151
|
Brower K, Puccinelli R, Markin CJ, Shimko TC, Longwell SA, Cruz B, Gomez-Sjoberg R, Fordyce PM. An Open-Source, Programmable Pneumatic Setup for Operation and Automated Control of Single- and Multi-Layer Microfluidic Devices. HARDWAREX 2018; 3:117-134. [PMID: 30221210 PMCID: PMC6136661 DOI: 10.1016/j.ohx.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfluidic technologies have been used across diverse disciplines (e.g. high-throughput biological measurement, fluid physics, laboratory fluid manipulation) but widespread adoption has been limited in part due to the lack of openly disseminated resources that enable non-specialist labs to make and operate their own devices. Here, we report the open-source build of a pneumatic setup capable of operating both single and multilayer (Quake-style) microfluidic devices with programmable scripting automation. This setup can operate both simple and complex devices with 48 device valve control inputs and 18 sample inputs, with modular design for easy expansion, at a fraction of the cost of similar commercial solutions. We present a detailed step-by-step guide to building the pneumatic instrumentation, as well as instructions for custom device operation using our software, Geppetto, through an easy-to-use GUI for live on-chip valve actuation and a scripting system for experiment automation. We show robust valve actuation with near real-time software feedback and demonstrate use of the setup for high-throughput biochemical measurements on-chip. This open-source setup will enable specialists and novices alike to run microfluidic devices easily in their own laboratories.
Collapse
Affiliation(s)
- Kara Brower
- Department of Bioengineering, Stanford University, Stanford CA 94305
- Chem-H Institute, Stanford University, Stanford CA 94305
- Stanford Microfluidic Foundry, Stanford University, Stanford CA 94305
| | | | - Craig J Markin
- Department of Biochemistry, Stanford University, Stanford CA 94305
| | - Tyler C Shimko
- Department of Genetics, Stanford University, Stanford CA 94305
| | - Scott A Longwell
- Department of Bioengineering, Stanford University, Stanford CA 94305
| | - Bianca Cruz
- Department of Physics and Astronomy, California State Polytechnic University Pomona, Pomona CA 91768
| | | | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford CA 94305
- Department of Genetics, Stanford University, Stanford CA 94305
- Chem-H Institute, Stanford University, Stanford CA 94305
- Stanford Microfluidic Foundry, Stanford University, Stanford CA 94305
- Chan Zuckerberg Biohub, San Francisco CA 94158
| |
Collapse
|
152
|
Schmid L, Franke T. Real-time size modulation and synchronization of a microfluidic dropmaker with pulsed surface acoustic waves (SAW). Sci Rep 2018. [PMID: 29540848 PMCID: PMC5852020 DOI: 10.1038/s41598-018-22529-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We show that a microfluidic flow focusing drop maker can be synchronized to a surface acoustic waves (SAW) triggered by an external electric signal. In this way droplet rate and volume can be controlled over a wide range of values in real time. Using SAW, the drop formation rate of a regularly operating water in oil drop maker without SAW can be increased by acoustically enforcing the drop pinch-off and thereby reducing the volume. Drop makers of square cross-sections (w = h = 30 µm, with width w and height h) that produce large drops of length l = 10 w can be triggered to produce drops as short as l ~ 2w, approaching the geometical limit l = w without changing the flow rates. Unlike devices that adjust drop size by changing the flow rates the acoustic dropmaker has very short transients allowing to adjust the size of every single drop. This allows us to produce custom made emulsions with a defined size distribution as demonstrated here not only for a monodisperse emulsion but also for binary emulsions with drops of alternating size. Moreover, we show that the robustness and monodispersity of our devices is enhanced compared to purely flow driven drop makers in the absence of acoustic synchronization.
Collapse
Affiliation(s)
- Lothar Schmid
- Chair of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT, Glasgow, United Kingdom
| | - Thomas Franke
- Chair of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT, Glasgow, United Kingdom.
| |
Collapse
|
153
|
Charmet J, Arosio P, Knowles TP. Microfluidics for Protein Biophysics. J Mol Biol 2018; 430:565-580. [DOI: 10.1016/j.jmb.2017.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023]
|
154
|
Cheng LJ. Electrokinetic ion transport in nanofluidics and membranes with applications in bioanalysis and beyond. BIOMICROFLUIDICS 2018; 12:021502. [PMID: 29713395 PMCID: PMC5897123 DOI: 10.1063/1.5022789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/28/2018] [Indexed: 05/03/2023]
Abstract
Electrokinetic transport of ions between electrolyte solutions and ion permselective solid media governs a variety of applications, such as molecular separation, biological detection, and bioelectronics. These applications rely on a unique class of materials and devices to interface the ionic and electronic systems. The devices built on ion permselective materials or micro-/nanofluidic channels are arranged to work with aqueous environments capable of either manipulating charged species through applied electric fields or transducing biological responses into electronic signals. In this review, we focus on recent advances in the application of electrokinetic ion transport using nanofluidic and membrane technologies. We start with an introduction into the theoretical basis of ion transport kinetics and their analogy to the charge transport in electronic systems. We continue with discussions of the materials and nanofabrication technologies developed to create ion permselective membranes and nanofluidic devices. Accomplishments from various applications are highlighted, including biosensing, molecular separation, energy conversion, and bio-electronic interfaces. We also briefly outline potential applications and challenges in this field.
Collapse
Affiliation(s)
- Li-Jing Cheng
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
155
|
Zimny P, Juncker D, Reisner W. Hydrogel droplet single-cell processing: DNA purification, handling, release, and on-chip linearization. BIOMICROFLUIDICS 2018; 12:024107. [PMID: 30867855 PMCID: PMC6404942 DOI: 10.1063/1.5020571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/20/2018] [Indexed: 05/04/2023]
Abstract
The preparation and handling of mammalian single-cell genomic DNA is limited by the complexity bottleneck inherent to performing multi-step, multi-reagent operations in a microfluidic environment. We have developed a method for benchtop preparation of high-molecular weight, intact, single-cell genomes and demonstrate the extraction of long nucleic acid molecules in a microfluidic system. Lymphoblasts are encapsulated inside of alginate microparticles using a droplet microfluidics, and cells are lysed in bulk. The purified genomes are then delivered to and imaged on a dedicated microfluidic device. High-molecular weight DNA is protected from shear and retains its original cellular identity. Using this encapsulation protocol, we were able to extract individual nucleic acid strands on the millimeter scale inside of a microfluidic channel.
