151
|
Convergent Community Assembly among Globally Separated Acidic Cave Biofilms. Appl Environ Microbiol 2023; 89:e0157522. [PMID: 36602326 PMCID: PMC9888236 DOI: 10.1128/aem.01575-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acidophilic bacteria and archaea inhabit extreme geochemical "islands" that can tell us when and how geographic barriers affect the biogeography of microorganisms. Here, we describe microbial communities from extremely acidic (pH 0 to 1) biofilms, known as snottites, from hydrogen sulfide-rich caves. Given the extreme acidity and subsurface location of these biofilms, and in light of earlier work showing strong geographic patterns among snottite Acidithiobacillus populations, we investigated their structure and diversity in order to understand how geography might impact community assembly. We used 16S rRNA gene cloning and fluorescence in situ hybridization (FISH) to investigate 26 snottite samples from four sulfidic caves in Italy and Mexico. All samples had very low biodiversity and were dominated by sulfur-oxidizing bacteria in the genus Acidithiobacillus. Ferroplasma and other archaea in the Thermoplasmatales ranged from 0 to 50% of total cells, and relatives of the bacterial genera Acidimicrobium and Ferrimicrobium were up to 15% of total cells. Rare phylotypes included Sulfobacillus spp. and members of the phyla "Candidatus Dependentiae" and "Candidatus Saccharibacteria" (formerly TM6 and TM7). Although the same genera of acidophiles occurred in snottites on separate continents, most members of those genera represent substantially divergent populations, with 16S rRNA genes that are only 95 to 98% similar. Our findings are consistent with a model of community assembly where sulfidic caves are stochastically colonized by microorganisms from local sources, which are strongly filtered through environmental selection for extreme acid tolerance, and these different colonization histories are maintained by dispersal restrictions within and among caves. IMPORTANCE Microorganisms that are adapted to extremely acidic conditions, known as extreme acidophiles, are catalysts for rock weathering, metal cycling, and mineral formation in naturally acidic environments. They are also important drivers of large-scale industrial processes such as biomining and contaminant remediation. Understanding the factors that govern their ecology and distribution can help us better predict and utilize their activities in natural and engineered systems. However, extremely acidic habitats are unusual in that they are almost always isolated within circumneutral landscapes. So where did their acid-adapted inhabitants come from, and how do new colonists arrive and become established? In this study, we took advantage of a unique natural experiment in Earth's subsurface to show how isolation may have played a role in the colonization history, community assembly, and diversity of highly acidic microbial biofilms.
Collapse
|
152
|
Plant Community Associates with Rare Rather than Abundant Fungal Taxa in Alpine Grassland Soils. Appl Environ Microbiol 2023; 89:e0186222. [PMID: 36602328 PMCID: PMC9888191 DOI: 10.1128/aem.01862-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The importance of the rare microbial biosphere in maintaining biodiversity and ecological functions has been highlighted recently. However, the current understanding of the spatial distribution of rare microbial taxa is still limited, with only a few investigations for rare prokaryotes and virtually none for rare fungi. Here, we investigated the spatial patterns of rare and abundant fungal taxa in alpine grassland soils across 2,000 km of the Qinghai-Tibetan plateau. We found that most locally rare fungal taxa remained rare (13.07%) or were absent (82.85%) in other sites, whereas only a small proportion (4.06%) shifted between rare and abundant among sites. Although they differed in terms of diversity levels and compositions, the distance decay relationships of both the rare and the abundant fungal taxa were valid and displayed similar turnover rates. Moreover, the community assemblies of both rare and abundant fungal taxa were predominantly controlled by deterministic rather than stochastic processes. Notably, the community composition of rare rather than abundant fungal taxa associated with the plant community composition. In summary, this study advances our understanding of the biogeographic features of rare fungal taxa in alpine grasslands and highlights the concordance between plant communities and rare fungal subcommunities in soil. IMPORTANCE Our current understanding of the ecology and functions of rare microbial taxa largely relies on research conducted on prokaryotes. Despite the key ecological roles of soil fungi, little is known about the biogeographic patterns and drivers of rare and abundant fungi in soils. In this study, we investigated the spatial patterns of rare and abundant fungal taxa in Qinghai-Tibetan plateau (QTP) alpine grassland soils across 2,000 km, with a special concentration on the importance of the plant communities in shaping rare fungal taxa. We showed that rare fungal taxa generally had a biogeographic pattern that was similar to that of abundant fungal taxa in alpine grassland soils on the QTP. Furthermore, the plant community composition was strongly related to the community composition of rare taxa but not abundant taxa. In summary, this study significantly increases our biogeographic and ecological knowledge of rare fungal taxa in alpine grassland soils.
Collapse
|
153
|
Ustick LJ, Larkin AA, Martiny AC. Global scale phylogeography of functional traits and microdiversity in Prochlorococcus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525399. [PMID: 36747826 PMCID: PMC9900765 DOI: 10.1101/2023.01.24.525399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prochlorococcus is the most numerically abundant photosynthetic organism in the surface ocean. The Prochlorococcus high-light and warm-water adapted ecotype (HLII) is comprised of extensive microdiversity, but specific functional differences between microdiverse sub-clades remain elusive. Here we characterized both functional and phylogenetic diversity within the HLII ecotype using Bio-GO-SHIP metagenomes. We found widespread variation in gene frequency connected to local environmental conditions. Metagenomically assembled marker genes and genomes revealed a globally distributed novel HLII haplotype defined by adaptation to chronically low P conditions (HLII-P). Environmental correlation analysis revealed different factors were driving gene abundances verses phylogenetic differences. An analysis of cultured HLII genomes and metagenomically assembled genomes revealed a subclade within HLII, which corresponded to the novel HLII-P haplotype. This work represents the first global assessment of the HLII ecotype’s phylogeography and corresponding functional differences. These findings together expand our understanding of how microdiversity structures functional differences and reveals the importance of nutrients as drivers of microdiversity in Prochlorococcus .
Collapse
|
154
|
Hoffmann A, Posirca AR, Lewin S, Verch G, Büttner C, Müller MEH. Environmental Filtering Drives Fungal Phyllosphere Community in Regional Agricultural Landscapes. PLANTS (BASEL, SWITZERLAND) 2023; 12:507. [PMID: 36771591 PMCID: PMC9919219 DOI: 10.3390/plants12030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
To adapt to climate change, several agricultural strategies are currently being explored, including a shift in land use areas. Regional differences in microbiome composition and associated phytopathogens need to be considered. However, most empirical studies on differences in the crop microbiome focused on soil communities, with insufficient attention to the phyllosphere. In this study, we focused on wheat ears in three regions in northeastern Germany (Magdeburger Börde (MBB), Müncheberger Sander (MSA), Uckermärkisches Hügelland (UKH)) with different yield potentials, soil, and climatic conditions. To gain insight into the fungal community at different sites, we used a metabarcoding approach (ITS-NGS). Further, we examined the diversity and abundance of Fusarium and Alternaria using culture-dependent and culture-independent techniques. For each region, the prevalence of different orders rich in phytopathogenic fungi was determined: Sporidiobolales in MBB, Capnodiales and Pleosporales in MSA, and Hypocreales in UKH were identified as taxonomic biomarkers. Additionally, F. graminearum was found predominantly in UKH, whereas F. poae was more abundant in the other two regions. Environmental filters seem to be strong drivers of these differences, but we also discuss the possible effects of dispersal and interaction filters. Our results can guide shifting cultivation regions to be selected in the future concerning their phytopathogenic infection potential.
Collapse
Affiliation(s)
- Annika Hoffmann
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Alexandra-Raluca Posirca
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
- State Office for Rural Development, Agriculture and Land Reorganization (LELF) Brandenburg, Division P, 15236 Frankfurt (Oder), Germany
| | - Simon Lewin
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Gernot Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Carmen Büttner
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
155
|
Kamilari E, Anagnostopoulos DA, Tsaltas D. Fermented table olives from Cyprus: Microbiota profile of three varieties from different regions through metabarcoding sequencing. Front Microbiol 2023; 13:1101515. [PMID: 36733778 PMCID: PMC9886855 DOI: 10.3389/fmicb.2022.1101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The knowledge about the microbial diversity of different olives varieties from diverse regions in the Mediterranean basin is limited. This work aimed to determine the microbial diversity of three different fermented olive varieties, collected from different regions in Cyprus, via Next Generation Sequencing (NGS) analysis. Olives were spontaneously fermented for 120 days, microbial DNA was extracted from the final products, and subjected to 16S rRNA gene and ITS1 loci metabarcoding analysis for the determination of bacterial and fungal communities, respectively. Results revealed that the bacterial profile of the studied varieties was similar, while no noteworthy differences were observed in olives from different regions. The bacterial profile was dominated by the co-existence of Lactobacillus and Streptococcus, while the genera Lactococcus and Salinivibrio and the family Leuconostocaceae were also present in increased relative abundances. Regarding fungal communities, the analysis indicated discrimination among the different varieties, especially in Kalamata ones. The most abundant fungi were mainly the genera Aspergillus, Botryosphaeria, Meyerozyma, and Zygosaccharomyces for Cypriot olives, the genera Botryosphaeria, Saccharomyces, Geosmithia, and Wickeromyces for Kalamata variety, while the dominant fungi in the Picual variety were mainly members of the genera Candida, Penicillium, Saccharomyces, Hanseniospora and Botryosphaeria. Potential microbial biomarkers that distinguish the three varieties are also proposed. Moreover, interaction networks analysis identified interactions among the key taxa of the communities. Overall, the present work provides useful information and sheds light on an understudied field, such as the comparison of microbiota profiles of different varieties from several regions in Cyprus. The study enriches our knowledge and highlights the similarities and the main differences between those aspects, booming in parallel the need for further works on this frontier, in the attempt to determine potentially olives' microbial terroir in Cyprus. Our work should be used as a benchmark for future works in this direction.
Collapse
|
156
|
Kokate PP, Bales E, Joyner D, Hazen TC, Techtmann SM. Biogeographic patterns in populations of marine Pseudoalteromonas atlantica isolates. FEMS Microbiol Lett 2023; 370:fnad081. [PMID: 37573136 DOI: 10.1093/femsle/fnad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 08/14/2023] Open
Abstract
Intra-specific genomic diversity is well documented in microbes. The question, however, remains whether natural selection or neutral evolution is the major contributor to this diversity. We undertook this study to estimate genomic diversity in Pseudoalteromonas atlantica populations and whether the diversity, if present, could be attributed to environmental factors or distance effects. We isolated and sequenced twenty-three strains of P. atlantica from three geographically distant deep marine basins and performed comparative genomic analyses to study the genomic diversity of populations among these basins. Average nucleotide identity followed a strictly geographical pattern. In two out of three locations, the strains within the location exhibited >99.5% identity, whereas, among locations, the strains showed <98.11% identity. Phylogenetic and pan-genome analysis also reflected the biogeographical separation of the strains. Strains from the same location shared many accessory genes and clustered closely on the phylogenetic tree. Phenotypic diversity between populations was studied in ten out of twenty-three strains testing carbon and nitrogen source utilization and osmotolerance. A genetic basis for phenotypic diversity could be established in most cases but was apparently not influenced by local environmental conditions. Our study suggests that neutral evolution may have a substantial role in the biodiversity of P. atlantica.
Collapse
Affiliation(s)
- Prajakta P Kokate
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States
| | - Erika Bales
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, United States
| | - Dominique Joyner
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, United States
| | - Terry C Hazen
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, United States
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States
| |
Collapse
|
157
|
Cai H, McLimans CJ, Beyer JE, Krumholz LR, Hambright KD. Microcystis pangenome reveals cryptic diversity within and across morphospecies. SCIENCE ADVANCES 2023; 9:eadd3783. [PMID: 36638170 PMCID: PMC9839332 DOI: 10.1126/sciadv.add3783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Microcystis, a common harmful algal bloom (HAB) taxon, threatens water supplies and human health, yet species delimitation is contentious in this taxon, leading to challenges in research and management of this threat. Historical and common morphology-based classifications recognize multiple morphospecies, most with variable and diverse ecologies, while DNA sequence-based classifications indicate a single species with multiple ecotypes. To better delimit Microcystis species, we conducted a pangenome analysis of 122 genomes. Core- and non-core gene phylogenetic analyses placed 113 genomes into 23 monophyletic clusters containing at least two genomes. Overall, genome-related indices revealed that Microcystis contains at least 16 putative genospecies. Fifteen genospecies included at least one Microcystis aeruginosa morphospecies, and 10 genospecies included two or more morphospecies. This classification system will enable consistent taxonomic identification of Microcystis and thereby aid in resolving some of the complexities and controversies that have long characterized eco-evolutionary research and management of this important HAB taxon.
