151
|
Lange F, Venus J, Shams Esfand Abady D, Porath K, Einsle A, Sellmann T, Neubert V, Reichart G, Linnebacher M, Köhling R, Kirschstein T. Galvanotactic Migration of Glioblastoma and Brain Metastases Cells. Life (Basel) 2022; 12:life12040580. [PMID: 35455071 PMCID: PMC9027426 DOI: 10.3390/life12040580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Galvanotaxis, the migration along direct current electrical fields, may contribute to the invasion of brain cancer cells in the tumor-surrounding tissue. We hypothesized that pharmacological perturbation of the epidermal growth factor (EGF) receptor and downstream phosphatidylinositol 3-kinase (PI3K)/AKT pathway prevent galvanotactic migration. In our study, patient-derived glioblastoma and brain metastases cells were exposed to direct current electrical field conditions. Velocity and direction of migration were estimated. To determine the effects of EGF receptor antagonist afatinib and AKT inhibitor capivasertib, assays of cell proliferation, apoptosis and immunoblot analyses were performed. Both inhibitors attenuated cell proliferation in a dose-dependent manner and induced apoptosis. We found that most of the glioblastoma cells migrated preferentially in an anodal direction, while brain metastases cells were unaffected by direct current stimulations. Afatinib presented only a mild attenuation of galvanotaxis. In contrast, capivasertib abolished the migration of glioblastoma cells without genetic alterations in the PI3K/AKT pathway, but not in cells harboring PTEN mutation. In these cells, an increase in the activation of ERK1/2 may in part substitute the inhibition of the AKT pathway. Overall, our data demonstrate that glioblastoma cells migrate in the electrical field and the PI3K/AKT pathway was found to be highly involved in galvanotaxis.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
- Correspondence:
| | - Jakob Venus
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Daria Shams Esfand Abady
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Anne Einsle
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Tina Sellmann
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Valentin Neubert
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Gesine Reichart
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; (J.V.); (D.S.E.A.); (K.P.); (A.E.); (T.S.); (V.N.); (G.R.); (R.K.); (T.K.)
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
152
|
Yang H, Yuan L, Ibaragi S, Li S, Shapiro R, Vanli N, Goncalves KA, Yu W, Kishikawa H, Jiang Y, Hu AJ, Jay D, Cochran B, Holland EC, Hu GF. Angiogenin and plexin-B2 axis promotes glioblastoma progression by enhancing invasion, vascular association, proliferation and survival. Br J Cancer 2022; 127:422-435. [PMID: 35418212 PMCID: PMC9345892 DOI: 10.1038/s41416-022-01814-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiogenin is a multifunctional secreted ribonuclease that is upregulated in human cancers and downregulated or mutationally inactivated in neurodegenerative diseases. A role for angiogenin in glioblastoma was inferred from the inverse correlation of angiogenin expression with patient survival but had not been experimentally investigated. METHODS Angiogenin knockout mice were generated and the effect of angiogenin deficiency on glioblastoma progression was examined. Angiogenin and plexin-B2 genes were knocked down in glioblastoma cells and the changes in cell proliferation, invasion and vascular association were examined. Monoclonal antibodies of angiogenin and small molecules were used to assess the therapeutic activity of the angiogenin-plexin-B2 pathway in both genetic and xenograft animal models. RESULTS Deletion of Ang1 gene prolonged survival of PDGF-induced glioblastoma in mice in the Ink4a/Arf-/-:Pten-/- background, accompanied by decreased invasion, vascular association and proliferation. Angiogenin upregulated MMP9 and CD24 leading to enhanced invasion and vascular association. Inhibition of angiogenin or plexin-B2, either by shRNA, monoclonal antibody or small molecule inhibitor, decreases sphere formation of patient-derived glioma stem cells, reduces glioblastoma proliferation and invasion and inhibits glioblastoma growth in both genetic and xenograft animal models. CONCLUSIONS Angiogenin and its receptor, plexin-B2, are a pair of novel regulators that mediate invasion, vascular association and proliferation of glioblastoma cells. Inhibitors of the angiogenin-plexin-B2 axis have therapeutic potential against glioblastoma.
Collapse
Affiliation(s)
- Hailing Yang
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Liang Yuan
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Soichiro Ibaragi
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Shuping Li
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Robert Shapiro
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Nil Vanli
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Kevin A Goncalves
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Wenhao Yu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Hiroko Kishikawa
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Yuxiang Jiang
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Alexander J Hu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Daniel Jay
- Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Brent Cochran
- Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Guo-Fu Hu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Pathology, Harvard Medical School, Boston, MA, USA. .,Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
153
|
Gabano E, Gariboldi MB, Caron G, Ermondi G, Marras E, Vallaro M, Ravera M. Application of the anthraquinone drug rhein as an axial ligand in bifunctional Pt(IV) complexes to obtain antiproliferative agents against human glioblastoma cells. Dalton Trans 2022; 51:6014-6026. [PMID: 35352739 DOI: 10.1039/d2dt00235c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octahedral Pt(IV) prodrugs are an effective way to combine cisplatin-like moieties and a second drug to obtain selective and stimuli responsive bifunctional antiproliferative compounds. Recently, two bifunctional Pt(IV) complexes have shown interesting in vitro and in vivo effects in glioblastoma, the most aggressive primary brain tumor. An interesting observation indicates that 4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (rhein) can inhibit in vivo glioma tumor progression. Furthermore, a prodrug in which cisplatin was combined with two molecules of rhein showed a potency higher than that of cisplatin toward cisplatin-resistant lung carcinoma cells. However, the high lipophilicity of this type of complex affects their solubility and bioavailability. To overcome these limits, in the present work, three Pt(IV) derivatives were obtained by differently linking one molecule of rhein and one acetato ligand at the axial position to a cisplatin core. The complexes proved to be similar to or more potent than the parent cisplatin and rhein, and the reference drug temozolomide on two human glioblastoma cell lines (U87-MG and T98G). They retained their activity under hypoxia and caused a significant reduction in the motility of both cell lines, which can be related to their ability to inhibit MMP2 and MMP9 matrix metalloproteinases. Finally, physicochemical and computational studies indicated that these Pt(IV) derivatives are more prone than rhein to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | - Marzia Bruna Gariboldi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Giulia Caron
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Emanuela Marras
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Maura Vallaro
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
154
|
Rybin MJ, Laverde-Paz MJ, Suter RK, Affer M, Ayad NG, Feng Y, Zeier Z. A dual aurora and lim kinase inhibitor reduces glioblastoma proliferation and invasion. Bioorg Med Chem Lett 2022; 61:128614. [DOI: 10.1016/j.bmcl.2022.128614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/02/2022]
|
155
|
Duffau H. White Matter Tracts and Diffuse Lower-Grade Gliomas: The Pivotal Role of Myelin Plasticity in the Tumor Pathogenesis, Infiltration Patterns, Functional Consequences and Therapeutic Management. Front Oncol 2022; 12:855587. [PMID: 35311104 PMCID: PMC8924360 DOI: 10.3389/fonc.2022.855587] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
For many decades, interactions between diffuse lower-grade glioma (LGG) and brain connectome were neglected. However, the neoplasm progression is intimately linked to its environment, especially the white matter (WM) tracts and their myelin status. First, while the etiopathogenesis of LGG is unclear, this tumor seems to appear during the adolescence, and it is mostly located within anterior and associative cerebral areas. Because these structures correspond to those which were myelinated later in the brain maturation process, WM myelination could play a role in the development of LGG. Second, WM fibers and the myelin characteristics also participate in LGG diffusion, since glioma cells migrate along the subcortical pathways, especially when exhibiting a demyelinated phenotype, which may result in a large invasion of the parenchyma. Third, such a migratory pattern can induce functional (neurological, cognitive and behavioral) disturbances, because myelinated WM tracts represent the main limitation of neuroplastic potential. These parameters are critical for tailoring an individualized therapeutic strategy, both (i) regarding the timing of active treatment(s) which must be proposed earlier, before a too wide glioma infiltration along the WM bundles, (ii) and regarding the anatomic extent of surgical resection and irradiation, which should take account of the subcortical connectivity. Therefore, the new science of connectomics must be integrated in LGG management, based upon an improved understanding of the interplay across glioma dissemination within WM and reactional neural networks reconfiguration, in order to optimize long-term oncological and functional outcomes. To this end, mechanisms of activity-dependent myelin plasticity should be better investigated.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM) U1191, University of Montpellier, Montpellier, France
| |
Collapse
|
156
|
Di Nunno V, Franceschi E, Tosoni A, Gatto L, Bartolini S, Brandes AA. Glioblastoma Microenvironment: From an Inviolable Defense to a Therapeutic Chance. Front Oncol 2022; 12:852950. [PMID: 35311140 PMCID: PMC8924419 DOI: 10.3389/fonc.2022.852950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an aggressive tumor and is associated with a dismal prognosis. The availability of few active treatments as well as the inexorable recurrence after surgery are important hallmarks of the disease. The biological behavior of glioblastoma tumor cells reveals a very complex pattern of genomic alterations and is partially responsible for the clinical aggressiveness of this tumor. It has been observed that glioblastoma cells can recruit, manipulate and use other cells including neurons, glial cells, immune cells, and endothelial/stromal cells. The final result of this process is a very tangled net of interactions promoting glioblastoma growth and progression. Nonetheless, recent data are suggesting that the microenvironment can also be a niche in which glioblastoma cells can differentiate into glial cells losing their tumoral phenotype. Here we summarize the known interactions between micro-environment and glioblastoma cells highlighting possible therapeutic implications.