Collapse
Affiliation(s)
| | - David Juncker
- Authors to whom correspondence should be addressed: ,
| | - Walter Reisner
- Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8, Canada
| |
Collapse
|
156
|
Shen S, Kou L, Zhang X, Wang D, Niu Y, Wang J. Regulating Secondary Flow in Ultra-Low Aspect Ratio Microchannels by Dimensional Confinement. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201700034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shaofei Shen
- College of Life Science; Shanxi Agricultural University; Taigu Shanxi 030801 China
| | - Lisha Kou
- College of Life Science; Shanxi Agricultural University; Taigu Shanxi 030801 China
| | - Xuan Zhang
- College of Life Science; Shanxi Agricultural University; Taigu Shanxi 030801 China
| | - Defu Wang
- College of Life Science; Shanxi Agricultural University; Taigu Shanxi 030801 China
| | - Yanbing Niu
- College of Life Science; Shanxi Agricultural University; Taigu Shanxi 030801 China
| | - Jinyi Wang
- College of Chemistry and Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 China
| |
Collapse
|
157
|
Campana O, Wlodkowic D. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:932-946. [PMID: 29284083 DOI: 10.1021/acs.est.7b03370] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biological and environmental sciences are, more than ever, becoming highly dependent on technological and multidisciplinary approaches that warrant advanced analytical capabilities. Microfluidic lab-on-a-chip technologies are perhaps one the most groundbreaking offshoots of bioengineering, enabling design of an entirely new generation of bioanalytical instrumentation. They represent a unique approach to combine microscale engineering and physics with specific biological questions, providing technological advances that allow for fundamentally new capabilities in the spatiotemporal analysis of molecules, cells, tissues, and even small metazoan organisms. While these miniaturized analytical technologies experience an explosive growth worldwide, with a substantial promise of a direct impact on biosciences, it seems that lab-on-a-chip systems have so far escaped the attention of aquatic ecotoxicologists. In this Critical Review, potential applications of the currently existing and emerging chip-based technologies for aquatic ecotoxicology and water quality monitoring are highlighted. We also offer suggestions on how aquatic ecotoxicology can benefit from adoption of microfluidic lab-on-a-chip devices for accelerated bioanalysis.
Collapse
Affiliation(s)
- Olivia Campana
- Instituto de Ciencias Marinas de Andalucía, CSIC , Puerto Real, 11519, Spain
| | - Donald Wlodkowic
- School of Science, RMIT University , Melbourne, Victoria 3083, Australia
| |
Collapse
|
158
|
Resolution improvement of 3D stereo-lithography through the direct laser trajectory programming: Application to microfluidic deterministic lateral displacement device. Anal Chim Acta 2018; 1000:239-247. [DOI: 10.1016/j.aca.2017.11.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 01/09/2023]
|
159
|
Abstract
We derive a general closed expression for the local pressure exerted onto the corrugated walls of a channel confining a fluid medium. When the fluid medium is at equilibrium, the local pressure is a functional of the shape of the walls. It is shown that, due to the intrinsic nonlocal character of the interactions among the particles forming the fluid, the applicability of approximate schemes such as the concept of a surface of tension or morphometric thermodynamics is limited to wall curvatures that are small compared to the range of particle-particle interactions.
Collapse
Affiliation(s)
- Paolo Malgaretti
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany and Institute for Theoretical Physics IV, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Markus Bier
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany and Institute for Theoretical Physics IV, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
160
|
Lee UN, Su X, Guckenberger DJ, Dostie AM, Zhang T, Berthier E, Theberge AB. Fundamentals of rapid injection molding for microfluidic cell-based assays. LAB ON A CHIP 2018; 18:496-504. [PMID: 29309079 PMCID: PMC5790604 DOI: 10.1039/c7lc01052d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microscale cell-based assays have demonstrated unique capabilities in reproducing important cellular behaviors for diagnostics and basic biological research. As these assays move beyond the prototyping stage and into biological and clinical research environments, there is a need to produce microscale culture platforms more rapidly, cost-effectively, and reproducibly. 'Rapid' injection molding is poised to meet this need as it enables some of the benefits of traditional high volume injection molding at a fraction of the cost. However, rapid injection molding has limitations due to the material and methods used for mold fabrication. Here, we characterize advantages and limitations of rapid injection molding for microfluidic device fabrication through measurement of key features for cell culture applications including channel geometry, feature consistency, floor thickness, and surface polishing. We demonstrate phase contrast and fluorescence imaging of cells grown in rapid injection molded devices and provide design recommendations to successfully utilize rapid injection molding methods for microscale cell-based assay development in academic laboratory settings.
Collapse
Affiliation(s)
- Ulri N Lee
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
161
|
Yang K, Wu J, Peretz-Soroka H, Zhu L, Li Z, Sang Y, Hipolito J, Zhang M, Santos S, Hillier C, de Faria RL, Liu Y, Lin F. M kit: A cell migration assay based on microfluidic device and smartphone. Biosens Bioelectron 2018; 99:259-267. [PMID: 28772229 PMCID: PMC5585005 DOI: 10.1016/j.bios.2017.07.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 11/23/2022]
Abstract
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS2-based cell functional assay for testing cell migration (the Mkit). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the Mkit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the Mkit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the Mkit. In addition to research applications, we demonstrated the effective use of the Mkit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed Mkit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications.
Collapse
Affiliation(s)
- Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Hagit Peretz-Soroka
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Ling Zhu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Zhigang Li
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Yaoshuo Sang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Jolly Hipolito
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | | | - Susy Santos
- Victoria General Hospital and River Heights/Fort Garry Community areas, Winnipeg, MB, Canada
| | | | | | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada; Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
162
|
Bhalla N, Chiang HJ, Shen AQ. Cell biology at the interface of nanobiosensors and microfluidics. Methods Cell Biol 2018; 148:203-227. [DOI: 10.1016/bs.mcb.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
163
|
Visser CW, Kamperman T, Karbaat LP, Lohse D, Karperien M. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. SCIENCE ADVANCES 2018; 4:eaao1175. [PMID: 29399628 PMCID: PMC5792224 DOI: 10.1126/sciadv.aao1175] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/03/2018] [Indexed: 05/18/2023]
Abstract
Microfluidic chips provide unparalleled control over droplets and jets, which have advanced all natural sciences. However, microfluidic applications could be vastly expanded by increasing the per-channel throughput and directly exploiting the output of chips for rapid additive manufacturing. We unlock these features with in-air microfluidics, a new chip-free platform to manipulate microscale liquid streams in the air. By controlling the composition and in-air impact of liquid microjets by surface tension-driven encapsulation, we fabricate monodisperse emulsions, particles, and fibers with diameters of 20 to 300 μm at rates that are 10 to 100 times higher than chip-based droplet microfluidics. Furthermore, in-air microfluidics uniquely enables module-based production of three-dimensional (3D) multiscale (bio)materials in one step because droplets are partially solidified in-flight and can immediately be printed onto a substrate. In-air microfluidics is cytocompatible, as demonstrated by additive manufacturing of 3D modular constructs with tailored microenvironments for multiple cell types. Its in-line control, high throughput and resolution, and cytocompatibility make in-air microfluidics a versatile platform technology for science, industry, and health care.
