151
|
Krejtz I, Krejtz K, Wisiecka K, Abramczyk M, Olszanowski M, Duchowski AT. Attention Dynamics During Emotion Recognition by Deaf and Hearing Individuals. JOURNAL OF DEAF STUDIES AND DEAF EDUCATION 2020; 25:10-21. [PMID: 31665493 DOI: 10.1093/deafed/enz036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/11/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The enhancement hypothesis suggests that deaf individuals are more vigilant to visual emotional cues than hearing individuals. The present eye-tracking study examined ambient-focal visual attention when encoding affect from dynamically changing emotional facial expressions. Deaf (n = 17) and hearing (n = 17) individuals watched emotional facial expressions that in 10-s animations morphed from a neutral expression to one of happiness, sadness, or anger. The task was to recognize emotion as quickly as possible. Deaf participants tended to be faster than hearing participants in affect recognition, but the groups did not differ in accuracy. In general, happy faces were more accurately and more quickly recognized than faces expressing anger or sadness. Both groups demonstrated longer average fixation duration when recognizing happiness in comparison to anger and sadness. Deaf individuals directed their first fixations less often to the mouth region than the hearing group. During the last stages of emotion recognition, deaf participants exhibited more focal viewing of happy faces than negative faces. This pattern was not observed among hearing individuals. The analysis of visual gaze dynamics, switching between ambient and focal attention, was useful in studying the depth of cognitive processing of emotional information among deaf and hearing individuals.
Collapse
Affiliation(s)
- Izabela Krejtz
- SWPS University of Social Sciences and Humanities, Chodakowska 19/31, Warsaw, Poland
| | - Krzysztof Krejtz
- SWPS University of Social Sciences and Humanities, Chodakowska 19/31, Warsaw, Poland
| | | | | | - Michał Olszanowski
- SWPS University of Social Sciences and Humanities, Chodakowska 19/31, Warsaw, Poland
| | | |
Collapse
|
152
|
Bennett CR, Bauer CM, Bailin ES, Merabet LB. Neuroplasticity in cerebral visual impairment (CVI): Assessing functional vision and the neurophysiological correlates of dorsal stream dysfunction. Neurosci Biobehav Rev 2020; 108:171-181. [PMID: 31655075 PMCID: PMC6949360 DOI: 10.1016/j.neubiorev.2019.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022]
Abstract
Cerebral visual impairment (CVI) results from perinatal injury to visual processing structures and pathways and is the most common individual cause of pediatric visual impairment and blindness in developed countries. While there is mounting evidence demonstrating extensive neuroplastic reorganization in early onset, profound ocular blindness, how the brain reorganizes in the setting of congenital damage to cerebral (i.e. retro-geniculate) visual pathways remains comparatively poorly understood. Individuals with CVI exhibit a wide range of visual deficits and, in particular, present with impairments of higher order visual spatial processing (referred to as "dorsal stream dysfunction") as well as object recognition (associated with processing along the ventral stream). In this review, we discuss the need for ongoing work to develop novel, neuroscience-inspired approaches to investigate functional visual deficits in this population. We also outline the role played by advanced structural and functional neuroimaging in helping to elucidate the underlying neurophysiology of CVI, and highlight key differences with regard to patterns of neural reorganization previously described in ocular blindness.
Collapse
Affiliation(s)
- Christopher R Bennett
- Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Corinna M Bauer
- Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Emma S Bailin
- Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Lotfi B Merabet
- Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States.
| |
Collapse
|
153
|
Hosseini K, Zare-Sadeghi A, Sadigh-Eteghad S, Mirsalehi M, Khezerloo D. Effects of olfactory training on resting-state effective connectivity in patients with posttraumatic olfactory dysfunction. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
154
|
Lunghi C, Galli-Resta L, Binda P, Cicchini GM, Placidi G, Falsini B, Morrone MC. Visual Cortical Plasticity in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 60:2753-2763. [PMID: 31247082 PMCID: PMC6746622 DOI: 10.1167/iovs.18-25750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Retinitis pigmentosa is a family of genetic diseases inducing progressive photoreceptor degeneration. There is no cure for retinitis pigmentosa, but prospective therapeutic strategies are aimed at restoring or substituting retinal input. Yet, it is unclear whether the visual cortex of retinitis pigmentosa patients retains plasticity to react to the restored visual input. Methods To investigate short-term visual cortical plasticity in retinitis pigmentosa, we tested the effect of short-term (2 hours) monocular deprivation on sensory ocular dominance (measured with binocular rivalry) in a group of 14 patients diagnosed with retinitis pigmentosa with a central visual field sparing greater than 20° in diameter. Results After deprivation most patients showed a perceptual shift in ocular dominance in favor of the deprived eye (P < 0.001), as did control subjects, indicating a level of visual cortical plasticity in the normal range. The deprivation effect correlated negatively with visual acuity (r = −0.63, P = 0.015), and with the amplitude of the central 18° focal electroretinogram (r = −0.68, P = 0.015) of the deprived eye, revealing that in retinitis pigmentosa stronger visual impairment is associated with higher plasticity. Conclusions Our results provide a new tool to assess the ability of retinitis pigmentosa patients to adapt to altered visual inputs, and suggest that in retinitis pigmentosa the adult brain has sufficient short-term plasticity to benefit from prospective therapies.
Collapse
Affiliation(s)
- Claudia Lunghi
- Laboratoire des systèmes perceptifs, Département d'études Cognitives, École Normale Supérieure, PSL University, CNRS, Paris, France.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Paola Binda
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Institute of Neuroscience CNR, Pisa, Italy
| | | | - Giorgio Placidi
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Concetta Morrone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Stella Maris, Calambrone (Pisa), Italy
| |
Collapse
|
155
|
The Cross-Modal Effects of Sensory Deprivation on Spatial and Temporal Processes in Vision and Audition: A Systematic Review on Behavioral and Neuroimaging Research since 2000. Neural Plast 2019; 2019:9603469. [PMID: 31885540 PMCID: PMC6914961 DOI: 10.1155/2019/9603469] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/06/2019] [Accepted: 10/31/2019] [Indexed: 01/12/2023] Open
Abstract
One of the most significant effects of neural plasticity manifests in the case of sensory deprivation when cortical areas that were originally specialized for the functions of the deprived sense take over the processing of another modality. Vision and audition represent two important senses needed to navigate through space and time. Therefore, the current systematic review discusses the cross-modal behavioral and neural consequences of deafness and blindness by focusing on spatial and temporal processing abilities, respectively. In addition, movement processing is evaluated as compiling both spatial and temporal information. We examine whether the sense that is not primarily affected changes in its own properties or in the properties of the deprived modality (i.e., temporal processing as the main specialization of audition and spatial processing as the main specialization of vision). References to the metamodal organization, supramodal functioning, and the revised neural recycling theory are made to address global brain organization and plasticity principles. Generally, according to the reviewed studies, behavioral performance is enhanced in those aspects for which both the deprived and the overtaking senses provide adequate processing resources. Furthermore, the behavioral enhancements observed in the overtaking sense (i.e., vision in the case of deafness and audition in the case of blindness) are clearly limited by the processing resources of the overtaking modality. Thus, the brain regions that were previously recruited during the behavioral performance of the deprived sense now support a similar behavioral performance for the overtaking sense. This finding suggests a more input-unspecific and processing principle-based organization of the brain. Finally, we highlight the importance of controlling for and stating factors that might impact neural plasticity and the need for further research into visual temporal processing in deaf subjects.
Collapse
|
156
|
Peter MG, Porada DK, Regenbogen C, Olsson MJ, Lundström JN. Sensory loss enhances multisensory integration performance. Cortex 2019; 120:116-130. [DOI: 10.1016/j.cortex.2019.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
157
|
Torre K, Vergotte G, Viel É, Perrey S, Dupeyron A. Fractal properties in sensorimotor variability unveil internal adaptations of the organism before symptomatic functional decline. Sci Rep 2019; 9:15736. [PMID: 31673034 PMCID: PMC6823488 DOI: 10.1038/s41598-019-52091-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/28/2019] [Indexed: 01/20/2023] Open
Abstract
If health can be defined as adaptability, then measures of adaptability are crucial. Convergent findings across clinical areas established the notion that fractal properties in bio-behavioural variability characterize the healthy condition of the organism, and its adaptive capacities in general. However, ambiguities remain as to the significance of fractal properties: the literature mainly discriminated between healthy vs. pathological states, thereby loosing perspective on the progression in between, and overlooking the distinction between adaptability and effective adaptations of the organism. Here, we design an experimental tapping paradigm involving gradual feedback deprivation in groups of healthy subjects and one deafferented man as a pathological-limit case. We show that distinct types of fractal properties in sensorimotor behaviour characterize, on the one hand impaired functional ability, and on the other hand internal adaptations for maintaining performance despite the imposed constraints. Findings may prove promising for early detection of internal adaptations preceding symptomatic functional decline.
Collapse
Affiliation(s)
| | | | | | | | - Arnaud Dupeyron
- EuroMov, Univ. Montpellier, Montpellier, France.,CHU Carémeau, Nîmes, France
| |
Collapse
|
158
|
Discrimination of the behavioural dynamics of visually impaired infants via deep learning. Nat Biomed Eng 2019; 3:860-869. [DOI: 10.1038/s41551-019-0461-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/12/2019] [Indexed: 11/08/2022]
|
159
|
Wong NA, Rafique SA, Moro SS, Kelly KR, Steeves JKE. Altered white matter structure in auditory tracts following early monocular enucleation. NEUROIMAGE-CLINICAL 2019; 24:102006. [PMID: 31622842 PMCID: PMC6812283 DOI: 10.1016/j.nicl.2019.102006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 01/29/2023]
Abstract
Purpose: Similar to early blindness, monocular enucleation (the removal of one eye) early in life results in crossmodal behavioral and morphological adaptations. Previously it has been shown that partial visual deprivation from early monocular enucleation results in structural white matter changes throughout the visual system (Wong et al., 2018). The current study investigated structural white matter of the auditory system in adults who have undergone early monocular enucleation compared to binocular control participants. Methods: We reconstructed four auditory and audiovisual tracts of interest using probabilistic tractography and compared microstructural properties of these tracts to binocularly intact controls using standard diffusion indices. Results: Although both groups demonstrated asymmetries in indices in intrahemispheric tracts, monocular enucleation participants showed asymmetries opposite to control participants in the auditory and A1-V1 tracts. Monocular enucleation participants also demonstrated significantly lower fractional anisotropy in the audiovisual projections contralateral to the enucleated eye relative to control participants. Conclusions: Partial vision loss from early monocular enucleation results in altered structural connectivity that extends into the auditory system, beyond tracts primarily dedicated to vision. Does losing one eye during postnatal maturation affect auditory white matter? Performed DTI of auditory and audiovisual tracts using probabilistic tractography. Patients differed in diffusion indices for auditory and audiovisual tracts. Early eye removal alters auditory white matter in addition to visual tracts.