Collapse
Affiliation(s)
- Haiyuan Cai
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Christopher J. McLimans
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Jessica E. Beyer
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Lee R. Krumholz
- Department of Microbiology and Plant Biology and Institute for Energy and the Environment, University of Oklahoma, Norman, OK, USA
| | - K. David Hambright
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, USA
- Geographical Ecology, Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
158
|
Tian L, Zhang Y, Zhang L, Zhang L, Gao X, Feng B. Biogeographic Pattern and Network of Rhizosphere Fungal and Bacterial Communities in Panicum miliaceum Fields: Roles of Abundant and Rare Taxa. Microorganisms 2023; 11:microorganisms11010134. [PMID: 36677426 PMCID: PMC9863577 DOI: 10.3390/microorganisms11010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Unraveling how microbial interactions and assembly process regulate the rhizosphere abundant and rare taxa is crucial for determining how species diversity affects rhizosphere microbiological functions. We assessed the rare and abundant taxa of rhizosphere fungal and bacterial communities in proso millet agroecosystems to explore their biogeographic patterns and co-occurrence patterns based on a regional scale. The taxonomic composition was significantly distinct between the fungal and bacterial abundant and rare taxa. Additionally, the rare taxa of bacteria and fungi exhibited higher diversity and stronger phylogenetic clustering than those of the abundant ones. The phylogenetic turnover rate of abundant taxa of bacteria was smaller than that of rare ones, whereas that of fungi had the opposite trend. Environmental variables, particularly mean annual temperature (MAT) and soil pH, were the crucial factors of community structure in the rare and abundant taxa. Furthermore, a deterministic process was relatively more important in governing the assembly of abundant and rare taxa. Our network analysis suggested that rare taxa of fungi and bacteria were located at the core of maintaining ecosystem functions. Interestingly, MAT and pH were also the important drivers controlling the main modules of abundant and rare taxa. Altogether, these observations revealed that rare and abundant taxa of fungal and bacterial communities showed obvious differences in biogeographic distribution, which were based on the dynamic interactions between assembly processes and co-occurrence networks.
Collapse
Affiliation(s)
- Lixin Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yuchuan Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Liyuan Zhang
- Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng 024031, China
| | - Lei Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
- Correspondence: (X.G.); (B.F.)
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
- Correspondence: (X.G.); (B.F.)
| |
Collapse
|
159
|
Matek A, Bosak S, Šupraha L, Neeley A, Višić H, Cetinić I, Ljubešić Z. Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems. PeerJ 2023; 11:e14501. [PMID: 36620747 PMCID: PMC9817951 DOI: 10.7717/peerj.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/10/2022] [Indexed: 01/04/2023] Open
Abstract
Background Phytoplankton is the base of majority of ocean ecosystems. It is responsible for half of the global primary production, and different phytoplankton taxa have a unique role in global biogeochemical cycles. In addition, phytoplankton abundance and diversity are highly susceptible to climate induced changes, hence monitoring of phytoplankton and its diversity is important and necessary. Methods Water samples for phytoplankton and photosynthetic pigment analyses were collected in boreal winter 2017, along transect in the North Pacific Subtropical Gyre (NPSG) and the California Current System (CCS). Phytoplankton community was analyzed using light and scanning electron microscopy and photosynthetic pigments by high-performance liquid chromatography. To describe distinct ecosystems, monthly average satellite data of MODIS Aqua Sea Surface temperature and Chlorophyll a concentration, as well as Apparent Visible Wavelength were used. Results A total of 207 taxa have been determined, mostly comprised of coccolithophores (35.5%), diatoms (25.2%) and dinoflagellates (19.5%) while cryptophytes, phytoflagellates and silicoflagellates were included in the group "others" (19.8%). Phytoplankton spatial distribution was distinct, indicating variable planktonic dispersal rates and specific adaptation to ecosystems. Dinoflagellates, and nano-scale coccolithophores dominated NPSG, while micro-scale diatoms, and cryptophytes prevailed in CCS. A clear split between CCS and NPSG is evident in dendogram visualising LINKTREE constrained binary divisive clustering analysis done on phytoplankton counts and pigment concentrations. Of all pigments determined, alloxanthin, zeaxanthin, divinyl chlorophyll b and lutein have highest correlation to phytoplankton counts. Conclusion Combining chemotaxonomy and microscopy is an optimal method to determine phytoplankton diversity on a large-scale transect. Distinct communities between the two contrasting ecosystems of North Pacific reveal phytoplankton groups specific adaptations to trophic state, and support the hypothesis of shift from micro- to nano-scale taxa due to sea surface temperatures rising, favoring stratification and oligotrophic conditions.
Collapse
Affiliation(s)
- Antonija Matek
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Luka Šupraha
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden,Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Aimee Neeley
- Ocean Ecology Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD, United States of America,Science Systems and Applications, Inc., Lanham, Maryland, United States of America
| | - Hrvoje Višić
- Department of Geosciences, Faculty of Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ivona Cetinić
- Ocean Ecology Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD, United States of America,GESTAR II, Morgan State University, Baltimore, MD, United States of America
| | - Zrinka Ljubešić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
160
|
Montiel-Molina JAM, Sexton JP, Frank AC, Beman JM. Archaeal and Bacterial Diversity and Distribution Patterns in Mediterranean-Climate Vernal Pools of Mexico and the Western USA. MICROBIAL ECOLOGY 2023; 85:24-36. [PMID: 34970700 PMCID: PMC8718339 DOI: 10.1007/s00248-021-01941-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Biogeographic patterns in microorganisms are poorly understood, despite the importance of microbial communities for a range of ecosystem processes. Our knowledge of microbial ecology and biogeography is particularly deficient in rare and threatened ecosystems. We tested for three ecological patterns in microbial community composition within ephemeral wetlands-vernal pools-located across Baja California (Mexico) and California (USA): (1) habitat filtering; (2) a latitudinal diversity gradient; and (3) distance decay in community composition. Paired water and soil samples were collected along a latitudinal transect of vernal pools, and bacterial and archaeal communities were characterized using 16S rDNA sequencing. We identified two main microbial communities, with one community present in the soil matrix that included archaeal and bacterial soil taxa, and another community present in the overlying water that was dominated by common freshwater bacterial taxa. Aquatic microbial communities were more diverse in the north, and displayed a significant but inverted latitudinal diversity pattern. Aquatic communities also exhibited a significant distance-decay pattern, with geographic proximity, and precipitation explaining part of the community variation. Collectively these results indicate greater sensitivity to spatial and environmental variation in vernal pool aquatic microbial communities than in soil microbial communities. We conclude that vernal pool aquatic microbial communities can display distribution patterns similar to those exhibited by larger organisms, but differ in some key aspects, such as the latitudinal gradient in diversity.
Collapse
Affiliation(s)
- Jorge A Mandussí Montiel-Molina
- Environmental Systems, Department of Life and Environmental Science, University of California Merced, North Lake Road 5200, Merced, CA, 95343, USA.
- Nativos de Las Californias A.C, Cuarto Balcón 15901, Balcón Las Huertas, Tijuana, Baja California, 22116, México.
- Jardín Botánico de San Quintín A.C, Gral. Esteban Cantú 200, Nuevo Baja California, San Quintín-Lazaro Cárdenas, Baja California, 22930, México.
| | - Jason P Sexton
- Environmental Systems, Department of Life and Environmental Science, University of California Merced, North Lake Road 5200, Merced, CA, 95343, USA
| | - A Carolin Frank
- Environmental Systems, Department of Life and Environmental Science, University of California Merced, North Lake Road 5200, Merced, CA, 95343, USA
| | - J Michael Beman
- Environmental Systems, Department of Life and Environmental Science, University of California Merced, North Lake Road 5200, Merced, CA, 95343, USA
| |
Collapse
|
161
|
Brodie JF, Mannion PD. The hierarchy of factors predicting the latitudinal diversity gradient. Trends Ecol Evol 2023; 38:15-23. [PMID: 36089412 DOI: 10.1016/j.tree.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
The numerous explanations for why Earth's biodiversity is concentrated at low latitudes fail to explain variation in the strength and even direction of the gradient through deep time. Consequently, we do not know if today's gradient is representative of what might be expected on other planets or is merely an idiosyncrasy of Earth's history. We propose a hierarchy of factors driving the latitudinal distribution of diversity: (i) over geologically long time spans, diversity is largely predicted by climate; (ii) when climatic gradients are shallow, diversity tracks habitat area; and (iii) historical contingencies linked to niche conservatism have geologically short-term, transient influence at most. Thus, latitudinal diversity gradients, although variable in strength and direction, are largely predictable on our planet and possibly others.
Collapse
Affiliation(s)
- Jedediah F Brodie
- Division of Biological Sciences & Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94 300 Kota Samarahan, Malaysia.
| | - Philip D Mannion
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
162
|
Sorouri B, Rodriguez CI, Gaut BS, Allison SD. Variation in Sphingomonas traits across habitats and phylogenetic clades. Front Microbiol 2023; 14:1146165. [PMID: 37138640 PMCID: PMC10150699 DOI: 10.3389/fmicb.2023.1146165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Whether microbes show habitat preferences is a fundamental question in microbial ecology. If different microbial lineages have distinct traits, those lineages may occur more frequently in habitats where their traits are advantageous. Sphingomonas is an ideal bacterial clade in which to investigate how habitat preference relates to traits because these bacteria inhabit diverse environments and hosts. Here we downloaded 440 publicly available Sphingomonas genomes, assigned them to habitats based on isolation source, and examined their phylogenetic relationships. We sought to address whether: (1) there is a relationship between Sphingomonas habitat and phylogeny, and (2) whether there is a phylogenetic correlation between key, genome-based traits and habitat preference. We hypothesized that Sphingomonas strains from similar habitats would cluster together in phylogenetic clades, and key traits that improve fitness in specific environments should correlate with habitat. Genome-based traits were categorized into the Y-A-S trait-based framework for high growth yield, resource acquisition, and stress tolerance. We selected 252 high quality genomes and constructed a phylogenetic tree with 12 well-defined clades based on an alignment of 404 core genes. Sphingomonas strains from the same habitat clustered together within the same clades, and strains within clades shared similar clusters of accessory genes. Additionally, key genome-based trait frequencies varied across habitats. We conclude that Sphingomonas gene content reflects habitat preference. This knowledge of how environment and host relate to phylogeny may also help with future functional predictions about Sphingomonas and facilitate applications in bioremediation.
Collapse
Affiliation(s)
- Bahareh Sorouri
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
- *Correspondence: Bahareh Sorouri,
| | - Cynthia I. Rodriguez
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
| | - Steven D. Allison
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
- Department of Earth System Science, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
163
|
Steiner M, Pingel M, Falquet L, Giffard B, Griesser M, Leyer I, Preda C, Uzman D, Bacher S, Reineke A. Local conditions matter: Minimal and variable effects of soil disturbance on microbial communities and functions in European vineyards. PLoS One 2023; 18:e0280516. [PMID: 36706082 PMCID: PMC9882891 DOI: 10.1371/journal.pone.0280516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/29/2022] [Indexed: 01/28/2023] Open
Abstract
Soil tillage or herbicide applications are commonly used in agriculture for weed control. These measures may also represent a disturbance for soil microbial communities and their functions. However, the generality of response patterns of microbial communities and functions to disturbance have rarely been studied at large geographical scales. We investigated how a soil disturbance gradient (low, intermediate, high), realized by either tillage or herbicide application, affects diversity and composition of soil bacterial and fungal communities as well as soil functions in vineyards across five European countries. Microbial alpha-diversity metrics responded to soil disturbance sporadically, but inconsistently across countries. Increasing soil disturbance changed soil microbial community composition at the European level. However, the effects of soil disturbance on the variation of microbial communities were smaller compared to the effects of location and soil covariates. Microbial respiration was consistently impaired by soil disturbance, while effects on decomposition of organic substrates were inconsistent and showed positive and negative responses depending on the respective country. Therefore, we conclude that it is difficult to extrapolate results from one locality to others because microbial communities and environmental conditions vary strongly over larger geographical scales.