Collapse
Affiliation(s)
- Claas Willem Visser
- Physics of Fluids Group, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Tom Kamperman
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Lisanne P. Karbaat
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| |
Collapse
|
164
|
Weiss M, Frohnmayer JP, Benk LT, Haller B, Janiesch JW, Heitkamp T, Börsch M, Lira RB, Dimova R, Lipowsky R, Bodenschatz E, Baret JC, Vidakovic-Koch T, Sundmacher K, Platzman I, Spatz JP. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. NATURE MATERIALS 2018; 17:89-96. [PMID: 29035355 DOI: 10.1038/nmat5005] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/12/2017] [Indexed: 05/21/2023]
Abstract
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed 'droplet-stabilized giant unilamellar vesicles (dsGUVs)'. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
Collapse
Affiliation(s)
- Marian Weiss
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Johannes Patrick Frohnmayer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Lucia Theresa Benk
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Barbara Haller
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Jan-Willi Janiesch
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Rafael B Lira
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Rumiana Dimova
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Eberhard Bodenschatz
- Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Jean-Christophe Baret
- Droplets, Membranes and Interfaces, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Soft Micro Systems, CNRS, Univ. Bordeaux, CRPP, UPR 8641, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Tanja Vidakovic-Koch
- Process System Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Kai Sundmacher
- Process System Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
- Otto-von-Guericke University Magdeburg, Process Systems Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
165
|
Abstract
Microfluidic systems can be applied to develop unique tools for cell culture, low-cost diagnostics, and precision experimentation by leveraging microscale fluid flow. As the field has expanded and matured, there is a need for rapid prototyping that is both accessible to most research groups and can readily translate toward scalable commercial manufacturing. Here, we describe a protocol that incorporates rapid computer numerical control (CNC) milling of positive molds, casting of a negative high-durometer silicone mold, and hot embossing to produce microfluidic devices composed of virtually any thermoplastic material. The method bypasses the need for high-precision machining of the bonding surfaces by using a cast acrylic stock and only milling channels, thus expanding this protocol to any CNC platform This technique represents a versatile, high-fidelity prototyping method that enables fast turnaround of prototype devices in a standard laboratory setting, while offering scalability for commercial manufacturing.
Collapse
Affiliation(s)
- Richard Novak
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Carlos F Ng
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA.
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
166
|
Schmidt GW, Frey O, Rudolf F. The CellClamper: A Convenient Microfluidic Device for Time-Lapse Imaging of Yeast. Methods Mol Biol 2018; 1672:537-555. [PMID: 29043647 DOI: 10.1007/978-1-4939-7306-4_36] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Time-lapse fluorescence imaging of yeast cells allows the study of multiple fluorescent targets in single cells, but is often hampered by the tedious cultivation using agar pads or glass bottom wells. Here, we describe the fabrication and operation of a microfluidic device for long-term imaging of yeast cells under constant or changing media conditions. The device allows acquisition of high quality images as cells are fixed in a two-dimensional imaging plane. Four yeast strains can be analyzed simultaneously over several days while up to four different media can be flushed through the chip. The microfluidic device does not rely on specialized equipment for its operation. To illustrate the use of the chip in DNA damage research, we show how common readouts for DNA damage or genomic instability behave upon induction with genotoxic chemicals (MMS, HU) or induction of a single double-strand break using induced CRISPR-Cas9 expression.
Collapse
Affiliation(s)
- Gregor W Schmidt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Olivier Frey
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Fabian Rudolf
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
167
|
Deng P, Fu CJ, Wu Z. High purity and viability cell separation of a bacterivorous jakobid flagellate based on a steep velocity gradient induced soft inertial force. RSC Adv 2018; 8:35512-35520. [PMID: 35547884 PMCID: PMC9087867 DOI: 10.1039/c8ra05328f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023] Open
Abstract
Cell separation is one of the key limiting factors for precise analysis of non-axenic microbial lab cultures or environmental samples, and it remains a challenge to isolate target cells with high purity and viability via high-throughput cell sorting. During the past decade, hydrodynamic microfluidic platforms have attracted great attention in cell preparation for their high efficiency, robust performance and low cost. Here, we employ the use of a low-velocity sheath flow with high viscosity near the wall and a high-velocity sheath flow with low viscosity on the other side of the sample flow in a soft inertial separation chip. This not only prevents hard interactions between cells and chip walls but, in comparison to previous inertial separation methods, generates a significant increase in deflection of large cells while keeping the small ones in the original flow. We first conducted experiments on a mixture of small and large fluorescent particles (1.0 and 9.9 μm, respectively) and removed over 99% of the small particles. The separation efficiency was then tested on a culture of a bacterivorous jakobid flagellate, Seculamonas ecuadoriensis fed on the live bacterium, Klebsiella sp. Using our microfluidic chip, over 94% of live bacteria were removed while maintaining high jakobid cell viability. For comparison, we also conducted size-based cell sorting of the same culture using flow cytometry, which is widely used as a rapid and automated separation tool. Compared with the latter, our chip showed more than 40% higher separation efficiency. Thus, our device provides high purity and viability for cell separation of a sensitive cell sample (jakobid cells). Potentially, the method can be further used for applications in diagnostics, biological analyses and environmental assessment of mixed microbial samples. Aimed at separating living cells with high purity and viability from non-axenic microbial lab cultures or environmental samples, we developed a novel microfluidic separation technique with simple operation, high efficiency and robust performance.![]()
Collapse
Affiliation(s)
- Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Cheng-Jie Fu
- Department of Organismal Biology
- Uppsala University
- Uppsala
- Sweden
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology
- Huazhong University of Science and Technology
- Wuhan
- China
- Department of Engineering Sciences
| |
Collapse
|
168
|
Giuffrida MC, Cigliana G, Spoto G. Ultrasensitive detection of lysozyme in droplet-based microfluidic devices. Biosens Bioelectron 2017; 104:8-14. [PMID: 29294408 DOI: 10.1016/j.bios.2017.12.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022]
Abstract
Lysozyme (LYS) is a bacteriolytic enzyme, available in secretions such as saliva, tears and human milk. LYS is an important defence molecule of the innate immune system, and its overexpression can be a consequence of diseases such as leukemia, kidney disease and sarcoidosis. This paper reports on a digital microfluidic-based approach that combines the gold nanoparticle-enhanced chemiluminescence with aptamer interaction to detect human lysozyme into droplets 20 nanoliters in volume. The described method allows identifying LYS with a 44.6 femtomolar limit of detection, using sample volume as low as 1μL and detection time in the range of 10min. We used luminol to generate the chemiluminescence and demonstrated that the compartmentalization of LYS in droplets also comprising gold nanoparticles provided enhanced luminescence. We functionalized the gold nanoparticles with a thiolated aptamer to achieve the required selectivity that allowed us to detect LYS in human serum.