Collapse
Affiliation(s)
- Nikita A Wong
- Department of Psychology, York University, Toronto, ON, Canada; Centre for Vision Research, York University, Toronto, ON, Canada
| | - Sara A Rafique
- Department of Psychology, York University, Toronto, ON, Canada; Centre for Vision Research, York University, Toronto, ON, Canada
| | - Stefania S Moro
- Department of Psychology, York University, Toronto, ON, Canada; Centre for Vision Research, York University, Toronto, ON, Canada; Department of Ophthalmology and Visual Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jennifer K E Steeves
- Department of Psychology, York University, Toronto, ON, Canada; Centre for Vision Research, York University, Toronto, ON, Canada; Department of Ophthalmology and Visual Sciences, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
160
|
Structural and functional brain reorganisation due to blindness: The special case of bilateral congenital anophthalmia. Neurosci Biobehav Rev 2019; 107:765-774. [PMID: 31626815 DOI: 10.1016/j.neubiorev.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Investigating the changes in the brain that result from a loss of sensory input has provided significant insight into the considerable capacity of the brain to reorganise. One of the difficulties in studying sensory-deprived populations is that the time and extent of sensory loss vary significantly. In this review, we consider the changes in the human brain associated with complete absence of visual input resulting from bilateral congenital anophthalmia, in which the eyes fail to develop. We describe the functional reorganisation and associated structural and connectivity changes that occur in the brain of those affected by the condition. By considering animal models of this condition, we investigate the changes that may be occurring on a scale that is not captured by human in vivo imaging techniques. Finally, we lay out a model pathway for taking auditory information to the occipital cortex that may be specific to anophthalmia.
Collapse
|
161
|
Magrou L, Barone P, Markov NT, Killackey HP, Giroud P, Berland M, Knoblauch K, Dehay C, Kennedy H. How Areal Specification Shapes the Local and Interareal Circuits in a Macaque Model of Congenital Blindness. Cereb Cortex 2019; 28:3017-3034. [PMID: 29850900 PMCID: PMC6041985 DOI: 10.1093/cercor/bhy125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
There is little understanding of the structural underpinnings of the functional reorganization of the cortex in the congenitally blind human. Taking advantage of the extensive characterization of the macaque visual system, we examine in macaque the influence of congenital blindness resulting from the removal of the retina during in utero development. This effectively removes the normal influence of the thalamus on cortical development leading to an induced hybrid cortex (HC) combining features of primary visual and extrastriate cortex. Retrograde tracers injected in HC reveal a local, intrinsic connectivity characteristic of higher order areas and show that the HC receives a uniquely strong, purely feedforward projection from striate cortex but no ectopic inputs, except from subiculum, and entorhinal cortex. Statistical modeling of quantitative connectivity data shows that HC is relatively high in the cortical hierarchy and receives a reinforced input from ventral stream areas while the overall organization of the functional streams are conserved. The directed and weighted anophthalmic cortical graph from the present study can be used to construct dynamic and structural models. These findings show how the sensory periphery governs cortical phenotype and reveal the importance of developmental arealization for understanding the functional reorganization in congenital blindness.
Collapse
Affiliation(s)
- Loïc Magrou
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Pascal Barone
- Université De Toulouse Paul Sabatier, Toulouse, France.,Centre De Recherche Cerveau & Cognition, CNRS, UMR 5549, Toulouse, France
| | - Nikola T Markov
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, USA
| | - Herbert P Killackey
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Pascale Giroud
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Michel Berland
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Kenneth Knoblauch
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.,Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai, China
| |
Collapse
|
162
|
Norman LJ, Thaler L. Retinotopic-like maps of spatial sound in primary 'visual' cortex of blind human echolocators. Proc Biol Sci 2019; 286:20191910. [PMID: 31575359 PMCID: PMC6790759 DOI: 10.1098/rspb.2019.1910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/12/2019] [Indexed: 01/30/2023] Open
Abstract
The functional specializations of cortical sensory areas were traditionally viewed as being tied to specific modalities. A radically different emerging view is that the brain is organized by task rather than sensory modality, but it has not yet been shown that this applies to primary sensory cortices. Here, we report such evidence by showing that primary 'visual' cortex can be adapted to map spatial locations of sound in blind humans who regularly perceive space through sound echoes. Specifically, we objectively quantify the similarity between measured stimulus maps for sound eccentricity and predicted stimulus maps for visual eccentricity in primary 'visual' cortex (using a probabilistic atlas based on cortical anatomy) to find that stimulus maps for sound in expert echolocators are directly comparable to those for vision in sighted people. Furthermore, the degree of this similarity is positively related with echolocation ability. We also rule out explanations based on top-down modulation of brain activity-e.g. through imagery. This result is clear evidence that task-specific organization can extend even to primary sensory cortices, and in this way is pivotal in our reinterpretation of the functional organization of the human brain.
Collapse
Affiliation(s)
| | - Lore Thaler
- Department of Psychology, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
163
|
Quraishe S, Newman T, Anderson L. Auditory temporal acuity improves with age in the male mouse auditory thalamus: A role for perineuronal nets? J Neurosci Res 2019; 98:1780-1799. [PMID: 31562661 DOI: 10.1002/jnr.24537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 11/09/2022]
Abstract
The ability to perceive and interpret environmental sound accurately is conserved across many species and is fundamental for understanding communication via vocalizations. Auditory acuity and temporally controlled neuronal firing underpin this ability. Deterioration in neuronal firing precision likely contributes to poorer hearing performance, yet the role of neural processing by key nuclei in the central auditory pathways is not fully understood. Here, we record from the auditory thalamus (medial geniculate body [MGB]) of young and middle-aged, normally hearing male CBA/Ca mice. We report changes in temporal processing of auditory stimuli, with neurons recorded from ventral and medial MGB subdivisions of older animals more likely to synchronize to rapid temporally varying stimuli. MGB subdivisions also showed increased probability of neuronal firing and shorter response latencies to clicks in older animals. Histological investigation of neuronal extracellular specializations, perineuronal nets (PNNs) and axonal coats, in the MGB identified greater organization of PNNs around MGB neurons and the presence of axonal coats within older animals. This supports the observation that neural responses recorded from ventral and medial MGB of older mice were more likely to synchronize to temporally varying stimuli presented at faster repetition rates than those recorded from young adult animals. These changes are observed in animals with normal hearing thresholds, confirming that neural processing differs between the MGB subdivisions and such processing is associated with age-related changes to PNNs. Understanding these age-related changes and how they occur have important implications for the design of effective therapeutic interventions to improve speech intelligibility into later life.
Collapse
Affiliation(s)
- Shmma Quraishe
- School of Biological Sciences, B85, University of Southampton, Southampton, UK
| | - Tracey Newman
- Clinical and Experimental Sciences, B85, University of Southampton, Southampton, UK
| | | |
Collapse
|
164
|
Thaler L, Zhang X, Antoniou M, Kish DC, Cowie D. The flexible action system: Click-based echolocation may replace certain visual functionality for adaptive walking. J Exp Psychol Hum Percept Perform 2019; 46:21-35. [PMID: 31556685 PMCID: PMC6936248 DOI: 10.1037/xhp0000697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
People use sensory, in particular visual, information to guide actions such as walking around obstacles, grasping or reaching. However, it is presently unclear how malleable the sensorimotor system is. The present study investigated this by measuring how click-based echolocation may be used to avoid obstacles while walking. We tested 7 blind echolocation experts, 14 sighted, and 10 blind echolocation beginners. For comparison, we also tested 10 sighted participants, who used vision. To maximize the relevance of our research for people with vision impairments, we also included a condition where the long cane was used and considered obstacles at different elevations. Motion capture and sound data were acquired simultaneously. We found that echolocation experts walked just as fast as sighted participants using vision, and faster than either sighted or blind echolocation beginners. Walking paths of echolocation experts indicated early and smooth adjustments, similar to those shown by sighted people using vision and different from later and more abrupt adjustments of beginners. Further, for all participants, the use of echolocation significantly decreased collision frequency with obstacles at head, but not ground level. Further analyses showed that participants who made clicks with higher spectral frequency content walked faster, and that for experts higher clicking rates were associated with faster walking. The results highlight that people can use novel sensory information (here, echolocation) to guide actions, demonstrating the action system’s ability to adapt to changes in sensory input. They also highlight that regular use of echolocation enhances sensory-motor coordination for walking in blind people. Vision loss has negative consequences for people’s mobility. The current report demonstrates that echolocation might replace certain visual functionality for adaptive walking. Importantly, the report also highlights that echolocation and long cane are complementary mobility techniques. The findings have direct relevance for professionals involved in mobility instruction and for people who are blind.