Collapse
Affiliation(s)
- Magdalena Steiner
- Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail: (MS); (MP)
| | - Martin Pingel
- Department of Applied Ecology, Geisenheim University, Geisenheim, Germany
- * E-mail: (MS); (MP)
| | - Laurent Falquet
- Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Brice Giffard
- Bordeaux Sciences Agro, UMR 1065 SAVE Santé et Agroécologie du Vignoble, INRA, ISVV, Gradignan, France
| | - Michaela Griesser
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Ilona Leyer
- Department of Applied Ecology, Geisenheim University, Geisenheim, Germany
| | - Cristina Preda
- Department of Natural Sciences, Aleea Universitatii, Ovidius University of Constanta, Constanta, Romania
| | - Deniz Uzman
- Department of Crop Protection, Geisenheim University, Geisenheim, Germany
| | - Sven Bacher
- Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Annette Reineke
- Department of Crop Protection, Geisenheim University, Geisenheim, Germany
| |
Collapse
|
164
|
Barbour KM, Barrón-Sandoval A, Walters KE, Martiny JBH. Towards quantifying microbial dispersal in the environment. Environ Microbiol 2023; 25:137-142. [PMID: 36308707 PMCID: PMC10100412 DOI: 10.1111/1462-2920.16270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Kristin M Barbour
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California, USA
| | - Alberto Barrón-Sandoval
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California, USA
| | | | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
165
|
Abs E, Chase AB, Allison SD. How do soil microbes shape ecosystem biogeochemistry in the context of global change? Environ Microbiol 2022; 25:780-785. [PMID: 36579433 DOI: 10.1111/1462-2920.16331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Elsa Abs
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Alexander B Chase
- Department of Earth Sciences, Southern Methodist University, Dallas, Texas, USA
| | - Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA.,Department of Earth System Science, University of California, Irvine, California, USA
| |
Collapse
|
166
|
Wang S, Sun P, Liu J, Xu Y, Dolfing J, Wu Y. Distribution of methanogenic and methanotrophic consortia at soil-water interfaces in rice paddies across climate zones. iScience 2022; 26:105851. [PMID: 36636345 PMCID: PMC9829807 DOI: 10.1016/j.isci.2022.105851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Periphytic biofilms (PB) at the soil-water interface contributes 7-38% of the methane emission from rice paddies, yet the biogeographical mechanism underlying and affecting the process remain elusive. In this study, rice fields along an edapho-vclimatic gradient were sampled, and the environmental drivers affecting distribution of methanogenic and methanotrophic communities were evaluated. The methanogenic and methanotrophic communities at soil-water interface showed less complex inter/intra-generic interactions than those in soil, and their relative abundances were weakly driven by spatial distance, soil organic carbon, soil total nitrogen and pH. The nutrient supply and buffering capacity of extracellular polymeric substance released by PB reduced their interaction and enhanced the resilience on edaphic environment changes. Climate affected soil metal content, extracellular polymeric substance content, and thus the methane-related communities, and caused geographical variation in the impacts of PB on methane emissions from rice paddies. This study facilitates our understanding of geographical differences in the contribution of PB to methane emission.
Collapse
Affiliation(s)
- Sichu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Institute of Agricultural Resources and Environment, Jiangsu Academy of Agriculture Sciences (JAAS), 50 Zhongling Road, Nanjing 210014, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Junzhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Ying Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China,Corresponding author
| |
Collapse
|
167
|
Wei Y, Quan F, Lan G, Wu Z, Yang C. Space Rather than Seasonal Changes Explained More of the Spatiotemporal Variation of Tropical Soil Microbial Communities. Microbiol Spectr 2022; 10:e0184622. [PMID: 36416607 PMCID: PMC9769686 DOI: 10.1128/spectrum.01846-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Soil microbiomes play an essential role in maintaining soil geochemical cycle and function. Although there have been some reports on the diversity patterns and drivers of the tropical forest soil microbial community, how space and seasonal changes affect spatiotemporal distribution at the regional scales are poorly understood. Based on 260 soil samples, we investigated the spatiotemporal patterns of rubber plantations and rainforest soil microbial communities across the whole of Hainan Island, China during the dry and rainy seasons. We examined soil bacterial and fungal composition and diversity and the main drivers of these microbes using Illumina sequencing and assembly. Our results revealed that the diversity (both alpha and beta) spatiotemporal variation in microbial communities is highly dependent on regional location rather than seasonal changes. For example, the site explained 28.5% and 37.2% of the variation in alpha diversity for soil bacteria and fungi, respectively, and explained 34.6% of the bacterial variance and 14.3% of the fungal variance in beta diversity. Soil pH, mean annual temperature, and mean annual precipitation were the most important factors associated with the distribution of soil microbial communities. Furthermore, we identified that variations in edaphic (e.g., soil pH) and climatic factors (e.g., mean annual temperature [MAT] and mean annual precipitation [MAP]) were mainly caused by regional sites (P < 0.001). Collectively, our work provides empirical evidence that space, rather than seasonal changes, explained more of the spatiotemporal variation of soil microbial communities in tropical forests, mediated by regional location-induced changes in climatic factors and edaphic properties. IMPORTANCE The soil microbiomes communities of the two forests were not only affected by environmental factors (e.g., edaphic and climatic factors), but also by different dominant geographic factors. In particular, our work showed that spatial variation in bacterial and fungal community composition was mainly dominated by edaphic properties (e.g., pH) and climatic factors (e.g., MAT and MAP). Moreover, the environmental factors were mainly explained by geographic location effect rather than by seasonal effect, and environmental dissimilarity significantly increased with geographic distance. In conclusion, our study provides solid empirical evidence that space rather than season explained more of the spatiotemporal variation of soil microbial communities in the tropical forest.
Collapse
Affiliation(s)
- Yaqing Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Fei Quan
- School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| | - Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| | - Zhixiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| | - Chuan Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| |
Collapse
|
168
|
Gil JC, Hird SM. Multiomics Characterization of the Canada Goose Fecal Microbiome Reveals Selective Efficacy of Simulated Metagenomes. Microbiol Spectr 2022; 10:e0238422. [PMID: 36318011 PMCID: PMC9769641 DOI: 10.1128/spectrum.02384-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
16S rRNA amplicon sequences are predominantly used to identify the taxonomic composition of a microbiome, but they can also be used to generate simulated metagenomes to circumvent costly empirical shotgun sequencing. The effectiveness of using "simulated metagenomes" (shotgun metagenomes simulated from 16S rRNA amplicons using a database of full genomes closely related to the amplicons) in nonmodel systems is poorly known. We sought to determine the accuracy of simulated metagenomes in a nonmodel organism, the Canada goose (Branta canadensis), by comparing metagenomes and metatranscriptomes to simulated metagenomes derived from 16S amplicon sequencing. We found significant differences between the metagenomes, metatranscriptomes, and simulated metagenomes when comparing enzymes, KEGG orthologies (KO), and metabolic pathways. The simulated metagenomes accurately identified the majority (>70%) of the total enzymes, KOs, and pathways. The simulated metagenomes accurately identified the majority of the short-chain fatty acid metabolic pathways crucial to folivores. When narrowed in scope to specific genes of interest, the simulated metagenomes overestimated the number of antimicrobial resistance genes and underestimated the number of genes related to the breakdown of plant matter. Our results suggest that simulated metagenomes should not be used in lieu of empirical sequencing when studying the functional potential of a nonmodel organism's microbiome. Regarding the function of the Canada goose microbiome, we found unexpected amounts of fermentation pathways, and we found that a few taxa are responsible for large portions of the functional potential of the microbiome. IMPORTANCE The taxonomic composition of a microbiome is predominately identified using amplicon sequencing of 16S rRNA genes, but as a single marker, it cannot identify functions (genes). Metagenome and metatranscriptome sequencing can determine microbiome function but can be cost prohibitive. Therefore, computational methods have been developed to generate simulated metagenomes derived from 16S rRNA sequences and databases of full-length genomes. Simulated metagenomes can be an effective alternative to empirical sequencing, but accuracy depends on the genomic database used and whether the database contains organisms closely related to the 16S sequences. These tools are effective in well-studied systems, but the accuracy of these predictions in a nonmodel system is less known. Using a nonmodel bird species, we characterized the function of the microbiome and compared the accuracy of 16S-derived simulated metagenomes to sequenced metagenomes. We found that the simulated metagenomes reflect most but not all functions of empirical metagenome sequencing.
Collapse
Affiliation(s)
- Joshua C. Gil
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah M. Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
169
|
Xin Y, Shi Y, He WM. A shift from inorganic to organic nitrogen-dominance shapes soil microbiome composition and co-occurrence networks. Front Microbiol 2022; 13:1074064. [PMID: 36601395 PMCID: PMC9807163 DOI: 10.3389/fmicb.2022.1074064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Soil microbiomes are characterized by their composition and networks, which are linked to soil nitrogen (N) availability. In nature, inorganic N dominates at one end and organic N dominates at the other end along soil N gradients; however, little is known about how this shift influences soil microbiome composition and co-occurrence networks, as well as their controls. To this end, we conducted an experiment with the host plant Solidago canadensis, which was subject to three N regimes: inorganic N-dominated, co-dominated by inorganic and organic N (CIO), and organic N-dominated. Organic N dominance exhibited stronger effects on the composition and co-occurrence networks of soil microbiomes than inorganic N dominance. The predominant control was plant traits for bacterial and fungal richness, and soil pH for keystone species. Relative to the CIO regime, inorganic N dominance did not affect fungal richness and increased keystone species; organic N dominance decreased fungal richness and keystone species. Pathogenic fungi and arbuscular mycorrhizal fungi were suppressed by organic N dominance but not by inorganic N dominance. These findings suggest that the shift from soil inorganic N-dominance to soil organic N-dominance could strongly shape soil microbiome composition and co-occurrence networks by altering species diversity and topological properties.
Collapse
Affiliation(s)
- Yue Xin
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei-Ming He
- College of Forestry, Hebei Agricultural University, Baoding, China
| |
Collapse
|
170
|
Laas P, Künnis-Beres K, Talas L, Tammert H, Kuprijanov I, Herlemann DPR, Kisand V. Bacterial communities in ballast tanks of cargo vessels - Shaped by salinity, treatment and the point of origin of the water but "hatch" its typical microbiome. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116403. [PMID: 36352729 DOI: 10.1016/j.jenvman.2022.116403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Ballast water is a main vector of introduction of potentially harmful or pathogenic aquatic organisms. The development of genetic tools for ballast water monitoring has been underway and highlighted as a source for accurate and reliable data for decision making. We used 16S rRNA gene amplicon sequencing to analyze the microbial communities found in the ballast water of fifteen commercial ships routed through two Estonian ports. In parallel, samples from the port area were collected at the same time each ship visited. Fluorescence microscopy was utilized to assess the effectiveness of the treatment applied to ballast water. In addition, supplemental samples were collected from Hamburg Port (Germany) and a ballast tank decontamination system used at this port. The composition and diversity of bacterial communities varied greatly between obtained samples. The application of UV treatment did not demonstrate significant reduction in species richness estimates. The composition of microbial communities was significantly influenced by salinity, treatment (mainly untreated or UV treated) and the point of origin of the ballast water. Over a hundred potentially pathogenic bacterial taxa were found in relatively high abundance, including in ballast water that had received UV treatment. These shortcomings of stand-alone UV treatment of ballast water, especially when weak treatment is applied insufficiently, highlight the danger of possible harmful effects arising over time and the need for genetic tools for ballast water monitoring and management.
