151
|
Jamshidi RJ, Sullivan LC, Jacobs BA, Chavera TA, Berg KA, Clarke WP. Long-Term Reduction of Kappa Opioid Receptor Function by the Biased Ligand, Norbinaltorphimine, Requires c-Jun N-Terminal Kinase Activity and New Protein Synthesis in Peripheral Sensory Neurons. J Pharmacol Exp Ther 2016; 359:319-328. [PMID: 27605628 DOI: 10.1124/jpet.116.235184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/02/2016] [Indexed: 01/10/2023] Open
Abstract
A single administration of the κ opioid receptor (KOR) antagonist, norbinaltorphimine (norBNI), produces long-term reduction in KOR function in heterologous expression systems and brain that is mediated by activation of c-Jun N-terminal kinase (JNK). In this study, we examined the long-term effects of norBNI on adult rat peripheral sensory neurons in vivo and ex vivo. Following a single intraplantar (i.pl.) injection of norBNI into the hind paw, peripheral KOR-mediated antinociception in the ipsilateral, but not the contralateral, hindpaw was abolished for at least 9 days. By contrast, the antinociceptive response to mu and delta opioid receptor agonists was unaltered. The long-term inhibitory effect on antinociception produced by pretreatment with norBNI required occupancy of peripheral KOR and was completely blocked by i.pl. injection of the JNK inhibitor, SP600125. In cultures of peripheral sensory neurons, norBNI activated JNK for at least 30 minutes. Furthermore, norBNI blocked KOR-mediated inhibition of adenylyl cyclase activity measured 24 hours later in a JNK-dependent manner, but did not block activation of extracellular signal-regulated kinase (ERK). The long-term inhibitory effect of norBNI on KOR function in vivo and ex vivo was blocked by inhibitors of mRNA translation, cycloheximide and rapamycin. These data suggest that in peripheral sensory neurons norBNI is a KOR-biased ligand for activation of JNK signaling, resulting in long-term blockade of some (antinociception, inhibition of adenylyl cyclase activity), but not all (ERK), KOR signaling. Importantly, norBNI elicits de novo protein synthesis in sensory neuron terminals that produces selective long-term regulation of KOR.
Collapse
Affiliation(s)
- Raehannah J Jamshidi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Laura C Sullivan
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Blaine A Jacobs
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Teresa A Chavera
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Kelly A Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - William P Clarke
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
152
|
Bramham CR, Jensen KB, Proud CG. Tuning Specific Translation in Cancer Metastasis and Synaptic Memory: Control at the MNK-eIF4E Axis. Trends Biochem Sci 2016; 41:847-858. [PMID: 27527252 DOI: 10.1016/j.tibs.2016.07.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023]
Abstract
The eukaryotic translation initiation factor (eIF) 4E, which binds to the 5'-cap of mRNA, undergoes phosphorylation on a single conserved serine, executed by the mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs). However, the functional consequences and physiological roles of MNK signalling have remained obscure. Now, new pharmacological and genetic tools have provided unprecedented insights into the function of MNKs and eIF4E phosphorylation. The studies suggest that MNKs control the translation of specific mRNAs in cancer metastasis and neuronal synaptic plasticity by a novel mechanism involving the regulation of the translational repressor, cytoplasmic fragile-X protein-interacting protein 1 (CYFIP1). These recent breakthroughs go a long way to resolving the longstanding enigma and controversy surrounding the function of the MNK-eIF4E axis in cancer cell biology and neurobiology.
Collapse
Affiliation(s)
- Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5009 Bergen, Norway.
| | - Kirk B Jensen
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher G Proud
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
153
|
Gautam A, Wadhwa R, Thakur MK. Assessment of Cholinergic Properties of Ashwagandha Leaf-Extract in the Amnesic Mouse Brain. Ann Neurosci 2016; 23:68-75. [PMID: 27647956 DOI: 10.1159/000443573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/13/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In our earlier study, we have shown the memory enhancing and scopolamine-induced amnesia recovery properties of Ashwagandha leaf extract using behavioral paradigm and expression analysis of synaptic plasticity genes. PURPOSE However, the exact mechanism through which Ashwagandha demonstrates these effects is still unknown. METHODS In the present study, we hypothesized that the alcoholic extract of Ashwagandha leaves (i-Extract) possesses cholinergic properties, which in turn inhibit the anti-cholinergic nature of scopolamine. Therefore, the potential of i-Extract to recover from the scopolamine-induced cholinergic deficits was assessed by measuring acetylcholine (neurotransmitter) and Arc (synaptic activity-related gene) expression level in the mouse brain. RESULTS The enzymatic activity of acetyl cholinesterase and choline acetyltransferase was assessed through colorimetric assays, and expression level of Arc protein was examined by Western blotting. Furthermore, mRNA level of these genes was examined by semi-quantitative reverse-transcriptase PCR. We observed that the treatment of i-Extract in scopolamine-induced amnesic mouse attenuates scopolamine-induced detrimental alterations in the cholinergic system. CONCLUSION Thus, our study provided biochemical and molecular evidence of cholinergic properties of Ashwagandha leaf extract during brain disorders associated with cholinergic dysfunction.
Collapse
Affiliation(s)
- Akash Gautam
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India; Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India
| | - Renu Wadhwa
- DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mahendra K Thakur
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
154
|
Lazzaretti D, Veith K, Kramer K, Basquin C, Urlaub H, Irion U, Bono F. The bicoid mRNA localization factor Exuperantia is an RNA-binding pseudonuclease. Nat Struct Mol Biol 2016; 23:705-13. [PMID: 27376588 DOI: 10.1038/nsmb.3254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
Anterior patterning in Drosophila is mediated by the localization of bicoid (bcd) mRNA at the anterior pole of the oocyte. Exuperantia (Exu) is a putative exonuclease (EXO) associated with bcd and required for its localization. We present the crystal structure of Exu, which reveals a dimeric assembly with each monomer consisting of a 3'-5' EXO-like domain and a sterile alpha motif (SAM)-like domain. The catalytic site is degenerate and inactive. Instead, the EXO-like domain mediates dimerization and RNA binding. We show that Exu binds RNA directly in vitro, that the SAM-like domain is required for RNA binding activity and that Exu binds a structured element present in the bcd 3' untranslated region with high affinity. Through structure-guided mutagenesis, we show that Exu dimerization is essential for bcd localization. Our data demonstrate that Exu is a noncanonical RNA-binding protein with EXO-SAM-like domain architecture that interacts with its target RNA as a homodimer.
Collapse
Affiliation(s)
| | - Katharina Veith
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Katharina Kramer
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Claire Basquin
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
155
|
Bowden HA, Dormann D. Altered mRNP granule dynamics in FTLD pathogenesis. J Neurochem 2016; 138 Suppl 1:112-33. [PMID: 26938019 DOI: 10.1111/jnc.13601] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
In neurons, RNA-binding proteins (RBPs) play a key role in post-transcriptional gene regulation, for example alternative splicing, mRNA localization in neurites and local translation upon synaptic stimulation. There is increasing evidence that defective or mislocalized RBPs - and consequently altered mRNA processing - lead to neuronal dysfunction and cause neurodegeneration, including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Cytosolic RBP aggregates containing TAR DNA-binding protein of 43 kDa (TDP-43) or fused in sarcoma (FUS) are a common hallmark of both disorders. There is mounting evidence that translationally silent mRNP granules, such as stress granules or transport granules, play an important role in the formation of these RBP aggregates. These granules are thought to be 'catalytic convertors' of RBP aggregation by providing a high local concentration of RBPs. As recently shown in vitro, RBPs that contain a so-called low-complexity domain start to 'solidify' and eventually aggregate at high protein concentrations. The same may happen in mRNP granules in vivo, leading to 'solidified' granules that lose their dynamic properties and ability to fulfill their physiological functions. This may result in a disturbed stress response, altered mRNA transport and local translation, and formation of pathological TDP-43 or FUS aggregates, all of which may contribute to neuronal dysfunction and neurodegeneration. Here, we discuss the general functional properties of these mRNP granules, how their dynamics may be disrupted in frontotemporal lobar degeneration/amyotrophic lateral sclerosis, for example by loss or gain of function of TDP-43 and FUS, and how this may contribute to the development of RBP aggregates and neurotoxicity. In this review, we discuss how dynamic mRNP granules, such as stress granules or neuronal transport granules, may be converted into pathological aggregates containing misfolded RNA-binding proteins (RBPs), such as TDP-43 and FUS. Abnormal interactions between low-complexity domains in RBPs may cause dynamic mRNP granules to solidify and become dysfunctional. This may result in a disturbed stress response, altered mRNA transport and local translation, as well as RBP aggregation, all of which may contribute to neuronal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Hilary A Bowden
- Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
156
|
Baj G, Pinhero V, Vaghi V, Tongiorgi E. Signaling pathways controlling activity-dependent local translation of BDNF and their localization in dendritic arbors. J Cell Sci 2016; 129:2852-64. [PMID: 27270670 DOI: 10.1242/jcs.177626] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 05/31/2016] [Indexed: 12/26/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is encoded by multiple mRNA variants whose differential subcellular distribution constitutes a 'spatial code' for local translation of BDNF and selective morphological remodeling of dendrites. Here, we investigated where BDNF translation takes place and what are the signaling pathways involved. Cultured hippocampal neurons treated with KCl showed increased BDNF in the soma, proximal and distal dendrites, even in quaternary branches. This activity-dependent increase of BDNF was abolished by cycloheximide, suggesting local translation, and required activation of glutamate and Trk receptors. Our data showed that BDNF translation was regulated by multiple signaling cascades including RAS-Erk and mTOR pathways, and CaMKII-CPEB1, Aurora-A-CPEB1 and Src-ZBP1 pathways. Aurora-A, CPEB1, ZBP1 (also known as IGF2BP1), eiF4E, S6 (also known as rpS6) were present throughout the dendritic arbor. Neuronal activity increased the levels of Aurora-A, CPEB1 and ZBP1 in distal dendrites whereas those of eiF4E and S6 were unaffected. BDNF-6, the main dendritic BDNF transcript, was translated in the same subcellular domains and in response to the same pathways as total BDNF. In conclusion, we identified the signaling cascades controlling BDNF translation and we describe how the translational machinery localization is modulated in response to electrical activity.