Collapse
Affiliation(s)
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
157
|
Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol 2022; 12:819563. [PMID: 35280755 PMCID: PMC8904739 DOI: 10.3389/fonc.2022.819563] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multifaceted global health issue and one of the leading causes of death worldwide. In recent years, medical science has achieved great advances in the diagnosis and treatment of cancer. Despite the numerous advantages of conventional cancer therapies, there are major drawbacks including severe side effects, toxicities, and drug resistance. Therefore, the urgency of developing new drugs with low cytotoxicity and treatment resistance is increasing. Antimicrobial peptides (AMPs) have attracted attention as a novel therapeutic strategy for the treatment of various cancers, targeting tumor cells with less toxicity to normal tissues. In this review, we present the structure, biological function, and underlying mechanisms of AMPs. The recent experimental studies and clinical trials on anticancer peptides in different cancer types as well as the challenges of their clinical application have also been discussed.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amirhesam Babajani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Sarrami Forooshani
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
158
|
Fabio RA, Semino M, Giannatiempo S. The GAIRS Checklist: a useful global assessment tool in patients with Rett syndrome. Orphanet J Rare Dis 2022; 17:116. [PMID: 35248112 PMCID: PMC8898428 DOI: 10.1186/s13023-022-02259-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background Rett Syndrome is a severe, neurodevelopmental disorder mainly caused by mutations in the MECP2 gene, affecting around 1 in 10,000 female births. Severe physical, language, and social impairments impose a wide range of limitations in the assessment of the abilities of Rett patients. This study proposes an analysis and first validation of a Global Assessment and Intervention in Rett syndrome (GAIRS) Checklist for assessing behavioral, intellectual, academic, neuropsychological and psychosocial manifestations in patients with Rett Syndrome. We administered the GAIRS Checklist to 113 Italian patients with Rett Syndrome aged 4–42. Aims of this study To examine the psychometric characteristics of the GAIRS Checklist. Moreover, the aim is also to examine the validity of GAIRS with test–retest correlation, convergent validity with similar functional measurements, such as the Vineland scales, and divergent validity with severity of disease scale, such as the RARS scale and severity of neuropsychiatric evaluations. Results All 10 subscales of GAIRS were positively and significantly related to each other and to the total GAIRS score, and the subscales showed high levels of Cronbach’s alpha values (from .77 to .95). Principal axis factoring suggested two factors that explain 60% of the variance. Test–retest reliability is 0.82. This means that psychometric properties are reliable. Correlation for Concurrent validity with Vineland score was high and Divergent Validity with RARS was also high. Conclusion The GAIRS Checklist used for Rett syndrome is acceptable and feasible to complete assessment in a clinical setting. Moreover, it can detect the complexity of this disease and may suggest the next step in terms of specific training in Rett syndrome.
Collapse
|
159
|
Iron oxide nanoparticles loaded with paclitaxel inhibits glioblastoma by enhancing autophagy-dependent ferroptosis pathway. Eur J Pharmacol 2022; 921:174860. [DOI: 10.1016/j.ejphar.2022.174860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
|
160
|
Wang X, Wang Y, Xie F, Song ZT, Zhang ZQ, Zhao Y, Wang SD, Hu H, Zhang YS, Qian LJ. Norepinephrine promotes glioma cell migration through up-regulating the expression of Twist1. BMC Cancer 2022; 22:213. [PMID: 35219305 PMCID: PMC8882280 DOI: 10.1186/s12885-022-09330-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background Glioma cells are characterized by high migration ability, resulting in aggressive growth of the tumors and poor prognosis of patients. It has been reported that the stress-induced hormone norepinephrine (NE) contributes to tumor progression through mediating a number of important biological processes in various cancers. However, the role of NE in the regulation of glioma migration is still unclear. Epithelial-to-mesenchymal transition (EMT) is one of the most important steps for tumor migration and metastasis. Twist1, as a key regulator of EMT, has been found to be elevated during glioma migration. But it is still unknown whether Twist1 is involved in the effect of NE on the migration of glioma cells. Methods Wound healing assay and transwell assay were conducted to evaluate the migration of glioma cells upon different treatments. The mesenchymal-like phenotype and the expression of Twist1 after NE treatment were assessed by cell diameters, real-time PCR, western blot and immunofluorescence staining. The gain-and loss-of-function experiments were carried out to investigate the biological function of Twist1 in the migration induced by NE. Finally, the clinical significance of Twist1 was explored among three public glioma datasets. Results In this study, our finding revealed a facilitative effect of NE on glioma cell migration in a β-adrenergic receptor (ADRB)-dependent way. Mechanistically, NE induced mesenchymal-like phenotype and the expression of Twist1. Twist1 overexpression promoted glioma cells migration, while knockdown of Twist1 abolished the discrepancy in the migration ability between NE treated glioma cells and control cells. In addition, the clinical analysis demonstrated that Twist1 was up-regulated in malignant gliomas and recurrent gliomas, and predicted a poor prognosis of glioma patients. Conclusions NE enhanced the migration ability of glioma cells through elevating the expression of Twist1. Our finding may provide potential therapeutic target for protecting patients with glioma from the detrimental effects of stress biology on the tumor progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09330-9.
Collapse
|
161
|
Yin H, Jin Z, Duan W, Han B, Han L, Li C. Emergence of Responsive Surface-Enhanced Raman Scattering Probes for Imaging Tumor-Associated Metabolites. Adv Healthc Mater 2022; 11:e2200030. [PMID: 35182455 DOI: 10.1002/adhm.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/03/2022] [Indexed: 11/11/2022]
Abstract
As a core hallmark of cancer, metabolic reprogramming alters the metabolic networks of cancer cells to meet their insatiable appetite for energy and nutrient. Tumor-associated metabolites, the products of metabolic reprogramming, are valuable in evaluating tumor occurrence and progress timely and accurately because their concentration variations usually happen earlier than the aberrances demonstrated in tissue structure and function. As an optical spectroscopic technique, surface-enhanced Raman scattering (SERS) offers advantages in imaging tumor-associated metabolites, including ultrahigh sensitivity, high specificity, multiplexing capacity, and uncompromised signal intensity. This review first highlights recent advances in the development of stimuli-responsive SERS probes. Then the mechanisms leading to the responsive SERS signal triggered by tumor metabolites are summarized. Furthermore, biomedical applications of these responsive SERS probes, such as the image-guided tumor surgery and liquid biopsy examination for tumor molecular typing, are summarized. Finally, the challenges and prospects of the responsive SERS probes for clinical translation are also discussed.
Collapse
Affiliation(s)
- Hang Yin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Ziyi Jin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Wenjia Duan
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Bing Han
- Minhang Hospital Fudan University Xinsong Road 170 Shanghai 201100 China
| | - Limei Han
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Cong Li
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
162
|
Nguyen P, Doan P, Murugesan A, Ramesh T, Rimpilainen T, Candeias NR, Yli-Harja O, Kandhavelu M. GPR17 signaling activation by CHBC agonist induced cell death via modulation of MAPK pathway in glioblastoma. Life Sci 2022; 291:120307. [PMID: 35016881 DOI: 10.1016/j.lfs.2022.120307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
AIM Glioblastoma multiforme (GBM) is the most common and aggressive primary adult brain tumor. GBM is characterized by a heterogeneous population of cells that are resistant to chemotherapy. Recently, we have synthesized CHBC, a novel indole derivative targeted to GBM biomarker G-protein-coupled receptor 17 and inhibitor of GBM cells. In this study, CHBC was further investigated to characterize the efficiency of this agonist at the molecular level and its underlying mechanism in GBM cell death induction. MATERIALS AND METHODS The effect of CHBC and TMZ was determined using time dependent inhibitor assay in glioblastoma cells, LN229 and SNB19. Drug induced cell cycle arrest was measured using PI staining followed by image analysis. The induction of apoptosis and mechanism of action of CHBC was studied using apoptosis, caspase 3/7 and mitochondrial membrane permeability assays. Modulation of the key genes involved in MAPK signaling pathway was also measured using immunoblotting array. KEY FINDINGS The inhibitory kinetic study has revealed that CHBC inhibited SNB19 and LN229 cell growth in a time-dependent manner. Furthermore, CHBC with the IC50 of 85 μM, mediated cell death through an apoptosis mechanism in both studied cell lines. The study also has revealed that CHBC targets GPR17 leading to the induction of apoptosis via the activation of Caspase 3/7 and dysfunction of mitochondrial membrane potential. In addition, CHBC treatment led to marked G2/M cell cycle arrest. The protein array has confirmed the anticancer effect of CHBC by the disruption of the mitogen-activated protein kinase pathway (MAPK). SIGNIFICANCE Taken together, these results demonstrated that CHBC induced G2/M cell cycle arrest and apoptosis by disrupting MAPK signaling in human glioblastoma cells. This study concludes that CHBC represent a class of compounds for treating glioblastoma.