Collapse
Affiliation(s)
- Peeter Laas
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia; Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, Tallinn, Estonia
| | - Kai Künnis-Beres
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, Tallinn, Estonia
| | - Liisi Talas
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia
| | - Helen Tammert
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia
| | - Ivan Kuprijanov
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, Tallinn, Estonia
| | - Daniel P R Herlemann
- Estonian University of Life Sciences, Centre for Limnology, Vehendi, Elva, Tartu County, Estonia
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia.
| |
Collapse
|
171
|
Shaffer JP, Nothias LF, Thompson LR, Sanders JG, Salido RA, Couvillion SP, Brejnrod AD, Lejzerowicz F, Haiminen N, Huang S, Lutz HL, Zhu Q, Martino C, Morton JT, Karthikeyan S, Nothias-Esposito M, Dührkop K, Böcker S, Kim HW, Aksenov AA, Bittremieux W, Minich JJ, Marotz C, Bryant MM, Sanders K, Schwartz T, Humphrey G, Vásquez-Baeza Y, Tripathi A, Parida L, Carrieri AP, Beck KL, Das P, González A, McDonald D, Ladau J, Karst SM, Albertsen M, Ackermann G, DeReus J, Thomas T, Petras D, Shade A, Stegen J, Song SJ, Metz TO, Swafford AD, Dorrestein PC, Jansson JK, Gilbert JA, Knight R. Standardized multi-omics of Earth's microbiomes reveals microbial and metabolite diversity. Nat Microbiol 2022; 7:2128-2150. [PMID: 36443458 PMCID: PMC9712116 DOI: 10.1038/s41564-022-01266-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/10/2022] [Indexed: 11/30/2022]
Abstract
Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth's environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.
Collapse
Affiliation(s)
- Justin P Shaffer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Luke R Thompson
- Northern Gulf Institute, Mississippi State University, Starkville, MS, USA
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Rodolfo A Salido
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sneha P Couvillion
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Asker D Brejnrod
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Franck Lejzerowicz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Niina Haiminen
- IBM Research, T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Shi Huang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Holly L Lutz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Cameron Martino
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - James T Morton
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Smruthi Karthikeyan
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mélissa Nothias-Esposito
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kai Dührkop
- Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
| | - Sebastian Böcker
- Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Gyeonggi-do, Korea
| | - Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Wout Bittremieux
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Jeremiah J Minich
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - MacKenzie M Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karenina Sanders
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tara Schwartz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Greg Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yoshiki Vásquez-Baeza
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Anupriya Tripathi
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Laxmi Parida
- IBM Research, T.J. Watson Research Center, Yorktown Heights, NY, USA
| | | | - Kristen L Beck
- IBM Research, Almaden Research Center, San Jose, CA, USA
| | - Promi Das
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Antonio González
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joshua Ladau
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Søren M Karst
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institute, Copenhagen, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Gail Ackermann
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jeff DeReus
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - James Stegen
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Se Jin Song
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Thomas O Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Austin D Swafford
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
172
|
Groult B, Bredin P, Lazar CS. Ecological processes differ in community assembly of Archaea, Bacteria and Eukaryotes in a biogeographical survey of groundwater habitats in the Quebec region (Canada). Environ Microbiol 2022; 24:5898-5910. [PMID: 36135934 DOI: 10.1111/1462-2920.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023]
Abstract
Aquifers are inhabited by microorganisms from the three major domains of life: Archaea, Eukaryotes and Bacteria. Although interest in the processes that govern the assembly of these microbial communities is growing, their study is almost systematically limited to one of the three domains of life. Archaea, Bacteria and Eukaryotes are however interconnected and essential to understand the functioning of their living ecosystems. We, therefore, conducted a spatial study of the distribution of microorganisms by sampling 35 wells spread over an area of 10,000 km2 in the Quebec region (Canada). The obtained data allowed us to define the impact of geographic distance and geochemical water composition on the microbial communities. A null model approach was used to infer the relative influence of stochastic and determinist ecological processes on the assembly of the microbial community from all three domains. We found that the organisms from these three groups are mainly governed by stochastic mechanisms. However, this apparent similarity does not reflect the differences in the processes that govern the phyla assembly. The results obtained highlight the importance of considering all the microorganisms without neglecting their individual specificities.
Collapse
Affiliation(s)
- Benjamin Groult
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, Quebec, Canada
| | - Pascal Bredin
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, Quebec, Canada
| | - Cassandre Sara Lazar
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, Quebec, Canada
| |
Collapse
|
173
|
Heterogeneous selection dominated the temporal variation of the planktonic prokaryotic community during different seasons in the coastal waters of Bohai Bay. Sci Rep 2022; 12:20475. [PMID: 36443487 PMCID: PMC9705714 DOI: 10.1038/s41598-022-24892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
To explore temporal and spatial effects on the planktonic prokaryotic community composition (PCC) in the coastal region of the Bohai Sea, surface water samples were collected from 12 to 28 regularly distributed sites in Bohai Bay across 3 months from different seasons to characterize the PCC using high-throughput sequencing of the 16S rRNA V4 region. Prokaryotic α- and β-diversity showed significant temporal variation during the three sampling months. VPA analysis based on both weighted and unweighted UniFrac distances exhibited a shift of environmental and spatial effects on PCC variation with temporal variation. Quantification analysis of assembly processes on community turn over showed that "heterogeneous selection" dominated for PCC temporal variation, with basic abiotic parameters such as temperature, pH, ammonia nitrogen as the driving factors. Analysis of seasonal features showed that seasonal specific OTUs (ssOTUs) exhibited different seasonal attributions under the same phylum; meanwhile, the ssOTUs showed significant correlations with the driving environmental factors, which suggested that finer-level analysis was needed to more strictly reflect the temporal variation. Moreover, predicted nitrogen and sulfur metabolism were significantly shifted during the temporal variation. Our results clearly showed that seasonally varied environmental factors drive the "heterogeneous selection" process for PCC assembly in seawaters of Bohai Bay during different sampling seasons.
Collapse
|
174
|
Macario-González L, Cohuo S, Hoelzmann P, Pérez L, Elías-Gutiérrez M, Caballero M, Oliva A, Palmieri M, Álvarez MR, Schwalb A. Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics. BIOGEOSCIENCES 2022; 19:5167-5185. [DOI: 10.5194/bg-19-5167-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract. Geodiversity is recognized as one of the most important drivers of ecosystem characteristics and biodiversity globally. However, in the northern Neotropics, the contribution of highly diverse landscapes, environmental conditions, and geological history in structuring large-scale patterns of aquatic environments and aquatic species associations remains poorly understood. We evaluated the relationships among geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. A cluster analysis (CA), based on geological, geochemical, mineralogical, and water-column physical and chemical characteristics of 76 aquatic ecosystems (karst, volcanic, tectonic) revealed two main limnological regions: (1) karst plateaus of the Yucatán Peninsula and northern Guatemala, and (2) volcanic terrains of the Guatemalan highlands, mid-elevation sites in El Salvador and Honduras, and the Nicaraguan lowlands. In addition, seven subregions were recognized, demonstrating a high heterogeneity of aquatic environments. Principal component analysis (PCA) identified water chemistry (ionic composition) and mineralogy as most influential for aquatic ecosystem classification. Multi-parametric analyses, based on biological data, revealed that ostracode species associations represent disjunct faunas. Five species associations, distributed according to limnological regions, were recognized. Structural equation modeling (SEM) revealed that geodiversity explains limnological patterns of the study area. Limnology further explained species composition, but not species richness. The influence of conductivity and elevation were individually evaluated in SEM and were statistically significant for ostracode species composition, though not for species richness. We conclude that geodiversity has a central influence on the limnological conditions of aquatic systems, which in turn influence ostracode species composition in lakes of the northern Neotropical region.
Collapse
|
175
|
Li W, Wang Z, He S. Effects of species richness and nutrient availability on the invasibility of experimental microalgal microcosms. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
176
|
Gao D, Bai E, Wang S, Zong S, Liu Z, Fan X, Zhao C, Hagedorn F. Three-dimensional mapping of carbon, nitrogen, and phosphorus in soil microbial biomass and their stoichiometry at the global scale. GLOBAL CHANGE BIOLOGY 2022; 28:6728-6740. [PMID: 35989426 DOI: 10.1111/gcb.16374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Soil microbial biomass and microbial stoichiometric ratios are important for understanding carbon and nutrient cycling in terrestrial ecosystems. Here, we compiled data from 12245 observations of soil microbial biomass from 1626 published studies to map global patterns of microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP), and their stoichiometry using a random forest model. Concentrations of MBC, MBN, and MBP were most closely linked to soil organic carbon, while climatic factors were most important for stoichiometry in microbial biomass ratios. Modeled seasonal MBC concentrations peaked in summer in tundra and in boreal forests, but in autumn in subtropical and in tropical biomes. The global mean MBC/MBN, MBC/MBP, and MBN/MBP ratios were estimated to be 10, 48, and 6.7, respectively, at 0-30 cm soil depth. The highest concentrations, stocks, and microbial C/N/P ratios were found at high latitudes in tundra and boreal forests, probably due to the higher soil organic matter content, greater fungal abundance, and lower nutrient availability in colder than in warmer biomes. At 30-100 cm soil depth, concentrations of MBC, MBN, and MBP were highest in temperate forests. The MBC/MBP ratio showed greater flexibility at the global scale than did the MBC/MBN ratio, possibly reflecting physiological adaptations and microbial community shifts with latitude. The results of this study are important for understanding C, N, and P cycling at the global scale, as well as for developing soil C-cycling models including soil microbial C, N, and P as important parameters.
Collapse
Affiliation(s)
- Decai Gao
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - Siyu Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, China
| | - Shengwei Zong
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, China
| | - Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, China
| | - Xianlei Fan
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, China
| | - Chunhong Zhao
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, China
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
177
|
Qi R, Xue N, Wang S, Zhou X, Zhao L, Song W, Yang Y. Heavy metal(loid)s shape the soil bacterial community and functional genes of desert grassland in a gold mining area in the semi-arid region. ENVIRONMENTAL RESEARCH 2022; 214:113749. [PMID: 35760114 DOI: 10.1016/j.envres.2022.113749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/17/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Gold mining can create serious environmental problems, such as soil pollution by heavy metal (loid)s. In this study, we assessed the ecological risk of Hatu gold mining activities and synchronously investigated the bacterial community structure, distribution of soil nutrient-element cycling genes (CNPS) and heavy metal resistance genes (MRG) in adjacent desert grassland soil. The study area was above the moderate risk level, with the ecological risk index (RI) of each sampling site greater than 150. Arsenic, mercury and copper were the main pollutants. Proteobacteria, Actinobacteria and Firmicutes dominated the phyla of the bacterial communities. Species turnover rather than nestedness accounted for the significant differences in community structure among various regions in the mining area. In addition, the bioavailable heavy metal (loid)s (AHM) content had a strong correlation with beta diversity and species turnover of the bacterial community (p < 0.05). No clear difference was found in the total abundance of CNPS genes among various functional regions, but eight specific functional genes were identified from downwind grasslands with lower pollution levels. Among the MRGs, Hg MRG had the highest average total relative abundance, followed by Cu, Co/Zn/Cd and As. The mercury resistance gene subtype hgcAB was positively related to the diversity of the bacterial community, and the bacterial community of grassland soil showed congruency with the MRGs in the Hatu mining area. Total Hg (THg) showed the highest influence affecting the bacterial community, while NH4+-N had the greatest effect on CNPS genes and MRGs. These results highlighted the role of heavy metal (loid)s in shaping the bacterial community and functional genes in arid and semiarid desert grassland soil in gold mining regions.