Collapse
Affiliation(s)
| | - Xinyu Zhang
- School of Information and Electronics, Beijing Institute of Technology
| | - Michail Antoniou
- Department of Electronic Electrical and Systems Engineering, School of Engineering, University of Birmingham
| | | | | |
Collapse
|
165
|
Macharadze T, Budinger E, Brosch M, Scheich H, Ohl FW, Henschke JU. Early Sensory Loss Alters the Dendritic Branching and Spine Density of Supragranular Pyramidal Neurons in Rodent Primary Sensory Cortices. Front Neural Circuits 2019; 13:61. [PMID: 31611778 PMCID: PMC6773815 DOI: 10.3389/fncir.2019.00061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/03/2019] [Indexed: 01/26/2023] Open
Abstract
Multisensory integration in primary auditory (A1), visual (V1), and somatosensory cortex (S1) is substantially mediated by their direct interconnections and by thalamic inputs across the sensory modalities. We have previously shown in rodents (Mongolian gerbils) that during postnatal development, the anatomical and functional strengths of these crossmodal and also of sensory matched connections are determined by early auditory, somatosensory, and visual experience. Because supragranular layer III pyramidal neurons are major targets of corticocortical and thalamocortical connections, we investigated in this follow-up study how the loss of early sensory experience changes their dendritic morphology. Gerbils were sensory deprived early in development by either bilateral sciatic nerve transection at postnatal day (P) 5, ototoxic inner hair cell damage at P10, or eye enucleation at P10. Sholl and branch order analyses of Golgi-stained layer III pyramidal neurons at P28, which demarcates the end of the sensory critical period in this species, revealed that visual and somatosensory deprivation leads to a general increase of apical and basal dendritic branching in A1, V1, and S1. In contrast, dendritic branching, particularly of apical dendrites, decreased in all three areas following auditory deprivation. Generally, the number of spines, and consequently spine density, along the apical and basal dendrites decreased in both sensory deprived and non-deprived cortical areas. Therefore, we conclude that the loss of early sensory experience induces a refinement of corticocortical crossmodal and other cortical and thalamic connections by pruning of dendritic spines at the end of the critical period. Based on present and previous own results and on findings from the literature, we propose a scenario for multisensory development following early sensory loss.
Collapse
Affiliation(s)
- Tamar Macharadze
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Clinic for Anesthesiology and Intensive Care Medicine, Otto von Guericke University Hospital, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Michael Brosch
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Special Lab Primate Neurobiology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Henning Scheich
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Emeritus Group Lifelong Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute for Biology, Otto von Guericke University, Magdeburg, Germany
| | - Julia U Henschke
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
166
|
Reed DT, Tosh CR. Diversity loss is predicted to increase extinction risk of specialist animals by constraining their ability to expand niche. J Theor Biol 2019; 476:44-50. [PMID: 31132362 DOI: 10.1016/j.jtbi.2019.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/15/2019] [Accepted: 05/23/2019] [Indexed: 11/17/2022]
Abstract
Specialist animals are at a greater risk of extinction in the face of environmental change than generalist ones. The inability of some specialist taxa to expand host range through evolution may exacerbate or cause their high extinction risk. Here we use connectionism (a framework for modelling animal behaviour) to predict the environmental and physiological factors that predispose some specialist taxa to an 'evolutionary dead-end'. Neural networks are evolved to become resource-specialised in a resource-abundant and resource-diverse 'historical' environment while losing 'genes' that should restrict their ability to expand their host range. Networks are subsequently challenged to escape their dead-end by expanding host range in a 'contemporary' environment that may have depleted resource abundance and diversity (as many human impacted environments do). Loss of diversity in available resources universally constrains the ability of networks to expand host range and this effect is very robust to network conformation. Environmental resource abundance is more variable in its effect. Networks are generally robust to loss of genetic diversity during the evolution of specialisation except at very high rates of loss. By omitting historical specialisation, we show that the effect of resource diversity on host range expansion is not a universal network property but something that is often specific to specialist organisms. Historical specialisation also slightly reduces the robustness of networks in the contemporary environment to loss of genetic diversity during the specialisation process. Fundamentally, simulations predict that loss of local resource diversity will further increase the vulnerability of specialists to extinction by constraining their ability to expand host range in the face of environmental change.
Collapse
Affiliation(s)
- Daniel T Reed
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK.
| | - Colin R Tosh
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
167
|
McKimm J, Vogan CL, Roberts C, Nash E, Hothersall E, Jones PK. The Swansea 6D model: a diagnostic and conversational framework for supervisors, mentors and doctors in training. Postgrad Med J 2019; 95:482-486. [DOI: 10.1136/postgradmedj-2018-136258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/30/2019] [Accepted: 06/07/2019] [Indexed: 11/04/2022]
Abstract
Doctors in training are particularly vulnerable to stress and burnout, with the transition into the early parts of training being a period of acute anxiety. Supervisors and mentors have a key role to play in helping trainees make the transition from medical student to practising doctor. This often involves professional conversations, ranging from the relatively routine to difficult issues. The Swansea 6D model has been designed as a guidance tool which provides a simple, memorable framework around which conversations can be structured in terms of identifying meaningful expectations, providing explanations and reframing situations.
Collapse
|
168
|
Li X, Qiao Y, Shen H, Niu Z, Shang Y, Guo H. Topological reorganization after partial auditory deprivation—a structural connectivity study in single-sided deafness. Hear Res 2019; 380:75-83. [DOI: 10.1016/j.heares.2019.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022]
|
169
|
Bola Ł, Matuszewski J, Szczepanik M, Droździel D, Sliwinska MW, Paplińska M, Jednoróg K, Szwed M, Marchewka A. Functional hierarchy for tactile processing in the visual cortex of sighted adults. Neuroimage 2019; 202:116084. [PMID: 31400530 DOI: 10.1016/j.neuroimage.2019.116084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/07/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Perception via different sensory modalities was traditionally believed to be supported by largely separate brain systems. However, a growing number of studies demonstrate that the visual cortices of typical, sighted adults are involved in tactile and auditory perceptual processing. Here, we investigated the spatiotemporal dynamics of the visual cortex's involvement in a complex tactile task: Braille letter recognition. Sighted subjects underwent Braille training and then participated in a transcranial magnetic stimulation (TMS) study in which they tactually identified single Braille letters. During this task, TMS was applied to their left early visual cortex, visual word form area (VWFA), and left early somatosensory cortex at five time windows from 20 to 520 ms following the Braille letter presentation's onset. The subjects' response accuracy decreased when TMS was applied to the early visual cortex at the 120-220 ms time window and when TMS was applied to the VWFA at the 320-420 ms time window. Stimulation of the early somatosensory cortex did not have a time-specific effect on the accuracy of the subjects' Braille letter recognition, but rather caused a general slowdown during this task. Our results indicate that the involvement of sighted people's visual cortices in tactile perception respects the canonical visual hierarchy-the early tactile processing stages involve the early visual cortex, whereas more advanced tactile computations involve high-level visual areas. Our findings are compatible with the metamodal account of brain organization and suggest that the whole visual cortex may potentially support spatial perception in a task-specific, sensory-independent manner.
Collapse
Affiliation(s)
- Łukasz Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland; Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060, Krakow, Poland.
| | - Jacek Matuszewski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | - Michał Szczepanik
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | - Dawid Droździel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | | | - Małgorzata Paplińska
- The Maria Grzegorzewska University, 40 Szczęśliwicka Street, 02-353, Warsaw, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060, Krakow, Poland.
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02-093, Warsaw, Poland.
| |
Collapse
|
170
|
Qiao Y, Li X, Shen H, Zhang X, Sun Y, Hao W, Guo B, Ni D, Gao Z, Guo H, Shang Y. Downward cross-modal plasticity in single-sided deafness. Neuroimage 2019; 197:608-617. [DOI: 10.1016/j.neuroimage.2019.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022] Open
|
171
|
Wang S, Chen B, Yu Y, Yang H, Cui W, Li J, Fan GG. Alterations of structural and functional connectivity in profound sensorineural hearing loss infants within an early sensitive period: A combined DTI and fMRI study. Dev Cogn Neurosci 2019; 38:100654. [PMID: 31129460 PMCID: PMC6969342 DOI: 10.1016/j.dcn.2019.100654] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/02/2022] Open
Abstract
Due to heightened level of neuroplasticity, there is a sensitive period (2-4 years after birth) that exists for optimal central auditory development. Using diffusion tensor imaging combined with resting-state functional connectivity (rsFC) analysis, this study directly investigates the structural connectivity alterations of the whole brain white matter (WM) and the functional reorganization of the auditory network in infants with sensorineural hearing loss (SNHL) during the early sensitive period. 46 bilateral profound SNHL infants prior to cochlear implantation (mean age, 17.59 months) and 33 healthy controls (mean age, 18.55 months) were included in the analysis. Compared with controls, SNHL infants showed widespread WM alterations, including bilateral superior longitudinal fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, right corticospinal tract, posterior thalamic radiation and left uncinate fasciculus. Moreover, SNHL infants demonstrated increased rsFC between left/right primary auditory cortex seeds and right insula and superior temporal gyrus. In conclusion, this study suggests that SNHL in the early sensitive period is associated with diffuse WM alterations that mainly affect the auditory and language pathways. Furthermore, increased rsFC in areas mainly associated with auditory and language networks may potentially reflect reorganization and compensatory activation in response to auditory deprivation during the early sensitive period.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Radiology, The First Hospital, China Medical University, #155, Nanjing North St., Heping Dist., Shenyang, Liaoning 110001, China
| | - Boyu Chen
- Department of Radiology, The First Hospital, China Medical University, #155, Nanjing North St., Heping Dist., Shenyang, Liaoning 110001, China
| | - Yalian Yu
- Department of Otorhinolaryngology, The First Hospital, China Medical University, #155, Nanjing North St., Heping Dist., Shenyang, Liaoning 110001, China
| | - Huaguang Yang
- Department of Radiology, The First Hospital, China Medical University, #155, Nanjing North St., Heping Dist., Shenyang, Liaoning 110001, China
| | - Wenzhuo Cui
- Department of Radiology, The First Hospital, China Medical University, #155, Nanjing North St., Heping Dist., Shenyang, Liaoning 110001, China
| | - Jian Li
- Department of Radiology, The First Hospital, China Medical University, #155, Nanjing North St., Heping Dist., Shenyang, Liaoning 110001, China
| | - Guo Guang Fan
- Department of Radiology, The First Hospital, China Medical University, #155, Nanjing North St., Heping Dist., Shenyang, Liaoning 110001, China.
| |
Collapse
|
172
|
Abstract
Over the past decade, there has been an unprecedented level of interest and progress into understanding visual processing in the brain of the deaf. Specifically, when the brain is deprived of input from one sensory modality (such as hearing), it often compensates with supranormal performance in one or more of the intact sensory systems (such as vision). Recent psychophysical, functional imaging, and reversible deactivation studies have converged to define the specific visual abilities that are enhanced in the deaf, as well as the cortical loci that undergo crossmodal plasticity in the deaf and are responsible for mediating these superior visual functions. Examination of these investigations reveals that central visual functions, such as object and facial discrimination, and peripheral visual functions, such as motion detection, visual localization, visuomotor synchronization, and Vernier acuity (measured in the periphery), are specifically enhanced in the deaf, compared with hearing participants. Furthermore, the cortical loci identified to mediate these functions reside in deaf auditory cortex: BA 41, BA 42, and BA 22, in addition to the rostral area, planum temporale, Te3, and temporal voice area in humans; primary auditory cortex, anterior auditory field, dorsal zone of auditory cortex, auditory field of the anterior ectosylvian sulcus, and posterior auditory field in cats; and primary auditory cortex and anterior auditory field in both ferrets and mice. Overall, the findings from these studies show that crossmodal reorganization in auditory cortex of the deaf is responsible for the superior visual abilities of the deaf.