Collapse
Affiliation(s)
- Phung Nguyen
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland
| | - Phuong Doan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Tatu Rimpilainen
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olli Yli-Harja
- Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; Institute for Systems Biology, 1441N 34th Street, Seattle, WA 98103-8904, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland.
| |
Collapse
|
163
|
Majc B, Habič A, Novak M, Rotter A, Porčnik A, Mlakar J, Župunski V, Fonović UP, Knez D, Zidar N, Gobec S, Kos J, Turnšek TL, Pišlar A, Breznik B. Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors. Int J Mol Sci 2022; 23:ijms23031784. [PMID: 35163706 PMCID: PMC8836869 DOI: 10.3390/ijms23031784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and C-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
- Jozef Stefan International Postgraduate School, 39 Jamova cesta, 1000 Ljubljana, Slovenia
| | - Anamarija Habič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
- Jozef Stefan International Postgraduate School, 39 Jamova cesta, 1000 Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
| | - Ana Rotter
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
| | - Andrej Porčnik
- Department of Neurosurgery, University Medical Centre Ljubljana, 7 Zaloška cesta, 1000 Ljubljana, Slovenia;
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 2 Korytkova ulica, 1000 Ljubljana Slovenia;
| | - Vera Župunski
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000 Ljubljana, Slovenia;
| | - Urša Pečar Fonović
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000 Ljubljana, Slovenia;
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
- Correspondence: (B.B.); Tel.: +386-(0)59-232-870; (A.P.), Tel.: +386-(0)14-169-526
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
- Correspondence: (B.B.); Tel.: +386-(0)59-232-870; (A.P.), Tel.: +386-(0)14-169-526
| |
Collapse
|
164
|
Beeghly GF, Amofa KY, Fischbach C, Kumar S. Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annu Rev Biomed Eng 2022; 24:29-59. [PMID: 35119915 DOI: 10.1146/annurev-bioeng-110220-115419] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical properties for mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Kwasi Y Amofa
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
165
|
Yang T, Hu Y, Miao J, Chen J, Liu J, Cheng Y, Gao X. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization. Acta Pharm Sin B 2022; 12:2658-2671. [PMID: 35755286 PMCID: PMC9214068 DOI: 10.1016/j.apsb.2022.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is a primary aggressive brain tumor with high recurrence rate. The poor efficiency of chemotherapeutic drugs crossing the blood‒brain barrier (BBB) is well-known as one of the main challenges for anti-glioma therapy. Moreover, massive infiltrated tumor-associated macrophages (TAMs) in glioma further thwart the drug efficacy. Herein, a therapeutic nanosystem (SPP-ARV-825) is constructed by incorporating the BRD4-degrading proteolytic targeting chimera (PROTAC) ARV-825 into the complex micelle (SPP) composed of substance P (SP) peptide-modified poly(ethylene glycol)-poly(d,l-lactic acid)(SP-PEG-PDLLA) and methoxy poly(ethylene glycol)-poly(d,l-lactic acid) (mPEG-PDLLA, PP), which could penetrate BBB and target brain tumor. Subsequently, released drug engenders antitumor effect via attenuating cells proliferation, inducing cells apoptosis and suppressing M2 macrophages polarization through the inhibition of IRF4 promoter transcription and phosphorylation of STAT6, STAT3 and AKT. Taken together, our work demonstrates the versatile role and therapeutic efficacy of SPP-ARV-825 micelle against glioma, which may provide a novel strategy for glioma therapy in future.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yuzhu Hu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Department of Medical Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Junming Miao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiagang Liu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Corresponding author. Tel.: +86 28 85422136, fax +86 28 85502796.
| |
Collapse
|
166
|
McCutcheon S, Spray DC. Glioblastoma-Astrocyte Connexin 43 Gap Junctions Promote Tumor Invasion. Mol Cancer Res 2022; 20:319-331. [PMID: 34654721 PMCID: PMC8816813 DOI: 10.1158/1541-7786.mcr-21-0199] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM), classified as World Health Organization grade IV astrocytoma, is the deadliest adult cancer of the central nervous system. An important contributing factor to poor survival rates in GBM is extensive invasion, which decreases the efficacy of resection and subsequent adjuvant therapies. These treatments could be markedly improved with increased resolution of the genetic and molecular initiators and effectors of invasion. Connexin 43 (Cx43) is the principal astrocytic gap junction (GJ) protein. Despite the heterogeneity of GBM, a subpopulation of cells in almost all GBM tumors express Cx43. Functional GJs between GBM cells and astrocytes at the tumor edge are of critical interest for understanding invasion. In this study, we find that both in vitro and in ex vivo slice cultures, GBM is substantially less invasive when placed in a Cx43-deficient astrocyte environment. Furthermore, when Cx43 is deleted in GBM, the invasive phenotype is recovered. These data strongly suggest that there are opposing roles for Cx43 in GBM migration. We find that Cx43 is localized to the tumor edge in our ex vivo model, suggesting that GBM-astrocyte GJ communication at the tumor border is a driving force for invasion. Finally, we find that by a Cx43-dependent mechanism, but likely not direct channel-mediated diffusion, miRNAs associated with cell-matrix adhesion are transferred from GBM to astrocytes and miR-19b promotes invasion, revealing a role for post-transcriptional manipulation of astrocytes in fostering an invasion-permissive peritumoral niche. IMPLICATIONS: Cx43-mediated communication, specifically miRNA transfer, profoundly impacts glioblastoma invasion and may enable further therapeutic insight.
Collapse
Affiliation(s)
- Sean McCutcheon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York.
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
167
|
Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14020443. [PMID: 35053605 PMCID: PMC8773542 DOI: 10.3390/cancers14020443] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
Collapse
|
168
|
Cui W, Wang Y, Ren J, Hubbard CS, Fu X, Fang S, Wang D, Zhang H, Li Y, Li L, Jiang T, Liu H. Personalized
fMRI
delineates functional regions preserved within brain tumors. Ann Neurol 2022; 91:353-366. [PMID: 35023218 PMCID: PMC9107064 DOI: 10.1002/ana.26303] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/09/2022]
Abstract
Objective Methods Results Interpretation
Collapse
Affiliation(s)
- Weigang Cui
- Department of Automation Science and Electrical Engineering Beihang University Beijing China
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School Charlestown MA USA
- Department of Neuroscience Medical University of South Carolina Charleston SC USA
- School of Engineering Medicine, Beihang University Beijing China
| | - Yinyan Wang
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- Beijing Neurosurgical Institute, Capital Medical University Beijing China
| | - Jianxun Ren
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School Charlestown MA USA
- National Engineering Laboratory for Neuromodulation School of Aerospace Engineering, Tsinghua University Beijing China
| | - Catherine S. Hubbard
- Department of Neuroscience Medical University of South Carolina Charleston SC USA
| | - Xiaoxuan Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School Charlestown MA USA
- Department of Neuroscience Medical University of South Carolina Charleston SC USA
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin China
| | - Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical University Beijing China
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School Charlestown MA USA
| | - Hao Zhang
- Department of Neurological Rehabilitation Beijing Bo'ai Hospital, China Rehabilitation Research Center Beijing China
| | - Yang Li
- Department of Automation Science and Electrical Engineering Beihang University Beijing China
| | - Luming Li
- National Engineering Laboratory for Neuromodulation School of Aerospace Engineering, Tsinghua University Beijing China
- Precision Medicine & Healthcare Research Center, Tsinghua‐Berkeley Shenzhen Institute, Tsinghua University Shenzhen Guangdong China
- IDG/McGovern Institute for Brain Research at Tsinghua University Beijing China
| | - Tao Jiang
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- Beijing Neurosurgical Institute, Capital Medical University Beijing China
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School Charlestown MA USA
- Department of Neuroscience Medical University of South Carolina Charleston SC USA
| |
Collapse
|
169
|
do Nascimento RP, dos Santos BL, Amparo JAO, Soares JRP, da Silva KC, Santana MR, Almeida ÁMAN, da Silva VDA, Costa MDFD, Ulrich H, Moura-Neto V, Lopes GPDF, Costa SL. Neuroimmunomodulatory Properties of Flavonoids and Derivates: A Potential Action as Adjuvants for the Treatment of Glioblastoma. Pharmaceutics 2022; 14:pharmaceutics14010116. [PMID: 35057010 PMCID: PMC8778519 DOI: 10.3390/pharmaceutics14010116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Glioblastomas (GBMs) are tumors that have a high ability to migrate, invade and proliferate in the healthy tissue, what greatly impairs their treatment. These characteristics are associated with the complex microenvironment, formed by the perivascular niche, which is also composed of several stromal cells including astrocytes, microglia, fibroblasts, pericytes and endothelial cells, supporting tumor progression. Further microglia and macrophages associated with GBMs infiltrate the tumor. These innate immune cells are meant to participate in tumor surveillance and eradication, but they become compromised by GBM cells and exploited in the process. In this review we discuss the context of the GBM microenvironment together with the actions of flavonoids, which have attracted scientific attention due to their pharmacological properties as possible anti-tumor agents. Flavonoids act on a variety of signaling pathways, counteracting the invasion process. Luteolin and rutin inhibit NFκB activation, reducing IL-6 production. Fisetin promotes tumor apoptosis, while inhibiting ADAM expression, reducing invasion. Naringenin reduces tumor invasion by down-regulating metalloproteinases expression. Apigenin and rutin induce apoptosis in C6 cells increasing TNFα, while decreasing IL-10 production, denoting a shift from the immunosuppressive Th2 to the Th1 profile. Overall, flavonoids should be further exploited for glioma therapy.