Collapse
Affiliation(s)
- Ran Qi
- Institute of Geological Survey, China University of Geosciences, Wuhan, 430074, China; Command Center of Integrated Survey of Natural Resources, China Geological Survey, Beijing, 100055, China
| | - Nana Xue
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Shuzhi Wang
- Xinjiang Laboratory of Environmental Pollution and Ecological Remediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xiaobing Zhou
- Xinjiang Laboratory of Environmental Pollution and Ecological Remediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Li Zhao
- Xinjiang Laboratory of Environmental Pollution and Ecological Remediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Wenjuan Song
- Xinjiang Laboratory of Environmental Pollution and Ecological Remediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China.
| | - Yuyi Yang
- University of Chinese Academy of Science, Beijing, 100049, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
178
|
Malard LA, Avila-Jimenez ML, Schmale J, Cuthbertson L, Cockerton L, Pearce DA. Aerobiology over the Southern Ocean - Implications for bacterial colonization of Antarctica. ENVIRONMENT INTERNATIONAL 2022; 169:107492. [PMID: 36174481 DOI: 10.1016/j.envint.2022.107492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Parts of the Antarctic are experiencing dramatic ecosystem change due to rapid and record warming, which may weaken biogeographic boundaries and modify dispersal barriers, increasing the risk of biological invasions. In this study, we collected air samples from 100 locations around the Southern Ocean to analyze bacterial biodiversity in the circumpolar air around the Antarctic continent, as understanding dispersal processes is paramount to assessing the risks of microbiological invasions. We also compared the Southern Ocean air bacterial biodiversity to non-polar ecosystems to identify the potential origin of these Southern Ocean air microorganisms. The bacterial diversity in the air had both local and global origins and presented low richness overall but high heterogeneity, compatible with a scenario whereby samples are composed of a suite of different species in very low relative abundances. Only 4% of Amplicon Sequence Variants (ASVs) were identified in both polar and non-polar air masses, suggesting that the polar air mass over the Southern Ocean can act as a selective dispersal filter. Furthermore, both microbial diversity and community structure both varied significantly with meteorological data, suggesting that regional bacterial biodiversity could be sensitive to changes in weather conditions, potentially altering the existing pattern of microbial deposition in the Antarctic.
Collapse
Affiliation(s)
- Lucie A Malard
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | - Julia Schmale
- Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Lewis Cuthbertson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NEwcastle-upon-Tyne NE1 8ST, United Kingdom
| | - Luke Cockerton
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NEwcastle-upon-Tyne NE1 8ST, United Kingdom
| | - David A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NEwcastle-upon-Tyne NE1 8ST, United Kingdom; British Antarctic Survey, Natural Environemnt Research Council, High Cross, Madingley Road, Cambridge BCB3 0ET, United Kingdom.
| |
Collapse
|
179
|
Zhao B, Jiao C, Wang S, Zhao D, Jiang C, Zeng J, Wu QL. Contrasting assembly mechanisms explain the biogeographic patterns of benthic bacterial and fungal communities on the Tibetan Plateau. ENVIRONMENTAL RESEARCH 2022; 214:113836. [PMID: 35810809 DOI: 10.1016/j.envres.2022.113836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The Tibetan Plateau characterized by high altitude and low temperature, where a great number of lakes are located, is a hotspot of global biodiversity research. Both bacterial and fungal communities are vital participants of biogeochemical cycling in lake ecosystems. However, we know very little about the large-scale biogeographic patterns and the underlying assembly mechanisms of lake benthic microbial communities on the Tibetan Plateau. To investigate the biogeographic patterns and their underlying assembly mechanisms of benthic bacterial and fungal communities, we collected sediment samples from 11 lakes on the Tibetan Plateau (maximum geographic distance between lakes over 1100 km). Benthic community diversity and composition were determined using the high-throughput sequencing technique. Our results indicated that there were contrasting distance-decay relationships between benthic bacterial and fungal communities on a regional scale. Benthic bacterial communities showed a significant distance-decay relationship, whereas no significant relationship was observed for benthic fungal communities. Deterministic processes dominated the bacterial community assembly, whereas fungal community assembly was more stochastic. pH was a dominant factor in influencing the geographic distribution of benthic microbial communities. Co-occurrence network analysis revealed that bacterial communities showed higher complexity and greater stability than those of the fungal communities. Taken together, this study contributes to a novel understanding of the assembly mechanisms underlying the biogeographic distribution of plateau benthic bacterial and fungal communities at a large scale.
Collapse
Affiliation(s)
- Baohui Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Congcong Jiao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shuren Wang
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Cuiling Jiang
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
180
|
Zhang X, Wu K, Han Z, Chen Z, Liu Z, Sun Z, Shao L, Zhao Z, Zhou L. Microbial diversity and biogeochemical cycling potential in deep-sea sediments associated with seamount, trench, and cold seep ecosystems. Front Microbiol 2022; 13:1029564. [PMID: 36386615 PMCID: PMC9650238 DOI: 10.3389/fmicb.2022.1029564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2023] Open
Abstract
Due to their extreme water depths and unique physicochemical conditions, deep-sea ecosystems develop uncommon microbial communities, which play a vital role in biogeochemical cycling. However, the differences in the compositions and functions of the microbial communities among these different geographic structures, such as seamounts (SM), marine trenches (MT), and cold seeps (CS), are still not fully understood. In the present study, sediments were collected from SM, MT, and CS in the Southwest Pacific Ocean, and the compositions and functions of the microbial communities were investigated by using amplicon sequencing combined with in-depth metagenomics. The results revealed that significantly higher richness levels and diversities of the microbial communities were found in SM sediments, followed by CS, and the lowest richness levels and diversities were found in MT sediments. Acinetobacter was dominant in the CS sediments and was replaced by Halomonas and Pseudomonas in the SM and MT sediments. We demonstrated that the microbes in deep-sea sediments were diverse and were functionally different (e.g., carbon, nitrogen, and sulfur cycling) from each other in the seamount, trench, and cold seep ecosystems. These results improved our understanding of the compositions, diversities and functions of microbial communities in the deep-sea environment.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhuang Han
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhiying Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zuwang Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Liyi Shao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
181
|
Changes of Arbuscular Mycorrhizal Fungal Community and Glomalin in the Rhizosphere along the Distribution Gradient of Zonal Stipa Populations across the Arid and Semiarid Steppe. Microbiol Spectr 2022; 10:e0148922. [PMID: 36214678 PMCID: PMC9602637 DOI: 10.1128/spectrum.01489-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) have been reported to have a wide distribution in terrestrial ecosystems and to play a vital role in ecosystem functioning and symbiosis with Stipa grasses. However, exactly how AMF communities in the rhizosphere change and are distributed along different Stipa population with substituted distribution and their relationships remain unclear. Here, the changes and distribution of the rhizosphere AMF communities and their associations between hosts and the dynamic differences in the glomalin-related soil protein (GRSP) in the rhizosphere soil of seven Stipa species with spatial substitution distribution characteristics in arid and semiarid grasslands were investigated. Along with the substituted distribution of the Stipa populations, the community structures, taxa, species numbers, and alpha diversity index values of AMF in the rhizosphere changed. Some AMF taxa appeared only in certain Stipa species, but there was no obvious AMF taxon turnover. When the Stipa baicalensis population was replaced by the Stipa gobica population, the GRSP tended to decline, whereas the carbon contribution of the GRSP tended to increase. Stipa grandis and Stipa krylovii had a great degree of network modularity of the rhizosphere AMF community and exhibited a simple and unstable network structure, while the networks of Stipa breviflora were complex, compact, and highly stable. Furthermore, with the succession of zonal populations, the plant species, vegetation coverage, and climate gradient facilitated the differentiation of AMF community structures and quantities in the rhizospheres of different Stipa species. These findings present novel insights into ecosystem functioning and dynamics correlated with changing environments. IMPORTANCE This study fills a gap in our understanding of the soil arbuscular mycorrhizal fungal community distribution, community composition changes, and diversity of Stipa species along different Stipa population substitution distributions and of their adaptive relationships; furthermore, the differences in the glomalin-related soil protein (GRSP) contents in the rhizospheres of different Stipa species and GRSP's contribution to the grassland organic carbon pool were investigated. These findings provide a theoretical basis for the protection and utilization of regional biodiversity resources and sustainable ecosystem development.
Collapse
|
182
|
France MT, Brown SE, Rompalo AM, Brotman RM, Ravel J. Identification of shared bacterial strains in the vaginal microbiota of related and unrelated reproductive-age mothers and daughters using genome-resolved metagenomics. PLoS One 2022; 17:e0275908. [PMID: 36288274 PMCID: PMC9604009 DOI: 10.1371/journal.pone.0275908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
It has been suggested that the human microbiome might be vertically transmitted from mother to offspring and that early colonizers may play a critical role in development of the immune system. Studies have shown limited support for the vertical transmission of the intestinal microbiota but the derivation of the vaginal microbiota remains largely unknown. Although the vaginal microbiota of children and reproductive age women differ in composition, the vaginal microbiota could be vertically transmitted. To determine whether there was any support for this hypothesis, we examined the vaginal microbiota of daughter-mother pairs from the Baltimore metropolitan area (ages 14-27, 32-51; n = 39). We assessed whether the daughter's microbiota was similar in composition to their mother's using metataxonomics. Permutation tests revealed that while some pairs did have similar vaginal microbiota, the degree of similarity did not exceed that expected by chance. Genome-resolved metagenomics was used to identify shared bacterial strains in a subset of the families (n = 22). We found a small number of bacterial strains that were shared between mother-daughter pairs but identified more shared strains between individuals from different families, indicating that vaginal bacteria may display biogeographic patterns. Earlier-in-life studies are needed to demonstrate vertical transmission of the vaginal microbiota.
Collapse
Affiliation(s)
- Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah E. Brown
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anne M. Rompalo
- Division of Infectious Diseases, John Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
183
|
Ma K, Tu Q. Random sampling associated with microbial profiling leads to overestimated stochasticity inference in community assembly. Front Microbiol 2022; 13:1011269. [PMID: 36312987 PMCID: PMC9598869 DOI: 10.3389/fmicb.2022.1011269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Revealing the mechanisms governing the complex community assembly over space and time is a central issue in ecology. Null models have been developed to quantitatively disentangle the relative importance of deterministic vs. stochastic processes in structuring the compositional variations of biological communities. Similar approaches have been recently extended to the field of microbial ecology. However, the profiling of highly diverse biological communities (e.g., microbial communities) is severely influenced by random sampling issues, leading to undersampled community profiles and overestimated β-diversity, which may further affect stochasticity inference in community assembly. By implementing simulated datasets, this study demonstrate that microbial stochasticity inference is also affected due to random sampling issues associated with microbial profiling. The effects on microbial stochasticity inference for the whole community and the abundant subcommunities were different using different randomization methods in generating null communities. The stochasticity of rare subcommunities, however, was persistently overestimated irrespective of which randomization method was used. Comparatively, the stochastic ratio approach was more sensitive to random sampling issues, whereas the Raup–Crick metric was more affected by randomization methods. As more studies begin to focus on the mechanisms governing abundant and rare subcommunities, we urge cautions be taken for microbial stochasticity inference based on β-diversity, especially for rare subcommunities. Randomization methods to generate null communities shall also be carefully selected. When necessary, the cutoff used for judging the relative importance of deterministic vs. stochastic processes shall be redefined.
Collapse
Affiliation(s)
- Kai Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- *Correspondence: Qichao Tu,
| |
Collapse
|
184
|
Scicchitano D, Lo Martire M, Palladino G, Nanetti E, Fabbrini M, Dell’Anno A, Rampelli S, Corinaldesi C, Candela M. Microbiome network in the pelagic and benthic offshore systems of the northern Adriatic Sea (Mediterranean Sea). Sci Rep 2022; 12:16670. [PMID: 36198901 PMCID: PMC9535000 DOI: 10.1038/s41598-022-21182-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractBecause of their recognized global importance, there is now the urgent need to map diversity and distribution patterns of marine microbial communities. Even if available studies provided some advances in the understanding the biogeographical patterns of marine microbiomes at the global scale, their degree of plasticity at the local scale it is still underexplored, and functional implications still need to be dissected. In this scenario here we provide a synoptical study on the microbiomes of the water column and surface sediments from 19 sites in a 130 km2 area located 13.5 km afar from the coast in the North-Western Adriatic Sea (Italy), providing the finest-scale mapping of marine microbiomes in the Mediterranean Sea. Pelagic and benthic microbiomes in the study area showed sector specific-patterns and distinct assemblage structures, corresponding to specific variations in the microbiome network structure. While maintaining a balanced structure in terms of potential ecosystem services (e.g., hydrocarbon degradation and nutrient cycling), sector-specific patterns of over-abundant modules—and taxa—were defined, with the South sector (the closest to the coast) characterized by microbial groups of terrestrial origins, both in the pelagic and the benthic realms. By the granular assessment of the marine microbiome changes at the local scale, we have been able to describe, to our knowledge at the first time, the integration of terrestrial microorganisms in the marine microbiome networks, as a possible natural process characterizing eutrophic coastal area. This raises the question about the biological threshold for terrestrial microorganisms to be admitted in the marine microbiome networks, without altering the ecological balance.
