaces shifting their zeta potential from negative to positive directly at the absorption membrane and surfaces providing a targeted drug release are advantageous. In addition to these passive surfaces, even active surfaces cleaving mucus glycoproteins on their way through the mucus gel layer can be created. Within this review, we provide an overview on these different surfaces and discuss their impact on the performance of NCs in the GI tract.
Collapse
Affiliation(s)
- Helen Spleis
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Matthias Sandmeier
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Victor Claus
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria.
| |
Collapse
|
157
|
Choi JH, Park SY, Lee WJ, Lee CJ, Kim JH, Jang TY, Jeon SE, Jun Y, Nam JS. SEC22B inhibition attenuates colorectal cancer aggressiveness and autophagic flux under unfavorable environment. Biochem Biophys Res Commun 2023; 665:10-18. [PMID: 37148741 DOI: 10.1016/j.bbrc.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Autophagy has bidirectional functions in cancer by facilitating cell survival and death in a context-dependent manner. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a large family of proteins essential for numerous biological processes, including autophagy; nevertheless, their potential function in cancer malignancy remains unclear. Here, we explored the gene expression patterns of SNAREs in tissues of patients with colorectal cancer (CRC) and discovered that SEC22B expression, a vesicle SNARE, was higher in tumor tissues than in normal tissues, with a more significant increase in metastatic tissues. Interestingly, SEC22B knockdown dramatically decreased CRC cell survival and growth, especially under stressful conditions, such as hypoxia and serum starvation, and decreased the number of stress-induced autophagic vacuoles. Moreover, SEC22B knockdown successfully attenuated liver metastasis in a CRC cell xenograft mouse model, with histological signs of decreased autophagic flux and proliferation within cancer cells. Together, this study posits that SEC22B plays a crucial role in enhancing the aggressiveness of CRC cells, suggesting that SEC22B might be an attractive therapeutic target for CRC.
Collapse
|
158
|
Orr A, Wickner W. PI3P regulates multiple stages of membrane fusion. Mol Biol Cell 2023; 34:ar17. [PMID: 36735517 PMCID: PMC10011722 DOI: 10.1091/mbc.e22-10-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The conserved catalysts of intracellular membrane fusion are Rab-family GTPases, effector complexes that bind Rabs for membrane tethering, SNARE proteins of the R, Qa, Qb, and Qc families, and SNARE chaperones of the SM, Sec17/SNAP, and Sec18/NSF families. Yeast vacuole fusion is regulated by phosphatidylinositol-3-phosphate (PI3P). PI3P binds directly to the vacuolar Qc-SNARE and to HOPS, the vacuolar tethering/SM complex. We now report several distinct functions of PI3P in fusion. PI3P binds the N-terminal PX domain of the Qc-SNARE to enhance its engagement for fusion. Even when Qc has been preassembled with the Qa- and Qb-SNAREs, PI3P still promotes trans-SNARE assembly and fusion between these 3Q proteoliposomes and those with R-SNARE, whether with the natural HOPS tether or with a synthetic tether. With HOPS, efficient trans-SNARE complex formation needs PI3P on the 3Q-SNARE proteoliposomes, in cis to the Qc. PI3P is also needed for HOPS to confer resistance to Sec17/Sec18. With a synthetic tether, fusion is supported by PI3P on either fusion partner membrane, but this fusion is blocked by Sec17/Sec18. PI3P thus supports multiple stages of fusion: the engagement of the Qc-SNARE, trans-SNARE complex formation with preassembled Q-SNAREs, HOPS protection of SNARE complexes from Sec17/Sec18, and fusion per se after tethering and Q-SNARE assembly.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
159
|
Adhikari P, Ayo TE, Vines JC, Sugita S, Xu H. Exocytic machineries differentially control mediator release from allergen-triggered RBL-2H3 cells. Inflamm Res 2023; 72:639-649. [PMID: 36725743 DOI: 10.1007/s00011-023-01698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mast cells utilize SNAREs (soluble-N-ethyl-maleimide sensitive factor attachment protein receptors) and SM (Sec1/Munc18) proteins to secrete/exocytose a variety of proinflammatory mediators. However, whether a common SNARE-SM machinery is responsible remains unclear. METHODS Four vesicle/granule-anchored SNAREs (VAMP2, VAMP3, VAMP7, and VAMP8) and two Munc18 homologs (Munc18a and Munc18b) were systematically knocked down or knocked out in RBL-2H3 mast cells and antigen-induced release of β-hexosaminidase, histamine, serotonin, and TNF was examined. Phenotypes were validated by rescue experiments. Immunofluorescence studies were performed to determine the subcellular distribution of key players. RESULTS The reduction of VAMP8 expression inhibited the exocytosis of β-hexosaminidase, histamine, and serotonin but not TNF. Unexpectedly, however, confocal microscopy revealed substantial co-localization between VAMP8 and TNF, and between TNF and serotonin. Meanwhile, the depletion of other VAMPs, including knockout of VAMP3, had no impact on the release of any of the mediators examined. On the other hand, TNF exocytosis was diminished specifically in stable Munc18bknockdown cells, in a fashion that was rescued by exogenous, RNAi-resistant Munc18b. In line with this, TNF was co-localized with Munc18b (47%) to a much greater extent than with Munc18a (13%). CONCLUSION Distinct exocytic pathways exist in mast cells for the release of different mediators.
Collapse
Affiliation(s)
- Pratikshya Adhikari
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Tolulope E Ayo
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - John C Vines
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Shuzo Sugita
- Division of Fundamental Neurobiology, University Health Network, Toronto, ON, M5T 2S8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hao Xu
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
160
|
Mugume Y, Roy R, Agbemafle W, Shepard GN, Vue Y, Bassham DC. VPS45 is required for both diffuse and tip growth of Arabidopsis thaliana cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1120307. [PMID: 36923123 PMCID: PMC10009167 DOI: 10.3389/fpls.2023.1120307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION VPS45 belongs to the Sec1/Munc18 family of proteins, which interact with and regulate Qa-SNARE function during membrane fusion. We have shown previously that Arabidopsis thaliana VPS45 interacts with the SYP61/SYP41/VTI12 SNARE complex, which locates on the trans-Golgi network (TGN). It is required for SYP41 stability, and it functions in cargo trafficking to the vacuole and in cell expansion. It is also required for correct auxin distribution during gravitropism and lateral root growth. RESULTS As vps45 knockout mutation is lethal in Arabidopsis, we identified a mutant, vps45-3, with a point mutation in the VPS45 gene causing a serine 284-to-phenylalanine substitution. The VPS45-3 protein is stable and maintains interaction with SYP61 and SYP41. However, vps45-3 plants display severe growth defects with significantly reduced organ and cell size, similar to vps45 RNAi transgenic lines that have reduced VPS45 protein levels. Root hair and pollen tube elongation, both processes of tip growth, are highly compromised in vps45-3. Mutant root hairs are shorter and thicker than those of wild-type plants, and are wavy. These root hairs have vacuolar defects, containing many small vacuoles, compared with WT root hairs with a single large vacuole occupying much of the cell volume. Pollen tubes were also significantly shorter in vps45-3 compared to WT. DISCUSSION We thus show that VPS45 is essential for proper tip growth and propose that the observed vacuolar defects lead to loss of the turgor pressure needed for tip growth.
Collapse
Affiliation(s)
- Yosia Mugume
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Rahul Roy
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - William Agbemafle
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Gabriella N. Shepard
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Yee Vue
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
161
|
Yokoyama T, Ito M, Yamamoto Y, Hirakawa M, Sakanoue W, Sato K, Saino T. Immunolocalization of vesicular glutamate transporter 2 and exocytosis-related proteins in afferent nerve endings innervating taste buds in the rat incisive papilla. Anat Histol Embryol 2023. [PMID: 36825501 DOI: 10.1111/ahe.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
The present study aimed to investigate the immunolocalization of vesicular glutamate transporter (VGLUT) 1 and 2, and proteins associated with exocytosis, i.e., core components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex (synaptosomal-associated protein of 25 kDa, syntaxin 1, and vesicle-associated membrane protein 2) and synaptotagmin-1 (Syt1), in incisive papillary taste buds of rats using double-indirect immunofluorescence. No VGLUT1 immunoreactivity was observed, whereas VGLUT2-immunoreactive punctate products were closely associated with guanine nucleotide-binding protein G(t) subunit α3-immmunoreactive cells in taste buds. VGLUT2 was immunolocalized in P2X3 purinoceptor-expressing afferent nerve endings. Synaptosomal-associated protein of 25 kDa, syntaxin 1, and vesicle-associated membrane protein 2 were immunolocalized in nerve endings containing VGLUT2-immunoreactive products as well as a few cells in taste buds. VGLUT2 was co-immunolocalized in some intragemmal nerve endings immunoreactive for Syt1, a calcium sensor implicated in vesicle membrane fusion. The present results suggest that afferent nerve endings innervating incisive taste buds release glutamate by exocytosis to modulate taste cell function.