Collapse
Affiliation(s)
- Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Balbino Lino dos Santos
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- Academic College of Nurse, Department of Health, Federal University of Vale do São Francisco, Petrolina 56304-205, Pernambuco, Brazil
| | - Jéssika Alves Oliveira Amparo
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Janaina Ribeiro Pereira Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Karina Costa da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Monique Reis Santana
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Áurea Maria Alves Nunes Almeida
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Victor Diógenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Correspondence: (H.U.); (S.L.C.)
| | - Vivaldo Moura-Neto
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
- Paulo Niemeyer State Institute of the Brain, Rio de Janeiro 20230-024, Rio de Janeiro, Brazil
| | - Giselle Pinto de Faria Lopes
- Department of Marine Biotechnology, Admiral Paulo Moreira Institute for Sea Studies (IEAPM), Arraial do Cabo 28930-000, Rio de Janeiro, Brazil;
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
- Correspondence: (H.U.); (S.L.C.)
| |
Collapse
|
170
|
Leo M, Lattuada E, Caprara D, Salvatori L, Vecchione A, Sciortino F, Filetici P, Stoppacciaro A. Treatment of kidney clear cell carcinoma, lung adenocarcinoma and glioblastoma cell lines with hydrogels made of DNA nanostars. Biomater Sci 2022; 10:1304-1316. [DOI: 10.1039/d1bm01643a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overcoming the systemic administration of chemotherapy to reduce drug toxicity and the application of personalised medicine are two of the major challenges in the treatment of cancer. To this aim,...
Collapse
|
171
|
Zhu J, Teolis S, Biassou N, Tabb A, Jabin PE, Lavi O. Tracking the Adaptation and Compensation Processes of Patients' Brain Arterial Network to an Evolving Glioblastoma. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:488-501. [PMID: 32750811 DOI: 10.1109/tpami.2020.3008379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The brain's vascular network dynamically affects its development and core functions. It rapidly responds to abnormal conditions by adjusting properties of the network, aiding stabilization and regulation of brain activities. Tracking prominent arterial changes has clear clinical and surgical advantages. However, the arterial network functions as a system; thus, local changes may imply global compensatory effects that could impact the dynamic progression of a disease. We developed automated personalized system-level analysis methods of the compensatory arterial changes and mean blood flow behavior from a patient's clinical images. By applying our approach to data from a patient with aggressive brain cancer compared with healthy individuals, we found unique spatiotemporal patterns of the arterial network that could assist in predicting the evolution of glioblastoma over time. Our personalized approach provides a valuable analysis tool that could augment current clinical assessments of the progression of glioblastoma and other neurological disorders affecting the brain.
Collapse
|
172
|
Sprugnoli G, Rigolo L, Faria M, Juvekar P, Tie Y, Rossi S, Sverzellati N, Golby AJ, Santarnecchi E. Tumor BOLD connectivity profile correlates with glioma patients' survival. Neurooncol Adv 2022; 4:vdac153. [PMID: 36532508 PMCID: PMC9753902 DOI: 10.1093/noajnl/vdac153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Presence of residual neurovascular activity within glioma lesions have been recently demonstrated via functional MRI (fMRI) along with active electrical synapses between glioma cells and healthy neurons that influence survival. In this study, we aimed to investigate whether gliomas demonstrate synchronized neurovascular activity with the rest of the brain, by measuring Blood Oxygen Level Dependent (BOLD) signal synchronization, that is, functional connectivity (FC), while also testing whether the strength of such connectivity might predict patients' overall survival (OS). METHODS Resting-state fMRI scans of patients who underwent pre-surgical brain mapping were analyzed (total sample, n = 54; newly diagnosed patients, n = 18; recurrent glioma group, n = 36). A seed-to-voxel analysis was conducted to estimate the FC signal profile of the tumor mass. A regression model was then built to investigate the potential correlation between tumor FC and individual OS. Finally, an unsupervised, cross-validated clustering analysis was performed including tumor FC and clinical OS predictors (e.g., Karnofsky Performance Status - KPS - score, tumor volume, and genetic profile) to verify the performance of tumor FC in predicting OS with respect to validated radiological, demographic, genetic and clinical prognostic factors. RESULTS In both newly diagnosed and recurrent glioma patients a significant pattern of BOLD synchronization between the solid tumor and distant brain regions was found. Crucially, glioma-brain FC positively correlated with variance in individual survival in both newly diagnosed glioma group (r = 0.90-0.96; P < .001; R 2 = 81-92%) and in the recurrent glioma group (r = 0.72; P < .001; R 2 = 52%), outperforming standard clinical, radiological and genetic predictors. CONCLUSIONS Results suggest glioma's synchronization with distant brain regions should be further explored as a possible diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Precision Neuroscience & Neuromodulation Program and Network Control Laboratory, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Rigolo
- Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meghan Faria
- Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Parikshit Juvekar
- Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yanmei Tie
- Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), University of Siena, Italy
| | - Nicola Sverzellati
- Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alexandra J Golby
- Alexandra J. Golby, MD, Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Neurosciences Center, 60 Fenwood Road, 1st Floor, Hale Building for Transformative Medicine, Boston, MA, 02115, USA ()
| | - Emiliano Santarnecchi
- Corresponding Authors: Emiliano Santarnecchi, PhD, PhD, Precision Neuroscience & Neuromodulation Program and Network Control Laboratory, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA ()
| |
Collapse
|
173
|
Sun R, Kim AH. The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer Metastasis Rev 2022; 41:871-898. [PMID: 35920986 PMCID: PMC9758111 DOI: 10.1007/s10555-022-10051-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
With the application of high throughput sequencing technologies at single-cell resolution, studies of the tumor microenvironment in glioblastoma, one of the most aggressive and invasive of all cancers, have revealed immense cellular and tissue heterogeneity. A unique extracellular scaffold system adapts to and supports progressive infiltration and migration of tumor cells, which is characterized by altered composition, effector delivery, and mechanical properties. The spatiotemporal interactions between malignant and immune cells generate an immunosuppressive microenvironment, contributing to the failure of effective anti-tumor immune attack. Among the heterogeneous tumor cell subpopulations of glioblastoma, glioma stem cells (GSCs), which exhibit tumorigenic properties and strong invasive capacity, are critical for tumor growth and are believed to contribute to therapeutic resistance and tumor recurrence. Here we discuss the role of extracellular matrix and immune cell populations, major components of the tumor ecosystem in glioblastoma, as well as signaling pathways that regulate GSC maintenance and invasion. We also highlight emerging advances in therapeutic targeting of these components.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA ,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
174
|
Videla-Richardson GA, Morris-Hanon O, Torres NI, Esquivel MI, Vera MB, Ripari LB, Croci DO, Sevlever GE, Rabinovich GA. Galectins as Emerging Glyco-Checkpoints and Therapeutic Targets in Glioblastoma. Int J Mol Sci 2021; 23:ijms23010316. [PMID: 35008740 PMCID: PMC8745137 DOI: 10.3390/ijms23010316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, glioblastoma (GBM) represents the most common and aggressive brain tumor in the adult population, urging identification of new rational therapeutic targets. Galectins, a family of glycan-binding proteins, are highly expressed in the tumor microenvironment (TME) and delineate prognosis and clinical outcome in patients with GBM. These endogenous lectins play key roles in different hallmarks of cancer by modulating tumor cell proliferation, oncogenic signaling, migration, vascularization and immunity. Additionally, they have emerged as mediators of resistance to different anticancer treatments, including chemotherapy, radiotherapy, immunotherapy, and antiangiogenic therapy. Particularly in GBM, galectins control tumor cell transformation and proliferation, reprogram tumor cell migration and invasion, promote vascularization, modulate cell death pathways, and shape the tumor-immune landscape by targeting myeloid, natural killer (NK), and CD8+ T cell compartments. Here, we discuss the role of galectins, particularly galectin-1, -3, -8, and -9, as emerging glyco-checkpoints that control different mechanisms associated with GBM progression, and discuss possible therapeutic opportunities based on inhibition of galectin-driven circuits, either alone or in combination with other treatment modalities.