Collapse
Affiliation(s)
- Maria Chiara Giuffrida
- Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Giovanni Cigliana
- Clinical Pathology Unit, Regina Elena National Cancer Institute, Via Chianesi, Roma, Italy
| | - Giuseppe Spoto
- Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy; Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy.
| |
Collapse
|
169
|
Liao S, Tao X, Ju Y, Feng J, Du W, Wang Y. Multichannel Dynamic Interfacial Printing: An Alternative Multicomponent Droplet Generation Technique for Lab in a Drop. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43545-43552. [PMID: 29171252 DOI: 10.1021/acsami.7b16456] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Generation of uniform emulsion droplets mixed with multiple components is one of the key issues in the field of lab in a drop. Traditionally, droplet microfluidic chips are often served as the prime choice while designing and fabricating microfluidic chips always rely on skilled technician and specialized equipment, severely restricting its wide accessibility. In this work, an alternative technique, called multichannel dynamic interfacial printing (MC-DIP), was proposed for multicomponent droplet generation. The MC-DIP device was designed modularly and could be set up manually without any microfabrication process, exhibiting full accessibility for freshmen after a brief training. This new technique owns advantages in the generation of droplets with predictable sizes and composites. Quantitative experiments of measuring minimum inhibitory concentration (MIC) value via mixing microbes and antibiotics into droplet were conducted to proving its application potential for lab in a drop. Further research on a clinical pathogenic strain revealed that this technique could be potentially applied in the clinical laboratory for antibiotic susceptibility testing.
Collapse
Affiliation(s)
- Shenglong Liao
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Xinglei Tao
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Yingjiao Ju
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| |
Collapse
|
170
|
Valikhani D, Bolivar JM, Viefhues M, McIlroy DN, Vrouwe EX, Nidetzky B. A Spring in Performance: Silica Nanosprings Boost Enzyme Immobilization in Microfluidic Channels. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34641-34649. [PMID: 28921951 DOI: 10.1021/acsami.7b09875] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Enzyme microreactors are important tools of miniaturized analytics and have promising applications in continuous biomanufacturing. A fundamental problem of their design is that plain microchannels without extensive static internals, or packings, offer limited exposed surface area for immobilizing the enzyme. To boost the immobilization in a manner broadly applicable to enzymes, we coated borosilicate microchannels with silica nanosprings and attached the enzyme, sucrose phosphorylase, via a silica-binding module genetically fused to it. We showed with confocal fluorescence microscopy that the enzyme was able to penetrate the ∼70 μm-thick nanospring layer and became distributed uniformly in it. Compared with the plain surface, the activity of immobilized enzyme was enhanced 4.5-fold upon surface coating with nanosprings and further increased up to 10-fold by modifying the surface of the nanosprings with sulfonate groups. Operational stability during continuous-flow biocatalytic synthesis of α-glucose 1-phosphate was improved by a factor of 11 when the microreactor coated with nanosprings was used. More than 85% of the initial conversion rate was retained after 840 reactor cycles performed with a single loading of enzyme. By varying the substrate flow rate, the microreactor performance was conveniently switched between steady states of quantitative product yield (50 mM) and optimum productivity (19 mM min-1) at a lower product yield of 40%. Surface coating with silica nanosprings thus extends the possibilities for enzyme immobilization in microchannels. It effectively boosts the biocatalytic function of a microstructured reactor limited otherwise by the solid surface available for immobilizing the enzyme.
Collapse
Affiliation(s)
- Donya Valikhani
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, 8010 Graz, Austria
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, 8010 Graz, Austria
| | - Martina Viefhues
- Micronit Microtechnologies B.V. , Colosseum 15, 7521 PV, Enschede, The Netherlands
| | - David N McIlroy
- Department of Physics, Oklahoma State University , Stillwater, Oklahoma 74078-3072, United States
| | - Elwin X Vrouwe
- Micronit Microtechnologies B.V. , Colosseum 15, 7521 PV, Enschede, The Netherlands
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, 8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology , Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
171
|
Walsh EJ, Feuerborn A, Wheeler JHR, Tan AN, Durham WM, Foster KR, Cook PR. Microfluidics with fluid walls. Nat Commun 2017; 8:816. [PMID: 29018186 PMCID: PMC5635017 DOI: 10.1038/s41467-017-00846-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.
Collapse
Affiliation(s)
- Edmond J Walsh
- Department of Engineering Science, Osney Thermo-Fluids Laboratory, University of Oxford, Osney Mead, Oxford, OX2 0ES, UK.
| | - Alexander Feuerborn
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - James H R Wheeler
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Ann Na Tan
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - William M Durham
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.,Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Kevin R Foster
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Peter R Cook
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
172
|
Phillips TM. Recent advances in CE and microchip-CE in clinical applications: 2014 to mid-2017. Electrophoresis 2017; 39:126-135. [PMID: 28853177 DOI: 10.1002/elps.201700283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/11/2022]
Abstract
CE and microchip CE (ME) are powerful tools for the analysis of a number of different analytes and have been applied to a variety of clinical fields and human samples. This review will present an overview of the most recent applications of these techniques to different areas of clinical medicine during the period of 2014 to mid-2017. CE and ME have been applied to clinical chemistry, drug detection and monitoring, hematology, infectious diseases, oncology, endocrinology, neonatology, nephrology, and genetic screening. Samples examined range from serum, plasma, and urine to lest utilized materials such as tears, cerebral spinal fluid, sweat, saliva, condensed breath, single cells, and biopsy tissue. Examples of clinical applications will be given along with the various detection systems employed.
Collapse
Affiliation(s)
- Terry M Phillips
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
173
|
Wade JH, Jones JD, Lenov IL, Riordan CM, Sligar SG, Bailey RC. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification. LAB ON A CHIP 2017; 17:2951-2959. [PMID: 28767110 PMCID: PMC5589448 DOI: 10.1039/c7lc00601b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.
Collapse
Affiliation(s)
- James H Wade
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
174
|
Lam J, Marklein RA, Jimenez-Torres JA, Beebe DJ, Bauer SR, Sung KE. Adaptation of a Simple Microfluidic Platform for High-Dimensional Quantitative Morphological Analysis of Human Mesenchymal Stromal Cells on Polystyrene-Based Substrates. SLAS Technol 2017; 22:646-661. [PMID: 28825968 DOI: 10.1177/2472630317726050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multipotent stromal cells (MSCs, often called mesenchymal stem cells) have garnered significant attention within the field of regenerative medicine because of their purported ability to differentiate down musculoskeletal lineages. Given the inherent heterogeneity of MSC populations, recent studies have suggested that cell morphology may be indicative of MSC differentiation potential. Toward improving current methods and developing simple yet effective approaches for the morphological evaluation of MSCs, we combined passive pumping microfluidic technology with high-dimensional morphological characterization to produce robust tools for standardized high-throughput analysis. Using ultraviolet (UV) light as a modality for reproducible polystyrene substrate modification, we show that MSCs seeded on microfluidic straight channel devices incorporating UV-exposed substrates exhibited morphological changes that responded accordingly to the degree of substrate modification. Substrate modification also effected greater morphological changes in MSCs seeded at a lower rather than higher density within microfluidic channels. Despite largely comparable trends in morphology, MSCs seeded in microscale as opposed to traditional macroscale platforms displayed much higher sensitivity to changes in substrate properties. In summary, we adapted and qualified microfluidic cell culture platforms comprising simple straight channel arrays as a viable and robust tool for high-throughput quantitative morphological analysis to study cell-material interactions.