Collapse
|
185
|
Walters KE, Capocchi JK, Albright MBN, Hao Z, Brodie EL, Martiny JBH. Routes and rates of bacterial dispersal impact surface soil microbiome composition and functioning. THE ISME JOURNAL 2022; 16:2295-2304. [PMID: 35778440 PMCID: PMC9477824 DOI: 10.1038/s41396-022-01269-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022]
Abstract
Recent evidence suggests that, similar to larger organisms, dispersal is a key driver of microbiome assembly; however, our understanding of the rates and taxonomic composition of microbial dispersal in natural environments is limited. Here, we characterized the rate and composition of bacteria dispersing into surface soil via three dispersal routes (from the air above the vegetation, from nearby vegetation and leaf litter near the soil surface, and from the bulk soil and litter below the top layer). We then quantified the impact of those routes on microbial community composition and functioning in the topmost litter layer. The bacterial dispersal rate onto the surface layer was low (7900 cells/cm2/day) relative to the abundance of the resident community. While bacteria dispersed through all three routes at the same rate, only dispersal from above and near the soil surface impacted microbiome composition, suggesting that the composition, not rate, of dispersal influenced community assembly. Dispersal also impacted microbiome functioning. When exposed to dispersal, leaf litter decomposed faster than when dispersal was excluded, although neither decomposition rate nor litter chemistry differed by route. Overall, we conclude that the dispersal routes transport distinct bacterial communities that differentially influence the composition of the surface soil microbiome.
Collapse
Affiliation(s)
- Kendra E Walters
- Department of Ecology and Evolutionary Biology, University of California - Irvine, Irvine, CA, USA.
| | - Joia K Capocchi
- Department of Ecology and Evolutionary Biology, University of California - Irvine, Irvine, CA, USA
| | | | - Zhao Hao
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California - Irvine, Irvine, CA, USA
| |
Collapse
|
186
|
Cleary DFR, Polónia ARM, Swierts T, Coelho FJRC, de Voogd NJ, Gomes NCM. Spatial and environmental variables structure sponge symbiont communities. Mol Ecol 2022; 31:4932-4948. [PMID: 35881675 PMCID: PMC9804187 DOI: 10.1111/mec.16631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 05/13/2022] [Accepted: 07/08/2022] [Indexed: 01/05/2023]
Abstract
Understanding the maintenance and origin of beta diversity is a central topic in ecology. However, the factors that drive diversity patterns and underlying processes remain unclear, particularly for host-prokaryotic associations. Here, beta diversity patterns were studied in five prokaryotic biotopes, namely, two high microbial abundance (HMA) sponge taxa (Xestospongia spp. and Hyrtios erectus), one low microbial abundance (LMA) sponge taxon (Stylissa carteri), sediment and seawater sampled across thousands of kilometres. Using multiple regression on distance matrices (MRM), spatial (geographic distance) and environmental (sea surface temperature and chlorophyll α concentrations) variables proved significant predictors of beta diversity in all five biotopes and together explained from 54% to 82% of variation in dissimilarity of both HMA species, 27% to 43% of variation in sediment and seawater, but only 20% of variation of the LMA S. carteri. Variance partitioning was subsequently used to partition the variation into purely spatial, purely environmental and spatially-structured environmental components. The amount of variation in dissimilarity explained by the purely spatial component was lowest for S. carteri at 11% and highest for H. erectus at 55%. The purely environmental component, in turn, only explained from 0.15% to 2.83% of variation in all biotopes. In addition to spatial and environmental variables, a matrix of genetic differences between pairs of sponge individuals also proved a significant predictor of variation in prokaryotic dissimilarity of the Xestospongia species complex. We discuss the implications of these results for the HMA-LMA dichotomy and compare the MRM results with results obtained using constrained ordination and zeta diversity.
Collapse
Affiliation(s)
- Daniel F. R. Cleary
- CESAM ‐ Centre for Environmental and Marine Studies, Department of BiologyUniversity of AveiroAveiroPortugal
| | - Ana R. M. Polónia
- CESAM ‐ Centre for Environmental and Marine Studies, Department of BiologyUniversity of AveiroAveiroPortugal
| | - Thomas Swierts
- Marine Biodiversity, Naturalis Biodiversity CenterLeidenThe Netherlands,Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | - Francisco J. R. C. Coelho
- CESAM ‐ Centre for Environmental and Marine Studies, Department of BiologyUniversity of AveiroAveiroPortugal
| | - Nicole J. de Voogd
- Marine Biodiversity, Naturalis Biodiversity CenterLeidenThe Netherlands,Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | - Newton C. M. Gomes
- CESAM ‐ Centre for Environmental and Marine Studies, Department of BiologyUniversity of AveiroAveiroPortugal
| |
Collapse
|
187
|
Liu J, Wang X, Liu J, Liu X, Zhang XH, Liu J. Comparison of assembly process and co-occurrence pattern between planktonic and benthic microbial communities in the Bohai Sea. Front Microbiol 2022; 13:1003623. [PMID: 36386657 PMCID: PMC9641972 DOI: 10.3389/fmicb.2022.1003623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/05/2022] [Indexed: 10/10/2023] Open
Abstract
Unraveling the mechanisms structuring microbial community is a central goal in microbial ecology, but a detailed understanding of how community assembly processes relate to living habitats is still lacking. Here, via 16S rRNA gene amplicon sequencing, we investigated the assembly process of microbial communities in different habitats [water verse sediment, free-living (FL) verse particle-associated (PA)] and their impacts on the inter-taxa association patterns in the coastal Bohai Sea, China. The results showed clear differences in the composition and diversity of microbial communities among habitats, with greater dissimilarities between water column and sediment than between FL and PA communities. The microbial community assembly was dominated by dispersal limitation, ecological drift, and homogeneous selection, but their relative importance varied in different habitats. The planktonic communities were mainly shaped by dispersal limitation and ecological drift, whereas homogeneous selection played a more important role in structuring the benthic communities. Furthermore, the assembly mechanisms differed between FL and PA communities, especially in the bottom water with a greater effect of ecological drift and dispersal limitation on the FL and PA fractions, respectively. Linking assembly process to co-occurrence pattern showed that the relative contribution of deterministic processes (mainly homogeneous selection) increased under closer co-occurrence relationships. By contrast, stochastic processes exerted a higher effect when there were less inter-taxa connections. Overall, our findings demonstrate contrasting ecological processes underpinning microbial community distribution in different habitats including different lifestyles, which indicate complex microbial dynamic patterns in coastal systems with high anthropogenic perturbations.
Collapse
Affiliation(s)
- Jinmei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jiao Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoyue Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
188
|
Martins WMBS, Cino J, Lenzi MH, Sands K, Portal E, Hassan B, Dantas PP, Migliavacca R, Medeiros EA, Gales AC, Toleman MA. Diversity of lytic bacteriophages against XDR Klebsiella pneumoniae sequence type 16 recovered from sewage samples in different parts of the world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156074. [PMID: 35623509 DOI: 10.1016/j.scitotenv.2022.156074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Bacteriophages (phages) are viruses considered to be natural bacterial predators and widely detected in aquatic environments. Sewage samples are an important source of phage isolation since high density and diversity of bacterial cells are present, due to human, animal and household fluids. This study aims to investigate and characterise phages against an extremely drug-resistant (XDR) lineage, Klebsiella pneumoniae ST16, using sewage samples from different parts of the World. Sewage samples from Brazil, Bangladesh, Saudi Arabia, Thailand and the United Kingdom were collected and used to investigate phages against ten K. pneumoniae ST16 (hosts) recovered from infection sites. The phages were microbiological and genetically characterised by double-agar overlay (DLA), transmission electron microscopy and Illumina WGS. The host range against K. pneumoniae belonging to different sequence types was evaluated at different temperatures by spot test. Further phage characterisation, such as efficiency of plating, optimal phage temperature, and pH/temperature susceptibility, were conducted. Fourteen lytic phages were isolated, belonging to Autographiviridae, Ackermannviridae, Demerecviridae, Drexlerviridae, and Myoviridae families, from Brazil, Bangladesh, Saudi Arabia and Thailand and demonstrated a great genetic diversity. The viruses had good activity against our collection of clinical K. pneumoniae ST16 at room temperature and 37 °C, but also against other important Klebsiella clones such as ST11, ST15, and ST258. Temperature assays showed lytic activity in different temperatures, except for PWKp18 which only had activity at room temperature. Phages were stable between pH 5 and 10 with minor changes in phage activity, and 70 °C was the temperature able to kill all phages in this study. Using sewage from different parts of the World allowed us to have a set of highly efficient phages against an K. pneumoniae ST16 that can be used in the future to develop new tools to combat infections in humans or animals caused by this pathogen.
Collapse
Affiliation(s)
- Willames M B S Martins
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil.
| | - Juliana Cino
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Michael H Lenzi
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Kirsty Sands
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Department of Zoology, University of Oxford, United Kingdom
| | - Edward Portal
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Brekhna Hassan
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Priscila P Dantas
- Universidade Federal de São Paulo, Hospital Epidemiology Committee, Hospital São Paulo, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, 27100 Pavia, Italy
| | - Eduardo A Medeiros
- Universidade Federal de São Paulo, Hospital Epidemiology Committee, Hospital São Paulo, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Mark A Toleman
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
189
|
Wang X, Ren Y, Yu Z, Shen G, Cheng H, Tao S. Effects of environmental factors on the distribution of microbial communities across soils and lake sediments in the Hoh Xil Nature Reserve of the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156148. [PMID: 35609688 DOI: 10.1016/j.scitotenv.2022.156148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Comparison of microbial community diversity and composition of terrestrial and aquatic ecosystems in undisturbed regions could expand our understanding on the mechanisms of microbial community assembly and ecosystem responses to environmental change. This study investigated the spatial distribution of bacterial community diversity and composition in the lakeshore soils and lake sediments from one of the best preserved nature reserves, Hoh Xil on the Qinghai-Tibetan Plateau, and explored the corresponding environmental drivers. A total of 36 sediment and soil samples were collected from six alpine lakes and the corresponding shore zones, and their bacterial community structure was identified by high-throughput 16S rRNA gene sequencing. Significant difference (p < 0.05) in diversity and composition of bacterial communities between the soils and sediments was observed. Heterogeneous selection played a dominant role in shaping the spatial variations of bacterial communities between the soils and sediments. Results of canonical correspondence analysis showed that the difference in composition of bacterial communities at OTU level between the soils and sediments was mainly determined by the mean annual temperature, salinity, and contents of total organic carbon and total nitrogen. Structural equation modeling revealed that salinity played a significantly direct role in soil bacterial composition, while mean annual temperature indirectly affected the bacterial composition mainly through changing soil salinity. In contrast, the sediment bacterial composition was directly influenced primarily by the contents of total organic carbon and total nitrogen, while pH also had an important indirect effect on sediment bacterial composition. These results shed light on the distribution patterns of bacterial communities between lakeshore soils and lake sediments in high-altitude permafrost regions, and the major ecological processes and environmental drivers that shaped their bacterial communities, and provide insight into the mechanisms underlying microbial community assembly in such regions.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuxuan Ren
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
190
|
Wan X, Li J, Wang S, Fan F, McLaughlin RW, Wang K, Wang D, Zheng J. Biogeographic patterns of potential pathogenic bacteria in the middle and lower reaches of the Yangtze River as well as its two adjoining lakes, China. Front Microbiol 2022; 13:972243. [PMID: 36118197 PMCID: PMC9479215 DOI: 10.3389/fmicb.2022.972243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding the distribution patterns and shaping factors of bacterial pathogens in aquatic ecosystems, especially in natural waters, are critical to the control of pathogen transmission. In this study, using 16S rRNA gene amplicon sequencing, we explored the composition and biogeographic dynamics of potential bacterial pathogens in the middle and lower reaches of the Yangtze River, as well as its two vast adjoining lakes (Dongting Lake and Poyang Lake). The pathogen community belonged to 12 potential pathogenic groups, with “intracellular parasites,” “animal parasites or symbionts” and “human pathogens all” occupying 97.5% in total. The potential pathogen community covered seven phyla with Proteobacteria (69.8%) and Bacteroidetes (13.5%) the most predominant. In addition, 53 genera were identified with Legionella (15.2%) and Roseomonas (14.2%) the most dominant. The average relative abundance, alpha diversity and microbial composition of the potential bacterial pathogens exhibited significant biogeographical variations among the different sections. An in-depth analysis reflected that environmental variables significantly structured the potential bacterial pathogens, including water physiochemical properties (i.e., chlorophyll-a, total nitrogen and transparency), heavy metals (i.e., As and Ni), climate (i.e., air temperature) and land use type (i.e., waters). Compared to the overall bacterial community which was composed of both pathogenic and non-pathogenic bacteria, the pathogen community exhibited distinct microbial diversity patterns and shaping factors. This signifies the importance of different variables for shaping the pathogen community. This study represents one attempt to explore pathogen diversity patterns and their underlying drivers in the Yangtze River, which provides a foundation for the management of pathogenic bacteria.