Collapse
Affiliation(s)
- Gabriele Baj
- Department of Life Sciences, B.R.A.I.N. Centre for Neuroscience, University of Trieste, Trieste 34127, Italy
| | - Vera Pinhero
- Department of Life Sciences, B.R.A.I.N. Centre for Neuroscience, University of Trieste, Trieste 34127, Italy
| | - Valentina Vaghi
- Department of Life Sciences, B.R.A.I.N. Centre for Neuroscience, University of Trieste, Trieste 34127, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, B.R.A.I.N. Centre for Neuroscience, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
157
|
Keasey MP, Scott HL, Bantounas I, Uney JB, Kelly S. MiR-132 Is Upregulated by Ischemic Preconditioning of Cultured Hippocampal Neurons and Protects them from Subsequent OGD Toxicity. J Mol Neurosci 2016; 59:404-10. [PMID: 27074745 DOI: 10.1007/s12031-016-0740-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
We explored the response of a panel of selected microRNAs (miRNAs) in neuroprotection produced by ischemic preconditioning. Hippocampal neuronal cultures were exposed to a 30-min oxygen-glucose deprivation (OGD). In our hands, this duration of OGD does not result in neuronal loss in vitro but significantly reduces neuronal death from a subsequent 'lethal' OGD insult. RT-qPCR was used to determine the expression of 16 miRNAs of interest at 1 and 24-h post-OGD. One miRNA (miR-98) was significantly decreased at 1-h post-OGD. Ten miRNAs (miR-9, miR-21, miR-29b, miR-30e, miR-101a, miR-101b, miR-124a, miR-132, miR-153, miR-204) were increased significantly at 24-h post-OGD. No miRNAs were decreased at 24-h. The increases observed in the 24-h group suggested that these miRNAs might play a role in preconditioning-induced neuroprotection. We selected the widely studied miR-132, a brain enriched, CREB regulated miRNA, to explore its role in simulated ischemic insults. We found that hippocampal neurons transduced with lentiviral vectors expressing miR-132 were protected from OGD and NMDA treatment, but not hydrogen peroxide. These findings add to the growing literature that targeting neuroprotective pathways controlled by miRNAs may represent a therapeutic strategy for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Matthew P Keasey
- School of Clinical Sciences & School of Cellular and Molecular Medicine, Regenerative Medicine Laboratories, University Walk, Bristol, BS8 1TD, UK
| | - Helen L Scott
- School of Clinical Sciences & School of Cellular and Molecular Medicine, Regenerative Medicine Laboratories, University Walk, Bristol, BS8 1TD, UK
| | | | - James B Uney
- School of Clinical Sciences & School of Cellular and Molecular Medicine, Regenerative Medicine Laboratories, University Walk, Bristol, BS8 1TD, UK.
| | - Stephen Kelly
- School of Clinical Sciences & School of Cellular and Molecular Medicine, Regenerative Medicine Laboratories, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
158
|
Abstract
Energy balance--that is, the relationship between energy intake and energy expenditure--is regulated by a complex interplay of hormones, brain circuits and peripheral tissues. Leptin is an adipocyte-derived cytokine that suppresses appetite and increases energy expenditure. Ironically, obese individuals have high levels of plasma leptin and are resistant to leptin treatment. Neurotrophic factors, particularly ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF), are also important for the control of body weight. CNTF can overcome leptin resistance in order to reduce body weight, although CNTF and leptin activate similar signalling cascades. Mutations in the gene encoding BDNF lead to insatiable appetite and severe obesity.
Collapse
Affiliation(s)
- Baoji Xu
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Xiangyang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| |
Collapse
|
159
|
Ishiguro A, Kimura N, Watanabe Y, Watanabe S, Ishihama A. TDP-43 binds and transports G-quadruplex-containing mRNAs into neurites for local translation. Genes Cells 2016; 21:466-81. [PMID: 26915990 DOI: 10.1111/gtc.12352] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
Abstract
Growth and differentiation of the neurites depends on long-distance transport of a specific set of mRNAs to restricted area and their local translation. Here, we found that a TAR DNA-binding protein of 43 kDa in size (TDP-43) plays an essential role in intracellular transport of mRNA. For identification of target RNAs recognized by TDP-43, we purified TDP-43 in soluble dimer form and subjected to in vitro systematic evolution of ligands by exponential enrichment (SELEX) screening. All the TDP-43-bound RNAs were found to contain G-quadruplex (G4). Using a double-fluorescent probe system, G4-containing RNAs were found to be transported, together with TDP-43, into the distal neurites. Two lines of evidence indicated that loss of function of TDP-43 results in the neurodegenerative disorder: (i) amyotrophic lateral sclerosis (ALS)-linked mutant TDP-43M337V lacks the activity of binding and transport of G4-containing mRNAs; and (ii) RNA containing G4-forming GGGGCC repeat expansion from the ALS-linked C9orf72 gene absorbs TDP-43, thereby reducing the intracellular pool of functional TDP-43. Taken together, we propose that TDP-43 within neurons plays an essential role of mRNA transport into distal neurites for local translation, and thus, dysfunctions of TDP-43 cause neural diseases such as ALS and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Akira Ishiguro
- Research Center for Micro-Nano Technology, University of Hosei, Midori-cho 3-11-15, Koganei, Tokyo, 184-0003, Japan
| | - Nobuyuki Kimura
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Morioka 7-430, Obu, Aichi, 474-8511, Japan
| | - Yuto Watanabe
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Yayoi 2-11-16, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Sumiko Watanabe
- Department of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Shirokane-dai 4-6-1, Minatoku-ku, Tokyo, 108-8639, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, University of Hosei, Midori-cho 3-11-15, Koganei, Tokyo, 184-0003, Japan
| |
Collapse
|
160
|
Bensalem J, Servant L, Alfos S, Gaudout D, Layé S, Pallet V, Lafenetre P. Dietary Polyphenol Supplementation Prevents Alterations of Spatial Navigation in Middle-Aged Mice. Front Behav Neurosci 2016; 10:9. [PMID: 26903826 PMCID: PMC4746350 DOI: 10.3389/fnbeh.2016.00009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/25/2016] [Indexed: 11/25/2022] Open
Abstract
Spatial learning and memory deficits associated with hippocampal synaptic plasticity impairments are commonly observed during aging. Besides, the beneficial role of dietary polyphenols has been suggested as potential functional food candidates to prevent this memory decline. Indeed, polyphenols could potentiate the signaling pathways of synaptic plasticity underlying learning and memory. In this study, spatial learning deficits of middle-aged mice were first highlighted and characterized according to their navigation patterns in the Morris water maze task. An eight-week polyphenol-enriched diet, containing a polyphenol-rich extract from grape and blueberry (PEGB; from the Neurophenols Consortium) with high contents of flavonoids, stilbenes and phenolic acids, was then successful in reversing these age-induced effects. The use of spatial strategies was indeed delayed with aging whereas a polyphenol supplementation could promote the occurrence of spatial strategies. These behavioral results were associated with neurobiological changes: while the expression of hippocampal calmodulin kinase II (CaMKII) mRNA levels was reduced in middle-aged animals, the polyphenol-enriched diet could rescue them. Besides, an increased expression of nerve growth neurotrophic factor (NGF) mRNA levels was also observed in supplemented adult and middle-aged mice. Thus these data suggest that supplementation with polyphenols could be an efficient nutritional way to prevent age-induced cognitive decline.