Collapse
Affiliation(s)
- Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Motoi Ito
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masato Hirakawa
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Wakana Sakanoue
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Kenichi Sato
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| |
Collapse
|
162
|
Karmacharya M, Kumar S, Cho YK. Tuning the Extracellular Vesicles Membrane through Fusion for Biomedical Applications. J Funct Biomater 2023; 14:jfb14020117. [PMID: 36826916 PMCID: PMC9960107 DOI: 10.3390/jfb14020117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Membrane fusion is one of the key phenomena in the living cell for maintaining the basic function of life. Extracellular vesicles (EVs) have the ability to transfer information between cells through plasma membrane fusion, making them a promising tool in diagnostics and therapeutics. This study explores the potential applications of natural membrane vesicles, EVs, and their fusion with liposomes, EVs, and cells and introduces methodologies for enhancing the fusion process. EVs have a high loading capacity, bio-compatibility, and stability, making them ideal for producing effective drugs and diagnostics. The unique properties of fused EVs and the crucial design and development procedures that are necessary to realize their potential as drug carriers and diagnostic tools are also examined. The promise of EVs in various stages of disease management highlights their potential role in future healthcare.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Correspondence: (S.K.); (Y.-K.C.)
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Correspondence: (S.K.); (Y.-K.C.)
| |
Collapse
|
163
|
Jorgenson LM, Knight L, Widner RE, Rucks EA. Eukaryotic Clathrin Adapter Protein and Mediator of Cholesterol Homeostasis, PICALM, Affects Trafficking to the Chlamydial Inclusion. Mol Cell Biol 2023; 43:1-13. [PMID: 36779337 PMCID: PMC9980547 DOI: 10.1080/10985549.2023.2171695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis has unique metabolic requirements as it proceeds through its biphasic developmental cycle from within the inclusion within the host cell. In our previous study, we identified a host protein, PICALM, which localizes to the chlamydial inclusion. PICALM functions in many host pathways including the recycling of receptors, specific SNARE proteins, and molecules like transferrin, and maintaining cholesterol homeostasis. Hence, we hypothesized that PICALM functions to maintain the cholesterol content and to moderate trafficking from the endosomal recycling pathway to the inclusion, which controls chlamydial access to this pathway. In uninfected cells, siRNA knockdown of PICALM resulted in increased cholesterol within the Golgi and transferrin receptor (TfR) positive vesicles (recycling endosomes). PICALM knockdown in cells infected with C. trachomatis resulted in increased levels of Golgi-derived lipid and protein, TfR, transferrin, and Rab11-FIP1 localized to inclusions and a decrease of Golgi fragmentation at and Rab11 trafficking to the inclusion. Interestingly, chlamydial infection alone also increases cholesterol in TfR and Rab11-associated vesicles, and PICALM knockdown reverses this effect. Our data suggest that PICALM functions to balance or limit chlamydial access to multiple subcellular trafficking pathways to maintain the health of the host cell during chlamydial infection.
Collapse
Affiliation(s)
- Lisa M. Jorgenson
- UNeMed Corporation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lindsey Knight
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ray E. Widner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
164
|
Flores-Montero K, Berberián MV, Mayorga LS, Tomes CN, Ruete MC. The molecular chaperone cysteine string protein is required for monomeric SNARE proteins to assemble in trans-complexes during human sperm acrosomal exocytosis†. Biol Reprod 2023; 108:229-240. [PMID: 36308432 DOI: 10.1093/biolre/ioac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane fusion in sperm cells is crucial for acrosomal exocytosis and must be preserved to ensure fertilizing capacity. Evolutionarily conserved protein machinery regulates acrosomal exocytosis. Molecular chaperones play a vital role in spermatogenesis and post-testicular maturation. Cysteine string protein (CSP) is a member of the Hsp40 co-chaperones, and the participation of molecular chaperones in acrosomal exocytosis is poorly understood. In particular, the role of CSP in acrosomal exocytosis has not been reported so far. Using western blot and indirect immunofluorescence, we show that CSP is present in human sperm, is palmitoylated, and predominantly bound to membranes. Moreover, using functional assays and transmission electron microscopy, we report that blocking the function of CSP avoided the assembly of trans-complexes and inhibited exocytosis. In summary, here, we describe the presence of CSP in human sperm and show that this protein has an essential role in membrane fusion during acrosomal exocytosis mediating the trans-SNARE complex assembly between the outer acrosomal and plasma membranes. In general, understanding CSP's role is critical in identifying new biomarkers and generating new rational-based approaches to treat male infertility.
Collapse
Affiliation(s)
- Karina Flores-Montero
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Victoria Berberián
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Ciencias Básicas - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luis Segundo Mayorga
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Nora Tomes
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Celeste Ruete
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
165
|
Wang M, Zhang H, Zhao X, Zhou J, Qin G, Liu Y, Kou X, Zhao Z, Wu T, Zhu JK, Feng X, Li L. SYNTAXIN OF PLANTS81 regulates root meristem activity and stem cell niche maintenance via ROS signaling. PLANT PHYSIOLOGY 2023; 191:1365-1382. [PMID: 36427205 PMCID: PMC9922426 DOI: 10.1093/plphys/kiac530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Root growth and development depend on continuous cell division and differentiation in root tips. In these processes, reactive oxygen species (ROS) play a critical role as signaling molecules. However, few ROS signaling regulators have been identified. In this study, we found knockdown of a syntaxin gene, SYNTAXIN OF PLANTS81 in Arabidopsis thaliana (AtSYP81) resulted in a severe reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. Subsequently, we found AtSYP81 was highly expressed in roots and localized on the endoplasmic reticulum (ER). Interestingly, the reduced expression of AtSYP81 conferred a decreased number of peroxisomes in root meristem cells, raising a possibility that AtSYP81 regulates root development through peroxisome-mediated ROS production. Further transcriptome analysis revealed that class III peroxidases, which are responsible for intracellular ROS homeostasis, showed significantly changed expression in the atsyp81 mutants and AtSYP81 overexpression lines, adding evidence of the regulatory role of AtSYP81 in ROS signaling. Accordingly, rescuing the decreased ROS level via applying ROS donors effectively restored the defects in root meristem activity and SCN identity in the atsyp81 mutants. APETALA2 (AP2) transcription factors PLETHORA1 and 2 (PLT1 and PLT2) were then established as the downstream effectors in this pathway, while potential crosstalk between ROS signaling and auxin signaling was also indicated. Taken together, our findings suggest that AtSYP81 regulates root meristem activity and maintains root SCN identity by controlling peroxisome- and peroxidase-mediated ROS homeostasis, thus both broadening and deepening our understanding of the biological roles of SNARE proteins and ROS signaling.
Collapse
Affiliation(s)
- Mingjing Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jingwen Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guochen Qin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yuqi Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyue Kou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zhenjie Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
166
|
Shi Y, Luo C, Xiang Y, Qian D. Rab GTPases, tethers, and SNAREs work together to regulate Arabidopsis cell plate formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1120841. [PMID: 36844074 PMCID: PMC9950755 DOI: 10.3389/fpls.2023.1120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Cell plates are transient structures formed by the fusion of vesicles at the center of the dividing plane; furthermore, these are precursors to new cell walls and are essential for cytokinesis. Cell plate formation requires a highly coordinated process of cytoskeletal rearrangement, vesicle accumulation and fusion, and membrane maturation. Tethering factors have been shown to interact with the Ras superfamily of small GTP binding proteins (Rab GTPases) and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which are essential for cell plate formation during cytokinesis and are fundamental for maintaining normal plant growth and development. In Arabidopsis thaliana, members of the Rab GTPases, tethers, and SNAREs are localized in cell plates, and mutations in the genes encoding these proteins result in typical cytokinesis-defective phenotypes, such as the formation of abnormal cell plates, multinucleated cells, and incomplete cell walls. This review highlights recent findings on vesicle trafficking during cell plate formation mediated by Rab GTPases, tethers, and SNAREs.