Collapse
|
173
|
Worthman CM. Shared and local pathways in suffering and resilience: Keeping the body in mind. Transcult Psychiatry 2019; 56:775-785. [PMID: 31347474 DOI: 10.1177/1363461519862700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
174
|
Amadeo MB, Campus C, Pavani F, Gori M. Spatial Cues Influence Time Estimations in Deaf Individuals. iScience 2019; 19:369-377. [PMID: 31415998 PMCID: PMC6702436 DOI: 10.1016/j.isci.2019.07.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022] Open
Abstract
Recent studies have reported a strong interaction between spatial and temporal representation when visual experience is missing: blind people use temporal representation of events to represent spatial metrics. Given the superiority of audition on time perception, we hypothesized that when audition is not available complex temporal representations could be impaired, and spatial representation of events could be used to build temporal metrics. To test this hypothesis, deaf and hearing subjects were tested with a visual temporal task where conflicting and not conflicting spatiotemporal information was delivered. As predicted, we observed a strong deficit of deaf participants when only temporal cues were useful and space was uninformative with respect to time. However, the deficit disappeared when coherent spatiotemporal cues were presented and increased for conflicting spatiotemporal stimuli. These results highlight that spatial cues influence time estimations in deaf participants, suggesting that deaf individuals use spatial information to infer temporal environmental coordinates.
Collapse
Affiliation(s)
- Maria Bianca Amadeo
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83, 16152 Genova, Italy; Department of Informatics, Bioengineering, Robotics and Systems Engineering, Università degli Studi di Genova, via all'Opera Pia, 13, 16145 Genova, Italy.
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83, 16152 Genova, Italy
| | - Francesco Pavani
- Center for Mind/Brain Sciences, CIMeC, University of Trento, Corso Bettini 31, 38068 Rovereto, Italy; Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 81, 38068 Rovereto, Italy; Centre de Recherche en Neuroscience de Lyon (CNRL), IMPACT, Avenue du doyen Lèpine 16, 69500 Bron, France
| | - Monica Gori
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83, 16152 Genova, Italy
| |
Collapse
|
175
|
Pei YC, Cheng YP, Chen JL, Lin CH, Wen CJ, Huang JJ. Early recovery of neuronal functioning in the sensory cortex after nerve reconstruction surgery. Restor Neurol Neurosci 2019; 37:409-419. [PMID: 31322584 PMCID: PMC6700653 DOI: 10.3233/rnn-190914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nerve reconstructive surgery induces a transient loss and a prolonged and a gradual return of sensory inputs to the brain. It is unknown whether, following this massive peripheral denervation, the brain will experience a prolonged period of severe, intrinsic dysfunction. OBJECTIVE We aim to investigate the mechanisms of return of processing function in cortical neurons. METHODS We used the whisker model in rats to evaluate the functional recovery in the somatosensory cortex after a nerve reconstruction surgery. Multi-unit recording in the barrel cortex was performed in lightly anesthetized rats while their whiskers were stimulated by a whisker stimulator. RESULTS We observed a loss of neuronal responses to whisker stimulation 1 week after surgery, which started to recover 2 weeks after surgery. Following the surgery, only 11.8% of units had principle whiskers (PWs) returned to their original status while 17.7% had PWs different from their original status, indicating the effect of aberrant reinnervation on the whisker response map. CONCLUSIONS Robust neuronal responses to sensory stimulation even when only sparse sensory inputs are available in the early recovery phase. During this phase, aberrant reinnervation induces disorganized whisker tuning, a finding that might be account for the hypoesthesia and paresthesia during early recovery after nerve reconstruction.
Collapse
Affiliation(s)
- Yu-Chen Pei
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan.,School of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Yu-Po Cheng
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Ji-Lin Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan.,School of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Cheng-Hung Lin
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Chih-Jen Wen
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Jian-Jia Huang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan.,School of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
176
|
Kral A, Dorman MF, Wilson BS. Neuronal Development of Hearing and Language: Cochlear Implants and Critical Periods. Annu Rev Neurosci 2019; 42:47-65. [DOI: 10.1146/annurev-neuro-080317-061513] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The modern cochlear implant (CI) is the most successful neural prosthesis developed to date. CIs provide hearing to the profoundly hearing impaired and allow the acquisition of spoken language in children born deaf. Results from studies enabled by the CI have provided new insights into ( a) minimal representations at the periphery for speech reception, ( b) brain mechanisms for decoding speech presented in quiet and in acoustically adverse conditions, ( c) the developmental neuroscience of language and hearing, and ( d) the mechanisms and time courses of intramodal and cross-modal plasticity. Additionally, the results have underscored the interconnectedness of brain functions and the importance of top-down processes in perception and learning. The findings are described in this review with emphasis on the developing brain and the acquisition of hearing and spoken language.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical University, 30625 Hannover, Germany
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75080, USA
- School of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael F. Dorman
- Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287, USA
| | - Blake S. Wilson
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75080, USA
- School of Medicine and Pratt School of Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
177
|
Cardon G, Sharma A. Somatosensory Cross-Modal Reorganization in Children With Cochlear Implants. Front Neurosci 2019; 13:469. [PMID: 31312115 PMCID: PMC6613479 DOI: 10.3389/fnins.2019.00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Deprived of sensory input, as in deafness, the brain tends to reorganize. Cross-modal reorganization occurs when cortices associated with deficient sensory modalities are recruited by other, intact senses for processing of the latter's sensory input. Studies have shown that this type of reorganization may affect outcomes when sensory stimulation is later introduced via intervention devices. One such device is the cochlear implant (CI). Hundreds of thousands of CIs have been fitted on people with hearing impairment worldwide, many of them children. Factors such as age of implantation have proven useful in predicting speech perception outcome with these devices in children. However, a portion of the variance in speech understanding ability remains unexplained. It is possible that the degree of cross-modal reorganization may explain additional variability in listening outcomes. Thus, the current study aimed to examine possible somatosensory cross-modal reorganization of the auditory cortices. To this end we used high density EEG to record cortical responses to vibrotactile stimuli in children with normal hearing (NH) and those with CIs. We first investigated cortical somatosensory evoked potentials (CSEP) in NH children, in order to establish normal patterns of CSEP waveform morphology and sources of cortical activity. We then compared CSEP waveforms and estimations of cortical sources between NH children and those with CIs to assess the degree of somatosensory cross-modal reorganization. Results showed that NH children showed expected patterns of CSEP and current density reconstructions, such that postcentral cortices were activated contralaterally to the side of stimulation. Participants with CIs also showed this pattern of activity. However, in addition, they showed activation of auditory cortical areas in response to somatosensory stimulation. Additionally, certain CSEP waveform components were significantly earlier in the CI group than the children with NH. These results are taken as evidence of cross-modal reorganization by the somatosensory modality in children with CIs. Speech perception in noise scores were negatively associated with CSEP waveform components latencies in the CI group, suggesting that the degree of cross-modal reorganization is related to speech perception outcomes. These findings may have implications for clinical rehabilitation in children with cochlear implants.
Collapse
Affiliation(s)
- Garrett Cardon
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| | - Anu Sharma
- Department of Speech, Language, and Hearing Sciences, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
178
|
Enhanced Visual Attentional Modulation in Patients with Inherited Peripheral Retinal Degeneration in the Absence of Cortical Degeneration. Neural Plast 2019; 2019:8136354. [PMID: 31341470 PMCID: PMC6614956 DOI: 10.1155/2019/8136354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
The role of attentional mechanisms in peripheral vision loss remains an outstanding question. Our study was aimed at determining the effect of genetically determined peripheral retinal dystrophy caused by Retinitis Pigmentosa (RP) on visual cortical function and tested the recruitment of attentional mechanisms using functional magnetic resonance imaging (fMRI). We included thirteen patients and twenty-two age- and gender-matched controls. We analyzed cortical responses under attentional demands and passive viewing conditions while presenting a visual stimulus covering the central and paracentral visual field. Brain activity was studied in visual areas V1, V2, and V3 as well as in cortical regions of interest corresponding to the preserved and the damaged visual field. The influence of visual field extent and age of disease onset were also investigated. Cortical thickness of visual areas was also measured. We found that cortical visual responses under attentional demands were increased in patients with larger degeneration of visual field, as demonstrated by significant interaction effects between group and task conditions. Moreover, activation during the task condition was increased for patients in two cortical regions of interest corresponding to the preserved and damaged visual field, specifically in patients with severe visual field loss. These findings were observed in the presence of preserved visual cortical structure. We conclude that RP patients have enhanced visual attention recruitment despite their retinal degeneration, while cortical structure and overall response levels remain intact. The unmasking of feedback signals from higher level visual regions involved in attentional processes may explain the increased cortical responses. These findings are relevant for the design of strategies for treating retinal diseases, based on attentional cuing.