Collapse
Affiliation(s)
- Guillermo A. Videla-Richardson
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Olivia Morris-Hanon
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Nicolás I. Torres
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina;
| | - Myrian I. Esquivel
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Mariana B. Vera
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Luisina B. Ripari
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Diego O. Croci
- Laboratorio de Inmunopatología, Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza C5500, Argentina;
| | - Gustavo E. Sevlever
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina;
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
- Correspondence: ; Tel.: +54-11-4783-2869 (ext. 266)
| |
Collapse
|
175
|
Wang S, Shen H, Mao Q, Tao Q, Yuan G, Zeng L, Chen Z, Zhang Y, Cheng L, Zhang J, Dai H, Hu C, Pan Y, Li Y. Macrophage-Mediated Porous Magnetic Nanoparticles for Multimodal Imaging and Postoperative Photothermal Therapy of Gliomas. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56825-56837. [PMID: 34825820 DOI: 10.1021/acsami.1c12406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Because of the blood-brain barrier and the high infiltration of glioma cells, the diagnostic accuracy and treatment efficiency of gliomas are still facing challenges. There is an urgent need to explore the integration of diagnostic and therapeutic methods to achieve an accurate diagnosis, guide surgery, and inhibit postoperative recurrence. In this work, we developed a macrophage loaded with a photothermal nanoprobe (MFe3O4-Cy5.5), which is able to cross the blood-brain barrier and accumulate into deep gliomas to achieve multimodal imaging and guided glioma surgery purposes. With desirable probing depth and high signal-to-noise ratio, Fe3O4-Cy5.5 can perform fluorescence, photoacoustic, and magnetic resonance imaging, which can distinguish brain tumors from the surrounding normal tissues and accurately guide glioma resection. Meanwhile, Fe3O4-Cy5.5 can effectively induce local photothermal therapy and inhibit the recurrence of glioma after surgery. These results demonstrate that the macrophage-mediated Fe3O4-Cy5.5, which can achieve a multimodal diagnosis, accurate imaging-guided surgery, and effective photothermal therapy, is a promising nanoplatform for gliomas.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
- Institute of Medical Imaging, Soochow University, Suzhou 215000, Jiangsu, China
| | - Hailin Shen
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou 215028, Jiangsu, China
| | - Qiulian Mao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qing Tao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
- Institute of Medical Imaging, Soochow University, Suzhou 215000, Jiangsu, China
| | - Guotao Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lingli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ziying Chen
- Nanobio Laboratory, Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yunjiao Zhang
- Nanobio Laboratory, Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingzhong Zhang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
- Institute of Medical Imaging, Soochow University, Suzhou 215000, Jiangsu, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
- Institute of Medical Imaging, Soochow University, Suzhou 215000, Jiangsu, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
- Institute of Medical Imaging, Soochow University, Suzhou 215000, Jiangsu, China
| |
Collapse
|
176
|
Pu B, Zhang X, Yan T, Li Y, Liu B, Jian Z, Mahgoub OK, Gu L, Xiong X, Zou N. MICAL2 Promotes Proliferation and Migration of Glioblastoma Cells Through TGF-β/p-Smad2/EMT-Like Signaling Pathway. Front Oncol 2021; 11:735180. [PMID: 34868922 PMCID: PMC8632809 DOI: 10.3389/fonc.2021.735180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/08/2021] [Indexed: 01/01/2023] Open
Abstract
Recent studies showed that molecule interacting with CasL2 (MICAL2) could be a novel tumor growth factor, and it is closely associated with tumor growth and invasion. However, the role it plays in glioblastoma (GBM) and its potential mechanisms are currently unknown. Our study is designed to identify the effect of MICAL2 on GBM cells and the potential mechanisms behind it. Here, we found that MICAL2 interacts with TGF receptor-type I (TGFRI) and promotes the proliferation and migration of glioblastoma through the TGF-β/p-Smad2/EMT-like signaling pathway. MICAL2-knockdown inhibited the proliferation of glioblastoma cells, which was related to cell cycle arrest and downregulation of DNA replication. The invasion abilities of U87 and U251 cells were reduced after the knockdown of MICAL2. MICAL2 promoted the growth of GBM in nude mice. High MICAL2 predicts poor outcome of GBM patients. MICAL2 could be identified as a novel promising therapeutic target for human GBM.
Collapse
Affiliation(s)
- Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tengfeng Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Omer Kamal Mahgoub
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
177
|
Mandal AS, Romero-Garcia R, Seidlitz J, Hart MG, Alexander-Bloch AF, Suckling J. Lesion covariance networks reveal proposed origins and pathways of diffuse gliomas. Brain Commun 2021; 3:fcab289. [PMID: 34917940 PMCID: PMC8669792 DOI: 10.1093/braincomms/fcab289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Diffuse gliomas have been hypothesized to originate from neural stem cells in the subventricular zone and develop along previously healthy brain networks. Here, we evaluated these hypotheses by mapping independent sources of glioma localization and determining their relationships with neurogenic niches, genetic markers and large-scale connectivity networks. By applying independent component analysis to lesion data from 242 adult patients with high- and low-grade glioma, we identified three lesion covariance networks, which reflect clusters of frequent glioma localization. Replicability of the lesion covariance networks was assessed in an independent sample of 168 glioma patients. We related the lesion covariance networks to important clinical variables, including tumour grade and patient survival, as well as genomic information such as molecular genetic subtype and bulk transcriptomic profiles. Finally, we systematically cross-correlated the lesion covariance networks with structural and functional connectivity networks derived from neuroimaging data of over 4000 healthy UK BioBank participants to uncover intrinsic brain networks that may that underlie tumour development. The three lesion covariance networks overlapped with the anterior, posterior and inferior horns of the lateral ventricles respectively, extending into the frontal, parietal and temporal cortices. These locations were independently replicated. The first lesion covariance network, which overlapped with the anterior horn, was associated with low-grade, isocitrate dehydrogenase -mutated/1p19q-codeleted tumours, as well as a neural transcriptomic signature and improved overall survival. Each lesion covariance network significantly coincided with multiple structural and functional connectivity networks, with the first bearing an especially strong relationship with brain connectivity, consistent with its neural transcriptomic profile. Finally, we identified subcortical, periventricular structures with functional connectivity patterns to the cortex that significantly matched each lesion covariance network. In conclusion, we demonstrated replicable patterns of glioma localization with clinical relevance and spatial correspondence with large-scale functional and structural connectivity networks. These results are consistent with prior reports of glioma growth along white matter pathways, as well as evidence for the coordination of glioma stem cell proliferation by neuronal activity. Our findings describe how the locations of gliomas relate to their proposed subventricular origins, suggesting a model wherein periventricular brain connectivity guides tumour development.
Collapse
Affiliation(s)
- Ayan S Mandal
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Psychiatry, Brain-Gene Development Lab, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael Romero-Garcia
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Jakob Seidlitz
- Department of Psychiatry, Brain-Gene Development Lab, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael G Hart
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, CB2 0SZ, UK
- Academic Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, Brain-Gene Development Lab, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John Suckling
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, CB2 0SZ, UK
| |
Collapse
|
178
|
Huang Y, Qi L, Kogiso M, Du Y, Braun FK, Zhang H, Huang LF, Xiao S, Teo W, Lindsay H, Zhao S, Baxter P, Su JMF, Adesina A, Yang J, Brabetz S, Kool M, Pfister SM, Chintagumpala M, Perlaky L, Wang Z, Zhou Y, Man T, Li X. Spatial Dissection of Invasive Front from Tumor Mass Enables Discovery of Novel microRNA Drivers of Glioblastoma Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101923. [PMID: 34719887 PMCID: PMC8655179 DOI: 10.1002/advs.202101923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Diffuse invasion is the primary cause of treatment failure of glioblastoma (GBM). Previous studies on GBM invasion have long been forced to use the resected tumor mass cells. Here, a strategy to reliably isolate matching pairs of invasive (GBMINV ) and tumor core (GBMTC ) cells from the brains of 6 highly invasive patient-derived orthotopic models is described. Direct comparison of these GBMINV and GBMTC cells reveals a significantly elevated invasion capacity in GBMINV cells, detects 23/768 miRNAs over-expressed in the GBMINV cells (miRNAINV ) and 22/768 in the GBMTC cells (miRNATC ), respectively. Silencing the top 3 miRNAsINV (miR-126, miR-369-5p, miR-487b) successfully blocks invasion of GBMINV cells in vitro and in mouse brains. Integrated analysis with mRNA expression identifies miRNAINV target genes and discovers KCNA1 as the sole common computational target gene of which 3 inhibitors significantly suppress invasion in vitro. Furthermore, in vivo treatment with 4-aminopyridine (4-AP) effectively eliminates GBM invasion and significantly prolongs animal survival times (P = 0.035). The results highlight the power of spatial dissection of functionally accurate GBMINV and GBMTC cells in identifying novel drivers of GBM invasion and provide strong rationale to support the use of biologically accurate starting materials in understanding cancer invasion and metastasis.