Collapse
Affiliation(s)
- Julien Bensalem
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France; Activ'InsideLibourne, France
| | - Laure Servant
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France
| | - Serge Alfos
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France; Nutrition et Neurobiologie Intégrée, Bordeaux INP, UMR 1286Bordeaux, France
| | | | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France
| | - Véronique Pallet
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France; Nutrition et Neurobiologie Intégrée, Bordeaux INP, UMR 1286Bordeaux, France
| | - Pauline Lafenetre
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France; Nutrition et Neurobiologie Intégrée, Bordeaux INP, UMR 1286Bordeaux, France
| |
Collapse
|
161
|
Capitano F, Gargiuli C, Angerilli A, Maccaroni K, Pelliccia F, Mele A, Camilloni G. RNA polymerase I transcription is modulated by spatial learning in different brain regions. J Neurochem 2016; 136:706-716. [PMID: 26708837 DOI: 10.1111/jnc.13504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/13/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022]
Abstract
Long-term memory is accompanied by changes in neuronal morphology and connectivity. These alterations are thought to depend upon new gene expression and protein synthesis over a distributed network of brain structures. Although much evidence supports the idea that the creation of stable, persistent memory traces requires synthesis of new proteins, the role of rRNA transcription and nucleolar activity in learning and memory has hardly been explored. rRNAs needed for protein synthesis result from the activity of two different RNA polymerases, RNA polymerase I and RNA polymerase III, transcribing for 47S RNA and 5S RNA, respectively. In this study, we first investigated the effects of spatial training in the Morris water maze on 47S RNA transcription in the central nervous system, demonstrating bidirectional modulation of its expression over a distributed neural network. We found learning-induced increases in the nucleolar organizer regions in the hippocampus. Finally, we demonstrated that intrahippocampal administrations of CX-5461 (0.6 μg/side), the specific RNA Polymerase I inhibitor, impair the ability of mice to locate the platform in the same task. These results suggest that de novo rRNA transcription is a necessary step for spatial memory consolidation, and that after learning, it occurs in several brain regions with a complex spatiotemporal dynamic. In this study, we demonstrate for the very first time that spatial learning modulates ribosomal RNA transcription in a wide brain circuit, with anatomical specificities in the dynamic of modulation. Together with pharmacological evidences, data presented here support the hypothesis of a necessary role of RNA Pol-I transcription during spatial memory formation. Read the Editorial Highlight for this article on page 673.
Collapse
Affiliation(s)
- Fabrizio Capitano
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Chiara Gargiuli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Alessandro Angerilli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Klizia Maccaroni
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Franca Pelliccia
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Andrea Mele
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy.,Istituto Biologia Cellulare e Neurobiologia, CNR, Rome, Italy.,Centro di Ricerca in Neurobiologia "D. Bovet", Sapienza Università di Roma, Rome, Italy
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy.,Istituto Pasteur, Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
162
|
Hu F, Ge MM, Chen WH. Effects of lead exposure on dendrite and spine development in hippocampal dentate gyrus areas of rats. Synapse 2016; 70:87-97. [DOI: 10.1002/syn.21873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Fan Hu
- School of Biotechnology and Food Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| | - Meng-Meng Ge
- School of Biotechnology and Food Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| | - Wei-Heng Chen
- School of Life Sciences; University of Science and Technology of China; Hefei Anhui 230027 People's Republic of China
| |
Collapse
|
163
|
Anji A, Kumari M. Guardian of Genetic Messenger-RNA-Binding Proteins. Biomolecules 2016; 6:4. [PMID: 26751491 PMCID: PMC4808798 DOI: 10.3390/biom6010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins.
Collapse
Affiliation(s)
- Antje Anji
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Meena Kumari
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
164
|
Puighermanal E, Biever A, Valjent E. Synaptoneurosome Preparation from C57BL/6 Striata. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
165
|
Farris SP, Pietrzykowski AZ, Miles MF, O'Brien MA, Sanna PP, Zakhari S, Mayfield RD, Harris RA. Applying the new genomics to alcohol dependence. Alcohol 2015; 49:825-36. [PMID: 25896098 PMCID: PMC4586299 DOI: 10.1016/j.alcohol.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022]
Abstract
This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 6-9, 2014. The overall goal of the symposium titled "Applying the New Genomics to Alcohol Dependence", chaired by Dr. Adron Harris, was to highlight recent genomic discoveries and applications for profiling alcohol use disorder (AUD). Dr. Sean Farris discussed the gene expression networks related to lifetime consumption of alcohol within human prefrontal cortex. Dr. Andrzej Pietrzykowski presented the effects of alcohol on microRNAs in humans and animal models. Alcohol-induced alterations in the synaptic transcriptome were discussed by Dr. Michael Miles. Dr. Pietro Sanna examined methods to probe the gene regulatory networks that drive excessive alcohol drinking, and Dr. Samir Zakhari served as a panel discussant and summarized the proceedings. Collectively, the presentations emphasized the power of integrating multiple levels of genetics and transcriptomics with convergent biological processes and phenotypic behaviors to determine causal factors of AUD. The combined use of diverse data types demonstrates how unique approaches and applications can help categorize genetic complexities into relevant biological networks using a systems-level model of disease.
Collapse
Affiliation(s)
- Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Andrzej Z Pietrzykowski
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA; Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Megan A O'Brien
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Pietro P Sanna
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Samir Zakhari
- Office of Science, Distilled Spirits Council of the United States, Washington, DC, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
166
|
Jain S, Welshhans K. Netrin-1 induces local translation of down syndrome cell adhesion molecule in axonal growth cones. Dev Neurobiol 2015; 76:799-816. [PMID: 26518186 DOI: 10.1002/dneu.22360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 01/16/2023]
Abstract
Down syndrome cell adhesion molecule (DSCAM) plays an important role in many neurodevelopmental processes such as axon guidance, dendrite arborization, and synapse formation. DSCAM is located in the Down syndrome trisomic region of human chromosome 21 and may contribute to the Down syndrome brain phenotype, which includes a reduction in the formation of long-distance connectivity. The local translation of a select group of mRNA transcripts within growth cones is necessary for the formation of appropriate neuronal connectivity. Interestingly, we have found that Dscam mRNA is localized to growth cones of mouse hippocampal neurons, and is dynamically regulated in response to the axon guidance molecule, netrin-1. Furthermore, netrin-1 stimulation results in an increase in locally translated DSCAM protein in growth cones. Deleted in colorectal cancer (DCC), a netrin-1 receptor, is required for the netrin-1-induced increase in Dscam mRNA local translation. We also find that two RNA-binding proteins-fragile X mental retardation protein (FMRP) and cytoplasmic polyadenylation element binding protein (CPEB)-colocalize with Dscam mRNA in growth cones, suggesting their regulation of Dscam mRNA localization and translation. Finally, overexpression of DSCAM in mouse cortical neurons results in a severe stunting of axon outgrowth and branching, suggesting that an increase in DSCAM protein results in a structural change having functional consequences. Taken together, these results suggest that netrin-1-induced local translation of Dscam mRNA during embryonic development may be an important mechanism to regulate axon growth and guidance in the developing nervous system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 799-816, 2016.