Collapse
|
167
|
The Roles of Exosomal Proteins: Classification, Function, and Applications. Int J Mol Sci 2023; 24:ijms24043061. [PMID: 36834471 PMCID: PMC9961790 DOI: 10.3390/ijms24043061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Exosome, a subpopulation of extracellular vesicles, plays diverse roles in various biological processes. As one of the most abundant components of exosomes, exosomal proteins have been revealed to participate in the development of many diseases, such as carcinoma, sarcoma, melanoma, neurological disorders, immune responses, cardiovascular diseases, and infection. Thus, understanding the functions and mechanisms of exosomal proteins potentially assists clinical diagnosis and targeted delivery of therapies. However, current knowledge about the function and application of exosomal proteins is still limited. In this review, we summarize the classification of exosomal proteins, and the roles of exosomal proteins in exosome biogenesis and disease development, as well as in the clinical applications.
Collapse
|
168
|
Chen Y, Kang J, Zhen R, Zhang L, Chen C. A genome-wide CRISPR screen identifies the CCT chaperonin as a critical regulator of vesicle trafficking. FASEB J 2023; 37:e22757. [PMID: 36607310 DOI: 10.1096/fj.202201580r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Vesicle trafficking is a fundamental cellular process that controls the transport of various proteins and cargos between cellular compartments in eukaryotes. Using a combination of genome-wide CRISPR screening in mammalian cells and RNAi screening in Caenorhabditis elegans, we identify chaperonin containing TCP-1 subunit 4 (CCT4) as a critical regulator of protein secretion and vesicle trafficking. In C. elegans, deficiency of cct-4 as well as other CCT subunits impairs the trafficking of endocytic markers in intestinal cells, and this defect resembles that of dyn-1 RNAi worms. Consistent with these findings, the silencing of CCT4 in human cells leads to defective endosomal trafficking, and this defect can be rescued by the dynamin activator Ryngo 1-23. These results suggest that the cytosolic chaperonin CCT may regulate vesicle trafficking by promoting the folding of dynamin in addition to its known substrate tubulin. Our findings establish an essential role for the CCT chaperonin in regulating vesicle trafficking, and provide new insights into the regulation of vesicle trafficking and the cellular function of the cytosolic chaperonin.
Collapse
Affiliation(s)
- Yongtian Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jing Kang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ru Zhen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liyang Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Caiyong Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
169
|
DAmico KA, Stanton AE, Shirkey JD, Travis SM, Jeffrey PD, Hughson FM. Structure of a Membrane Tethering Complex Incorporating Multiple SNAREs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526244. [PMID: 36778436 PMCID: PMC9915479 DOI: 10.1101/2023.01.30.526244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most membrane fusion reactions in eukaryotic cells are mediated by membrane tethering complexes (MTCs) and SNARE proteins. MTCs are much larger than SNAREs and are thought to mediate the initial attachment of two membranes. Complementary SNAREs then form membrane-bridging complexes whose assembly draws the membranes together for fusion. Here, we present a cryo-EM structure of the simplest known MTC, the 255-kDa Dsl1 complex, bound to the two SNAREs that anchor it to the endoplasmic reticulum. N-terminal domains of the SNAREs form an integral part of the structure, stabilizing a Dsl1 complex configuration with remarkable and unexpected similarities to the 850-kDa exocyst MTC. The structure of the SNARE-anchored Dsl1 complex and its comparison with exocyst reveal what are likely to be common principles underlying MTC function. Our structure also implies that tethers and SNAREs can work together as a single integrated machine.
Collapse
Affiliation(s)
- Kevin A DAmico
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Abigail E Stanton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Jaden D Shirkey
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Sophie M Travis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | |
Collapse
|
170
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
171
|
Dallo S, Shin J, Zhang S, Ren Q, Bao H. Designer Nanodiscs to Probe and Reprogram Membrane Biology in Synapses. J Mol Biol 2023; 435:167757. [PMID: 35872069 PMCID: PMC9805492 DOI: 10.1016/j.jmb.2022.167757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023]
Abstract
Signal transduction at the synapse is mediated by a variety of protein-lipid interactions, which are vital for the spatial and temporal regulation of synaptic vesicle biogenesis, neurotransmitter release, and postsynaptic receptor activation. Therefore, our understanding of synaptic transmission cannot be completed until the elucidation of these critical protein-lipid interactions. On this front, recent advances in nanodiscs have vastly expanded our ability to probe and reprogram membrane biology in synapses. Here, we summarize the progress of the nanodisc toolbox and discuss future directions in this exciting field.
Collapse
Affiliation(s)
- Sarah Dallo
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Jeehae Shin
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Shanwen Zhang
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Qian Ren
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Huan Bao
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA.
| |
Collapse
|
172
|
The Role of α-Synuclein in SNARE-mediated Synaptic Vesicle Fusion. J Mol Biol 2023; 435:167775. [PMID: 35931109 DOI: 10.1016/j.jmb.2022.167775] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
Neuronal communication depends on exquisitely regulated membrane fusion between synaptic vesicles and presynaptic neurons, which results in neurotransmitter release in precisely timed patterns. Presynaptic dysfunctions are known to occur prior to the onset of neurodegenerative diseases, including Parkinson's disease. Synaptic accumulation of α-synuclein (α-Syn) oligomers has been implicated in the pathway leading to such outcomes. α-Syn oligomers exert aberrant effects on presynaptic fusion machinery through their interactions with synaptic vesicles and proteins. Here, we summarize in vitro bulk and single-vesicle assays for investigating the functions of α-Syn monomers and oligomers in synaptic vesicle fusion and then discuss the current understanding of the roles of α-Syn monomers and oligomers in synaptic vesicle fusion. Finally, we suggest a new therapeutic avenue specifically targeting the mechanisms of α-Syn oligomer toxicity rather than the oligomer itself.
Collapse
|
173
|
Li W, Xing Y, Wang Y, Xu T, Song E, Feng W. A non-canonical target-binding site in Munc18-1 domain 3b for assembling the Mint1-Munc18-1-syntaxin-1 complex. Structure 2023; 31:68-77.e5. [PMID: 36608665 DOI: 10.1016/j.str.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
As the prototype of Sec1/Munc18 (SM) family proteins, Munc18-1 can manipulate the distinct conformations of syntaxin-1 for controlling intracellular membrane fusion. The Munc18-1-interacting domain of Mint1 (Mint1-MID) binds to Munc18-1 together with syntaxin-1 to form a Mint1-Munc18-1-syntaxin-1 complex, but the mechanism underlying the complex assembly remains unclear. Here, we determine the structure of the Mint1-MID-Munc18-1-syntaxin-1 complex. Unexpectedly, Munc18-1 recognizes Mint1-MID and syntaxin-1 simultaneously via two opposite sites. The canonical central cavity between domains 1 and 3a of Munc18-1 embraces closed syntaxin-1, whereas the non-canonical basic pocket in domain 3b captures the acidic Mint1-MID helix. The domain 3b-mediated recognition of an acidic-helical motif is distinct from other target-recognition modes of Munc18-1. Mutations in the interface between domain 3b and Mint1-MID disrupt the assembly of the Mint1-Munc18-1-syntaxin-1 complex. This work reveals a non-canonical target-binding site in Munc18-1 domain 3b for assembling the Mint1-Munc18-1-syntaxin-1 complex.