Collapse
Affiliation(s)
- Johnny Lam
- 1 Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ross A Marklein
- 1 Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jose A Jimenez-Torres
- 2 Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Beebe
- 2 Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven R Bauer
- 1 Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Kyung E Sung
- 1 Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
175
|
|
176
|
Abstract
Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels. Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area. In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation. The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development. We believe this review will promote communications among biology, chemistry, physics, and materials science.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
177
|
Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Future Sci OA 2017; 3:FSO187. [PMID: 28670476 PMCID: PMC5481871 DOI: 10.4155/fsoa-2016-0091] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
Abstract
Microfluidic lab-on-a-chip provides a new platform with unique advantages to mimic complex physiological microenvironments in vivo and has been increasingly exploited to stem cell research. In this review, we highlight recent advances of microfluidic devices for stem cell culture and differentiation toward the development of organ-on-a-chip, especially with an emphasis on vital innovations within the last 2 years. Various aspects for improving on-chip stem-cell culture and differentiation, particularly toward organ-on-a-chip, are discussed, along with microenvironment control, surface modification, extracellular scaffolds, high throughput and stimuli. The combination of microfluidic technologies and stem cells hold great potential toward versatile systems of ‘organ-on-a-chip’ as desired.
Adapted with permission from [1–8]. Stem cells, capable of self-renewing and differentiating into cells of various tissue types, are drawing more and more attention for their enormous potential in many clinically associated applications that include drug screening, disease modeling and regenerative medicine. Conventional cell culture methods, however, have proven to be difficult to mimic in vivo like microenvironments and to provide a number of well-controlled stimuli that are critical for stem cell culture and differentiation. In contrast, microfluidic devices offer new capacities and unique advantages to mimic complex physiological microenvironments in vivo, and has been increasingly applied to stem cell research.
Collapse
|
178
|
Shoffner S, Schnell S. Approaches for the estimation of timescales in nonlinear dynamical systems: Timescale separation in enzyme kinetics as a case study. Math Biosci 2017; 287:122-129. [DOI: 10.1016/j.mbs.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
|
179
|
Zou L, Li S, Kang Y, Liu J, He L, Sun S, Gao D, Qiu B, Ding W. A multistage-dialysis microdevice for extraction of cryoprotectants. Biomed Microdevices 2017; 19:30. [DOI: 10.1007/s10544-017-0174-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
180
|
Tenneti S, Subramanian SG, Chakraborty M, Soni G, DasGupta S. Magnetowetting of Ferrofluidic Thin Liquid Films. Sci Rep 2017; 7:44738. [PMID: 28303971 PMCID: PMC5356190 DOI: 10.1038/srep44738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/13/2017] [Indexed: 01/14/2023] Open
Abstract
An extended meniscus of a ferrofluid solution on a silicon surface is subjected to axisymmetric, non-uniform magnetic field resulting in significant forward movement of the thin liquid film. Image analyzing interferometry is used for accurate measurement of the film thickness profile, which in turn, is used to determine the instantaneous slope and the curvature of the moving film. The recorded video, depicting the motion of the film in the Lagrangian frame of reference, is analyzed frame by frame, eliciting accurate information about the velocity and acceleration of the film at any instant of time. The application of the magnetic field has resulted in unique changes of the film profile in terms of significant non-uniform increase in the local film curvature. This was further analyzed by developing a model, taking into account the effect of changes in the magnetic and shape-dependent interfacial force fields.
Collapse
Affiliation(s)
- Srinivas Tenneti
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Sri Ganesh Subramanian
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Monojit Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Gaurav Soni
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Sunando DasGupta
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
181
|
Ma S, Murphy TW, Lu C. Microfluidics for genome-wide studies involving next generation sequencing. BIOMICROFLUIDICS 2017; 11:021501. [PMID: 28396707 PMCID: PMC5346105 DOI: 10.1063/1.4978426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/16/2017] [Indexed: 05/11/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine.
Collapse
Affiliation(s)
- Sai Ma
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Travis W Murphy
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| |
Collapse
|
182
|
Zhang Y, Wittstock G. A Platform for Electric Field Aided and Wire-Guided Droplet Manipulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601691. [PMID: 27860309 DOI: 10.1002/smll.201601691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Small droplets can be manipulated based on controlling the adhesion work to a hydrophobic wire. The wire can be used to pick up, transport, and lay down droplets with volumes between picoliters to microliters avoiding the sliding of droplets over chip surfaces. Handling of droplets on surfaces with large steps such as engraved wells or channels is possible.
Collapse
Affiliation(s)
- Yanzhen Zhang
- Carl von Ossietzky University of Oldenburg, Faculty of Mathematics and Science, Center of Interface Sciences, Institute of Chemistry, D-26111, Oldenburg, Germany
| | - Gunther Wittstock
- Carl von Ossietzky University of Oldenburg, Faculty of Mathematics and Science, Center of Interface Sciences, Institute of Chemistry, D-26111, Oldenburg, Germany
| |
Collapse
|
183
|
Brower K, White AK, Fordyce PM. Multi-step Variable Height Photolithography for Valved Multilayer Microfluidic Devices. J Vis Exp 2017:55276. [PMID: 28190039 PMCID: PMC5352304 DOI: 10.3791/55276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Microfluidic systems have enabled powerful new approaches to high-throughput biochemical and biological analysis. However, there remains a barrier to entry for non-specialists who would benefit greatly from the ability to develop their own microfluidic devices to address research questions. Particularly lacking has been the open dissemination of protocols related to photolithography, a key step in the development of a replica mold for the manufacture of polydimethylsiloxane (PDMS) devices. While the fabrication of single height silicon masters has been explored extensively in literature, fabrication steps for more complicated photolithography features necessary for many interesting device functionalities (such as feature rounding to make valve structures, multi-height single-mold patterning, or high aspect ratio definition) are often not explicitly outlined. Here, we provide a complete protocol for making multilayer microfluidic devices with valves and complex multi-height geometries, tunable for any application. These fabrication procedures are presented in the context of a microfluidic hydrogel bead synthesizer and demonstrate the production of droplets containing polyethylene glycol (PEG diacrylate) and a photoinitiator that can be polymerized into solid beads. This protocol and accompanying discussion provide a foundation of design principles and fabrication methods that enables development of a wide variety of microfluidic devices. The details included here should allow non-specialists to design and fabricate novel devices, thereby bringing a host of recently developed technologies to their most exciting applications in biological laboratories.