Collapse
Affiliation(s)
- Shruti Jain
- Department of Biological Sciences, Kent State University, Kent, Ohio, 44242
| | - Kristy Welshhans
- Department of Biological Sciences, Kent State University, Kent, Ohio, 44242.,School of Biomedical Sciences, Kent State University, Kent, Ohio, 44242
| |
Collapse
|
167
|
Hussain S, Bashir ZI. The epitranscriptome in modulating spatiotemporal RNA translation in neuronal post-synaptic function. Front Cell Neurosci 2015; 9:420. [PMID: 26582006 PMCID: PMC4628113 DOI: 10.3389/fncel.2015.00420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/04/2015] [Indexed: 01/08/2023] Open
Abstract
The application of next-generation-sequencing based methods has recently allowed the sequence-specific occurrence of RNA modifications to be investigated in transcriptome-wide settings. This has led to the emergence of a new field of molecular genetics research termed “epitranscriptomics.” Investigations have shown that these modifications can exert control over protein synthesis via various mechanisms, and particularly when occurring on messenger RNAs, can be dynamically regulated. Here, we propose that RNA modifications may be a critical regulator over the spatiotemporal control of protein-synthesis in neurons, which is supported by our finding that the RNA methylase NSun2 colocalizes with the translational-repressor FMRP at neuronal dendrites. We also observe that NSun2 commonly methylates mRNAs which encode components of the postsynaptic proteome, and further find that NSun2 and FMRP likely share a common subset of mRNA targets which include those that are known to be translated at dendrites in an activity-dependent manner. We consider potential roles for RNA modifications in space- time- and activity-dependent regulation of protein synthesis in neuronal physiology, with a particular focus on synaptic plasticity modulation.
Collapse
Affiliation(s)
- Shobbir Hussain
- Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Zafar I Bashir
- School of Physiology and Pharmacology, University of Bristol Bristol, UK
| |
Collapse
|
168
|
Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA). Sci Rep 2015; 5:14918. [PMID: 26446566 PMCID: PMC4597359 DOI: 10.1038/srep14918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5' ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission.
Collapse
|
169
|
Nihonmatsu I, Ohkawa N, Saitoh Y, Inokuchi K. Targeting of ribosomal protein S6 to dendritic spines by in vivo high frequency stimulation to induce long-term potentiation in the dentate gyrus. Biol Open 2015; 4:1387-94. [PMID: 26432888 PMCID: PMC4728348 DOI: 10.1242/bio.013243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Late phase long-term potentiation (L-LTP) in the hippocampus is believed to be the cellular basis of long-term memory. Protein synthesis is required for persistent forms of synaptic plasticity, including L-LTP. Neural activity is thought to enhance local protein synthesis in dendrites, and one of the mechanisms required to induce or maintain the long-lasting synaptic plasticity is protein translation in the dendrites. One regulator of translational processes is ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. Although polyribosomes containing rpS6 are observed in dendritic spines, it remains unclear whether L-LTP induction triggers selective targeting of the translational machinery to activated synapses in vivo. Therefore, we investigated synaptic targeting of the translational machinery by observing rpS6 immunoreactivity during high frequency stimulation (HFS) for L-LTP induction in vivo. Immunoelectron microscopic analysis revealed a selective but transient increase in rpS6 immunoreactivity occurring as early as 15 min after the onset of HFS in dendritic spine heads at synaptic sites receiving HFS. Concurrently, levels of the rpS6 protein rapidly declined in somata of granule cells, as determined using immunofluorescence microscopy. These results suggest that the translational machinery is rapidly targeted to activated spines and that this targeting mechanism may contribute to the establishment of L-LTP.
Collapse
Affiliation(s)
- Itsuko Nihonmatsu
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Honcho 4-1-8, Kawaguchi 332-0012, Japan
| | - Noriaki Ohkawa
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Honcho 4-1-8, Kawaguchi 332-0012, Japan Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshito Saitoh
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Honcho 4-1-8, Kawaguchi 332-0012, Japan Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kaoru Inokuchi
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Honcho 4-1-8, Kawaguchi 332-0012, Japan Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
170
|
Sosińska P, Mikuła-Pietrasik J, Książek K. The double-edged sword of long non-coding RNA: The role of human brain-specific BC200 RNA in translational control, neurodegenerative diseases, and cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:58-67. [DOI: 10.1016/j.mrrev.2015.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/29/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022]
|
171
|
Maag JLV, Panja D, Sporild I, Patil S, Kaczorowski DC, Bramham CR, Dinger ME, Wibrand K. Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity. Front Neurosci 2015; 9:351. [PMID: 26483626 PMCID: PMC4589673 DOI: 10.3389/fnins.2015.00351] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023] Open
Abstract
Long-term potentiation (LTP) of synaptic transmission is recognized as a cellular mechanism for learning and memory storage. Although de novo gene transcription is known to be required in the formation of stable LTP, the molecular mechanisms underlying synaptic plasticity remain elusive. Noncoding RNAs have emerged as major regulatory molecules that are abundantly and specifically expressed in the mammalian brain. By combining RNA-seq analysis with LTP induction in the dentate gyrus of live rats, we provide the first global transcriptomic analysis of synaptic plasticity in the adult brain. Expression profiles of mRNAs and long noncoding RNAs (lncRNAs) were obtained at 30 min, 2 and 5 h after high-frequency stimulation of the perforant pathway. The temporal analysis revealed dynamic expression profiles of lncRNAs with many positively, and highly, correlated to protein-coding genes with known roles in synaptic plasticity, suggesting their possible involvement in LTP. In light of observations suggesting a role for retrotransposons in brain function, we examined the expression of various classes of repeat elements. Our analysis identifies dynamic regulation of LINE1 and SINE retrotransposons, and extensive regulation of tRNA. These experiments reveal a hitherto unknown complexity of gene expression in long-term synaptic plasticity involving the dynamic regulation of lncRNAs and repeat elements. These findings provide a broader foundation for elucidating the transcriptional and epigenetic regulation of synaptic plasticity in both the healthy brain and in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jesper L V Maag
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia ; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Debabrata Panja
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Ida Sporild
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Dominik C Kaczorowski
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - Clive R Bramham
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Marcel E Dinger
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia ; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Karin Wibrand
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| |
Collapse
|
172
|
Khuc Trong P, Doerflinger H, Dunkel J, St Johnston D, Goldstein RE. Cortical microtubule nucleation can organise the cytoskeleton of Drosophila oocytes to define the anteroposterior axis. eLife 2015; 4. [PMID: 26406117 PMCID: PMC4580948 DOI: 10.7554/elife.06088] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 08/14/2015] [Indexed: 02/02/2023] Open
Abstract
Many cells contain non-centrosomal arrays of microtubules (MTs), but the assembly, organisation and function of these arrays are poorly understood. We present the first theoretical model for the non-centrosomal MT cytoskeleton in Drosophila oocytes, in which bicoid and oskar mRNAs become localised to establish the anterior-posterior body axis. Constrained by experimental measurements, the model shows that a simple gradient of cortical MT nucleation is sufficient to reproduce the observed MT distribution, cytoplasmic flow patterns and localisation of oskar and naive bicoid mRNAs. Our simulations exclude a major role for cytoplasmic flows in localisation and reveal an organisation of the MT cytoskeleton that is more ordered than previously thought. Furthermore, modulating cortical MT nucleation induces a bifurcation in cytoskeletal organisation that accounts for the phenotypes of polarity mutants. Thus, our three-dimensional model explains many features of the MT network and highlights the importance of differential cortical MT nucleation for axis formation. DOI:http://dx.doi.org/10.7554/eLife.06088.001 Cells contain a network of filaments known as microtubules that serve as tracks along which proteins and other materials can be moved from one location to another. For example, molecules called messenger ribonucleic acids (or mRNAs for short) are made in the nucleus and are then moved to various locations around the cell. Each mRNA molecule encodes the instructions needed to make a particular protein and the network of microtubules allows these molecules to be directed to wherever these proteins are needed. In female fruit flies, an mRNA called bicoid is moved to one end (called the anterior end) of a developing egg cell, while another mRNA called oskar is moved to the opposite (posterior) end. These mRNAs determine which ends of the cell will give rise to the head and the abdomen if the egg is fertilized. The microtubules start to form at sites near the inner face of the membrane that surrounds the cell, known as the cortex. From there, the microtubules grow towards the interior of the egg cell. However, it is not clear how this allows bicoid, oskar and other mRNAs to be moved to the correct locations. Khuc Trong et al. used a combination of computational and experimental techniques to develop a model of how microtubules form in the egg cells of fruit flies. The model produces a very similar arrangement of microtubules as observed in living cells and can reproduce the patterns of bicoid and oskar RNA movements. This study suggests that microtubules are more highly organised than previously thought. Furthermore, Khuc Trong et al.'s findings indicate that the anchoring of microtubules in the cortex is sufficient to direct bicoid and oskar RNAs to the opposite ends of the cell. The next challenge will be to find out how the microtubules are linked to the cortex and how this is regulated. DOI:http://dx.doi.org/10.7554/eLife.06088.002
Collapse
Affiliation(s)
- Philipp Khuc Trong
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Hélène Doerflinger
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | - Jörn Dunkel
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Daniel St Johnston
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
173
|
PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury. Neural Plast 2015; 2015:374520. [PMID: 26448879 PMCID: PMC4584069 DOI: 10.1155/2015/374520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/27/2015] [Accepted: 03/17/2015] [Indexed: 11/26/2022] Open
Abstract
The cyclic AMP-dependent protein kinase (PKA), which activates prosurvival signaling proteins, has been implicated in the expression of long-term potentiation and hippocampal long-term memory. It has come to light that H89 commonly known as the PKA inhibitor have diverse roles in the nervous system that are unrelated to its role as a PKA inhibitor. We have investigated the role of H89 in ischemic and reperfusion injury. First, we examined the expression of postsynaptic density protein 95 (PSD95), microtubule-associated protein 2 (MAP2), and synaptophysin in mouse brain after middle cerebral artery occlusion injury. Next, we examined the role of H89 pretreatment on the expression of brain-derived neurotrophic factor (BDNF), PSD95, MAP2, and the apoptosis regulators Bcl2 and cleaved caspase-3 in cultured neuroblastoma cells exposed to hypoxia and reperfusion injury. In addition, we investigated the alteration of AKT activation in H89 pretreated neuroblastoma cells under hypoxia and reperfusion injury. The data suggest that H89 may contribute to brain recovery after ischemic stroke by regulating neuronal death and proteins related to synaptic plasticity.