Collapse
Affiliation(s)
- Yulun Huang
- Department of NeurosurgeryDushu Lake HospitalSoochow UniversitySuzhou205124China
- Department of Neurosurgery and Brain and Nerve Research Laboratorythe First Affiliated HospitalSoochow UniversitySuzhou215007China
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Lin Qi
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
- Department of PharmacologySchool of MedicineSun Yat‐Sen UniversityShenzhen518107China
| | - Mari Kogiso
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Yuchen Du
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Frank K. Braun
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Huiyuan Zhang
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - L. Frank Huang
- Department of Systems Medicine and BioegineeringHouston Methodist Hospital Research Institute and Cancer CenterWeill Cornell MedicineHoustonTX77030USA
- Division of Experimental Hematology and Cancer BiologyBrain Tumor CenterCincinnati Children’s Hospital Medical CenterDepartment of PediatricsUniversity of Cincinnati College of MedicineCincinnatiUnited States45229United States
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Wan‐Yee Teo
- Humphrey Oei Institute of Cancer ResearchNational Cancer Center SingaporeSingapore169610Singapore
| | - Holly Lindsay
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Sibo Zhao
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Patricia Baxter
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Jack M. F. Su
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Adekunle Adesina
- Department of PathologyTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Jianhua Yang
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Sebastian Brabetz
- Hopp Children's Cancer Center (KiTZ)Heidelberg69120Germany
- Division of Pediatric Neuro‐oncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ)Heidelberg69120Germany
- Division of Pediatric Neuro‐oncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
| | - Stefan M. Pfister
- Hopp Children's Cancer Center (KiTZ)Heidelberg69120Germany
- Division of Pediatric Neuro‐oncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
- Department of Pediatric Hematology and OncologyHeidelberg University HospitalHeidelberg69120Germany
| | - Murali Chintagumpala
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Laszlo Perlaky
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratorythe First Affiliated HospitalSoochow UniversitySuzhou215007China
| | - Youxin Zhou
- Department of Neurosurgery and Brain and Nerve Research Laboratorythe First Affiliated HospitalSoochow UniversitySuzhou215007China
| | - Tsz‐Kwong Man
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Xiao‐Nan Li
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| |
Collapse
|
179
|
Changes in Brain Energy and Membrane Metabolism in Glioblastoma following Chemoradiation. Curr Oncol 2021; 28:5041-5053. [PMID: 34940063 PMCID: PMC8700426 DOI: 10.3390/curroncol28060424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Brain parenchyma infiltration with glioblastoma (GB) cannot be entirely visualized by conventional magnetic resonance imaging (MRI). The aim of this study was to investigate changes in the energy and membrane metabolism measured with phosphorous MR spectroscopy (31P-MRS) in the presumably “normal-appearing” brain following chemoradiation therapy (CRT) in GB patients in comparison to healthy controls. Twenty (seven female, thirteen male) GB patients underwent a 31P-MRS scan prior to surgery (baseline) and after three months of standard CRT (follow-up examination. The regions of interest “contrast-enhancing (CE) tumor” (if present), “adjacent to the (former) tumor”, “ipsilateral distant” hemisphere, and “contralateral” hemisphere were compared, differentiating between patients with stable (SD) and progressive disease (PD). Metabolite ratios PCr/ATP, Pi/ATP, PCr/Pi, PME/PDE, PME/PCr, and PDE/ATP were investigated. In PD, energy and membrane metabolism in CE tumor areas have a tendency to “normalize” under therapy. In different “normal-appearing” brain areas of GB patients, the energy and membrane metabolism either “normalized” or were “disturbed”, in comparison to baseline or controls. Differences were also detected between patients with SD and PD. 31P-MRS might contribute as an additional imaging biomarker for outcome measurement, which remains to be investigated in a larger cohort.
Collapse
|
180
|
Rong T, Zou W, Qiu X, Cui W, Zhang D, Wu B, Kang Z, Li W, Liu B. A Rare Manifestation of a Presumed Non-Osteophilic Brain Neoplasm: Extensive Axial Skeletal Metastases From Glioblastoma With Primitive Neuronal Components. Front Oncol 2021; 11:760697. [PMID: 34796114 PMCID: PMC8593252 DOI: 10.3389/fonc.2021.760697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system. GBM with primitive neuronal component (GBM-PNC) is an aggressive variant identified in 0.5% of GBMs. Extracranial metastasis from GBM-PNC is a rare and challenging situation. Methods A special case of early-onset GBM with systemic bone metastasis was enrolled. Clinical data, including patient characteristics, disease course, and serial radiological images were retrieved and analyzed. Tumor tissues were obtained by surgical resections and were made into formalin-fixed paraffin-embedded sections. Histopathological examinations and genetic testing were performed for both the primary and metastatic tumor specimens. Results A 20-year-old man suffered from GBM with acute intratumoral hemorrhage of the left temporal lobe. He was treated by gross total resection and chemoradiotherapy following the Stupp protocol. Seven months later, he returned with a five-week history of progressive neck pain and unsteady gait. The radiographic examinations identified vertebral collapse at C4 and C6. Similar osteolytic lesions were also observed at the thoracolumbar spine, pelvic, and left femur. Anterior spondylectomy of C4 and C6 was performed. The resected vertebral bodies were infiltrated with greyish, soft, and ill-defined tumor tissue. One month later, he developed mechanical low-back pain and paraplegia caused by thoracolumbar metastases. Another spine surgery was performed, including T10 total en-bloc spondylectomy, T7-9, L2-3, and L5-S1 laminectomy. After the operation, the patient’s neurological function and spinal stability remained stable. However, he finally succumbed to the rapidly increased tumor burden and died 15 months from onset because of cachexia and multiple organ failure. In addition to typical GBM morphology, the histological examinations identified monomorphic small-round cells with positive immunohistochemical staining of synaptophysin and CD99, indicating the coexistence of PNC. The next-generation sequencing detected pathogenic mutations in TP53 and DNMT3A. Based on above findings, a confirmed diagnosis of systemic metastases from GBM-PNC (IDH-wild type, WHO grade IV) was made. Conclusions The present case highlights the occurrence and severity of extensive axial skeletal metastases from GBM-PNC. This rare variant of GBM requires aggressive multimodal treatment including surgery and chemoradiotherapy targeting PNC. The pathological screening of PNC is recommended in patients with early-onset GBM and intratumoral hemorrhage. Surgery for spinal metastasis is appropriate in patients with chemoradioresistance and relatively good general status, with the objectives of restoring spinal stability and relieving spinal cord compression.
Collapse
Affiliation(s)
- Tianhua Rong
- Department of Orthopaedic Surgery, Spine Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.,Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wanjing Zou
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaoguang Qiu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Cui
- Department of Orthopaedic Surgery, Spine Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Duo Zhang
- Department of Orthopaedic Surgery, Spine Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Bingxuan Wu
- Department of Orthopaedic Surgery, Spine Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.,Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhuang Kang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baoge Liu
- Department of Orthopaedic Surgery, Spine Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.,Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
181
|
Clinicopathologic analysis of microscopic tumor extension in glioma for external beam radiotherapy planning. BMC Med 2021; 19:269. [PMID: 34784919 PMCID: PMC8597244 DOI: 10.1186/s12916-021-02143-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND There is no consensus regarding the clinical target volume (CTV) margins in radiotherapy for glioma. In this study, we aimed to perform a complete macropathologic analysis examining microscopic tumor extension (ME) to more accurately define the CTV in glioma. METHODS Thirty-eight supra-total resection specimens of glioma patients were examined on histologic sections. The ME distance, defined as the maximum linear distance from the tumor border to the invasive tumor cells, was measured at each section. We defined the CTV based on the relationships between ME distance and clinicopathologic features. RESULTS Between February 2016 and July 2020, a total of 814 slides were examined, corresponding to 162 slides for low-grade glioma (LGG) and 652 slides for high-grade glioma (HGG). The ME value was 0.69 ± 0.43 cm for LGG and 1.29 ± 0.54 cm for HGG (P < 0.001). After multivariate analysis, tumor grade, O6-methylguanine-DNA-methyltransferase promoter methylated status (MGMTm), isocitrate dehydrogenase wild-type status (IDHwt), and 1p/19q non-co-deleted status (non-codel) were positively correlated with ME distance (all P < 0.05). We defined the CTV of glioma based on tumor grade. To take into account approximately 95% of the ME, a margin of 1.00 cm, 1.50 cm, and 2.00 cm were chosen for grade II, grade III, and grade IV glioma, respectively. Paired analysis of molecularly defined patients confirmed that tumors that had all three molecular alterations (i.e., MGMTm/IDHwt/non-codel) were the most aggressive subgroups (all P < 0.05). For these patients, the margin could be up to 1.50 cm, 2.00 cm, and 2.50 cm for grade II, grade III, and grade IV glioma, respectively, to cover the subclinical lesions in 95% of cases. CONCLUSIONS The ME was different between the grades of gliomas. It may be reasonable to recommend 1.00 cm, 1.50 cm, and 2.00 cm CTV margins for grade II, grade III, and grade IV glioma, respectively. Considering the highly aggressive nature of MGMTm/IDHwt/non-codel tumors, for these patients, the margin could be further expanded by 0.5 cm. These recommendations would encompass microscopic disease extension in 95% of cases. TRIAL REGISTRATION The trial was registered with Chinese Clinical Trial Registry ( ChiCTR2100049376 ).