Collapse
|
179
|
Dempsey-Jones H, Themistocleous AC, Carone D, Ng TWC, Harrar V, Makin TR. Blocking tactile input to one finger using anaesthetic enhances touch perception and learning in other fingers. J Exp Psychol Gen 2019; 148:713-727. [PMID: 30973263 PMCID: PMC6459089 DOI: 10.1037/xge0000514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Brain plasticity is a key mechanism for learning and recovery. A striking example of plasticity in the adult brain occurs following input loss, for example, following amputation, whereby the deprived zone is “invaded” by new representations. Although it has long been assumed that such reorganization leads to functional benefits for the invading representation, the behavioral evidence is controversial. Here, we investigate whether a temporary period of somatosensory input loss to one finger, induced by anesthetic block, is sufficient to cause improvements in touch perception (“direct” effects of deafferentation). Further, we determine whether this deprivation can improve touch perception by enhancing sensory learning processes, for example, by training (“interactive” effects). Importantly, we explore whether direct and interactive effects of deprivation are dissociable by directly comparing their effects on touch perception. Using psychophysical thresholds, we found brief deprivation alone caused improvements in tactile perception of a finger adjacent to the blocked finger but not to non-neighboring fingers. Two additional groups underwent minimal tactile training to one finger either during anesthetic block of the neighboring finger or a sham block with saline. Deprivation significantly enhanced the effects of tactile perceptual training, causing greater learning transfer compared with sham block. That is, following deafferentation and training, learning gains were seen in fingers normally outside the boundaries of topographic transfer of tactile perceptual learning. Our results demonstrate that sensory deprivation can improve perceptual abilities, both directly and interactively, when combined with sensory learning. This dissociation provides novel opportunities for future clinical interventions to improve sensation.
Collapse
Affiliation(s)
| | | | - Davide Carone
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford
| | - Tammy W C Ng
- Department of Anaesthesia, University College Hospital
| | - Vanessa Harrar
- Visual Psychophysics and Perception Laboratory, School of Optometry, University of Montreal
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London
| |
Collapse
|
180
|
Compensatory Plasticity in the Lateral Extrastriate Visual Cortex Preserves Audiovisual Temporal Processing following Adult-Onset Hearing Loss. Neural Plast 2019; 2019:7946987. [PMID: 31223309 PMCID: PMC6541963 DOI: 10.1155/2019/7946987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Partial hearing loss can cause neurons in the auditory and audiovisual cortices to increase their responsiveness to visual stimuli; however, behavioral studies in hearing-impaired humans and rats have found that the perceptual ability to accurately judge the relative timing of auditory and visual stimuli is largely unaffected. To investigate the neurophysiological basis of how audiovisual temporal acuity may be preserved in the presence of hearing loss-induced crossmodal plasticity, we exposed adult rats to loud noise and two weeks later performed in vivo electrophysiological recordings in two neighboring regions within the lateral extrastriate visual (V2L) cortex—a multisensory zone known to be responsive to audiovisual stimuli (V2L-Mz) and a predominantly auditory zone (V2L-Az). To examine the cortical layer-specific effects at the level of postsynaptic potentials, a current source density (CSD) analysis was applied to the local field potential (LFP) data recorded in response to auditory and visual stimuli presented at various stimulus onset asynchronies (SOAs). As predicted, differential effects were observed in the neighboring cortical regions' postnoise exposure. Most notably, an analysis of the strength of multisensory response interactions revealed that V2L-Mz lost its sensitivity to the relative timing of the auditory and visual stimuli, due to an increased responsiveness to visual stimulation that produced a prominent audiovisual response irrespective of the SOA. In contrast, not only did the V2L-Az in noise-exposed rats become more responsive to visual stimuli but neurons in this region also inherited the capacity to process audiovisual stimuli with the temporal precision and specificity that was previously restricted to the V2L-Mz. Thus, the present study provides the first demonstration that audiovisual temporal processing can be preserved following moderate hearing loss via compensatory plasticity in the higher-order sensory cortices that is ultimately characterized by a functional transition in the cortical region capable of temporal sensitivity.
Collapse
|
181
|
Li L, Zhang S, Dobson J. The contribution of small and large sensory afferents to postural control in patients with peripheral neuropathy. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:218-227. [PMID: 31193300 PMCID: PMC6523875 DOI: 10.1016/j.jshs.2018.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/24/2018] [Accepted: 09/14/2018] [Indexed: 05/13/2023]
Abstract
Peripheral neuropathy (PN) is a multifarious disorder that is caused by damage to the peripheral nerves. Although the symptoms of PN vary with the etiology, most cases are characterized by impaired tactile and proprioceptive sensation that progresses in a distal to proximal manner. Balance also tends to deteriorate as the disorder becomes more severe, and those afflicted are substantially more likely to fall while walking compared with those who are healthy. Most patients with PN walk more cautiously and with greater stride variability than age-matched controls, but the majority of their falls occur when they must react to a perturbation such as a slippery or uneven surface. The purpose of this study was to first describe the role of somatosensory feedback in the control of posture and then discuss how that relationship is typically affected by the most common types of PN. A comprehensive review of the scientific literature was conducted using MEDLINE, and the relevant information was synthesized. The evidence indicates that the proprioceptive feedback that is conveyed primarily through larger type I afferents is important for postural control. However, the evidence indicates that the tactile feedback communicated through smaller type II afferents is particularly critical to the maintenance of balance. Many forms of PN often lead to chronic tactile desensitization in the soles of the feet and, although the central nervous system seems to adapt to this smaller type II afferent dysfunction by relying on more larger type I afferent reflex loops, the result is still decreased stability. We propose a model that is intended both to help explain the relationship between stability and the smaller type II afferent and the larger type I afferent feedback that may be impaired by PN and to assist in the development of pertinent rehabilitative interventions.
Collapse
Affiliation(s)
- Li Li
- College of Physical Education, Hunan Normal University, Changsha 410012, China
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA 30460, USA
- Corresponding author.
| | - Shuqi Zhang
- Department of Kinesiology and Physical Education, Northern Illinois University, DeKalb, IL 60115, USA
| | - John Dobson
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
182
|
Landmann J, Richter F, Classen J, Richter A, Penninger JM, Bechmann I. Behavioral phenotyping of calcium channel (CACN) subunit α2δ3 knockout mice: Consequences of sensory cross-modal activation. Behav Brain Res 2019; 364:393-402. [DOI: 10.1016/j.bbr.2017.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 01/14/2023]
|
183
|
Rudner M, Seeto M, Keidser G, Johnson B, Rönnberg J. Poorer Speech Reception Threshold in Noise Is Associated With Lower Brain Volume in Auditory and Cognitive Processing Regions. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:1117-1130. [PMID: 31026199 DOI: 10.1044/2018_jslhr-h-ascc7-18-0142] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Purpose Hearing loss is associated with changes in brain volume in regions supporting auditory and cognitive processing. The purpose of this study was to determine whether there is a systematic association between hearing ability and brain volume in cross-sectional data from a large nonclinical cohort of middle-aged adults available from the UK Biobank Resource ( http://www.ukbiobank.ac.uk ). Method We performed a set of regression analyses to determine the association between speech reception threshold in noise (SRTn) and global brain volume as well as predefined regions of interest (ROIs) based on T1-weighted structural images, controlling for hearing-related comorbidities and cognition as well as demographic factors. In a 2nd set of analyses, we additionally controlled for hearing aid (HA) use. We predicted statistically significant associations globally and in ROIs including auditory and cognitive processing regions, possibly modulated by HA use. Results Whole-brain gray matter volume was significantly lower for individuals with poorer SRTn. Furthermore, the volume of 9 predicted ROIs including both auditory and cognitive processing regions was lower for individuals with poorer SRTn. The greatest percentage difference (-0.57%) in ROI volume relating to a 1 SD worsening of SRTn was found in the left superior temporal gyrus. HA use did not substantially modulate the pattern of association between brain volume and SRTn. Conclusions In a large middle-aged nonclinical population, poorer hearing ability is associated with lower brain volume globally as well as in cortical and subcortical regions involved in auditory and cognitive processing, but there was no conclusive evidence that this effect is moderated by HA use. This pattern of results supports the notion that poor hearing leads to reduced volume in brain regions recruited during speech understanding under challenging conditions. These findings should be tested in future longitudinal, experimental studies. Supplemental Material https://doi.org/10.23641/asha.7949357.
Collapse
Affiliation(s)
- Mary Rudner
- Linnaeus Centre HEAD, Department of Behavioural Sciences and Learning, Linköping University, Sweden
| | - Mark Seeto
- National Acoustic Laboratories and the HEARing CRC, Sydney, New South Wales, Australia
| | - Gitte Keidser
- National Acoustic Laboratories and the HEARing CRC, Sydney, New South Wales, Australia
| | - Blake Johnson
- Department of Cognitive Science, Macquarie University, Sydney, New South Wales, Australia
| | - Jerker Rönnberg
- Linnaeus Centre HEAD, Department of Behavioural Sciences and Learning, Linköping University, Sweden
| |
Collapse
|
184
|
Rączy K, Urbańczyk A, Korczyk M, Szewczyk JM, Sumera E, Szwed M. Orthographic Priming in Braille Reading as Evidence for Task-specific Reorganization in the Ventral Visual Cortex of the Congenitally Blind. J Cogn Neurosci 2019; 31:1065-1078. [PMID: 30938589 DOI: 10.1162/jocn_a_01407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The task-specific principle asserts that, following deafness or blindness, the deprived cortex is reorganized in a manner such that the task of a given area is preserved even though its input modality has been switched. Accordingly, tactile reading engages the ventral occipitotemporal cortex (vOT) in the blind in a similar way to regular reading in the sighted. Others, however, show that the vOT of the blind processes spoken sentence structure, which suggests that the task-specific principle might not apply to vOT. The strongest evidence for the vOT's engagement in sighted reading comes from orthographic repetition-suppression studies. Here, congenitally blind adults were tested in an fMRI repetition-suppression paradigm. Results reveal a double dissociation, with tactile orthographic priming in the vOT and auditory priming in general language areas. Reconciling our finding with other evidence, we propose that the vOT in the blind serves multiple functions, one of which, orthographic processing, overlaps with its function in the sighted.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Sumera
- Institute for the Blind and Partially Sighted Children, Krakow, Poland
| | | |
Collapse
|
185
|
Alkhateeb A, Voss P, Zeitouni A, de-Villers-Sidani E. Reversible external auditory canal ligation (REACL): A novel surgical technique to induce transient and reversible hearing loss in developing rats. J Neurosci Methods 2019; 317:108-112. [PMID: 30790586 DOI: 10.1016/j.jneumeth.2019.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cases of sensory loss provide an excellent model to study the plastic nature of cortical sensory systems. Models of reversible sensory loss are particularly useful for establishing the timeline of various critical periods for cortical plasticity. However, there currently is an absence of adequate methods to produce reversible hearing loss in neonatal and developing rodents. NEW METHOD We propose a novel and reversible adaptation of an existing surgical technique-external auditory canal ligation (EACL)-that produces a reliable and moderate hearing loss. RESULTS Auditory brainstem responses (ABRs) were used to measure both the magnitude of the hearing loss induced by EACL and the auditory thresholds following hearing restoration. The EACL and reopening procedures, as assessed by visual inspection, had success rates of 81% and 78%, respectively. The average hearing thresholds, as assessed with ABRs, increased by nearly 40 decibels across all tested frequencies. Hearing thresholds returned to normal levels following the reopening procedure. COMPARISON WITH EXISTING METHODS Our procedure yields similar benefits to other methods, such as producing a reliable and moderate hearing loss that is entirely reversible. Furthermore, to our knowledge, it is the first that can be performed in neonatal rodents, thus allowing researchers the opportunity to assess the effects of sensory loss on behavior and cortical neurophysiology during developmental critical periods. CONCLUSION Our modified technique of reversible external auditory canal ligation offers an easy, and reliable method to induce a transient state of hearing loss that mimics naturally occurring congenital conductive hearing loss.