Collapse
Affiliation(s)
- Kara Brower
- Department of Bioengineering, Stanford University; Microfluidic Foundry, Stanford University; Chem-H Institute, Stanford University
| | - Adam K White
- Department of Bioengineering, Stanford University; Microfluidic Foundry, Stanford University
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University; Microfluidic Foundry, Stanford University; Department of Genetics, Stanford University; Chem-H Institute, Stanford University;
| |
Collapse
|
184
|
Fukuda Y, Kaishima M, Ohnishi T, Tohyama K, Chisaki I, Nakayama Y, Ogasawara-Shimizu M, Kawamata Y. Fluid shear stress stimulates MATE2-K expression via Nrf2 pathway activation. Biochem Biophys Res Commun 2017; 484:358-364. [PMID: 28131833 DOI: 10.1016/j.bbrc.2017.01.124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022]
Abstract
Accurate prediction of drug-induced renal toxicity is necessary for development of safer drugs for patients. Cellular assay systems that recapitulate physiologically relevant microenvironments have been proposed for correct estimation of drug responses in the human body. However, establishment of such assay systems for accurate prediction of renal toxicity is challenging because of the lack of readily available in vitro assay systems. In this study, we investigated the cellular response to fluid shear stress, which is a characteristic of the environment in the kidney proximal tubules, using microfluidic devices. The global gene expression profiles of human primary proximal tubule cells under the fluidic conditions revealed upregulation of MATE2-K and activation of Nrf2 signaling in response to fluid shear stress. Network and cell biological analysis additionally showed that expression of MATE2-K is regulated by Nrf2 signaling. These results strongly suggest that fluid shear stress is involved in the expression and maintenance of function of tissue-specific drug transporters in the proximal tubule, where the cells are exposed to continuous shear stress by primary urine. Furthermore, the microfluidic culture of human proximal tubules was demonstrated to be a useful system to analyze the regulatory mechanisms of gene expression in physiologically relevant cell conditions.
Collapse
Affiliation(s)
- Yasunori Fukuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Misato Kaishima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Toshiyuki Ohnishi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Kimio Tohyama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Ikumi Chisaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Yusuke Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Mari Ogasawara-Shimizu
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Yuji Kawamata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
185
|
Sumit M, Takayama S, Linderman JJ. New insights into mammalian signaling pathways using microfluidic pulsatile inputs and mathematical modeling. Integr Biol (Camb) 2017; 9:6-21. [PMID: 27868126 PMCID: PMC5259548 DOI: 10.1039/c6ib00178e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Temporally modulated input mimics physiology. This chemical communication strategy filters the biochemical noise through entrainment and phase-locking. Under laboratory conditions, it also expands the observability space for downstream responses. A combined approach involving microfluidic pulsatile stimulation and mathematical modeling has led to deciphering of hidden/unknown temporal motifs in several mammalian signaling pathways and has provided mechanistic insights, including how these motifs combine to form distinct band-pass filters and govern fate regulation under dynamic microenvironment. This approach can be utilized to understand signaling circuit architectures and to gain mechanistic insights for several other signaling systems. Potential applications include synthetic biology and biotechnology, in developing pharmaceutical interventions, and in developing lab-on-chip models.
Collapse
Affiliation(s)
- M Sumit
- Biointerface Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA. and Biophysics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - S Takayama
- Biointerface Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA. and Michigan Centre for Integrative Research in Critical Care, North Campus Research, Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA and Department of Biomedical Engineering, University of Michigan, 1107 Carl A., Gerstacker Building, 2200, Bonisteel Blvd, Ann Arbor, MI 48109, USA and Macromolecular Science and Engineering Program, University of Michigan, 2300, Hayward Street, Ann Arbor, MI 48109, USA
| | - J J Linderman
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A., Gerstacker Building, 2200, Bonisteel Blvd, Ann Arbor, MI 48109, USA and Department of Chemical Engineering, University of Michigan, Building 26, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| |
Collapse
|
186
|
Kook YM, Jeong Y, Lee K, Koh WG. Design of biomimetic cellular scaffolds for co-culture system and their application. J Tissue Eng 2017; 8:2041731417724640. [PMID: 29081966 PMCID: PMC5564857 DOI: 10.1177/2041731417724640] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell-cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment.
Collapse
Affiliation(s)
- Yun-Min Kook
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yoon Jeong
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
187
|
Torino S, Iodice M, Rendina I, Coppola G. Microfluidic technology for cell hydrodynamic manipulation. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.2.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
188
|
Abstract
The transport of suspensions of microparticles in confined environments is associated with complex phenomena at the interface of fluid mechanics and soft matter. Indeed, the deposition and assembly of particles under flow involve hydrodynamic, steric and colloidal forces, and can lead to the clogging of microchannels. The formation of clogs dramatically alters the performance of both natural and engineered systems, effectively limiting the use of microfluidic technology. While the fouling of porous filters has been studied at the macroscopic level, it is only recently that the formation of clogs has been considered at the pore-scale, using microfluidic devices. In this review, we present the clogging mechanisms recently reported for suspension flows of colloidal particles and for biofluids in microfluidic channels, including sieving, bridging and aggregation of particles. We discuss the technological implications of the clogging of microchannels and the schemes that leverage the formation of clogs. We finally consider some of the outstanding challenges involving clogging in human health, which could be tackled with microfluidic methods.
Collapse
Affiliation(s)
- Emilie Dressaire
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Alban Sauret
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA. and Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, 93303 Aubervilliers, France
| |
Collapse
|
189
|
Wu Y, Ren Y, Tao Y, Hou L, Hu Q, Jiang H. A novel micromixer based on the alternating current-flow field effect transistor. LAB ON A CHIP 2016; 17:186-197. [PMID: 27934980 DOI: 10.1039/c6lc01346e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Induced-charge electroosmosis (ICEO) phenomena have been attracting considerable attention as a means for pumping and mixing in microfluidic systems with the advantage of simple structures and low-energy consumption. We propose the first effort to exploit a fixed-potential ICEO flow around a floating electrode for microfluidic mixing. In analogy with the field effect transistor (FET) in microelectronics, the floating electrode act as a "gate" electrode for generating asymmetric ICEO flow and thus the device is called an AC-flow FET (AC-FFET). We take advantage of a tandem electrode configuration containing two biased center metal strips arranged in sequence at the bottom of the channel to generate asymmetric vortexes. The current device is manufactured on low-cost glass substrates via an easy and reliable process. Mixing experiments were conducted in the proposed device and the comparison between simulation and experimental results was also carried out, which indicates that the micromixer permits an efficient mixing effect. The mixing performance can be further enhanced by the application of a suitable phase difference between the driving electrode and the gate electrode or a square wave signal. Finally, we performed a critical analysis of the proposed micromixer in comparison with different mixer designs using a comparative mixing index (CMI). The novel methods put forward here offer a simple solution to mixing issues in microfluidic systems.
Collapse
Affiliation(s)
- Yupan Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China.
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China. and State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China.
| | - Likai Hou
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China.
| | - Qingming Hu
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China.
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China. and State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China
| |
Collapse
|
190
|
Jo MC, Qin L. Microfluidic Platforms for Yeast-Based Aging Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5787-5801. [PMID: 27717149 PMCID: PMC5554731 DOI: 10.1002/smll.201602006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has been a powerful model for the study of aging and has enabled significant contributions to our understanding of basic mechanisms of aging in eukaryotic cells. However, the laborious low-throughput nature of conventional methods of performing aging assays limits the pace of discoveries in this field. Some of the technical challenges of conventional aging assay methods can be overcome by use of microfluidic systems coupled to time-lapse microscopy. One of the major advantages is the ability of a microfluidic system to perform long-term cell culture under well-defined environmental conditions while tracking individual yeast. Here, recent advancements in microfluidic platforms for various yeast-based studies including replicative lifespan assay, long-term culture and imaging, gene expression, and cell signaling are discussed. In addition, emerging problems and limitations of current microfluidic approaches are examined and perspectives on the future development of this dynamic field are presented.