Collapse
|
182
|
Yang W, Xiang Y, Liao MJ, Wu PF, Yang L, Huang GH, Shi BZ, Yi L, Lv SQ. Presenilin1 inhibits glioblastoma cell invasiveness via promoting Sortilin cleavage. Cell Commun Signal 2021; 19:112. [PMID: 34781973 PMCID: PMC8594175 DOI: 10.1186/s12964-021-00780-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and glioblastoma are the most common and devastating diseases in the neurology and neurosurgery departments, respectively. Our previous research reports that the AD-related protein Presenilin1 represses cell proliferation by inhibiting the Wnt/β-catenin pathway in glioblastoma. However, the function of Presenilin1 and the underlying mechanism need to be further investigated. METHODS The correlations of two genes were conducted on the R2 microarray platform and CGGA. Wound healing, Transwell assays and glioblastoma transplantation were performed to detect invasion ability. Phalloidin staining was employed to show cell morphology. Proximity ligation assays and protein docking assays were employed to detect two protein locations. We also employed western blotting to detect protein expression. RESULTS We found that Presenilin1 clearly repressed the migration, invasion and mesenchymal transition of glioblastoma cells. Intriguingly, we observed that the expression of Presenilin1 was positively correlated with Sortilin, which is identified as a pro-invasion molecule in glioma. Furthermore, Presenilin1 interacted with Sortilin at the transmembrane domain and repressed Sortilin expression by cleaving it in glioblastoma cells. First, we found that Sortilin introduced the function of Presenilin1 in phosphorylating β-catenin and repressing invasion in glioblastoma cells. Last, Presenilin1 stimulation sharply suppressed the invasion and mesenchymal transition of glioblastoma in mouse subcutaneous and intracranial transplantation models. CONCLUSIONS Our study reveals that Sortilin mediates the regulation of β-catenin by Presenilin1 and transduces the anti-invasive function of Presenilin1, which may provide novel therapeutic targets for glioblastoma treatment. Video Abstract.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183# Xinqiao street, Shapingba District, Chongqing, 400037 China
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183# Xinqiao street, Shapingba District, Chongqing, 400037 China
| | - Mao-Jun Liao
- Department of Neurosurgery, Daping Hospital, Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042 China
| | - Peng-Fei Wu
- Department of Neurosurgery, Daping Hospital, Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042 China
| | - Lin Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183# Xinqiao street, Shapingba District, Chongqing, 400037 China
| | - Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183# Xinqiao street, Shapingba District, Chongqing, 400037 China
| | - Bao-Zhong Shi
- Department of Critical Care Medicine & Department of Neurosurgery, The First Affiliated Hospital & College of Clinical Medical, Henan University of Science and Technology, Luoyang, 471003 Henan China
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042 China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183# Xinqiao street, Shapingba District, Chongqing, 400037 China
| |
Collapse
|
183
|
Déry L, Charest G, Guérin B, Akbari M, Fortin D. Chemoattraction of Neoplastic Glial Cells with CXCL10, CCL2 and CCL11 as a Paradigm for a Promising Therapeutic Approach for Primary Brain Tumors. Int J Mol Sci 2021; 22:ijms222212150. [PMID: 34830041 PMCID: PMC8626037 DOI: 10.3390/ijms222212150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
Chemoattraction is a normal and essential process, but it can also be involved in tumorigenesis. This phenomenon plays a key role in glioblastoma (GBM). The GBM tumor cells are extremely difficult to eradicate, due to their strong capacity to migrate into the brain parenchyma. Consequently, a complete resection of the tumor is rarely a possibility, and recurrence is inevitable. To overcome this problem, we proposed to exploit this behavior by using three chemoattractants: CXCL10, CCL2 and CCL11, released by a biodegradable hydrogel (GlioGel) to produce a migration of tumor cells toward a therapeutic trap. To investigate this hypothesis, the agarose drop assay was used to test the chemoattraction capacity of these three chemokines on murine F98 and human U87MG cell lines. We then studied the potency of this approach in vivo in the well-established syngeneic F98-Fischer glioma-bearing rat model using GlioGel containing different mixtures of the chemoattractants. In vitro assays resulted in an invasive cell rate 2-fold higher when chemokines were present in the environment. In vivo experiments demonstrated the capacity of these specific chemoattractants to strongly attract neoplastic glioblastoma cells. The use of this strong locomotion ability to our end is a promising avenue in the establishment of a new therapeutic approach in the treatment of primary brain tumors.
Collapse
Affiliation(s)
- Laurence Déry
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Correspondence:
| | - Gabriel Charest
- Department of Surgery, Division of Neurosurgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (G.C.); (D.F.)
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - David Fortin
- Department of Surgery, Division of Neurosurgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (G.C.); (D.F.)
| |
Collapse
|
184
|
Li W, Soufiany I, Lyu X, Lu C, Wei Y, Shi Z, You Y. SP1-upregulated LBX2-AS1 promotes the progression of glioma by targeting the miR-491-5p/LIF axis. J Cancer 2021; 12:6989-7002. [PMID: 34729101 PMCID: PMC8558668 DOI: 10.7150/jca.63289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Mounting evidences have shown the importance of lncRNAs in carcinogenesis and cancer progression. LBX2-AS1 is identified as an oncogenic lncRNA that is abnormally expressed in gastric cancer and lung cancer samples. This study aims to explore the potential role of LBX2-AS1 in regulating proliferation and EMT in glioma, and the underlying mechanism. Methods: Relative levels of LBX2-AS1 in glioma samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on proliferation and EMT were examined in the xenograft glioma model and glioma cells. The interaction between SP1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene LIF was identified. Results: LBX2-AS1 was upregulated in glioma samples and cell lines, and its transcription was promoted by binding to the transcription factor SP1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 sponge miR-491-5p to further upregulate LIF. The subsequent activated LIF/STAT3 signaling was responsible for promoting proliferation and EMT in glioma. Conclusion: LBX2-AS1 is upregulated by SP1 in glioma, which promotes the progression of glioma by targeting the miR-491-5p/LIF axis. In view of this, LBX2-AS1 is suggested as a novel diagnostic biomarker and therapeutic target of glioma.
Collapse
Affiliation(s)
- Wentao Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ismatullah Soufiany
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiao Lyu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Chenfei Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yutian Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
185
|
Adaptive mechanoproperties mediated by the formin FMN1 characterize glioblastoma fitness for invasion. Dev Cell 2021; 56:2841-2855.e8. [PMID: 34559979 DOI: 10.1016/j.devcel.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/23/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma are heterogeneous tumors composed of highly invasive and highly proliferative clones. Heterogeneity in invasiveness could emerge from discrete biophysical properties linked to specific molecular expression. We identified clones of patient-derived glioma propagating cells that were either highly proliferative or highly invasive and compared their cellular architecture, migratory, and biophysical properties. We discovered that invasiveness was linked to cellular fitness. The most invasive cells were stiffer, developed higher mechanical forces on the substrate, and moved stochastically. The mechano-chemical-induced expression of the formin FMN1 conferred invasive strength that was confirmed in patient samples. Moreover, FMN1 expression was also linked to motility in other cancer and normal cell lines, and its ectopic expression increased fitness parameters. Mechanistically, FMN1 acts from the microtubule lattice and promotes a robust mechanical cohesion, leading to highly invasive motility.