Collapse
Affiliation(s)
- Ahmed Alkhateeb
- Department of Otolaryngology, Head and Neck Surgery, Royal Victoria Hospital, McGill University, Montreal, QC, Canada
| | - Patrice Voss
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Anthony Zeitouni
- Department of Otolaryngology, Head and Neck Surgery, Royal Victoria Hospital, McGill University, Montreal, QC, Canada
| | - Etienne de-Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
186
|
Sabel BA, Flammer J, Merabet LB. Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness - a review. Restor Neurol Neurosci 2019; 36:767-791. [PMID: 30412515 PMCID: PMC6294586 DOI: 10.3233/rnn-180880] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vision loss due to ocular diseases such as glaucoma, optic neuropathy, macular degeneration, or diabetic retinopathy, are generally considered an exclusive affair of the retina and/or optic nerve. However, the brain, through multiple indirect influences, has also a major impact on functional visual impairment. Such indirect influences include intracerebral pressure, eye movements, top-down modulation (attention, cognition), and emotionally triggered stress hormone release affecting blood vessel dysregulation. Therefore, vision loss should be viewed as the result of multiple interactions within a “brain-eye-vascular triad”, and several eye diseases may also be considered as brain diseases in disguise. While the brain is part of the problem, it can also be part of the solution. Neuronal networks of the brain can “amplify” residual vision through neuroplasticity changes of local and global functional connectivity by activating, modulating and strengthening residual visual signals. The activation of residual vision can be achieved by different means such as vision restoration training, non-invasive brain stimulation, or blood flow enhancing medications. Modulating brain functional networks and improving vascular regulation may offer new opportunities to recover or restore low vision by increasing visual field size, visual acuity and overall functional vision. Hence, neuroscience offers new insights to better understand vision loss, and modulating brain and vascular function is a promising source for new opportunities to activate residual vision to achieve restoration and recovery to improve quality of live in patients suffering from low vision.
Collapse
Affiliation(s)
- Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Josef Flammer
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lotfi B Merabet
- Department of Ophthalmology, The Laboratory for Visual Neuroplasticity, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| |
Collapse
|
187
|
Martins AT, Faísca L, Vieira H, Gonçalves G. Emotional Recognition and Empathy both in Deaf and Blind Adults. JOURNAL OF DEAF STUDIES AND DEAF EDUCATION 2019; 24:119-127. [PMID: 30668877 DOI: 10.1093/deafed/eny046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Studies addressing the recognition of emotions in blind or deaf participants have been carried out only with children and adolescents. Due to these age limits, such studies do not clarify the long-term effects of vision and hearing disabilities on emotion recognition in adults. We assessed the ability to recognize basic emotions in 15 deaf adults (aged 32.4 ± 8.1 yrs) and in 15 blind adults (48.3 ± 10.5 yrs). Auditory and visual stimuli expressing six basic emotional states were presented to participants (Florida Affect Battery). Participants also performed an empathy test. Deaf participants showed difficulties in emotion recognition tasks compared to the typical hearing participants; however, differences were only statistically reliable for Facial Emotion Discrimination and Naming tasks (specifically, naming expressions of fear). Deaf participants also revealed inferior levels of cognitive empathy. Concerning blind participants, their performance was lower than the controls' only when the task required the evaluation of emotional prosody while ignoring the semantic content of the sentence. Overall, although deaf and blind participants performed reasonably well on tasks requiring recognition of basic emotions, sensory loss may hinder their social perception skills when processing subtle emotions or when the extraction of simultaneous prosodic and semantic information is required.
Collapse
Affiliation(s)
- Ana Teresa Martins
- University of Algarve, Centre for Biomedical Research (CBMR) and Centre for Spatial and Organizational Dynamics (CIEO)
| | - Luís Faísca
- University of Algarve, Centre for Biomedical Research (CBMR) and Centre for Spatial and Organizational Dynamics (CIEO)
| | - Helena Vieira
- University of Algarve, Centre for Biomedical Research (CBMR) and Centre for Spatial and Organizational Dynamics (CIEO)
| | - Gabriela Gonçalves
- University of Algarve, Centre for Biomedical Research (CBMR) and Centre for Spatial and Organizational Dynamics (CIEO)
| |
Collapse
|
188
|
Alfandari D, Vriend C, Heslenfeld DJ, Versfeld NJ, Kramer SE, Zekveld AA. Brain Volume Differences Associated With Hearing Impairment in Adults. Trends Hear 2019; 22:2331216518763689. [PMID: 29557274 PMCID: PMC5863860 DOI: 10.1177/2331216518763689] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Speech comprehension depends on the successful operation of a network of brain regions. Processing of degraded speech is associated with different patterns of brain activity in comparison with that of high-quality speech. In this exploratory study, we studied whether processing degraded auditory input in daily life because of hearing impairment is associated with differences in brain volume. We compared T1-weighted structural magnetic resonance images of 17 hearing-impaired (HI) adults with those of 17 normal-hearing (NH) controls using a voxel-based morphometry analysis. HI adults were individually matched with NH adults based on age and educational level. Gray and white matter brain volumes were compared between the groups by region-of-interest analyses in structures associated with speech processing, and by whole-brain analyses. The results suggest increased gray matter volume in the right angular gyrus and decreased white matter volume in the left fusiform gyrus in HI listeners as compared with NH ones. In the HI group, there was a significant correlation between hearing acuity and cluster volume of the gray matter cluster in the right angular gyrus. This correlation supports the link between partial hearing loss and altered brain volume. The alterations in volume may reflect the operation of compensatory mechanisms that are related to decoding meaning from degraded auditory input.
Collapse
Affiliation(s)
- Defne Alfandari
- 1 Department of Otolaryngology-Head and Neck Surgery, Section Ear & Hearing, VU University Medical Center, Amsterdam, the Netherlands.,2 Amsterdam Public Health Research Institute, VU University Medical Center, the Netherlands
| | - Chris Vriend
- 3 Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, the Netherlands.,4 Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands.,5 Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Dirk J Heslenfeld
- 6 Department of Psychology, VU University, Amsterdam, the Netherlands
| | - Niek J Versfeld
- 1 Department of Otolaryngology-Head and Neck Surgery, Section Ear & Hearing, VU University Medical Center, Amsterdam, the Netherlands.,2 Amsterdam Public Health Research Institute, VU University Medical Center, the Netherlands
| | - Sophia E Kramer
- 1 Department of Otolaryngology-Head and Neck Surgery, Section Ear & Hearing, VU University Medical Center, Amsterdam, the Netherlands.,2 Amsterdam Public Health Research Institute, VU University Medical Center, the Netherlands
| | - Adriana A Zekveld
- 1 Department of Otolaryngology-Head and Neck Surgery, Section Ear & Hearing, VU University Medical Center, Amsterdam, the Netherlands.,2 Amsterdam Public Health Research Institute, VU University Medical Center, the Netherlands.,7 Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, The Swedish Institute for Disability Research, Linköping University, Sweden
| |
Collapse
|
189
|
Hofstetter S, Sabbah N, Mohand-Saïd S, Sahel JA, Habas C, Safran AB, Amedi A. The development of white matter structural changes during the process of deterioration of the visual field. Sci Rep 2019; 9:2085. [PMID: 30765782 PMCID: PMC6375971 DOI: 10.1038/s41598-018-38430-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/27/2018] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence suggests that white matter plasticity in the adult brain is preserved after sensory and behavioral modifications. However, little is known about the progression of structural changes during the process of decline in visual input. Here we studied two groups of patients suffering from advanced retinitis pigmentosa with specific deterioration of the visual field: patients who had lost their peripheral visual field, retaining only central (“tunnel”) vision, and blind patients with complete visual field loss. Testing of these homogeneous groups made it possible to assess the extent to which the white matter is affected by loss of partial visual input and whether partially preserved visual input suffices to sustain stability in tracts beyond the primary visual system. Our results showed gradual changes in diffusivity that are indicative of degenerative processes in the primary visual pathway comprising the optic tract and the optic radiation. Interestingly, changes were also found in tracts of the ventral stream and the corticospinal fasciculus, depicting a gradual reorganisation of these tracts consequentially to the gradual loss of visual field coverage (from intact perception to partial vision to complete blindness). This reorganisation may point to microstructural plasticity underlying adaptive behavior and cross-modal integration after partial visual deprivation.