Collapse
Affiliation(s)
- Myeong Chan Jo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
191
|
Sanders BJ, Kim DC, Dunn RC. Recent Advances in Microscale Western Blotting. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:7002-7013. [PMID: 28392839 PMCID: PMC5383213 DOI: 10.1039/c6ay01947a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Western blotting is a ubiquitous tool used extensively in the clinical and research settings to identify proteins and characterize their levels. It has rapidly become a mainstay in research laboratories due to its specificity, low cost, and ease of use. The specificity arises from the orthogonal processes used to identify proteins. Samples are first separated based on size and then probed with antibodies specific for the protein of interest. This confirmatory approach helps avoid pitfalls associated with antibody cross-reactivity and specificity issues. While the technique has evolved since its inception, the last decade has witnessed a paradigm shift in Western blotting technology. The introduction of capillary and microfluidic platforms has significantly decreased time and sample requirements while enabling high-throughput capabilities. These advances have enabled Western analysis down to the single cell level in highly parallel formats, opening vast new opportunities for studying cellular heterogeneity. Recent innovations in microscale Western blotting are surveyed, and the potential for enhancing detection using advances in label-free biosensing is briefly discussed.
Collapse
Affiliation(s)
- Brittany J Sanders
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| | - Daniel C Kim
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| | - Robert C Dunn
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| |
Collapse
|
192
|
Portillo-Lara R, Annabi N. Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment. LAB ON A CHIP 2016; 16:4063-4081. [PMID: 27605305 DOI: 10.1039/c6lc00718j] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
More than 90% of cancer-related deaths can be attributed to the occurrence of metastatic diseases. Recent studies have highlighted the importance of the multicellular, biochemical and biophysical stimuli from the tumor microenvironment during carcinogenesis, treatment failure, and metastasis. Therefore, there is a need for experimental platforms that are able to recapitulate the complex pathophysiological features of the metastatic microenvironment. Recent advancements in biomaterials, microfluidics, and tissue engineering have led to the development of living multicellular microculture systems, which are maintained in controllable microenvironments and function with organ level complexity. The applications of these "on-chip" technologies for detection, separation, characterization and three dimensional (3D) propagation of cancer cells have been extensively reviewed in previous works. In this contribution, we focus on integrative microengineered platforms that allow the study of multiple aspects of the metastatic microenvironment, including the physicochemical cues from the tumor associated stroma, the heterocellular interactions that drive trans-endothelial migration and angiogenesis, the environmental stresses that metastatic cancer cells encounter during migration, and the physicochemical gradients that direct cell motility and invasion. We discuss the application of these systems as in vitro assays to elucidate fundamental mechanisms of cancer metastasis, as well as their use as human relevant platforms for drug screening in biomimetic microenvironments. We then conclude with our commentaries on current progress and future perspectives of microengineered systems for fundamental and translational cancer research.
Collapse
Affiliation(s)
- R Portillo-Lara
- Department of Chemical Engineering, Northeastern University, 451 Snell Engineering Building, 360 Huntington Ave, Boston, MA 02115, USA. and Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Mexico
| | - N Annabi
- Department of Chemical Engineering, Northeastern University, 451 Snell Engineering Building, 360 Huntington Ave, Boston, MA 02115, USA. and Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
193
|
Abstract
Nanoscale fluid transport through conduits in the 1-100 nm range is termed as nanofluidics. Over the past decade or so, significant scientific and technological advances have occurred in the domain of nanofluidics with a transverse external electrical signal through a dielectric layer permitting control over ionic and fluid flows in these nanoscale conduits. Consequently, this special class of nanofluidic devices is commonly referred to as field effect devices, analogous to the solid-state field effect transistors that form the basis for modern electronics. In this mini-review, we focus on summarizing the recent developments in field effect nanofluidics as a discipline and evaluate both tutorially and critically the scientific and technological advances that have been reported, including a discussion on the future outlook and identifying broad open questions which suggest that there are many breakthroughs still to come in field-effect nanofluidics.
Collapse
Affiliation(s)
- Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - A T Conlisk
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
194
|
Abstract
Development of controlled vacuum is having many applications in the realm of biotechnology, cell transfer, gene therapy, biomedical engineering and other engineering activities involving separation or chemical reactions. Here we show the controlled vacuum generation through a biocompatible, energy efficient, low-cost and flexible miniature device. We have designed and fabricated microfluidic devices from polydimethylsiloxane which are capable of producing vacuum at a highly controlled rate by using water as a motive fluid. Scrupulous removal of infected fluid/body fluid from the internal hemorrhage affected parts during surgical operations, gene manipulation, cell sorting, and other biomedical activities require complete isolation of the delicate cells or tissues adjacent to the targeted location. We demonstrate the potential of the miniature device to obtain controlled evacuation without the use of highly pressurized motive fluids. Water has been used as a motive liquid to eject vapor and liquid at ambient conditions through the microfluidic devices prepared using a low-cost fabrication method. The proposed miniature device may find applications in vacuum generation especially where the controlled rate of evacuation, and limited vacuum generation are of utmost importance in order to precisely protect the cells in the nearby region of the targeted evacuated area.
Collapse
|
195
|
Soares RRG, Silva DFC, Fernandes P, Azevedo AM, Chu V, Conde JP, Aires-Barros MR. Miniaturization of aqueous two-phase extraction for biological applications: From micro-tubes to microchannels. Biotechnol J 2016; 11:1498-1512. [PMID: 27624685 DOI: 10.1002/biot.201600356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/26/2023]
Abstract
Aqueous two-phase extraction (ATPE) is a biocompatible liquid-liquid (L-L) separation technique that has been under research for several decades towards the purification of biomolecules, ranging from small metabolites to large animal cells. More recently, with the emergence of rapid-prototyping techniques for fabrication of microfluidic structures with intricate designs, ATPE gained an expanded range of applications utilizing physical phenomena occurring exclusively at the microscale. Today, research is being carried simultaneously in two different volume ranges, mL-scale (microtubes) and nL-scale (microchannels). The objective of this review is to give insight into the state of the art at both microtube and microchannel-scale and to analyze whether miniaturization is currently a competing or divergent technology in a field of applications including bioseparation, bioanalytics, enhanced fermentation processes, catalysis, high-throughput screening and physical/chemical compartmentalization. From our perspective, both approaches are worthy of investigation and, depending on the application, it is likely that either (i) one of the approaches will eventually become obsolete in particular research areas such as purification at the preparative scale or high-throughput screening applications; or (ii) both approaches will function as complementing techniques within the bioanalytics field.