Collapse
Affiliation(s)
- Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Ying Xing
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
174
|
SNARE Protein AoSec22 Orchestrates Mycelial Growth, Vacuole Assembly, Trap Formation, Stress Response, and Secondary Metabolism in Arthrobotrys oligospora. J Fungi (Basel) 2023; 9:jof9010075. [PMID: 36675896 PMCID: PMC9863257 DOI: 10.3390/jof9010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotes and play a vital role in fungal growth, development, and pathogenicity. However, the functions of SNAREs are still largely unknown in nematode-trapping fungi. Arthrobotrys oligospora is a representative species of nematode-trapping fungi that can produce adhesive networks (traps) for nematode predation. In this study, we characterized AoSec22 in A. oligospora, a homolog of the yeast SNARE protein Sec22. Deletion of Aosec22 resulted in remarkable reductions in mycelial growth, the number of nuclei, conidia yield, and trap formation, especially for traps that failed to develop mature three-dimensional networks. Further, absence of Aosec22 impaired fatty acid utilization, autophagy, and stress tolerance; in addition, the vacuoles became small and fragmented in the hyphal cells of the ∆Aosec22 mutant, and large vacuoles failed to form. The reduced sporulation capacity correlated with the transcriptional repression of several sporulation-related genes, and the impaired accumulation of lipid droplets is in line with the transcriptional repression of several genes involved in fatty acid oxidation. Moreover, absence of Aosec22 remarkably impaired secondary metabolism, resulting in 4717 and 1230 compounds upregulated and downregulated in the ∆Aosec22 mutant, respectively. Collectively, our data highlighted that the SNARE protein AoSec22 plays a pleiotropic role in mycelial growth and development, vacuole assembly, lipid metabolism, stress response, and secondary metabolism; in particular, it is required for the proper development of traps in A. oligospora.
Collapse
|
175
|
Yun HS, Sul WJ, Chung HS, Lee JH, Kwon C. Secretory membrane traffic in plant-microbe interactions. THE NEW PHYTOLOGIST 2023; 237:53-59. [PMID: 36089820 DOI: 10.1111/nph.18470] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant defense responses include the extracellular release of defense-related molecules, such as pathogenesis-related proteins and secondary metabolites, as well as cell wall materials. This primarily depends on the trafficking of secretory vesicles to the plasma membrane, where they discharge their contents into the apoplastic space via soluble N-ethylmaleimide sensitive factor attachment protein receptor-assisted exocytosis. However, some pathogenic and symbiotic microbes have developed strategies to manipulate host plant exocytic pathways. Here, we discuss the mechanisms by which plant exocytic pathways function in immunity and how microbes have evolved to manipulate those pathways.
Collapse
Affiliation(s)
- Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Korea
| | - Hoo Sun Chung
- Plant Biotechnology Research Center, Ghent University, Global Campus, Incheon, 21985, Korea
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, 46241, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| |
Collapse
|
176
|
Hussen BM, Mohamadtahr S, Abdullah SR, Hidayat HJ, Rasul MF, Hama Faraj GS, Ghafouri-Fard S, Taheri M, Khayamzadeh M, Jamali E. Exosomal circular RNAs: New player in breast cancer progression and therapeutic targets. Front Genet 2023; 14:1126944. [PMID: 36926585 PMCID: PMC10011470 DOI: 10.3389/fgene.2023.1126944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Breast cancer is the most prevalent type of malignancy among women. Exosomes are extracellular vesicles of cell membrane origin that are released via exocytosis. Their cargo contains lipids, proteins, DNA, and different forms of RNA, including circular RNAs. Circular RNAs are new class of non-coding RNAs with a closed-loop shape involved in several types of cancer, including breast cancer. Exosomes contained a lot of circRNAs which are called exosomal circRNAs. By interfering with several biological pathways, exosomal circRNAs can have either a proliferative or suppressive role in cancer. The involvement of exosomal circRNAs in breast cancer has been studied with consideration to tumor development and progression as well as its effects on therapeutic resistance. However, its exact mechanism is still unclear, and there have not been available clinical implications of exo-circRNAs in breast cancer. Here, we highlight the role of exosomal circRNAs in breast cancer progression and to highlight the most recent development and potential of circRNAas therapeutic targets and diagnostics for breast cancer.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Medical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Medical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaimany, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khayamzadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Academy of Medical Sciences, Tehran, Iran
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
177
|
Godlee C, Holden DW. Transmembrane substrates of type three secretion system injectisomes. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001292. [PMID: 36748571 PMCID: PMC9993115 DOI: 10.1099/mic.0.001292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The type three secretion system injectisome of Gram-negative bacterial pathogens injects virulence proteins, called effectors, into host cells. Effectors of mammalian pathogens carry out a range of functions enabling bacterial invasion, replication, immune suppression and transmission. The injectisome secretes two translocon proteins that insert into host cell membranes to form a translocon pore, through which effectors are delivered. A subset of effectors also integrate into infected cell membranes, enabling a unique range of biochemical functions. Both translocon proteins and transmembrane effectors avoid cytoplasmic aggregation and integration into the bacterial inner membrane. Translocated transmembrane effectors locate and integrate into the appropriate host membrane. In this review, we focus on transmembrane translocon proteins and effectors of bacterial pathogens of mammals. We discuss what is known about the mechanisms underlying their membrane integration, as well as the functions conferred by the position of injectisome effectors within membranes.
Collapse
Affiliation(s)
- Camilla Godlee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
- Present address: Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- *Correspondence: Camilla Godlee, ;
| | - David W. Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
- *Correspondence: David W. Holden,
| |
Collapse
|
178
|
Ali Moussa HY, Park Y. Electrostatic regulation of the cis- and trans-membrane interactions of synaptotagmin-1. Sci Rep 2022; 12:22407. [PMID: 36575295 PMCID: PMC9794720 DOI: 10.1038/s41598-022-26723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Synaptotagmin-1 is a vesicular protein and Ca2+ sensor for Ca2+-dependent exocytosis. Ca2+ induces synaptotagmin-1 binding to its own vesicle membrane, called the cis-interaction, thus preventing the trans-interaction of synaptotagmin-1 to the plasma membrane. However, the electrostatic regulation of the cis- and trans-membrane interaction of synaptotagmin-1 was poorly understood in different Ca2+-buffering conditions. Here we provide an assay to monitor the cis- and trans-membrane interactions of synaptotagmin-1 by using native purified vesicles and the plasma membrane-mimicking liposomes (PM-liposomes). Both ATP and EGTA similarly reverse the cis-membrane interaction of synaptotagmin-1 in free [Ca2+] of 10-100 μM. High PIP2 concentrations in the PM-liposomes reduce the Hill coefficient of vesicle fusion and synaptotagmin-1 membrane binding; this observation suggests that local PIP2 concentrations control the Ca2+-cooperativity of synaptotagmin-1. Our data provide evidence that Ca2+ chelators, including EGTA and polyphosphate anions such as ATP, ADP, and AMP, electrostatically reverse the cis-interaction of synaptotagmin-1.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- grid.418818.c0000 0001 0516 2170Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Yongsoo Park
- grid.418818.c0000 0001 0516 2170Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar ,grid.418818.c0000 0001 0516 2170College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
179
|
Zhou K, Luo W, Liu T, Ni Y, Qin Z. Neurotoxins Acting at Synaptic Sites: A Brief Review on Mechanisms and Clinical Applications. Toxins (Basel) 2022; 15:18. [PMID: 36668838 PMCID: PMC9865788 DOI: 10.3390/toxins15010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotoxins generally inhibit or promote the release of neurotransmitters or bind to receptors that are located in the pre- or post-synaptic membranes, thereby affecting physiological functions of synapses and affecting biological processes. With more and more research on the toxins of various origins, many neurotoxins are now widely used in clinical treatment and have demonstrated good therapeutic outcomes. This review summarizes the structural properties and potential pharmacological effects of neurotoxins acting on different components of the synapse, as well as their important clinical applications, thus could be a useful reference for researchers and clinicians in the study of neurotoxins.