Collapse
Affiliation(s)
- Shir Hofstetter
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel. .,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel.
| | - Norman Sabbah
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France.,Fondation Ophtalmologique A. de Rothschild, F-75019, Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Christophe Habas
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France.,Centre de Neuro-Imagerie, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, F-75012, France
| | - Avinoam B Safran
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France.,Department of Clinical Neurosciences, Geneva University School of Medicine, Geneva, Switzerland
| | - Amir Amedi
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel. .,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel. .,Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France. .,The Cognitive Science Program, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel.
| |
Collapse
|
190
|
Stronger responses in the visual cortex of sighted compared to blind individuals during auditory space representation. Sci Rep 2019; 9:1935. [PMID: 30760758 PMCID: PMC6374481 DOI: 10.1038/s41598-018-37821-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/11/2018] [Indexed: 01/02/2023] Open
Abstract
It has been previously shown that the interaction between vision and audition involves early sensory cortices. However, the functional role of these interactions and their modulation due to sensory impairment is not yet understood. To shed light on the impact of vision on auditory spatial processing, we recorded ERPs and collected psychophysical responses during space and time bisection tasks in sighted and blind participants. They listened to three consecutive sounds and judged whether the second sound was either spatially or temporally further from the first or the third sound. We demonstrate that spatial metric representation of sounds elicits an early response of the visual cortex (P70) which is different between sighted and visually deprived individuals. Indeed, only in sighted and not in blind people P70 is strongly selective for the spatial position of sounds, mimicking many aspects of the visual-evoked C1. These results suggest that early auditory processing associated with the construction of spatial maps is mediated by visual experience. The lack of vision might impair the projection of multi-sensory maps on the retinotopic maps used by the visual cortex.
Collapse
|
191
|
Monroy C, Shafto C, Castellanos I, Bergeson T, Houston D. Visual habituation in deaf and hearing infants. PLoS One 2019; 14:e0209265. [PMID: 30726230 PMCID: PMC6364864 DOI: 10.1371/journal.pone.0209265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/03/2018] [Indexed: 11/29/2022] Open
Abstract
Early cognitive development relies on the sensory experiences that infants acquire as they explore their environment. Atypical experience in one sensory modality from birth may result in fundamental differences in general cognitive abilities. The primary aim of the current study was to compare visual habituation in infants with profound hearing loss, prior to receiving cochlear implants (CIs), and age-matched peers with typical hearing. Two complementary measures of cognitive function and attention maintenance were assessed: the length of time to habituate to a visual stimulus, and look-away rate during habituation. Findings revealed that deaf infants were slower to habituate to a visual stimulus and demonstrated a lower look-away rate than hearing infants. For deaf infants, habituation measures correlated with language outcomes on standardized assessments before cochlear implantation. These findings are consistent with prior evidence suggesting that habituation and look-away rates reflect efficiency of information processing and may suggest that deaf infants take longer to process visual stimuli relative to the hearing infants. Taken together, these findings are consistent with the hypothesis that hearing loss early in infancy influences aspects of general cognitive functioning.
Collapse
Affiliation(s)
- Claire Monroy
- Department of Otolaryngology—Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Carissa Shafto
- Insight Data Science, New York City, New York, United States of America
| | - Irina Castellanos
- Department of Otolaryngology—Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Tonya Bergeson
- Department of Communication Sciences and Disorders, Butler University, Indianapolis, Indiana, United States of America
| | - Derek Houston
- Department of Otolaryngology—Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| |
Collapse
|
192
|
Wajnerman Paz A. Using neural response properties to draw the distinction between modal and amodal representations. PHILOSOPHICAL PSYCHOLOGY 2019. [DOI: 10.1080/09515089.2018.1563677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Abel Wajnerman Paz
- Department of Philosophy, Universidad Alberto Hurtado, Santiago de Chile, Chile
| |
Collapse
|
193
|
Lamp G, Goodin P, Palmer S, Low E, Barutchu A, Carey LM. Activation of Bilateral Secondary Somatosensory Cortex With Right Hand Touch Stimulation: A Meta-Analysis of Functional Neuroimaging Studies. Front Neurol 2019; 9:1129. [PMID: 30687211 PMCID: PMC6335946 DOI: 10.3389/fneur.2018.01129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Brain regions involved in processing somatosensory information have been well documented through lesion, post-mortem, animal, and more recently, structural and functional neuroimaging studies. Functional neuroimaging studies characterize brain activation related to somatosensory processing; yet a meta-analysis synthesis of these findings is currently lacking and in-depth knowledge of the regions involved in somatosensory-related tasks may also be confounded by motor influences. Objectives: Our Activation Likelihood Estimate (ALE) meta-analysis sought to quantify brain regions that are involved in the tactile processing of the right (RH) and left hands (LH) separately, with the exclusion of motor related activity. Methods: The majority of studies (n = 41) measured activation associated with RH tactile stimulation. RH activation studies were grouped into those which conducted whole-brain analyses (n = 29) and those which examined specific regions of interest (ROI; n = 12). Few studies examined LH activation, though all were whole-brain studies (N = 7). Results: Meta-analysis of brain activation associated with RH tactile stimulation (whole-brain studies) revealed large clusters of activation in the left primary somatosensory cortex (S1) and bilaterally in the secondary somatosensory cortex (S2; including parietal operculum) and supramarginal gyrus (SMG), as well as the left anterior cingulate. Comparison between findings from RH whole-brain and ROI studies revealed activation as expected, but restricted primarily to S1 and S2 regions. Further, preliminary analyses of LH stimulation studies only, revealed two small clusters within the right S1 and S2 regions, likely limited due to the small number of studies. Contrast analyses revealed the one area of overlap for RH and LH, was right secondary somatosensory region. Conclusions: Findings from the whole-brain meta-analysis of right hand tactile stimulation emphasize the importance of taking into consideration bilateral activation, particularly in secondary somatosensory cortex. Further, the right parietal operculum/S2 region was commonly activated for right and left hand tactile stimulation, suggesting a lateralized pattern of somatosensory activation in right secondary somatosensory region. Implications for further research and for possible differences in right and left hemispheric stroke lesions are discussed.
Collapse
Affiliation(s)
- Gemma Lamp
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Occupational Therapy, School of Allied Health, La Trobe University, Bundoora, VIC, Australia
| | - Peter Goodin
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
| | - Susan Palmer
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
| | - Essie Low
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Department of Neurology, Sunshine Hospital, Western Health, Melbourne, VIC, Australia
- Department of Psychology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Ayla Barutchu
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Balliol College, University of Oxford, Oxford, United Kingdom
| | - Leeanne M. Carey
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Occupational Therapy, School of Allied Health, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
194
|
Al Aïn S, Poupon D, Hétu S, Mercier N, Steffener J, Frasnelli J. Smell training improves olfactory function and alters brain structure. Neuroimage 2019; 189:45-54. [PMID: 30630079 DOI: 10.1016/j.neuroimage.2019.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022] Open
Abstract
Training and repeated exposure to odorants leads to enhanced olfactory sensitivity. So far, the efficacy of intensive olfactory training on olfactory function in a healthy population and its underlying neurobiological basis remain poorly known. This study investigated the effects of a 6-week intensive and well-controlled olfactory training on olfactory function and brain structure/neuroplasticity. Thirty-six healthy young individuals were recruited and randomly distributed in three groups: (1) 12 participants underwent daily intensive olfactory training of at least 20 min that included an (a) odor intensity classification task, an (b) odor quality classification task and an (c) target odor detection task, (2) 12 participants underwent an equivalent visual control training, and (3) 12 control individuals did not participate in any training. Before and after the training period, all participants performed a series of olfactory tests and those from groups 1 and 2 underwent structural magnetic resonance (MR) imaging, from which we obtained measures such as cortical thickness and tissue density. Participants improved in the respectively trained tasks throughout the 6-weeks training period. Those who underwent olfactory training improved general olfactory function compared to control participants, especially in odor identification, thus showing intramodal transfer. Further, MR imaging analysis revealed that olfactory training led to increased cortical thickness in the right inferior frontal gyrus, the bilateral fusiform gyrus and the right entorhinal cortex. This research shows that intensive olfactory training can generally improve olfactory function and that this improvement is associated with changes in the structure of olfactory processing areas of the brain.
Collapse
Affiliation(s)
- Syrina Al Aïn
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | - Daphnée Poupon
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | | | - Noémie Mercier
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | | | - Johannes Frasnelli
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada; Research Center, Sacré-Cœur Hospital, Montréal, QC, Canada.
| |
Collapse
|
195
|
HOSOYA T. The basic repeating modules of the cerebral cortical circuit. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:303-311. [PMID: 31406055 PMCID: PMC6766449 DOI: 10.2183/pjab.95.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/08/2019] [Indexed: 06/10/2023]
Abstract
The fundamental organization of the cerebral cortical circuit is still poorly understood. In particular, it is unclear whether the diverse cell types form modular units that are repeated across the cortex. We discovered that the major cell types in cortical layer 5 form a lattice structure. Distinct types of excitatory and inhibitory neurons form cell type-specific radial clusters termed microcolumns. Microcolumns are present in diverse cortical areas, such as the visual, motor, and language areas, and are organized into periodic hexagonal lattice structures. Individual microcolumns have modular synaptic circuits and exhibit modular neuronal activity, suggesting that each of them functions as an information processing unit. Microcolumn development is suggested to be independent of cell lineage but coordinated by gap junctions. Thus, neurons in cortical layer 5 organize into a brainwide lattice structure of functional microcolumns, suggesting that parallel processing by massively repeated microcolumns underlie diverse cortical functions, such as sensory perception, motor control, and language processing.