Collapse
|
174
|
Solich J, Kolasa M, Kusmider M, Pabian P, Faron-Gorecka A, Zurawek D, Szafran-Pilch K, Kedracka-Krok S, Jankowska U, Swiderska B, Dziedzicka-Wasylewska M. Life-long norepinephrine transporter (NET) knock-out leads to the increase in the NET mRNA in brain regions rich in norepinephrine terminals. Eur Neuropsychopharmacol 2015; 25:1099-108. [PMID: 26002194 DOI: 10.1016/j.euroneuro.2015.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
These studies aimed to identify the genes differentially expressed in the frontal cortex of mice bearing a life-long norepinephrine transporter knock-out (NET-KO) and wild-type animals (WT). Differences in gene expression in the mouse frontal cortex were studied using a whole-genome microarray approach. Using an alternative approach, i.e. RT-PCR (reverse transcription polymerase chain reaction) with primers complementary to various exons of the NET gene, as well as TaqMan arrays, the level of mRNA encoding the NET in other brain regions of the NET-KO mice was also examined. The analyses revealed a group of 92 transcripts (27 genes) that differentiated the NET-KO mice from the WT mice. Surprisingly, the studies have shown that the mRNA encoding NET accumulated in the brain regions rich in norepinephrine nerve endings in the NET-KO mice. Because there is no other source of NET mRNA besides the noradrenergic terminals in the brain regions studied, these results might speak in favor of the presence of mRNA in axon terminals. RNA-Binding Protein Immunoprecipitation approach indicated that mRNA encoding NET was detected in the Ago2 protein/mRNA complex. In addition, the amount of Ago2 protein in the frontal cortex was significantly higher in NET-KO mice as compared with that of the WT animals. These results are important for further characterization of the NET-KO mice, which - besides other merits - might serve as a good model to study the fate of truncated mRNA in neurons.
Collapse
Affiliation(s)
- Joanna Solich
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Magdalena Kolasa
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Maciej Kusmider
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Paulina Pabian
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Agata Faron-Gorecka
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Dariusz Zurawek
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Kinga Szafran-Pilch
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Sylwia Kedracka-Krok
- Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Urszula Jankowska
- Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Bianka Swiderska
- Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| |
Collapse
|
175
|
Isabella AJ, Horne-Badovinac S. Building from the Ground up: Basement Membranes in Drosophila Development. CURRENT TOPICS IN MEMBRANES 2015; 76:305-36. [PMID: 26610918 DOI: 10.1016/bs.ctm.2015.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Basement membranes (BMs) are sheetlike extracellular matrices found at the basal surfaces of epithelial tissues. The structural and functional diversity of these matrices within the body endows them with the ability to affect multiple aspects of cell behavior and communication; for this reason, BMs are integral to many developmental processes. The power of Drosophila genetics, as applied to the BM, has yielded substantial insight into how these matrices influence development. Here, we explore three facets of BM biology to which Drosophila research has made particularly important contributions. First, we discuss how newly synthesized BM proteins are secreted to and assembled exclusively on basal epithelial surfaces. Next, we examine how regulation of the structural properties of the BM mechanically supports and guides tissue morphogenesis. Finally, we explore how BMs influence development through the modulation of several major signaling pathways.
Collapse
Affiliation(s)
- Adam J Isabella
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
176
|
Borralleras C, Sahun I, Pérez-Jurado LA, Campuzano V. Intracisternal Gtf2i Gene Therapy Ameliorates Deficits in Cognition and Synaptic Plasticity of a Mouse Model of Williams-Beuren Syndrome. Mol Ther 2015. [PMID: 26216516 DOI: 10.1038/mt.2015.130] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of 26-28 genes at chromosome band 7q11.23. Haploinsufficiency at GTF2I has been shown to play a major role in the neurobehavioral phenotype. By characterizing the neuronal architecture in four animal models with intragenic, partial, and complete deletions of the WBS critical interval (ΔGtf2i(+/-), ΔGtf2i( -/-), PD, and CD), we clarify the involvement of Gtf2i in neurocognitive features. All mutant mice showed hypersociability, impaired motor learning and coordination, and altered anxiety-like behavior. Dendritic length was decreased in the CA1 of ΔGtf2i(+/-), ΔGtf2i ( -/-), and CD mice. Spine density was reduced, and spines were shorter in ΔGtf2i ( -/-), PD, and CD mice. Overexpression of Pik3r1 and downregulation of Bdnf were observed in ΔGtf2i(+/-), PD, and CD mice. Intracisternal Gtf2i-gene therapy in CD mice using adeno-associated virus resulted in increased mGtf2i expression and normalization of Bdnf levels, along with beneficial effects in motor coordination, sociability, and anxiety, despite no significant changes in neuronal architecture. Our findings further indicate that Gtf2i haploinsufficiency plays an important role in the neurodevelopmental and cognitive abnormalities of WBS and that it is possible to rescue part of this neurocognitive phenotype by restoring Gtf2i expression levels in specific brain areas.
Collapse
Affiliation(s)
- Cristina Borralleras
- Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unitat de Genètica, Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Ignasi Sahun
- PCB-PRBB Animal Facility Alliance, Barcelona, Spain
| | - Luis A Pérez-Jurado
- Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unitat de Genètica, Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Victoria Campuzano
- Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unitat de Genètica, Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain.
| |
Collapse
|
177
|
Hsu WL, Chung HW, Wu CY, Wu HI, Lee YT, Chen EC, Fang W, Chang YC. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors. J Biol Chem 2015; 290:20748-20760. [PMID: 26134564 DOI: 10.1074/jbc.m115.638023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/20/2022] Open
Abstract
Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. By analyzing the metabolic incorporation of azidohomoalanine, a methionine analogue, in newly synthesized proteins, we find that glutamate treatments up-regulate protein translation not only in intact rat cortical neurons in culture but also in the axons emitting from cortical neurons before making synapses with target cells. The process by which glutamate stimulates local translation in axons begins with the binding of glutamate to the ionotropic AMPA receptors and metabotropic glutamate receptor 1 and members of group 2 metabotropic glutamate receptors on the plasma membrane. Subsequently, the activated mammalian target of rapamycin (mTOR) signaling pathway and the rise in Ca(2+), resulting from Ca(2+) influxes through calcium-permeable AMPA receptors, voltage-gated Ca(2+) channels, and transient receptor potential canonical channels, in axons stimulate the local translation machinery. For comparison, the enhancement effects of brain-derived neurotrophic factor (BDNF) on the local protein synthesis in cortical axons were also studied. The results indicate that Ca(2+) influxes via transient receptor potential canonical channels and activated the mTOR pathway in axons also mediate BDNF stimulation to local protein synthesis. However, glutamate- and BDNF-induced enhancements of translation in axons exhibit different kinetics. Moreover, Ca(2+) and mTOR signaling appear to play roles carrying different weights, respectively, in transducing glutamate- and BDNF-induced enhancements of axonal translation. Thus, our results indicate that exposure to transient increases of glutamate and more lasting increases of BDNF would stimulate local protein synthesis in migrating axons en route to their targets in the developing brain.