Collapse
Affiliation(s)
- Kunming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Yong Ni
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
180
|
Zheng Y, Xu P, Pan C, Wang Y, Liu Z, Chen Y, Chen C, Fu S, Xue K, Zhou Q, Liu K. Production and Biological Effects of Extracellular Vesicles from Adipose-Derived Stem Cells Were Markedly Increased by Low-Intensity Ultrasound Stimulation for Promoting Diabetic Wound Healing. Stem Cell Rev Rep 2022; 19:784-806. [PMID: 36562958 DOI: 10.1007/s12015-022-10487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Diabetic wound treatment has posed a significant challenge in clinical practice. As a kind of cell-derived nanoparticles, extracellular vesicles produced by adipose-derived stem cells (ADSC-EVs) have been reported to be potential agents for diabetic wound treatment. However, ADSC-EV yield is insufficient to meet the demands of clinical therapy. In this study, a novel method involving the use of low-intensity ultrasound stimulation on ADSCs is developed to promote EV secretion for clinical use. A proper low-intensity ultrasound stimulation parameter which significantly increases ADSC-EV quantity has been found. In addition, EVs secreted by ADSCs following low-intensity ultrasound stimulation (US-EVs) are enriched in wound healing-related miRNAs. Moreover, US-EVs promote the biological functions of fibroblasts, keratinocytes, and endothelial cells in vitro, and promote diabetic wound healing in db/db mice in vivo through re-epithelialization, collagen production, cell proliferation, keratinocyte differentiation and migration, and angiogenesis. This study proposes low-intensity ultrasound stimulation as a new method for promoting significant EV secretion by ADSCs and for improving the diabetic wound-healing potential of EVs, which will meet the clinical needs for these nanoparticles. The production of extracellular vesicles of adipose-derived stem cells is obviously promoted by a low-intensity ultrasound stimulation method, and the biological effects of promoting diabetic wound healing were markedly increased in vitro and in vivo.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China.
| | - Chuqiao Pan
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Yikai Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Zibo Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Yahong Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Chuhsin Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Shibo Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China.
| |
Collapse
|
181
|
Chen Y, Liu J, Fan Y, Xiang M, Kang S, Wei D, Liu X. SNARE Protein DdVam7 of the Nematode-Trapping Fungus Drechslerella dactyloides Regulates Vegetative Growth, Conidiation, and the Predatory Process via Vacuole Assembly. Microbiol Spectr 2022; 10:e0187222. [PMID: 36287065 PMCID: PMC9769606 DOI: 10.1128/spectrum.01872-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 01/07/2023] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play conserved roles in membrane fusion events in eukaryotes and have been documented to be involved in fungal growth and pathogenesis. However, little is known about the roles of SNAREs in trap morphogenesis in nematode-trapping fungi (NTF). Drechslerella dactyloides, one of the constricting ring-forming NTF, captures free-living nematodes via rapid ring cell inflation. Here, we characterized DdVam7 of D. dactyloides, a homolog of the yeast SNARE protein Vam7p. Deletion of DdVam7 significantly suppressed vegetative growth and conidiation. The mutation significantly impaired trap formation and ring cell inflation, resulting in a markedly decreased nematode-trapping ability. A large vacuole could develop in ring cells within ~2.5 s after instant inflation in D. dactyloides. In the ΔDdVam7 mutant, the vacuoles were small and fragmented in hyphae and uninflated ring cells, and the large vacuole failed to form in inflated ring cells. The localization of DdVam7 in vacuoles suggests its involvement in vacuole fusion. In summary, our results suggest that DdVam7 regulates vegetative growth, conidiation, and the predatory process by mediating vacuole assembly in D. dactyloides, and this provides a basis for studying mechanisms of SNAREs in NTF and ring cell rapid inflation. IMPORTANCE D. dactyloides is a nematode-trapping fungus that can capture nematodes through a constricting ring, the most sophisticated trapping device. It is amazing that constricting ring cells can inflate to triple their size within seconds to capture a nematode. A large centrally located vacuole is a unique signature associated with inflated ring cells. However, the mechanism underpinning trap morphogenesis, especially vacuole dynamics during ring cell inflation, remains unclear. Here, we documented the dynamics of vacuole assembly during ring cell inflation via time-lapse imaging for the first time. We characterized a SNARE protein in D. dactyloides (DdVam7) that was involved in vacuole assembly in hyphae and ring cells and played important roles in vegetative growth, conidiation, trap morphogenesis, and ring cell inflation. Overall, this study expands our understanding of biological functions of the SNARE proteins and vacuole assembly in NTF trap morphogenesis and provides a foundation for further study of ring cell rapid inflation mechanisms.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Jia Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Dongsheng Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
182
|
Li X, Zhu X, Wei Y. Autophagy in Atherosclerotic Plaque Cells: Targeting NLRP3 Inflammasome for Self-Rescue. Biomolecules 2022; 13:15. [PMID: 36671400 PMCID: PMC9855815 DOI: 10.3390/biom13010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis (AS) is a lipid-driven disorder of the artery intima characterized by the equilibrium between inflammatory and regressive processes. A protein complex called NLRP3 inflammasome is involved in the release of mature interleukin-1β (IL-1β), which is connected to the initiation and progression of atherosclerosis. Autophagy, which includes macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy, is generally recognized as the process by which cells transfer their constituents to lysosomes for digestion. Recent studies have suggested a connection between vascular inflammation and autophagy. This review summarizes the most recent studies and the underlying mechanisms associated with different autophagic pathways and NLRP3 inflammasomes in vascular inflammation, aiming to provide additional evidence for atherosclerosis research.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianjie Zhu
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
183
|
Identification and Transcriptional Profiling of SNARE Family in Monascus ruber M7 Reveal Likely Roles in Secondary Metabolism. FERMENTATION 2022. [DOI: 10.3390/fermentation8120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are the core components that mediate vesicle fusion, and they play an important role in secondary metabolism of filamentous fungi. However, in Monascus spp., one of the traditional medicinal and edible filamentous fungi, the members and function of SNAREs remain unknown. Here, twenty SNAREs in M. ruber M7 were systematically identified based on the gene structure, amino acid structure and phylogenetic analysis and were classified into four subfamilies. We also compared the expression profiles of twenty MrSNAREs in M. ruber M7 and its deletion mutants, ΔmrpigA and ΔpksCT, which could not produce Monascus pigment and citrinin, respectively. The results indicated that these MrSNAREs showed distinct expression patterns in the three strains. Compared to M. ruber M7, the expression levels of Mrtlg2, Mrbet1, Mrgos1 and Mrsec22 remained higher in ΔmrpigA but lower in ΔpksCT, which could be reason to consider them as potential candidate genes involved in secondary metabolism for further functional characterization. Further, the significant upregulation of Mrpep12 and Mrvtil in ΔpksCT is worthy of attention for further research. Our results provide systematic identification and expression profiling of the SNARE family in Monascus and imply that the functions of MrSNAREs are specific to different secondary metabolic processes.
Collapse
|
184
|
Wehrum S, Siukstaite L, Williamson DJ, Branson TR, Sych T, Madl J, Wildsmith GC, Dai W, Kempmann E, Ross JF, Thomsen M, Webb ME, Römer W, Turnbull WB. Membrane Fusion Mediated by Non-covalent Binding of Re-engineered Cholera Toxin Assemblies to Glycolipids. ACS Synth Biol 2022; 11:3929-3938. [PMID: 36367814 PMCID: PMC9764410 DOI: 10.1021/acssynbio.2c00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Membrane fusion is essential for the transport of macromolecules and viruses across membranes. While glycan-binding proteins (lectins) often initiate cellular adhesion, subsequent fusion events require additional protein machinery. No mechanism for membrane fusion arising from simply a protein binding to membrane glycolipids has been described thus far. Herein, we report that a biotinylated protein derived from cholera toxin becomes a fusogenic lectin upon cross-linking with streptavidin. This novel reengineered protein brings about hemifusion and fusion of vesicles as demonstrated by mixing of fluorescently labeled lipids between vesicles as well as content mixing of liposomes filled with fluorescently labeled dextran. Exclusion of the complex at vesicle-vesicle interfaces could also be observed, indicating the formation of hemifusion diaphragms. Discovery of this fusogenic lectin complex demonstrates that new emergent properties can arise from simple changes in protein architecture and provides insights into new mechanisms of lipid-driven fusion.