Collapse
Affiliation(s)
- Xiaoling Wan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyong Wang
- Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan, China
- Key Laboratory of Changjiang Regulation and Protection of Ministry of Water Resources, Wuhan, China
- *Correspondence: Shiyong Wang
| | - Fei Fan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Kexiong Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jinsong Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Jinsong Zheng
| |
Collapse
|
191
|
Da Silva RRP, White CA, Bowman JP, Ross DJ. Composition and functionality of bacterioplankton communities in marine coastal zones adjacent to finfish aquaculture. MARINE POLLUTION BULLETIN 2022; 182:113957. [PMID: 35872476 DOI: 10.1016/j.marpolbul.2022.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Finfish aquaculture is a fast-growing primary industry and is increasingly common in coastal ecosystems. Bacterioplankton is ubiquitous in marine environment and respond rapidly to environmental changes. Changes in bacterioplankton community are not well understood in semi-enclosed stratified embayments. This study aims to examine aquaculture effects in the composition and functional profiles of the bacterioplankton community using amplicon sequencing along a distance gradient from two finfish leases in a marine embayment. Results revealed natural stratification in bacterioplankton associated to NOx, conductivity, salinity, temperature and PO4. Among the differentially abundant bacteria in leases, we found members associated with nutrient enrichment and aquaculture activities. Abundant predicted functions near leases were assigned to organic matter degradation, fermentation, and antibiotic resistance. This study provides a first effort to describe changes in the bacterioplankton community composition and function due to finfish aquaculture in a semi-enclosed and highly stratified embayment with a significant freshwater input.
Collapse
Affiliation(s)
- R R P Da Silva
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia.
| | - C A White
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia
| | - J P Bowman
- Tasmanian Institute of Agriculture (TIA), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - D J Ross
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia
| |
Collapse
|
192
|
Ernakovich JG, Barbato RA, Rich VI, Schädel C, Hewitt RE, Doherty SJ, Whalen E, Abbott BW, Barta J, Biasi C, Chabot CL, Hultman J, Knoblauch C, Vetter M, Leewis M, Liebner S, Mackelprang R, Onstott TC, Richter A, Schütte U, Siljanen HMP, Taş N, Timling I, Vishnivetskaya TA, Waldrop MP, Winkel M. Microbiome assembly in thawing permafrost and its feedbacks to climate. GLOBAL CHANGE BIOLOGY 2022; 28:5007-5026. [PMID: 35722720 PMCID: PMC9541943 DOI: 10.1111/gcb.16231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/24/2022] [Indexed: 05/15/2023]
Abstract
The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.
Collapse
Affiliation(s)
- Jessica G. Ernakovich
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
| | - Robyn A. Barbato
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Virginia I. Rich
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
- Microbiology DepartmentOhio State UniversityColumbusOhioUSA
- Byrd Polar and Climate Research CenterOhio State UniversityColombusOhioUSA
- Center of Microbiome ScienceOhio State UniversityColombusOhioUSA
| | - Christina Schädel
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca E. Hewitt
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Environmental StudiesAmherst CollegeAmherstMassachusettsUSA
| | - Stacey J. Doherty
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Emily D. Whalen
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| | - Benjamin W. Abbott
- Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUtahUSA
| | - Jiri Barta
- Centre for Polar EcologyUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Christina Biasi
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Chris L. Chabot
- California State University NorthridgeNorthridgeCaliforniaUSA
| | | | - Christian Knoblauch
- Institute of Soil ScienceUniversität HamburgHamburgGermany
- Center for Earth System Research and SustainabilityUniversität HamburgHamburgGermany
| | - Maggie C. Y. Lau Vetter
- Department of GeosciencesPrinceton UniversityPrincetonNew JerseyUSA
- Laboratory of Extraterrestrial Ocean Systems (LEOS)Institute of Deep‐sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Mary‐Cathrine Leewis
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
- Agriculture and Agri‐Food CanadaQuebec Research and Development CentreQuebecQuebecCanada
| | - Susanne Liebner
- GFZ German Research Centre for GeosciencesSection GeomicrobiologyPotsdamGermany
| | | | | | - Andreas Richter
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Austrian Polar Research InstituteViennaAustria
| | | | - Henri M. P. Siljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Neslihan Taş
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Tatiana A. Vishnivetskaya
- University of TennesseeKnoxvilleTennesseeUSA
- Institute of Physicochemical and Biological Problems of Soil SciencePushchinoRussia
| | - Mark P. Waldrop
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
| | - Matthias Winkel
- GFZ German Research Centre for GeosciencesInterface GeochemistryPotsdamGermany
- BfR Federal Institute for Risk AssessmentBerlinGermany
| |
Collapse
|
193
|
Lu M, Wang X, Li H, Jiao JJ, Luo X, Luo M, Yu S, Xiao K, Li X, Qiu W, Zheng C. Microbial community assembly and co-occurrence relationship in sediments of the river-dominated estuary and the adjacent shelf in the wet season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119572. [PMID: 35661808 DOI: 10.1016/j.envpol.2022.119572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In the estuarine ecosystem, microbial community plays a vital role in controlling biogeochemical processes. However, there is currently limited comprehensive study on the deterministic and stochastic processes that drive the microbial community assembly in the estuaries and adjacent shelves. In this study, we systematically investigated the co-occurrence relationship and microbial community assembly in the sediments along a large river-dominated estuary to shelf in the northern South China Sea during the wet season. The sampling sites were divided into estuary, transection, and shelf sections based on their salinity values. The microbial co-occurrence networks, hierarchical partitioning-based canonical analysis, null model, neutral community model, and the Mantel test were used to investigate the community assembly. Results suggested that microbial community in the estuary section exhibited more interactions and a higher positive interaction ratio than those in the transition and shelf sections. Stochastic processes dominated community assembly in the study, with homogenizing dispersal contributing the most. The estuary exhibited a higher degree of heterogeneous selection than the transition and shelf sections, whereas homogeneous selection showed an opposite trend. Only the estuary section showed dispersal limitation and undominated processes. The river inflow and the resulting environmental heterogeneity were believed to be the key regulators of the community assembly in the studied area. Our study improved the understanding of how microbial community assembly in estuaries and adjacent shelves.
Collapse
Affiliation(s)
- Meiqing Lu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Xuejing Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hailong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Manhua Luo
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shengchao Yu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Kai Xiao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiang Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
194
|
Zhang J, Liu W, Simayijiang H, Hu P, Yan J. Application of Microbiome in Forensics. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00096-1. [PMID: 36031058 PMCID: PMC10372919 DOI: 10.1016/j.gpb.2022.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 06/04/2023]
Abstract
Recent advances in next-generation sequencing technology and improvements in bioinformatics have expanded the scope of microbiome analysis as a forensic tool. Microbiome research is concerned with the study of the compositional profile and diversity of microbial flora as well as the interactions between microbes, hosts, and the environment. It has opened up many new possibilities for forensic analysis. In this review, we discuss various applications of microbiomes in forensics, including identification of individuals, geolocation inference, post-mortem interval (PMI) estimation, and others.
Collapse
Affiliation(s)
- Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Wenli Liu
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China
| | | | - Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
195
|
Urvoy M, Gourmelon M, Serghine J, Rabiller E, L'Helguen S, Labry C. Free-living and particle-attached bacterial community composition, assembly processes and determinants across spatiotemporal scales in a macrotidal temperate estuary. Sci Rep 2022; 12:13897. [PMID: 35974094 PMCID: PMC9381549 DOI: 10.1038/s41598-022-18274-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
Bacteria play an important role in biogeochemical cycles as they transform and remineralize organic matter. Particles are notable hotspots of activity, hosting particle-attached (PA) communities that can differ largely from their free-living (FL) counterparts. However, long-standing questions remain concerning bacterial community assembly processes and driving factors. This study investigated the FL and PA community compositions and determinants within the Aulne estuary and the Bay of Brest coastal waters (France). Our results revealed that the FL and PA community compositions greatly varied with salinity and season, explaining a larger part of the variance than the sampling fraction. Both the FL and PA communities were driven by deterministic assembly processes and impacted by similar factors. The FL-PA dissimilarity varied across space and time. It decreased in the estuarine stations compared to the freshwater and marine ends, and in summer. Interestingly, a significant proportion of the FL and PA communities' β-diversity and dissimilarity was explained by cohesion, measuring the degree of taxa co-occurrence. This suggested the importance of co-occurrence patterns in shaping the FL and PA community compositions. Our results shed light on the factors influencing estuarine bacterial communities and provide a first step toward understanding their biogeochemical impacts.
Collapse
Affiliation(s)
- Marion Urvoy
- Ifremer, DYNECO, 29280, Plouzané, France. .,CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Université de Bretagne Occidentale, 29280, Plouzané, France.
| | | | | | | | - Stéphane L'Helguen
- CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Université de Bretagne Occidentale, 29280, Plouzané, France
| | | |
Collapse
|
196
|
A ridge-to-reef ecosystem microbial census reveals environmental reservoirs for animal and plant microbiomes. Proc Natl Acad Sci U S A 2022; 119:e2204146119. [PMID: 35960845 PMCID: PMC9388140 DOI: 10.1073/pnas.2204146119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Because microbiome research generally focuses on a single host or habitat, we know comparatively little about the diversity and distribution of microbiomes at a landscape scale. Our study demonstrates that most of the microbial diversity present within a watershed is maintained within environmental substrates like soil or stream water, and microbiomes of organisms are generally subsets of those that are lower on the food chain. This result challenges the notion that sources of microbial inoculum are likeliest derived from close relatives. By identifying sources of shared microbial diversity within the landscape, we can better understand the origins and assembly processes of symbiotic microbes and how this might abet global conservation, restoration, or bio-engineering goals, such as preserving biodiversity and ecosystem services. Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts’ microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.
Collapse
|
197
|
Sbaoui Y, Ezaouine A, Toumi M, Farkas R, Kbaich MA, Habbane M, El Mouttaqui S, Kadiri FZ, El Messal M, Tóth E, Bennis F, Chegdani F. Effect of Climate on Bacterial and Archaeal Diversity of Moroccan Marine Microbiota. Microorganisms 2022; 10:microorganisms10081622. [PMID: 36014042 PMCID: PMC9414901 DOI: 10.3390/microorganisms10081622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
The Moroccan coast is characterized by a diversity of climate, reflecting a great richness and diversity of fauna and flora. By this, marine microbiota plays a fundamental role in many biogeochemical processes, environmental modifications, and responses to temperature changes. To date, no exploration by high-throughput techniques has been carried out on the characterization of the Moroccan marine microbiota. The objective of this work is to study the diversity and metabolic functions of MMM from the Moroccan coast (Atlantic and Mediterranean) according to the water source (WS) and the type of climate (CT) using the approach high-throughput sequencing of the 16SrRNA gene. Four water samples of twelve sampling sites from the four major climates along the Moroccan coastline were collected, and prokaryotic DNA was extracted. V4 region of 16S rRNA gene was amplified, and the product PCR was sequenced by Illumina Miseq. The β-diversity and α-diversity indices were determined to assess the species richness and evenness. The obtained results were analyzed by Mothur and R software. A total of twenty-eight Bacterial phyla and twelve Archaea were identified from the samples. Proteobacteria, Bacteroidetes, and Cyanobacteria are the three key bacterial phyla, and the Archaeal phyla identified are: Euryarchaeota, Nanoarchaeaeota, Crenarchaeota, Hydrothermarchaeota, Asgardaeota, Diapherotrites, and Thaumarchaeota in the Moroccan coastline and the four climates studied. The whole phylum are involved in marine biogeochemical cycles, and through their functions they participate in the homeostasis of the ocean in the presence of pollutants or stressful biotic and abiotic factors. In conclusion, the obtained results reported sufficient deepness of sequencing to cover the majority of Archaeal and Bacterial genera in each site. We noticed a strong difference in microbiota diversity, abundance, and taxonomy inter- and intra-climates and water source without significant differences in function. To better explore this diversity, other omic approaches can be applied such as the metagenomic shotgun, and transcriptomic approaches allowing a better characterization of the Moroccan marine microbiota and to understand the mechanisms of its adaptation and its impacts in/on the ecosystem.