Collapse
Affiliation(s)
- Wei-Lun Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Wen Chung
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Yueh Wu
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Huei-Ing Wu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Tao Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - En-Chan Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Weilun Fang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yen-Chung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 300, Taiwan; Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
178
|
Zhang XM, Yan XY, Zhang B, Yang Q, Ye M, Cao W, Qiang WB, Zhu LJ, Du YL, Xu XX, Wang JS, Xu F, Lu W, Qiu S, Yang W, Luo JH. Activity-induced synaptic delivery of the GluN2A-containing NMDA receptor is dependent on endoplasmic reticulum chaperone Bip and involved in fear memory. Cell Res 2015; 25:818-36. [PMID: 26088419 DOI: 10.1038/cr.2015.75] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/02/2015] [Accepted: 05/04/2015] [Indexed: 11/09/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) in adult forebrain is a heterotetramer mainly composed of two GluN1 subunits and two GluN2A and/or GluN2B subunits. The synaptic expression and relative numbers of GluN2A- and GluN2B-containing NMDARs play critical roles in controlling Ca(2+)-dependent signaling and synaptic plasticity. Previous studies have suggested that the synaptic trafficking of NMDAR subtypes is differentially regulated, but the precise molecular mechanism is not yet clear. In this study, we demonstrated that Bip, an endoplasmic reticulum (ER) chaperone, selectively interacted with GluN2A and mediated the neuronal activity-induced assembly and synaptic incorporation of the GluN2A-containing NMDAR from dendritic ER. Furthermore, the GluN2A-specific synaptic trafficking was effectively disrupted by peptides interrupting the interaction between Bip and GluN2A. Interestingly, fear conditioning in mice was disrupted by intraperitoneal injection of the interfering peptide before training. In summary, we have uncovered a novel mechanism for the activity-dependent supply of synaptic GluN2A-containing NMDARs, and demonstrated its relevance to memory formation.
Collapse
Affiliation(s)
- Xiao-min Zhang
- 1] Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China [2] Department of Physiology, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xun-yi Yan
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Bin Zhang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qian Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Mao Ye
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wei Cao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wen-bin Qiang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li-jun Zhu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong-lan Du
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xing-xing Xu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jia-sheng Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fei Xu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wei Lu
- Key Laboratory of Developmental Genes and Human Disease (Ministry of Education of China), Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 211189, China
| | - Shuang Qiu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wei Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jian-hong Luo
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
179
|
Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Öhman M, Refojo D, Kadener S, Rajewsky N. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol Cell 2015; 58:870-85. [DOI: 10.1016/j.molcel.2015.03.027] [Citation(s) in RCA: 1467] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/03/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
|
180
|
Shirai Y, Watanabe M, Sakagami H, Suzuki T. Novel splice variants in the 5'UTR of Gtf2i expressed in the rat brain: alternative 5'UTRs and differential expression in the neuronal dendrites. J Neurochem 2015; 134:578-89. [PMID: 25913238 DOI: 10.1111/jnc.13136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
Abstract
General transcription factor II-I (Gtf2i) is a transcription factor and one of the genes implicated in Willams-Beuren syndrome, an autism spectrum disorder. In this study, we investigated splice variants of the Gtf2i gene in both the 5'untranslated region (5'UTR) and the coding region. To search for novel 5'UTRs of Gtf2i, we utilized the cap analysis gene expression database of the mouse. We identified seven novel Gtf2i transcripts with alternatively spliced 5'UTRs in the rat brain. We also identified four novel splice variants in the coding sequence of Gtf2i. Furthermore, we identified a selective usage of certain types of 5'UTR by coding variants. In situ hybridization demonstrated a differential pattern of expression of Gtf2i mRNAs with alternatively spliced 5'UTRs among neuronal cells, and the localization of one of the variants in neuronal dendrites in the rat brain. Immunohistochemistry also demonstrated a distribution of Gtf2i-immunoreactivity in the dendrites. These results suggest multiple pathways of expression of Gtf2i gene in the brain. The expression patterns may be under the control of alternative promoters coupled to the alternative splicing in the coding region. Differential localization of mRNA to neuronal dendrites suggests spatiotemporal-specific translation at the post-synaptic sites that is involved in transfer of synaptic activity to expression of specific sets of genes in the nucleus. Gtf2i is a transcription factor and implicated in Willams-Beuren syndrome. We identified seven novel Gtf2i transcripts with alternatively spliced 5'UTRs in the rat brain. In situ hybridization demonstrated a differential expression of Gtf2i mRNAs with different 5'UTRs in somas and dendrites of neuronal cells. Differential localization of mRNA to neuronal dendrites suggests spatiotemporal-specific translation at the postsynaptic sites. The scheme shows genomic structure showing the positions of the potential transcription start tags (rDEC695, rDEC3D7, rDEC1D3, rDEC104, rDEC072 and rDEBE25). Newly identified exons (1.1-1.6) are shown with the white boxes. The distances from rDEC695-5'end are indicated in bp.
Collapse
Affiliation(s)
- Yoshinori Shirai
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tatsuo Suzuki
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
181
|
Zhang J, Banerjee B. Role of MicroRNA in Visceral Pain. J Neurogastroenterol Motil 2015; 21:159-71. [PMID: 25843071 PMCID: PMC4398244 DOI: 10.5056/jnm15027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 12/30/2022] Open
Abstract
The long-lasting nociceptive transmission under various visceral pain conditions involves transcriptional and/or translational alteration in neurotransmitter and receptor expression as well as modification of neuronal function, morphology and synaptic connections. Although it is largely unknown how such changes in posttranscriptional expression induce visceral pain, recent evidence strongly suggests an important role for microRNAs (miRNAs, small non-coding RNAs) in the cellular plasticity underlying chronic visceral pain. MicroRNAs are small noncoding RNA endogenously produced in our body and act as a major regulator of gene expression by either through cleavage or translational repression of the target gene. This regulation is essential for the normal physiological function but when disturbed can result in pathological conditions. Usually one miRNA has multiple targets and target mRNAs are regulated in a combinatorial fashion by multiple miRNAs. In recent years, many studies have been performed to delineate the posttranscriptional regulatory role of miRNAs in different tissues under various nociceptive stimuli. In this review, we intend to discuss the recent development in miRNA research with special emphases on miRNAs and their targets responsible for long term sensitization in chronic pain conditions. In addition, we review miRNAs expression and function data for different animal pain models and also the recent progress in research on miRNA-based therapeutic targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jian Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin Milwaukee, WI , USA
| | - Banani Banerjee
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin Milwaukee, WI , USA
| |
Collapse
|
182
|
Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity. Nat Neurosci 2015; 18:698-707. [DOI: 10.1038/nn.3984] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/22/2015] [Indexed: 02/07/2023]
|
183
|
Live imaging of endogenous PSD-95 using ENABLED: a conditional strategy to fluorescently label endogenous proteins. J Neurosci 2015; 34:16698-712. [PMID: 25505322 DOI: 10.1523/jneurosci.3888-14.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo.
Collapse
|
184
|
Piper M, Lee AC, van Horck FPG, McNeilly H, Lu TB, Harris WA, Holt CE. Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones. Neural Dev 2015; 10:3. [PMID: 25886013 PMCID: PMC4350973 DOI: 10.1186/s13064-015-0031-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/04/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Local protein synthesis (LPS) via receptor-mediated signaling plays a role in the directional responses of axons to extrinsic cues. An intact cytoskeleton is critical to enact these responses, but it is not known whether the two major cytoskeletal elements, F-actin and microtubules, have any roles in regulating axonal protein synthesis. RESULTS Here, we show that pharmacological disruption of either microtubules or actin filaments in growth cones blocks netrin-1-induced de novo synthesis of proteins, as measured by metabolic incorporation of labeled amino acids, implicating both elements in axonal synthesis. However, comparative analysis of the activated translation initiation regulator, eIF4E-BP1, revealed a striking difference in the point of action of the two elements: actin disruption completely inhibited netrin-1-induced eIF4E-BP1 phosphorylation while microtubule disruption had no effect. An intact F-actin, but not microtubule, cytoskeleton was also required for netrin-1-induced activation of the PI3K/Akt/mTOR pathway, upstream of translation initiation. Downstream of translation initiation, microtubules were required for netrin-1-induced activation of eukaryotic elongation factor 2 kinase (eEF2K) and eEF2. CONCLUSIONS Taken together, our results show that while actin and microtubules are both crucial for cue-induced axonal protein synthesis, they serve distinct roles with F-actin being required for the initiation of translation and microtubules acting later at the elongation step.