Collapse
Affiliation(s)
- Sarah Wehrum
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Lina Siukstaite
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Daniel J. Williamson
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Thomas R. Branson
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Taras Sych
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany,Science
for Life Laboratory, Department of Women’s and Children’s
Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Josef Madl
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Gemma C. Wildsmith
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Wenyue Dai
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Erik Kempmann
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - James F. Ross
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Maren Thomsen
- School of
Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Michael E. Webb
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Winfried Römer
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany,
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..,
| |
Collapse
|
185
|
Liu Y, Katoh H, Sekizuka T, Bae C, Wakata A, Kato F, Sakata M, Yamaji T, Wang Z, Takeda M. SNARE protein USE1 is involved in the glycosylation and the expression of mumps virus fusion protein and important for viral propagation. PLoS Pathog 2022; 18:e1010949. [PMID: 36480520 PMCID: PMC9731409 DOI: 10.1371/journal.ppat.1010949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Mumps virus (MuV) is the etiological agent of mumps, a disease characterized by painful swelling of the parotid glands and often accompanied by severe complications. To understand the molecular mechanism of MuV infection, a functional analysis of the involved host factors is required. However, little is known about the host factors involved in MuV infection, especially those involved in the late stage of infection. Here, we identified 638 host proteins that have close proximity to MuV glycoproteins, which are a major component of the viral particles, by proximity labeling and examined comprehensive protein-protein interaction networks of the host proteins. From siRNA screening and immunoprecipitation results, we found that a SNARE subfamily protein, USE1, bound specifically to the MuV fusion (F) protein and was important for MuV propagation. In addition, USE1 plays a role in complete N-linked glycosylation and expression of the MuV F protein.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hiroshi Katoh
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- * E-mail:
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Chaewon Bae
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Aika Wakata
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Fumihiro Kato
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masafumi Sakata
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| |
Collapse
|
186
|
Zeng L, Lv H, Wang X, Xue R, Zhou C, Liu X, Yu H. Causal effects of fatty acids on depression: Mendelian randomization study. Front Nutr 2022; 9:1010476. [PMID: 36562041 PMCID: PMC9763462 DOI: 10.3389/fnut.2022.1010476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives Fatty acids (FA) are widely believed to play a role in the pathophysiology of depression. However, the causal relationships between FA and depression remain elusive and warrant further research. We aimed to investigate the potential causal relationship between FA [saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)] and the risk of depression using Mendelian randomization (MR) analysis. Methods We conducted a two-sample MR analysis using large-scale European-based genome-wide association studies (GWASs) summary data related to depression (n = 500,199 individuals) and FA [saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)] levels. MR analysis was performed using the Wald ratio and inverse variance-weighted (IVW) methods, and sensitivity analysis was conducted by the simple mode, weighted mode, weighted median method, and MR-Egger method. Results We found the causal effects for the levels of oleic acid (OA; OR = 1.07, p = 5.72 × 10-4), adrenic acid (OR = 0.74, p = 1.01 × 10-3), α-linolenic acid (ALA; OR = 2.52, p = 1.01 × 10-3), eicosapentaenoic acid (EPA; OR = 0.84, p = 3.11 × 10-3) on depression risk, after Bonferroni correction. The sensitivity analyses indicated similar trends. No causal effect between the levels of SFA and depression risk was observed. Conclusion Our study suggests that adrenic acid and EPA are protective against the risk of depression, while OA and ALA are potential risk factors for depression. Nonetheless, the underlying mechanisms that mediate the association between these FAs and depression risk should be investigated in further experiments.
Collapse
Affiliation(s)
- Lingsi Zeng
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Honggang Lv
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Xubo Wang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Ranran Xue
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Cong Zhou
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Xia Liu
- Department of Sleep Medicine, Shandong Daizhuang Hospital, Jining, Shandong, China,Xia Liu,
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China,*Correspondence: Hao Yu,
| |
Collapse
|
187
|
Liu Y, Shuai K, Sun Y, Zhu L, Wu XM. Advances in the study of axon-associated vesicles. Front Mol Neurosci 2022; 15:1045778. [PMID: 36545123 PMCID: PMC9760877 DOI: 10.3389/fnmol.2022.1045778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is the most important and difficult to study system in the human body and is known for its complex functions, components, and mechanisms. Neurons are the basic cellular units realizing neural functions. In neurons, vesicles are one of the critical pathways for intracellular material transport, linking information exchanges inside and outside cells. The axon is a vital part of neuron since electrical and molecular signals must be conducted through axons. Here, we describe and explore the formation, trafficking, and sorting of cellular vesicles within axons, as well as related-diseases and practical implications. Furthermore, with deepening of understanding and the development of new approaches, accumulating evidence proves that besides signal transmission between synapses, the material exchange and vesicular transmission between axons and extracellular environment are involved in physiological processes, and consequently to neural pathology. Recent studies have also paid attention to axonal vesicles and their physiological roles and pathological effects on axons themselves. Therefore, this review mainly focuses on these two key nodes to explain the role of intracellular vesicles and extracellular vesicles migrated from cells on axons and neurons, providing innovative strategy for future researches.
Collapse
Affiliation(s)
- Yanling Liu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ke Shuai
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yiyan Sun
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Mei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China,*Correspondence: Xiao-Mei Wu,
| |
Collapse
|
188
|
Secretory autophagy promotes Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1. J Biomed Sci 2022; 29:103. [PMID: 36457117 PMCID: PMC9717497 DOI: 10.1186/s12929-022-00886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1 (TIMP1), an inflammatory cytokine, under serum-depleted conditions which leads to suppression of lung cancer cell metastasis has been reported. Starvation is also a stimulus of autophagic activity. Herein, we reveal that starvation activates Rab37 and induces autophagy. METHODS We used an overexpression/knockdown system to determine the relationship between autophagy and Rab37 in vitro and in vivo. The autophagy activity was detected by immunoblotting, transmission electron microscope, autophagosome purification, and immunofluorescence under the confocal microscope. Lung-to-lung metastasis mouse model was used to clarify the role of autophagy and Rab37 in lung cancer. Clinical lung cancer patient specimens and an online big database were analyzed. RESULTS Initially, we demonstrated that active-form Rab37 increased LC3-II protein level (the marker of autophagosome) and TIMP1 secretion. Accordingly, silencing of Rab37 gene expression alleviated Rab37 and LC3-II levels as well as TIMP1 secretion, and induction of autophagy could not increase TIMP1 exocytosis under such conditions. Moreover, silencing the Atg5 or Atg7 gene of lung cancer cells harboring active-mutant Rab37 (Q89L) led to decreased autophagy activity and TIMP1 secretion. In the lung-to-lung metastasis mouse model, increased TIMP1 expression accompanied by amiodarone-induced autophagy led to decreased tumor nodules and cancer cell metastasis. These phenomena were reversed by silencing the Atg5 or Atg7 gene. Notably, increasing autophagy activity alone showed no effect on TIMP1 secretion under either Rab37 or Sec22b silencing conditions. We further detected colocalization of LC3 with either Rab37 or TIMP1, identified Rab37 and Sec22b proteins in the purified autophagosomes of the lung cancer cells harboring the active-form Rab37 gene, and confirmed that these proteins are involved in the secretion of TIMP1. We reveal that autophagic activity was significantly lower in the tumors compared to the non-tumor parts and was associated with the overall lung cancer patient survival rate. CONCLUSIONS We are the first to report that autophagy plays a promoting role in TIMP1 secretion and metastasis in a Rab37-dependent manner in lung cancer cells and the lung-to-lung mouse model.
Collapse
|
189
|
Chen X, Li J, Zhang R, Zhang Y, Wang X, Leung EL, Ma L, Wong VKW, Liu L, Neher E, Yu H. Suppression of PD-L1 release from small extracellular vesicles promotes systemic anti-tumor immunity by targeting ORAI1 calcium channels. J Extracell Vesicles 2022; 11:e12279. [PMID: 36482876 PMCID: PMC9732629 DOI: 10.1002/jev2.12279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Blockade of immune checkpoints as a strategy of cancer cells to overcome the immune response has received ample attention in cancer research recently. In particular, expression of PD-L1 by various cancer cells has become a paradigm in this respect. Delivery of PD-L1 to its site of action occurs either by local diffusion, or else by transport via small extracellular vesicles (sEVs, commonly referred to as exosomes). Many steps of sEVs formation, their packaging with PD-L1 and their release into the extracellular space have been studied in detail. The likely dependence of release on Ca2+ -signaling, however, has received little attention. This is surprising, since the intracellular Ca2+ -concentration is known as a prominent regulator of many secretory processes. Here, we report on the roles of three Ca2+ -dependent proteins in regulating release of PD-L1-containing sEVs, as well as on the growth of tumors in mouse models. We show that sEVs release in cancer cell lines is Ca2+ -dependent and the knockdown of the gene coding the Ca2+ -channel protein ORAI1 reduces Ca2+ -signals and release of sEVs. Consequently, the T cell response is reinvigorated and tumor progression in mouse models is retarded. Furthermore, analysis of protein expression patterns in samples from human cancer tissue shows that the ORAI1 gene is significantly upregulated. Such upregulation is identified as an unfavorable prognostic factor for survival of patients with non-small-cell lung cancer. We show that reduced Ca2+ -signaling after knockdown of ORAI1 gene also compromises the activity of melanophilin and Synaptotagmin-like protein 2, two proteins, which are important for correct localization of secretory organelles within cancer cells and their transport to sites of exocytosis. Thus, the Ca2+ -channel ORAI1 and Ca2+ -dependent proteins of the secretion pathway emerge as important targets for understanding and manipulating immune checkpoint blockade by PD-L1.