Collapse
Affiliation(s)
- Toshihiko HOSOYA
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Ricoh Biomedical Research Department, Kawasaki, Kanagawa, Japan
| |
Collapse
|
196
|
van Heukelum S, Mogavero F, van de Wal MAE, Geers FE, França ASC, Buitelaar JK, Beckmann CF, Glennon JC, Havenith MN. Gradient of Parvalbumin- and Somatostatin-Expressing Interneurons Across Cingulate Cortex Is Differentially Linked to Aggression and Sociability in BALB/cJ Mice. Front Psychiatry 2019; 10:809. [PMID: 31803076 PMCID: PMC6873752 DOI: 10.3389/fpsyt.2019.00809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/14/2019] [Indexed: 01/18/2023] Open
Abstract
Successfully navigating social interactions requires the precise and balanced integration of social and environmental cues. When such flexible information integration fails, maladaptive behavioral patterns arise, including excessive aggression, empathy deficits, and social withdrawal, as seen in disorders such as conduct disorder and autism spectrum disorder. One of the main hubs for the context-dependent regulation of behavior is cingulate cortex, specifically anterior cingulate cortex (ACC) and midcingulate cortex (MCC). While volumetric abnormalities of ACC and MCC have been demonstrated in patients, little is known about the exact structural changes responsible for the dysregulation of behaviors such as aggression and social withdrawal. Here, we demonstrate that the distribution of parvalbumin (PV) and somatostatin (SOM) interneurons across ACC and MCC differentially predicts aggression and social withdrawal in BALB/cJ mice. BALB/cJ mice were phenotyped for their social behavior (three-chamber task) and aggression (resident-intruder task) compared to control (BALB/cByJ) mice. In line with previous studies, BALB/cJ mice behaved more aggressively than controls. The three-chamber task revealed two sub-groups of highly-sociable versus less-sociable BALB/cJ mice. Highly-sociable BALB/cJ mice were as aggressive as the less-sociable group-in fact, they committed more acts of socially acceptable aggression (threats and harmless bites). PV and SOM immunostaining revealed that a lack of specificity in the distribution of SOM and PV interneurons across cingulate cortex coincided with social withdrawal: both control mice and highly-sociable BALB/cJ mice showed a differential distribution of PV and SOM interneurons across the sub-areas of cingulate cortex, while for less-sociable BALB/cJ mice, the distributions were near-flat. In contrast, both highly-sociable and less-sociable BALB/cJ mice had a decreased concentration of PV interneurons in MCC compared to controls, which was therefore linked to aggressive behavior. Together, these results suggest that the dynamic balance of excitatory and inhibitory activity across ACC and MCC shapes both social and aggressive behavior.
Collapse
Affiliation(s)
- Sabrina van Heukelum
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Floriana Mogavero
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Melissa A E van de Wal
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Femke E Geers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Arthur S C França
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Martha N Havenith
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
197
|
Sapolsky RM. Doubled-Edged Swords in the Biology of Conflict. Front Psychol 2018; 9:2625. [PMID: 30619017 PMCID: PMC6306482 DOI: 10.3389/fpsyg.2018.02625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/05/2018] [Indexed: 11/13/2022] Open
Abstract
Considerable advances have been made in understanding the biological roots of conflict, and such understanding requires a multidisciplinary approach, recognizing the relevance of neurobiological, endocrine, genetic, developmental, and evolutionary perspectives. With these insights comes the first hints of biological interventions that may mitigate violence. However, such interventions are typically double-edged swords, with the potential to foster conflict rather than lessen it. This review constitutes a cautionary note of being careful of what one wishes for.
Collapse
Affiliation(s)
- Robert M. Sapolsky
- Gilbert Laboratory MC 5020, Departments of Biology, Neurology and Neurological Sciences, and Neurosurgery, Stanford University, Stanford, CA, United States
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|
198
|
Sinke MRT, Buitenhuis JW, van der Maas F, Nwiboko J, Dijkhuizen RM, van Diessen E, Otte WM. The power of language: Functional brain network topology of deaf and hearing in relation to sign language experience. Hear Res 2018; 373:32-47. [PMID: 30583198 DOI: 10.1016/j.heares.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 01/19/2023]
Abstract
Prolonged auditory sensory deprivation leads to brain reorganization. This is indicated by functional enhancement in remaining sensory systems and known as cross-modal plasticity. In this study we investigated differences in functional brain network topology between deaf and hearing individuals. We also studied altered functional network responses between deaf and hearing individuals with a recording paradigm containing an eyes-closed and eyes-open condition. Electroencephalography activity was recorded in a group of sign language-trained deaf (N = 71) and hearing people (N = 122) living in rural Africa. Functional brain networks were constructed from the functional connectivity between fourteen electrodes distributed over the scalp. Functional connectivity was quantified with the phase lag index based on bandpass filtered epochs of brain signal. We studied the functional connectivity between the auditory, somatosensory and visual cortex and performed whole-brain minimum spanning tree analysis to capture network backbone characteristics. Functional connectivity between different regions involved in sensory information processing tended to be stronger in deaf people during the eyes-closed condition in both the alpha and beta frequency band. Furthermore, we found differences in functional backbone topology between deaf and hearing individuals. The backbone topology altered during transition from the eyes-closed to eyes-open condition irrespective of deafness, but was more pronounced in deaf individuals. The transition of backbone strength was different between individuals with congenital, pre-lingual or post-lingual deafness. Functional backbone characteristics correlated with the experience of sign language. Overall, our study revealed more insights in functional network reorganization caused by auditory deprivation and cross-modal plasticity. It further supports the idea of a brain plasticity potential in deaf and hearing people. The association between network organization and acquired sign language experience reflects the ability of ongoing brain adaptation in people with hearing disabilities.
Collapse
Affiliation(s)
- Michel R T Sinke
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| | - Jan W Buitenhuis
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Frank van der Maas
- Reabilitação Baseadana Comunidade (RBC) Effata, Bissorã, Oio, Guinea-Bissau; CBR Effata, Omorodu Iseke Ebonyi LGA, Ebonyi State, Nigeria
| | - Job Nwiboko
- CBR Effata, Omorodu Iseke Ebonyi LGA, Ebonyi State, Nigeria
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Eric van Diessen
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands; Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
199
|
Cattaneo Z, Rinaldi L, Geraci C, Cecchetto C, Papagno C. Spatial biases in deaf, blind, and deafblind individuals as revealed by a haptic line bisection task. Q J Exp Psychol (Hove) 2018; 71:2325-2333. [PMID: 30362405 DOI: 10.1177/1747021817741288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we investigated whether auditory deprivation leads to a more balanced bilateral control of spatial attention in the haptic space. We tested four groups of participants: early deaf, early blind, deafblind, and control (normally hearing and sighted) participants. Using a haptic line bisection task, we found that while normally hearing individuals (even when blind) showed a significant tendency to bisect to the left of the veridical midpoint (i.e., pseudoneglect), deaf individuals did not show any significant directional bias. This was the case of both deaf signers and non-signers, in line with prior findings obtained using a visual line bisection task. Interestingly, deafblind individuals also erred significantly to the left, resembling the pattern of early blind and control participants. Overall, these data critically suggest that deafness induces changes in the hemispheric asymmetry subtending the orientation of spatial attention also in the haptic modality. Moreover, our findings indicate that what counterbalances the right-hemisphere dominance in the control of spatial attention is not the lack of auditory input per se, nor sign language use, but rather the heavier reliance on visual experience induced by early auditory deprivation.
Collapse
Affiliation(s)
- Zaira Cattaneo
- 1 Department of Psychology, University of Milano-Bicocca, Milano, Italy
- 2 Brain Connectivity Center, IRCCS Mondino, Pavia, Italy
| | - Luca Rinaldi
- 1 Department of Psychology, University of Milano-Bicocca, Milano, Italy
- 3 NeuroMI, University of Milano-Bicocca, Milano, Italy
| | - Carlo Geraci
- 4 Institut Jean Nicod, Département d'études cognitives, ENS, EHESS, CNRS, PSL Research University, Paris, France
| | - Carlo Cecchetto
- 1 Department of Psychology, University of Milano-Bicocca, Milano, Italy
- 5 Structures Formelles du Langage, Université Paris 8/CNRS, Paris, France
| | - Costanza Papagno
- 1 Department of Psychology, University of Milano-Bicocca, Milano, Italy
- 6 CIMeC and CeRiN, University of Trento, Rovereto, Italy
| |
Collapse
|
200
|
Mamach M, Kessler M, Bankstahl JP, Wilke F, Geworski L, Bengel FM, Kurt S, Berding G. Visualization of the auditory pathway in rats with 18F-FDG PET activation studies based on different auditory stimuli and reference conditions including cochlea ablation. PLoS One 2018; 13:e0205044. [PMID: 30278068 PMCID: PMC6168174 DOI: 10.1371/journal.pone.0205044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 11/18/2022] Open
Abstract
Activation studies with positron emission tomography (PET) in auditory implant users explained some of the mechanisms underlying the variability of achieved speech comprehension. Since future developments of auditory implants will include studies in rodents, we aimed to inversely translate functional PET imaging to rats. In normal hearing rats, activity in auditory and non-auditory regions was studied using 18F-fluorodeoxyglucose (18F-FDG) PET with 3 different acoustic conditions: sound attenuated laboratory background, continuous white noise and rippled noise. Additionally, bilateral cochlea ablated animals were scanned. 3D image data were transferred into a stereotaxic standard space and evaluated using volume of interest (VOI) analyses and statistical parametric mapping (SPM). In normal hearing rats alongside the auditory pathway consistent activations of the nucleus cochlearis (NC), olivary complex (OC) and inferior colliculus (IC) were seen comparing stimuli with background. In this respect, no increased activation could be detected in the auditory cortex (AC), which even showed deactivation with white noise stimulation. Nevertheless, higher activity in the AC in normal hearing rats was observed for all 3 auditory conditions against the cochlea ablated status. Vice versa, in ablated status activity in the olfactory nucleus (ON) was higher compared to all auditory conditions in normal hearing rats. Our results indicate that activations can be demonstrated in normal hearing animals based on 18F-FDG PET in nuclei along the central auditory pathway with different types of noise stimuli. However, in the AC missing activation with respect to the background advises the need for more rigorous background noise attenuation for non-invasive reference conditions. Finally, our data suggest cross-modal activation of the olfactory system following cochlea ablation–underlining, that 18F-FDG PET appears to be well suited to study plasticity in rat models for cochlear implantation.
Collapse
Affiliation(s)
- Martin Mamach
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Mariella Kessler
- Cluster of Excellence Hearing4all, Hannover Medical School, Hannover, Germany
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Jens P. Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Florian Wilke
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hannover, Germany
| | - Lilli Geworski
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hannover, Germany
| | - Frank M. Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Simone Kurt
- Cluster of Excellence Hearing4all, Hannover Medical School, Hannover, Germany
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine CIPMM, Saarland University, Homburg, Germany
| | - Georg Berding
- Cluster of Excellence Hearing4all, Hannover Medical School, Hannover, Germany
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|