Collapse
Affiliation(s)
- Michael Piper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
- Current address: The School of Biomedical Sciences and the Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Aih Cheun Lee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
- Current address: Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Francisca P G van Horck
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - Heather McNeilly
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - Trina Bo Lu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
185
|
Ryan B, Joilin G, Williams JM. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front Mol Neurosci 2015; 8:4. [PMID: 25755632 PMCID: PMC4337328 DOI: 10.3389/fnmol.2015.00004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/04/2015] [Indexed: 12/24/2022] Open
Abstract
Long-term potentiation (LTP) is a form of synaptic plasticity that is an excellent model for the molecular mechanisms that underlie memory. LTP, like memory, is persistent, and both are widely believed to be maintained by a coordinated genomic response. Recently, a novel class of non-coding RNA, microRNA, has been implicated in the regulation of LTP. MicroRNA negatively regulate protein synthesis by binding to specific messenger RNA response elements. The aim of this review is to summarize experimental evidence for the proposal that microRNA play a major role in the regulation of LTP. We discuss a growing body of research which indicates that specific microRNA regulate synaptic proteins relevant to LTP maintenance, as well as studies that have reported differential expression of microRNA in response to LTP induction. We conclude that microRNA are ideally suited to contribute to the regulation of LTP-related gene expression; microRNA are pleiotropic, synaptically located, tightly regulated, and function in response to synaptic activity. The potential impact of microRNA on LTP maintenance as regulators of gene expression is enormous.
Collapse
Affiliation(s)
- Brigid Ryan
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| | - Greig Joilin
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| | - Joanna M Williams
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| |
Collapse
|
186
|
Shiina N, Nakayama K. RNA granule assembly and disassembly modulated by nuclear factor associated with double-stranded RNA 2 and nuclear factor 45. J Biol Chem 2015; 289:21163-80. [PMID: 24920670 DOI: 10.1074/jbc.m114.556365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RNA granules are large messenger ribonucleoprotein complexes that regulate translation and mRNA translocation to control the timing and location of protein synthesis. The regulation of RNA granule assembly and disassembly is a structural basis of translational control, and its disorder is implicated in degenerative disease. Here, we used proteomic analysis to identify proteins associated with RNA granule protein 105 (RNG105)/caprin1, an RNA-binding protein in RNA granules. Among the identified proteins, we focused on nuclear factor (NF) 45 and its binding partner, nuclear factor associated with dsRNA 2 (NFAR2), and we demonstrated that NF45 promotes disassembly of RNA granules, whereas NFAR2 enhances the assembly of RNA granules in cultured cells. The GQSY domain of NFAR2 was required to associate with messenger ribonucleoprotein complexes containing RNG105/caprin1, and it was structurally and functionally related to the low complexity sequence domain of the fused in sarcoma protein, which drives the assembly of RNA granules. Another domain of NFAR2, the DZF domain, was dispensable for association with the RNG105 complex, but it was involved in positive and negative regulation of RNA granule assembly by being phosphorylated at double-stranded RNA-activated kinase sites and by association with NF45, respectively. These results suggest a novel molecular mechanism for the modulation of RNA granule assembly and disassembly by NFAR2, NF45, and phosphorylation at double-stranded RNA-activated kinase PKR sites.
Collapse
|
187
|
Antonacci S, Forand D, Wolf M, Tyus C, Barney J, Kellogg L, Simon MA, Kerr G, Wells KL, Younes S, Mortimer NT, Olesnicky EC, Killian DJ. Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons. G3 (BETHESDA, MD.) 2015; 5:639-53. [PMID: 25673135 PMCID: PMC4390579 DOI: 10.1534/g3.115.017327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
The regulation of dendritic branching is critical for sensory reception, cell-cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans.
Collapse
Affiliation(s)
- Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Daniel Forand
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Margaret Wolf
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Courtney Tyus
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Julia Barney
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Leah Kellogg
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Margo A Simon
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Genevieve Kerr
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Kristen L Wells
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Serena Younes
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Nathan T Mortimer
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| |
Collapse
|
188
|
Abstract
Post-transcriptional gene regulation (PTGR) concerns processes involved in the maturation, transport, stability and translation of coding and non-coding RNAs. RNA-binding proteins (RBPs) and ribonucleoproteins coordinate RNA processing and PTGR. The introduction of large-scale quantitative methods, such as next-generation sequencing and modern protein mass spectrometry, has renewed interest in the investigation of PTGR and the protein factors involved at a systems-biology level. Here, we present a census of 1,542 manually curated RBPs that we have analysed for their interactions with different classes of RNA, their evolutionary conservation, their abundance and their tissue-specific expression. Our analysis is a critical step towards the comprehensive characterization of proteins involved in human RNA metabolism.
Collapse
Affiliation(s)
- Stefanie Gerstberger
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, New York 10065, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, New York 10065, USA
| |
Collapse
|
189
|
Peredo J, Villacé P, Ortín J, de Lucas S. Human Staufen1 associates to miRNAs involved in neuronal cell differentiation and is required for correct dendritic formation. PLoS One 2014; 9:e113704. [PMID: 25423178 PMCID: PMC4244161 DOI: 10.1371/journal.pone.0113704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
Double-stranded RNA-binding proteins are key elements in the intracellular localization of mRNA and its local translation. Staufen is a double-stranded RNA binding protein involved in the localised translation of specific mRNAs during Drosophila early development and neuronal cell fate. The human homologue Staufen1 forms RNA-containing complexes that include proteins involved in translation and motor proteins to allow their movement within the cell, but the mechanism underlying translation repression in these complexes is poorly understood. Here we show that human Staufen1-containing complexes contain essential elements of the gene silencing apparatus, like Ago1-3 proteins, and we describe a set of miRNAs specifically associated to complexes containing human Staufen1. Among these, miR-124 stands out as particularly relevant because it appears enriched in human Staufen1 complexes and is over-expressed upon differentiation of human neuroblastoma cells in vitro. In agreement with these findings, we show that expression of human Staufen1 is essential for proper dendritic arborisation during neuroblastoma cell differentiation, yet it is not necessary for maintenance of the differentiated state, and suggest potential human Staufen1 mRNA targets involved in this process.
Collapse
Affiliation(s)
- Joan Peredo
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| | - Patricia Villacé
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Juan Ortín
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
- * E-mail: (JO); (SdL)
| | - Susana de Lucas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
- * E-mail: (JO); (SdL)
| |
Collapse
|
190
|
Middleton SA, Kim J. NoFold: RNA structure clustering without folding or alignment. RNA (NEW YORK, N.Y.) 2014; 20:1671-1683. [PMID: 25234928 PMCID: PMC4201820 DOI: 10.1261/rna.041913.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures.