Collapse
Affiliation(s)
- Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Jiaqi Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Ren Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Yao Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Xiaoxuan Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Elaine Lai‐Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina,Emeritus Laboratory of Membrane BiophysicsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| |
Collapse
|
190
|
Krasnobaev VD, Batishchev OV. The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s199074782209001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
191
|
Cheppali SK, Dharan R, Sorkin R. Forces of Change: Optical Tweezers in Membrane Remodeling Studies. J Membr Biol 2022; 255:677-690. [PMID: 35616705 DOI: 10.1007/s00232-022-00241-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Optical tweezers allow precise measurement of forces and distances with piconewton and nanometer precision, and have thus been instrumental in elucidating the mechanistic details of various biological processes. Some examples include the characterization of motor protein activity, studies of protein-DNA interactions, and characterizing protein folding trajectories. The use of optical tweezers (OT) to study membranes is, however, much less abundant. Here, we review biophysical studies of membranes that utilize optical tweezers, with emphasis on various assays that have been developed and their benefits and limitations. First, we discuss assays that employ membrane-coated beads, and overview protein-membrane interactions studies based on manipulation of such beads. We further overview a body of studies that make use of a very powerful experimental tool, the combination of OT, micropipette aspiration, and fluorescence microscopy, that allow detailed studies of membrane curvature generation and sensitivity. Finally, we describe studies focused on membrane fusion and fission. We then summarize the overall progress in the field and outline future directions.
Collapse
Affiliation(s)
- Sudheer K Cheppali
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Raviv Dharan
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Raya Sorkin
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel. .,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. .,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel. .,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
192
|
Khvotchev M, Soloviev M. SNARE Modulators and SNARE Mimetic Peptides. Biomolecules 2022; 12:biom12121779. [PMID: 36551207 PMCID: PMC9776023 DOI: 10.3390/biom12121779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins play a central role in most forms of intracellular membrane trafficking, a key process that allows for membrane and biocargo shuffling between multiple compartments within the cell and extracellular environment. The structural organization of SNARE proteins is relatively simple, with several intrinsically disordered and folded elements (e.g., SNARE motif, N-terminal domain, transmembrane region) that interact with other SNAREs, SNARE-regulating proteins and biological membranes. In this review, we discuss recent advances in the development of functional peptides that can modify SNARE-binding interfaces and modulate SNARE function. The ability of the relatively short SNARE motif to assemble spontaneously into stable coiled coil tetrahelical bundles has inspired the development of reduced SNARE-mimetic systems that use peptides for biological membrane fusion and for making large supramolecular protein complexes. We evaluate two such systems, based on peptide-nucleic acids (PNAs) and coiled coil peptides. We also review how the self-assembly of SNARE motifs can be exploited to drive on-demand assembly of complex re-engineered polypeptides.
Collapse
Affiliation(s)
- Mikhail Khvotchev
- Department of Biochemistry, Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (M.K.); (M.S.)
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Correspondence: (M.K.); (M.S.)
| |
Collapse
|
193
|
Gu X, Ding Y, Xiao P, He T. A GHKNN model based on the physicochemical property extraction method to identify SNARE proteins. Front Genet 2022; 13:935717. [PMID: 36506312 PMCID: PMC9727185 DOI: 10.3389/fgene.2022.935717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
There is a great deal of importance to SNARE proteins, and their absence from function can lead to a variety of diseases. The SNARE protein is known as a membrane fusion protein, and it is crucial for mediating vesicle fusion. The identification of SNARE proteins must therefore be conducted with an accurate method. Through extensive experiments, we have developed a model based on graph-regularized k-local hyperplane distance nearest neighbor model (GHKNN) binary classification. In this, the model uses the physicochemical property extraction method to extract protein sequence features and the SMOTE method to upsample protein sequence features. The combination achieves the most accurate performance for identifying all protein sequences. Finally, we compare the model based on GHKNN binary classification with other classifiers and measure them using four different metrics: SN, SP, ACC, and MCC. In experiments, the model performs significantly better than other classifiers.
Collapse
Affiliation(s)
- Xingyue Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Tao He
- Beidahuang Industry Group General Hospital, Harbin, China
| |
Collapse
|
194
|
Bollmann C, Schöning S, Kotschnew K, Grosse J, Heitzig N, Fischer von Mollard G. Primary neurons lacking the SNAREs vti1a and vti1b show altered neuronal development. Neural Dev 2022; 17:12. [PMID: 36419086 PMCID: PMC9682837 DOI: 10.1186/s13064-022-00168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Neurons are highly specialized cells with a complex morphology generated by various membrane trafficking steps. They contain Golgi outposts in dendrites, which are formed from somatic Golgi tubules. In trafficking membrane fusion is mediated by a specific combination of SNARE proteins. A functional SNARE complex contains four different helices, one from each SNARE subfamily (R-, Qa, Qb and Qc). Loss of the two Qb SNAREs vti1a and vti1b from the Golgi apparatus and endosomes leads to death at birth in mice with massive neurodegeneration in peripheral ganglia and defective axon tracts. METHODS Hippocampal and cortical neurons were isolated from Vti1a-/- Vti1b-/- double deficient, Vti1a-/- Vti1b+/-, Vti1a+/- Vti1b-/- and Vti1a+/- Vti1b+/- double heterozygous embryos. Neurite outgrowth was determined in cortical neurons and after stimulation with several neurotrophic factors or the Rho-associated protein kinase ROCK inhibitor Y27632, which induces exocytosis of enlargeosomes, in hippocampal neurons. Moreover, postsynaptic densities were isolated from embryonic Vti1a-/- Vti1b-/- and Vti1a+/- Vti1b+/- control forebrains and analyzed by western blotting. RESULTS Golgi outposts were present in Vti1a-/- Vti1b+/- and Vti1a+/- Vti1b-/- dendrites of hippocampal neurons but not detected in the absence of vti1a and vti1b. The length of neurites was significantly shorter in double deficient cortical neurons. These defects were not observed in Vti1a-/- Vti1b+/- and Vti1a+/- Vti1b-/- neurons. NGF, BDNF, NT-3, GDNF or Y27632 as stimulator of enlargeosome secretion did not increase the neurite length in double deficient hippocampal neurons. Vti1a-/- Vti1b-/- postsynaptic densities contained similar amounts of scaffold proteins, AMPA receptors and NMDA receptors compared to Vti1a+/- Vti1b+/-, but much more TrkB, which is the receptor for BDNF. CONCLUSION The absence of Golgi outposts did not affect the amount of AMPA and NMDA receptors in postsynaptic densities. Even though TrkB was enriched, BDNF was not able to stimulate neurite elongation in Vti1a-/- Vti1b-/- neurons. Vti1a or vti1b function as the missing Qb-SNARE together with VAMP-4 (R-SNARE), syntaxin 16 (Qa-SNARE) and syntaxin 6 (Qc-SNARE) in induced neurite outgrowth. Our data show the importance of vti1a or vti1b for two pathways of neurite elongation.