Collapse
Affiliation(s)
- Ruben R G Soares
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel F C Silva
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Azevedo
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M Raquel Aires-Barros
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
196
|
Kang CC, Yamauchi KA, Vlassakis J, Sinkala E, Duncombe TA, Herr AE. Single cell-resolution western blotting. Nat Protoc 2016; 11:1508-30. [PMID: 27466711 DOI: 10.1038/nprot.2016.089] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This protocol describes how to perform western blotting on individual cells to measure cell-to-cell variation in protein expression levels and protein state. Like conventional western blotting, single-cell western blotting (scWB) is particularly useful for protein targets that lack selective antibodies (e.g., isoforms) and in cases in which background signal from intact cells is confounding. scWB is performed on a microdevice that comprises an array of microwells molded in a thin layer of a polyacrylamide gel (PAG). The gel layer functions as both a molecular sieving matrix during PAGE and a blotting scaffold during immunoprobing. scWB involves five main stages: (i) gravity settling of cells into microwells; (ii) chemical lysis of cells in each microwell; (iii) PAGE of each single-cell lysate; (iv) exposure of the gel to UV light to blot (immobilize) proteins to the gel matrix; and (v) in-gel immunoprobing of immobilized proteins. Multiplexing can be achieved by probing with antibody cocktails and using antibody stripping/reprobing techniques, enabling detection of 10+ proteins in each cell. We also describe microdevice fabrication for both uniform and pore-gradient microgels. To extend in-gel immunoprobing to gels of small pore size, we describe an optional gel de-cross-linking protocol for more effective introduction of antibodies into the gel layer. Once the microdevice has been fabricated, the assay can be completed in 4-6 h by microfluidic novices and it generates high-selectivity, multiplexed data from single cells. The technique is relevant when direct measurement of proteins in single cells is needed, with applications spanning the fundamental biosciences to applied biomedicine.
Collapse
Affiliation(s)
- Chi-Chih Kang
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Kevin A Yamauchi
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Julea Vlassakis
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Elly Sinkala
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Todd A Duncombe
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California, USA
| |
Collapse
|
197
|
Kaminski TS, Scheler O, Garstecki P. Droplet microfluidics for microbiology: techniques, applications and challenges. LAB ON A CHIP 2016; 16:2168-87. [PMID: 27212581 DOI: 10.1039/c6lc00367b] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Droplet microfluidics has rapidly emerged as one of the key technologies opening up new experimental possibilities in microbiology. The ability to generate, manipulate and monitor droplets carrying single cells or small populations of bacteria in a highly parallel and high throughput manner creates new approaches for solving problems in diagnostics and for research on bacterial evolution. This review presents applications of droplet microfluidics in various fields of microbiology: i) detection and identification of pathogens, ii) antibiotic susceptibility testing, iii) studies of microbial physiology and iv) biotechnological selection and improvement of strains. We also list the challenges in the dynamically developing field and new potential uses of droplets in microbiology.
Collapse
Affiliation(s)
- Tomasz S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
198
|
McGregor AL, Hsia CR, Lammerding J. Squish and squeeze-the nucleus as a physical barrier during migration in confined environments. Curr Opin Cell Biol 2016; 40:32-40. [PMID: 26895141 PMCID: PMC4887392 DOI: 10.1016/j.ceb.2016.01.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/23/2016] [Indexed: 01/22/2023]
Abstract
From embryonic development to cancer metastasis, cell migration plays a central role in health and disease. It is increasingly becoming apparent that cells migrating in three-dimensional (3-D) environments exhibit some striking differences compared with their well-established 2-D counterparts. One key finding is the significant role the nucleus plays during 3-D migration: when cells move in confined spaces, the cell body and nucleus must deform to squeeze through available spaces, and the deformability of the large and relatively rigid nucleus can become rate-limiting. In this review, we highlight recent findings regarding the role of nuclear mechanics in 3-D migration, including factors that govern nuclear deformability, and emerging mechanisms by which cells apply cytoskeletal forces to the nucleus to facilitate nuclear translocation. Intriguingly, the 'physical barrier' imposed by the nucleus also impacts cytoplasmic dynamics that affect cell migration and signaling, and changes in nuclear structure resulting from the mechanical forces acting on the nucleus during 3-D migration could further alter cellular function. These findings have broad relevance to the migration of both normal and cancerous cells inside living tissues, and motivate further research into the molecular details by which cells move their nuclei, as well as the consequences of the mechanical stress on the nucleus.
Collapse
Affiliation(s)
- Alexandra Lynn McGregor
- Nancy C. and Peter E. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chieh-Ren Hsia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Nancy C. and Peter E. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
199
|
He M, Zeng Y. Microfluidic Exosome Analysis toward Liquid Biopsy for Cancer. ACTA ACUST UNITED AC 2016; 21:599-608. [PMID: 27215792 DOI: 10.1177/2211068216651035] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 12/20/2022]
Abstract
Assessment of a tumor's molecular makeup using biofluid samples, known as liquid biopsy, is a prominent research topic in precision medicine for cancer, due to its noninvasive property allowing repeat sampling for monitoring molecular changes of tumors over time. Circulating exosomes recently have been recognized as promising tumor surrogates because they deliver enriched biomarkers, such as proteins, RNAs, and DNA. However, purification and characterization of these exosomes are technically challenging. Microfluidic lab-on-a-chip technology effectively addresses these challenges owing to its inherent advantages in integration and automation of multiple functional modules, enhancing sensing performance, and expediting analysis processes. In this article, we review the state-of-the-art development of microfluidic technologies for exosome isolation and molecular characterization with emphasis on their applications toward liquid biopsy-based analysis of cancer. Finally, we share our perspectives on current challenges and future directions of microfluidic exosome analysis.
Collapse
Affiliation(s)
- Mei He
- Department of Biological and Agricultural Engineering, College of Engineering, Kansas State University, Manhattan, KS, USA
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
200
|
Irimia D, Ellett F. Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics. J Leukoc Biol 2016; 100:291-304. [PMID: 27194799 DOI: 10.1189/jlb.5ru0216-056r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an indispensable component of the immune response, and leukocytes provide the first line of defense against infection. Although the major stereotypic leukocyte behaviors in response to infection are well known, the complexities and idiosyncrasies of these phenotypes in conditions of disease are still emerging. Novel tools are indispensable for gaining insights into leukocyte behavior, and in the past decade, microfluidic technologies have emerged as an exciting development in the field. Microfluidic devices are readily customizable, provide tight control of experimental conditions, enable high precision of ex vivo measurements of individual as well as integrated leukocyte functions, and have facilitated the discovery of novel leukocyte phenotypes. Here, we review some of the most interesting insights resulting from the application of microfluidic approaches to the study of the inflammatory response. The aim is to encourage leukocyte biologists to integrate these new tools into increasingly more sophisticated experimental designs for probing complex leukocyte functions.
Collapse
Affiliation(s)
- Daniel Irimia
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| | - Felix Ellett
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| |
Collapse
|