Collapse
Affiliation(s)
- Sarah A Middleton
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Junhyong Kim
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
191
|
Panja D, Kenney J, D’Andrea L, Zalfa F, Vedeler A, Wibrand K, Fukunaga R, Bagni C, Proud C, Bramham C. Two-Stage Translational Control of Dentate Gyrus LTP Consolidation Is Mediated by Sustained BDNF-TrkB Signaling to MNK. Cell Rep 2014; 9:1430-45. [DOI: 10.1016/j.celrep.2014.10.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/18/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022] Open
|
192
|
Abstract
Synaptic plasticity, learning, and memory require high temporal and spatial control of gene expression. These processes are thought to rely mainly on asymmetric mRNA transport to synapses. Already in the early days of studying mRNA transport, Wilhelm and Vale proposed a multi-step process in 1993. Since then, we have gained important novel insights into how these individual steps are controlled by research performed in various cell types and organisms. Here, we present the latest view on how dendritic mRNA localization is achieved and how local translation at the synapse is regulated. In particular, we propose that the recently observed heterogeneity of RNA-protein particle assembly in neurons might be the key for how precise gene expression in the brain is achieved. In addition, we focus on latest data dealing with translational activation of translationally repressed mRNPs at a synapse that experiences learning-induced changes in its morphology and function. Together, these new findings shed new light on how precise regulatory mechanisms can lead to synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Saskia Hutten
- a Department of Anatomy and Cell Biology ; Ludwig-Maximilians-University ; Munich , Germany
| | | | | |
Collapse
|
193
|
Leal G, Afonso PM, Salazar IL, Duarte CB. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res 2014; 1621:82-101. [PMID: 25451089 DOI: 10.1016/j.brainres.2014.10.019] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 01/01/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a major regulator of activity-dependent plasticity at excitatory synapses in the mammalian central nervous system. In particular, much attention has been given to the role of the neurotrophin in the regulation of hippocampal long-term potentiation (LTP), a sustained enhancement of excitatory synaptic strength believed to underlie learning and memory processes. In this review we summarize the evidence pointing to a role for BDNF in generating functional and structural changes at synapses required for both early- and late phases of LTP in the hippocampus. The available information regarding the pre- and/or postsynaptic release of BDNF and action of the neurotrophin during LTP will be also reviewed. Finally, we discuss the effects of BDNF on the synaptic proteome, either by acting on the protein synthesis machinery and/or by regulating protein degradation by calpains and possibly by the ubiquitin-proteasome system (UPS). This fine-tuned control of the synaptic proteome rather than a simple upregulation of the protein synthesis may play a key role in BDNF-mediated synaptic potentiation. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Graciano Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Pedro M Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivan L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB) and Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
194
|
Leal G, Afonso PM, Duarte CB. Neuronal activity induces synaptic delivery of hnRNP A2/B1 by a BDNF-dependent mechanism in cultured hippocampal neurons. PLoS One 2014; 9:e108175. [PMID: 25286195 PMCID: PMC4186808 DOI: 10.1371/journal.pone.0108175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022] Open
Abstract
Dendritic protein synthesis plays a critical role in several forms of synaptic plasticity, including BDNF (brain-derived neurotrophic factor)-mediated long-term synaptic potentiation (LTP). Dendritic transcripts are typically transported in a repressed state as components of large ribonucleoprotein complexes, and then translated upon stimulation at, or in the vicinity, of activated synapses. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is a trans-acting factor involved in dendritic mRNA trafficking, but how the distribution of the protein in dendrites is regulated has not been characterized. Here we found that a fraction of hnRNP A2/B1 is present at the synapse under resting conditions in cultured hippocampal neurons. Accordingly, this ribonucleoprotein was detected in free mRNP, monosomal, and polyribosomal fractions obtained from synaptoneurosomes. Neuronal activity and BDNF treatment increased hnRNP A2/B1 protein levels in the cell body and dendritic compartments, and induced the delivery of this protein to synaptic sites. The activity-dependent accumulation of hnRNP A2/B1 at the synapse required, at least in part, the activation of TrkB receptors, presumably by BDNF. This neurotrophin also upregulated the hnRNP A2/B1 mRNA in the soma but was without effect on the abundance of neuritic hnRNP A2/B1 transcripts. These results show that the distribution of hnRNP A2/B1 is regulated by BDNF and by neuronal activity, an effect that may have a role in BDNF-induced synaptic plasticity events.
Collapse
Affiliation(s)
- Graciano Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Pedro M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
195
|
Motor skill learning enhances the expression of activity-regulated cytoskeleton-associated protein in the rat cerebellum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:959-66. [DOI: 10.1007/s00359-014-0942-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/11/2023]
|
196
|
Wessel L, Olbrich L, Brand-Saberi B, Theiss C. New aspects of progesterone interactions with the actin cytoskeleton and neurosteroidogenesis in the cerebellum and the neuronal growth cone. J Histochem Cytochem 2014; 62:835-45. [PMID: 25141866 DOI: 10.1369/0022155414550691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The impact of progesterone on neuronal tissues in the central (CNS) and peripheral (PNS) nervous system is of significant scientific and therapeutic interest. Glial and neuronal cells of vertebrates express steroidogenic enzymes, and are able to synthesize progesterone de novo from cholesterol. Progesterone is described to have neuroprotective, neuroreparative, anti-degenerative, and anti-apoptotic effects in the CNS and the PNS. Thus, the first clinical studies promise new therapeutic options using progesterone in the treatment of patients with traumatic brain injury. Additionally, experimental data from different animal models suggest further positive effects of progesterone on neurological diseases such as cerebral ischemia, peripheral nerve injury and amyothropic lateral sclerosis. In regard to this future clinical use of progesterone, we discuss in this review the underlying physiological principles of progesterone effects in neuronal tissues. Mechanisms leading to morphological reorganizations of neurons in the CNS and PNS affected by progesterone are addressed, with special focus on the actin cytoskeleton. Furthermore, new aspects of a progesterone-dependent regulation of neurosteroidogenesis mediated by the recently described progesterone binding protein PGRMC1 in the nervous system are discussed.
Collapse
Affiliation(s)
- Lisa Wessel
- Institute of Anatomy & Molecular Embryology (LW, LO, BBS, CT), Ruhr-University Bochum, Bochum, GermanyInstitute of Anatomy, Department of Cytology (CT), Ruhr-University Bochum, Bochum, Germany
| | - Laura Olbrich
- Institute of Anatomy & Molecular Embryology (LW, LO, BBS, CT), Ruhr-University Bochum, Bochum, GermanyInstitute of Anatomy, Department of Cytology (CT), Ruhr-University Bochum, Bochum, Germany
| | - Beate Brand-Saberi
- Institute of Anatomy & Molecular Embryology (LW, LO, BBS, CT), Ruhr-University Bochum, Bochum, GermanyInstitute of Anatomy, Department of Cytology (CT), Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy & Molecular Embryology (LW, LO, BBS, CT), Ruhr-University Bochum, Bochum, GermanyInstitute of Anatomy, Department of Cytology (CT), Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
197
|
Stackpole EE, Akins MR, Fallon JR. N-myristoylation regulates the axonal distribution of the Fragile X-related protein FXR2P. Mol Cell Neurosci 2014; 62:42-50. [PMID: 25109237 DOI: 10.1016/j.mcn.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/21/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome, the leading cause of inherited intellectual disability and autism, is caused by loss of function of Fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein that regulates local protein synthesis in the somatodendritic compartment. However, emerging evidence also indicates important roles for FMRP in axonal and presynaptic functions. In particular, FMRP and its homologue FXR2P localize axonally and presynaptically to discrete endogenous structures in the brain termed Fragile X granules (FXGs). FXR2P is a component of all FXGs and is necessary for the axonal and presynaptic localization of FMRP to these structures. We therefore sought to identify and characterize structural features of FXR2P that regulate its axonal localization. Sequence analysis reveals that FXR2P harbors a consensus N-terminal myristoylation sequence (MGXXXS) that is absent in FMRP. Using click chemistry with wild type and an unmyristoylatable G2A mutant we demonstrate that FXR2P is N-myristoylated on glycine 2, establishing it as a lipid-modified RNA binding protein. To investigate the role of FXR2P N-myristoylation in neurons we generated fluorescently tagged wild type and unmyristoylatable FXR2P (WT and G2A, respectively) and expressed them in primary cortical cultures. Both FXR2P(WT) and FXR2P(G2A) are expressed at equivalent overall levels and are capable of forming FMRP-containing axonal granules. However, FXR2P(WT) granules are largely restricted to proximal axonal segments while granules formed with unmyristoylatable FXR2P(G2A) are localized throughout the axonal arbor, including in growth cones. These studies indicate that N-terminal myristoylation of the RNA binding protein FXR2P regulates its localization within the axonal arbor. Moreover, since FMRP localization within axonal domains requires its association with FXR2P, these findings suggest that FXR2P lipid modification is a control point for the axonal and presynaptic distribution of FMRP.
Collapse
Affiliation(s)
- Emily E Stackpole
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michael R Akins
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
198
|
Percipalle P. New insights into co-transcriptional sorting of mRNA for cytoplasmic transport during development. Semin Cell Dev Biol 2014; 32:55-62. [DOI: 10.1016/j.semcdb.2014.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/11/2014] [Indexed: 12/01/2022]
|
199
|
Schmouth JF, Dion PA, Rouleau GA. Genetics of essential tremor: From phenotype to genes, insights from both human and mouse studies. Prog Neurobiol 2014; 119-120:1-19. [DOI: 10.1016/j.pneurobio.2014.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/16/2014] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
|
200
|
Jung H, Gkogkas CG, Sonenberg N, Holt CE. Remote control of gene function by local translation. Cell 2014; 157:26-40. [PMID: 24679524 PMCID: PMC3988848 DOI: 10.1016/j.cell.2014.03.005] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022]
Abstract
The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Christos G Gkogkas
- Patrick Wild Centre, Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, Anatomy Building, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|