Collapse
Affiliation(s)
- Christian Bollmann
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Susanne Schöning
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Katharina Kotschnew
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Julia Grosse
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Nicole Heitzig
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Gabriele Fischer von Mollard
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
195
|
Luchetti F, Nasoni MG, Burattini S, Mohammadi A, Pagliarini M, Canonico B, Ambrogini P, Balduini W, Reiter RJ, Carloni S. Melatonin Attenuates Ischemic-like Cell Injury by Promoting Autophagosome Maturation via the Sirt1/FoxO1/Rab7 Axis in Hippocampal HT22 Cells and in Organotypic Cultures. Cells 2022; 11:3701. [PMID: 36429130 PMCID: PMC9688641 DOI: 10.3390/cells11223701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Dysfunctional autophagy is linked to neuronal damage in ischemia/reperfusion injury. The Ras-related protein 7 (Rab7), a member of the Rab family of small GTPases, appears crucial for the progression of the autophagic flux, and its activity is strictly interconnected with the histone deacetylase Silent information regulator 1 (Sirt1) and transcription factor Forkhead box class O1 (FoxO1). The present study assessed the neuroprotective role of melatonin in the modulation of the Sirt1/FoxO1/Rab7 axis in HT22 cells and organotypic hippocampal cultures exposed to oxygen-glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin re-established physiological levels of autophagy and reduced propidium iodide-positive cells, speeding up autophagosome (AP) maturation and increasing lysosomal activity. Our study revealed that melatonin modulates autophagic pathways, increasing the expression of both Rab7 and FoxO1 and restoring the Sirt1 expression affected by OGD/R. In addition, the Sirt1 inhibitor EX-527 significantly reduced Rab7, Sirt1, and FoxO1 expression, as well as autolysosomes formation, and blocked the neuroprotective effect of melatonin. Overall, our findings provide, for the first time, new insights into the neuroprotective role of melatonin against ischemic injury through the activation of the Sirt1/FoxO1/Rab7 axis.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Maria G. Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Atefeh Mohammadi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marica Pagliarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
196
|
Fekete CD, Nishiyama A. Presentation and integration of multiple signals that modulate oligodendrocyte lineage progression and myelination. Front Cell Neurosci 2022; 16:1041853. [PMID: 36451655 PMCID: PMC9701731 DOI: 10.3389/fncel.2022.1041853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination is critical for fast saltatory conduction of action potentials. Recent studies have revealed that myelin is not a static structure as previously considered but continues to be made and remodeled throughout adulthood in tune with the network requirement. Synthesis of new myelin requires turning on the switch in oligodendrocytes (OL) to initiate the myelination program that includes synthesis and transport of macromolecules needed for myelin production as well as the metabolic and other cellular functions needed to support this process. A significant amount of information is available regarding the individual intrinsic and extrinsic signals that promote OL commitment, expansion, terminal differentiation, and myelination. However, it is less clear how these signals are made available to OL lineage cells when needed, and how multiple signals are integrated to generate the correct amount of myelin that is needed in a given neural network state. Here we review the pleiotropic effects of some of the extracellular signals that affect myelination and discuss the cellular processes used by the source cells that contribute to the variation in the temporal and spatial availability of the signals, and how the recipient OL lineage cells might integrate the multiple signals presented to them in a manner dialed to the strength of the input.
Collapse
Affiliation(s)
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
197
|
de Almeida Fuzeta M, Gonçalves PP, Fernandes-Platzgummer A, Cabral JMS, Bernardes N, da Silva CL. From Promise to Reality: Bioengineering Strategies to Enhance the Therapeutic Potential of Extracellular Vesicles. Bioengineering (Basel) 2022; 9:675. [PMID: 36354586 PMCID: PMC9687169 DOI: 10.3390/bioengineering9110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) have been the focus of great attention over the last decade, considering their promising application as next-generation therapeutics. EVs have emerged as relevant mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. Given their natural ability to shuttle messages between cells, EVs have been explored both as inherent therapeutics in regenerative medicine and as drug delivery vehicles targeting multiple diseases. However, bioengineering strategies are required to harness the full potential of EVs for therapeutic use. For that purpose, a good understanding of EV biology, from their biogenesis to the way they are able to shuttle messages and establish interactions with recipient cells, is needed. Here, we review the current state-of-the-art on EV biology, complemented by representative examples of EVs roles in several pathophysiological processes, as well as the intrinsic therapeutic properties of EVs and paradigmatic strategies to produce and develop engineered EVs as next-generation drug delivery systems.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro P. Gonçalves
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno Bernardes
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
198
|
Wang Y, Huang R, Chai Z, Wang C, Du X, Hang Y, Xu Y, Li J, Jiang X, Wu X, Qiao Z, Li Y, Liu B, Zhang X, Cao P, Zhu F, Zhou Z. Ca 2+ -independent transmission at the central synapse formed between dorsal root ganglion and dorsal horn neurons. EMBO Rep 2022; 23:e54507. [PMID: 36148511 PMCID: PMC9638852 DOI: 10.15252/embr.202154507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 09/25/2023] Open
Abstract
A central principle of synaptic transmission is that action potential-induced presynaptic neurotransmitter release occurs exclusively via Ca2+ -dependent secretion (CDS). The discovery and mechanistic investigations of Ca2+ -independent but voltage-dependent secretion (CiVDS) have demonstrated that the action potential per se is sufficient to trigger neurotransmission in the somata of primary sensory and sympathetic neurons in mammals. One key question remains, however, whether CiVDS contributes to central synaptic transmission. Here, we report, in the central transmission from presynaptic (dorsal root ganglion) to postsynaptic (spinal dorsal horn) neurons in vitro, (i) excitatory postsynaptic currents (EPSCs) are mediated by glutamate transmission through both CiVDS (up to 87%) and CDS; (ii) CiVDS-mediated EPSCs are independent of extracellular and intracellular Ca2+ ; (iii) CiVDS is faster than CDS in vesicle recycling with much less short-term depression; (iv) the fusion machinery of CiVDS includes Cav2.2 (voltage sensor) and SNARE (fusion pore). Together, an essential component of activity-induced EPSCs is mediated by CiVDS in a central synapse.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Rong Huang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Zuying Chai
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Changhe Wang
- Department of NeurologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Xingyu Du
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Yuqi Hang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Yongxin Xu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Jie Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Xiaohan Jiang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Xi Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Zhongjun Qiao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Yinglin Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Bing Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | | | - Peng Cao
- National Institute of Biological SciencesBeijingChina
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| |
Collapse
|
199
|
Alfonso-Pérez T, Baonza G, Herranz G, Martín-Belmonte F. Deciphering the interplay between autophagy and polarity in epithelial tubulogenesis. Semin Cell Dev Biol 2022; 131:160-172. [PMID: 35641407 DOI: 10.1016/j.semcdb.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
Abstract
The Metazoan complexity arises from a primary building block, the epithelium, which comprises a layer of polarized cells that divide the organism into compartments. Most of these body compartments are organs formed by epithelial tubes that enclose an internal hollow space or lumen. Over the last decades, multiple studies have unmasked the paramount events required to form this lumen de novo. In epithelial cells, these events mainly involve recognizing external clues, establishing and maintaining apicobasal polarity, endo-lysosomal trafficking, and expanding the created lumen. Although canonical autophagy has been classically considered a catabolic process needed for cell survival, multiple studies have also emphasized its crucial role in epithelial polarity, morphogenesis and cellular homeostasis. Furthermore, non-canonical autophagy pathways have been recently discovered as atypical secretory routes. Both canonical and non-canonical pathways play essential roles in epithelial polarity and lumen formation. This review addresses how the molecular machinery for epithelial polarity and autophagy interplay in different processes and how autophagy functions influence lumenogenesis, emphasizing its role in the lumen formation key events.
Collapse
Affiliation(s)
- Tatiana Alfonso-Pérez
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain
| | - Gonzalo Herranz
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain.
| |
Collapse
|
200
|
Yang Z, Zhong W, Yang L, Wen P, Luo Y, Wu C. The emerging role of exosomes in radiotherapy. Cell Commun Signal 2022; 20:171. [PMCID: PMC9620591 DOI: 10.1186/s12964-022-00986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
Presently, more than half of cancer patients receive radiotherapy to cure localized cancer, palliate symptoms, or control the progression of cancer. However, radioresistance and radiation-induced bystander effects (RIBEs) are still challenging problems in cancer treatment. Exosomes, as a kind of extracellular vesicle, have a significant function in mediating and regulating intercellular signaling pathways. An increasing number of studies have shown that radiotherapy can increase exosome secretion and alter exosome cargo. Furthermore, radiation-induced exosomes are involved in the mechanism of radioresistance and RIBEs. Therefore, exosomes hold great promise for clinical application in radiotherapy. In this review, we not only focus on the influence of radiation on exosome biogenesis, secretion and cargoes but also on the mechanism of radiation-induced exosomes in radioresistance and RIBEs, which may expand our insight into the cooperative function of exosomes in radiotherapy.
Video abstract
Collapse
Affiliation(s)
- Zhenyi Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Wen Zhong
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Liang Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ping Wen
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Yixuan Luo
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Chunli Wu
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| |
Collapse
|