Collapse
Affiliation(s)
- Yousra Sbaoui
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
- Correspondence: ; Tel.: +212-6634-40077
| | - Abdelkarim Ezaouine
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Marwene Toumi
- Department of Microbiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Rózsa Farkas
- Department of Microbiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Mouad Ait Kbaich
- Departement of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mouna Habbane
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain
- Laboratoire Biologie et Santé, Faculté des Sciences Ben M’Sick, Hassan II University of Casablanca, Sidi Othman, Casablanca 20670, Morocco
| | - Sara El Mouttaqui
- Department of Biology, Immunophysiopathology, Biochemistry and Biotechnology Laboratory, Faculty of Science Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Fatem Zahra Kadiri
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Mariame El Messal
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Erika Tóth
- Department of Microbiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Faiza Bennis
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Fatima Chegdani
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| |
Collapse
|
198
|
Speer KA, Teixeira TSM, Brown AM, Perkins SL, Dittmar K, Ingala MR, Wultsch C, Krampis K, Dick CW, Galen SC, Simmons NB, Clare EL. Cascading effects of habitat loss on ectoparasite-associated bacterial microbiomes. ISME COMMUNICATIONS 2022; 2:67. [PMID: 37938296 PMCID: PMC9723575 DOI: 10.1038/s43705-022-00153-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2023]
Abstract
Suitable habitat fragment size, isolation, and distance from a source are important variables influencing community composition of plants and animals, but the role of these environmental factors in determining composition and variation of host-associated microbial communities is poorly known. In parasite-associated microbial communities, it is hypothesized that evolution and ecology of an arthropod parasite will influence its microbiome more than broader environmental factors, but this hypothesis has not been extensively tested. To examine the influence of the broader environment on the parasite microbiome, we applied high-throughput sequencing of the V4 region of 16S rRNA to characterize the microbiome of 222 obligate ectoparasitic bat flies (Streblidae and Nycteribiidae) collected from 155 bats (representing six species) from ten habitat fragments in the Atlantic Forest of Brazil. Parasite species identity is the strongest driver of microbiome composition. To a lesser extent, reduction in habitat fragment area, but not isolation, is associated with an increase in connectance and betweenness centrality of bacterial association networks driven by changes in the diversity of the parasite community. Controlling for the parasite community, bacterial network topology covaries with habitat patch area and exhibits parasite-species specific responses to environmental change. Taken together, habitat loss may have cascading consequences for communities of interacting macro- and microorgansims.
Collapse
Affiliation(s)
- Kelly A Speer
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA.
- Center for Conservation Genomics, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, D.C, USA.
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C, USA.
| | | | - Alexis M Brown
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Susan L Perkins
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Division of Science, City College of New York, New York, NY, USA
| | - Katharina Dittmar
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Melissa R Ingala
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
- Center for Conservation Genomics, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, D.C, USA
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ, USA
| | - Claudia Wultsch
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Bioinformatics and Computational Genomics Laboratory, Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Konstantinos Krampis
- Bioinformatics and Computational Genomics Laboratory, Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Carl W Dick
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
- Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Spencer C Galen
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
- Biology Department, University of Scranton, Scranton, PA, USA
| | - Nancy B Simmons
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, GBR, UK
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
199
|
Zhu W, Zhu M, Liu X, Xia J, Yin H, Li X. Different Responses of Bacteria and Microeukaryote to Assembly Processes and Co-occurrence Pattern in the Coastal Upwelling. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02093-7. [PMID: 35927589 DOI: 10.1007/s00248-022-02093-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Upwelling may generate unique hydrological and environmental heterogeneity, leading to enhanced diffusion to reshape microbial communities. However, it remains largely unknown how different microbial taxa respond to highly complex and dynamic upwelling systems. In the present study, geographic patterns and co-occurrence network of different microbial communities in response to upwelling were examined. Our results showed that coastal upwelling shaped prokaryotic and eukaryotic microbial community and decreased their diversity. In addition, bacteria and microeukaryote had similar biogeographical patterns with distinct assembly mechanisms. The impact of stochastic processes on bacteria was significantly stronger compared with microeukaryote in upwelling. Lower network complexity but more frequent interaction was found in upwelling microbial co-occurrence. However, the upwelling environment increased the robustness and modularity of bacterial network, while eukaryotic network was just the opposite. Co-occurrence networks of bacteria and microeukaryote showed significant distance-decay patterns, while the bacterial network had a stronger spatial variation. Temperature and salinity were the strongest environmental factors affecting microbial coexistence, whereas the topological characteristics of bacterial and eukaryotic networks had different responses to the upwelling environment. These findings expanded our understanding of biogeographic patterns of microbial community and ecological network and the underlying mechanisms of different microbial taxa in upwelling.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Road, Haikou, 570228, Hainan, China
| | - Ming Zhu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Road, Haikou, 570228, Hainan, China
- College of Marine Science, Hainan University, Haikou, China
| | - Xiangbo Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Road, Haikou, 570228, Hainan, China
- College of Marine Science, Hainan University, Haikou, China
| | - Jingquan Xia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Road, Haikou, 570228, Hainan, China
| | - Hongyang Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Road, Haikou, 570228, Hainan, China
- College of Marine Science, Hainan University, Haikou, China
| | - Xiubao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Road, Haikou, 570228, Hainan, China.
- College of Marine Science, Hainan University, Haikou, China.
| |
Collapse
|
200
|
Richter DJ, Watteaux R, Vannier T, Leconte J, Frémont P, Reygondeau G, Maillet N, Henry N, Benoit G, Da Silva O, Delmont TO, Fernàndez-Guerra A, Suweis S, Narci R, Berney C, Eveillard D, Gavory F, Guidi L, Labadie K, Mahieu E, Poulain J, Romac S, Roux S, Dimier C, Kandels S, Picheral M, Searson S, Pesant S, Aury JM, Brum JR, Lemaitre C, Pelletier E, Bork P, Sunagawa S, Lombard F, Karp-Boss L, Bowler C, Sullivan MB, Karsenti E, Mariadassou M, Probert I, Peterlongo P, Wincker P, de Vargas C, Ribera d'Alcalà M, Iudicone D, Jaillon O. Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems. eLife 2022; 11:e78129. [PMID: 35920817 PMCID: PMC9348854 DOI: 10.7554/elife.78129] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Biogeographical studies have traditionally focused on readily visible organisms, but recent technological advances are enabling analyses of the large-scale distribution of microscopic organisms, whose biogeographical patterns have long been debated. Here we assessed the global structure of plankton geography and its relation to the biological, chemical, and physical context of the ocean (the 'seascape') by analyzing metagenomes of plankton communities sampled across oceans during the Tara Oceans expedition, in light of environmental data and ocean current transport. Using a consistent approach across organismal sizes that provides unprecedented resolution to measure changes in genomic composition between communities, we report a pan-ocean, size-dependent plankton biogeography overlying regional heterogeneity. We found robust evidence for a basin-scale impact of transport by ocean currents on plankton biogeography, and on a characteristic timescale of community dynamics going beyond simple seasonality or life history transitions of plankton.
Collapse
Affiliation(s)
- Daniel J Richter
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra), Passeig Marítim de la BarcelonetaBarcelonaSpain
| | - Romain Watteaux
- Stazione Zoologica Anton Dohrn, Villa ComunaleNaplesItaly
- CEA, DAM, DIF, F‐91297Arpajon CedexFrance
| | - Thomas Vannier
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UMMarseilleFrance
| | - Jade Leconte
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Paul Frémont
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Gabriel Reygondeau
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia. Aquatic Ecosystems Research LabVancouverCanada
- Ecology and Evolutionary Biology, Yale UniversityNew Haven, CTUnited States
| | - Nicolas Maillet
- Institut pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
| | - Nicolas Henry
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Gaëtan Benoit
- Univ Rennes, CNRS, Inria, IRISA-UMR 6074RennesFrance
| | - Ophélie Da Silva
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Sorbonne Universités, CNRS, Laboratoire d’Oceanographie de Villefranche, LOVVillefranche‐sur‐MerFrance
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Antonio Fernàndez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of CopenhagenCopenhagenDenmark
- MARUM, Center for Marine Environmental Sciences, University of BremenBremenGermany
- Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Samir Suweis
- Dipartimento di Fisica e Astronomia ‘G. Galilei’ & CNISM, INFN, Università di PadovaPadovaItaly
| | - Romain Narci
- MaIAGE, INRAE, Université Paris‐SaclayJouy‐en‐JosasFrance
| | - Cédric Berney
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Damien Eveillard
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Nantes Université, Ecole Centrale Nantes, CNRS, LS2NNantesFrance
| | - Frederick Gavory
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
| | - Lionel Guidi
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Sorbonne Universités, CNRS, Laboratoire d’Oceanographie de Villefranche, LOVVillefranche‐sur‐MerFrance
| | - Karine Labadie
- Genoscope, Institut de biologie François‐Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris‐SaclayEvryFrance
| | - Eric Mahieu
- Genoscope, Institut de biologie François‐Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris‐SaclayEvryFrance
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Simon Roux
- Department of Microbiology, The Ohio State UniversityColumbusUnited States
| | - Céline Dimier
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Stefanie Kandels
- Structural and Computational Biology, European Molecular Biology LaboratoryHeidelbergGermany
- Directors’ Research European Molecular Biology LaboratoryHeidelbergGermany
| | - Marc Picheral
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Sorbonne Universités, CNRS, Laboratoire d’Oceanographie de Villefranche, LOVVillefranche‐sur‐MerFrance
| | - Sarah Searson
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Sorbonne Universités, CNRS, Laboratoire d’Oceanographie de Villefranche, LOVVillefranche‐sur‐MerFrance
| | - Stéphane Pesant
- MARUM, Center for Marine Environmental Sciences, University of BremenBremenGermany
- PANGAEA, Data Publisher for Earth and Environmental Science, University of BremenBremenGermany
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
| | - Jennifer R Brum
- Department of Microbiology, The Ohio State UniversityColumbusUnited States
- Department of Oceanography and Coastal Sciences, Louisiana State UniversityBaton RougeUnited States
| | | | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology LaboratoryHeidelbergGermany
- Yonsei Frontier Lab, Yonsei UniversitySeoulRepublic of Korea
- Department of Bioinformatics, Biocenter, University of WürzburgWürzburgGermany
| | - Shinichi Sunagawa
- Structural and Computational Biology, European Molecular Biology LaboratoryHeidelbergGermany
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir‐Prelog‐WegZurichSwitzerland
| | - Fabien Lombard
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Sorbonne Universités, CNRS, Laboratoire d’Oceanographie de Villefranche, LOVVillefranche‐sur‐MerFrance
- Institut Universitaire de France (IUF)ParisFrance
| | - Lee Karp-Boss
- School of Marine Sciences, University of MaineOronoUnited States
| | - Chris Bowler
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State UniversityColumbusUnited States
- EMERGE Biology Integration Institute, The Ohio State UniversityColumbusUnited States
- Center of Microbiome Science, The Ohio State UniversityColumbusUnited States
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State UniversityColumbusUnited States
| | - Eric Karsenti
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Directors’ Research European Molecular Biology LaboratoryHeidelbergGermany
| | | | - Ian Probert
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | | | | | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| |
Collapse
|