Collapse
|
186
|
Huang WY, Suye SI, Fujita S. Cell Trapping via Migratory Inhibition within Density-Tuned Electrospun Nanofibers. ACS APPLIED BIO MATERIALS 2021; 4:7456-7466. [PMID: 35006712 DOI: 10.1021/acsabm.1c00700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell migration is an essential bioprocess that occurs during wound healing and tissue regeneration. Abnormal cell migration is observed in various pathologies, including cancer metastasis. Glioblastoma multiforme (GBM) is an aggressive and highly infiltrative brain tumor. The white matter tracts are considered the preferred routes for GBM invasion and the subsequent spread throughout the brain tissue. In the present study, a platform based on electrospun nanofibers with a consistent alignment and controlled density was designed to inhibit cell migration. The observation of the cells cultured on the nanofibers with different fiber densities revealed an inverse correlation between the cell migration velocity and nanofiber density. This was attributed to the formation of focal adhesions (FAs). The FAs in the sparse fiber matrix were small, whereas those in the dense fiber matrix were large, aligned with the nanofibers, and distributed throughout the cells. A nanofiber-based platform with stepwise different fiber densities was designed based on the aforementioned observation. A time-lapse observation of the GBM cells cultured on the platform revealed a directional one-way migration that induced the entrapment of cells in the dense-fiber zone. The designed platform mimicked the structure of the white matter tracts and enabled the entrapment of migrating cells. The demonstrated approach is suitable for inhibiting metastasis and understanding the biology of invasion, thereby functioning as a promising therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Wan-Ying Huang
- Department of Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Shin-Ichiro Suye
- Department of Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan.,Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan.,Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Department of Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan.,Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan.,Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|
187
|
Ma S, Duan L, Dong H, Ma X, Guo X, Liu J, Li G, Yu Y, Xu Y, Yuan G, Zhao X, Tian G, Zhai S, Pan Y, Zhang Y. OLFML2A Downregulation Inhibits Glioma Proliferation Through Suppression of Wnt/β-Catenin Signaling. Front Oncol 2021; 11:717917. [PMID: 34650914 PMCID: PMC8506028 DOI: 10.3389/fonc.2021.717917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Glioma is a highly heterogeneous and lethal tumor with an extremely poor prognosis. Through analysis of TCGA data, we identified that OLFML2A is a key promotor of gliomagenesis. However, the molecular function of OLFML2A and its underlying mechanism of action in glioma remain unclear. In this study, we found that OLFML2A expression was significantly upregulated in glioma specimens and positively correlated with pathological grades in glioma patients. Moreover, Kaplan–Meier survival analysis of TCGA data revealed that glioma patients with higher OLFML2A expression had shorter overall survival. Importantly, OLFML2A knockdown in glioma cells inhibited cell proliferation and promoted apoptosis. Mechanistically, OLFML2A downregulation inhibits Wnt/β-catenin signaling by upregulating amyloid precursor protein (APP) expression and reducing stabilized β-catenin levels, leading to the repression of MYC, CD44, and CSKN2A2 expression. Furthermore, OLFML2A downregulation suppressed the growth of transplanted glioma subcutaneously and intracranially by inhibiting Wnt/β-catenin pathway-dependent cell proliferation. By uncovering the oncogenic effects in human and rodent gliomas, our data support OLFML2A as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Shize Ma
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Lei Duan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Huateng Dong
- Department of Pediatric Neurology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Xiaodong Ma
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Xinyu Guo
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Jianli Liu
- Second Clinical School, Lanzhou University, Lanzhou, China.,Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqiang Li
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Yue Yu
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Yanlong Xu
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Guoqiang Yuan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Xingkun Zhao
- Second Clinical School, Lanzhou University, Lanzhou, China
| | - Guopeng Tian
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Shijia Zhai
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Yawen Pan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| | - Yinian Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Second Clinical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
188
|
Spieth L, Berghoff SA, Stumpf SK, Winchenbach J, Michaelis T, Watanabe T, Gerndt N, Düking T, Hofer S, Ruhwedel T, Shaib AH, Willig K, Kronenberg K, Karst U, Frahm J, Rhee JS, Minguet S, Möbius W, Kruse N, von der Brelie C, Michels P, Stadelmann C, Hülper P, Saher G. Anesthesia triggers drug delivery to experimental glioma in mice by hijacking caveolar transport. Neurooncol Adv 2021; 3:vdab140. [PMID: 34647026 PMCID: PMC8500692 DOI: 10.1093/noajnl/vdab140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Pharmaceutical intervention in the CNS is hampered by the shielding function of the blood–brain barrier (BBB). To induce clinical anesthesia, general anesthetics such as isoflurane readily penetrate the BBB. Here, we investigated whether isoflurane can be utilized for therapeutic drug delivery. Methods Barrier function in primary endothelial cells was evaluated by transepithelial/transendothelial electrical resistance, and nanoscale STED and SRRF microscopy. In mice, BBB permeability was quantified by extravasation of several fluorescent tracers. Mouse models including the GL261 glioma model were evaluated by MRI, immunohistochemistry, electron microscopy, western blot, and expression analysis. Results Isoflurane enhances BBB permeability in a time- and concentration-dependent manner. We demonstrate that, mechanistically, isoflurane disturbs the organization of membrane lipid nanodomains and triggers caveolar transport in brain endothelial cells. BBB tightness re-establishes directly after termination of anesthesia, providing a defined window for drug delivery. In a therapeutic glioblastoma trial in mice, simultaneous exposure to isoflurane and cytotoxic agent improves efficacy of chemotherapy. Conclusions Combination therapy, involving isoflurane-mediated BBB permeation with drug administration has far-reaching therapeutic implications for CNS malignancies.
Collapse
Affiliation(s)
- Lena Spieth
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Stefan A Berghoff
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Sina K Stumpf
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Jan Winchenbach
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Thomas Michaelis
- Max-Planck-Institut für biophysikalische Chemie, Biomedizinische NMR, Göttingen, Germany
| | - Takashi Watanabe
- Max-Planck-Institut für biophysikalische Chemie, Biomedizinische NMR, Göttingen, Germany
| | - Nina Gerndt
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Tim Düking
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Sabine Hofer
- Max-Planck-Institut für biophysikalische Chemie, Biomedizinische NMR, Göttingen, Germany
| | - Torben Ruhwedel
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.,Max-Planck-Institute of Experimental Medicine, Electron Microscopy Core Unit, Göttingen, Germany
| | - Ali H Shaib
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Neurobiology, Göttingen, Germany
| | - Katrin Willig
- Max-Planck-Institute of Experimental Medicine, Group of Optical Nanoscopy in Neuroscience, Göttingen, Germany.,University Medical Center, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Katharina Kronenberg
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry, Münster, Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry, Münster, Germany
| | - Jens Frahm
- Max-Planck-Institut für biophysikalische Chemie, Biomedizinische NMR, Göttingen, Germany
| | - Jeong Seop Rhee
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Neurobiology, Göttingen, Germany
| | - Susana Minguet
- Albert-Ludwigs-University of Freiburg, Faculty of Biology, Freiburg, Germany. Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany. Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Wiebke Möbius
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.,Max-Planck-Institute of Experimental Medicine, Electron Microscopy Core Unit, Göttingen, Germany.,University Medical Center, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Niels Kruse
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, Germany
| | | | - Peter Michels
- University Medical Center Göttingen, Institute for Anesthesiology, Göttingen, Germany
| | - Christine Stadelmann
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, Germany
| | - Petra Hülper
- Klinikum Oldenburg, Oldenburg, University Hospital, Germany
| | - Gesine Saher
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| |
Collapse
|
189
|
Three-dimensional culture models to study glioblastoma - current trends and future perspectives. Curr Opin Pharmacol 2021; 61:91-97. [PMID: 34656940 DOI: 10.1016/j.coph.2021.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023]
Abstract
Glioblastoma (GBM) is the most prevalent form of primary malignant brain tumor in adults and remains almost invariably lethal owing to its aggressive and invasive nature. There have only been marginal improvements in its bleak survival rate of 12-15 months over the last four decades. The lack of preclinical models that efficiently recapitulate tumor biology and the tumor microenvironment is also in part responsible for the slow phase of translational GBM research. Emerging three-dimensional (3D) organoids and cell culture systems offer new and innovative possibilities for GBM modelling. These 3D models find their application to engineer the disease, screen drugs, establishing live biobank, and explore personalized therapy. Furthermore, these models can also be genetically modified by using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, which would allow one to study the specific role of key genes associated with gliomagenesis. Establishment of a coculture system with GBM cells to understand its invasive behavior is yet another major application of this model. Despite these merits, the organoid models also have certain limitations, including the absence of immune responses and vascular systems. In recent years, major progress has been made in the development and refinement of 3D models of GBM. In this review, we intend to highlight these recent advances and the potential future implications of this rapidly evolving field, which should facilitate a better understanding of GBM biology.
Collapse
|
190
|
Parmigiani E, Scalera M, Mori E, Tantillo E, Vannini E. Old Stars and New Players in the Brain Tumor Microenvironment. Front Cell Neurosci 2021; 15:709917. [PMID: 34690699 PMCID: PMC8527006 DOI: 10.3389/fncel.2021.709917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the direct interaction between cancer cells and tumor microenvironment (TME) has emerged as a crucial regulator of tumor growth and a promising therapeutic target. The TME, including the surrounding peritumoral regions, is dynamically modified during tumor progression and in response to therapies. However, the mechanisms regulating the crosstalk between malignant and non-malignant cells are still poorly understood, especially in the case of glioma, an aggressive form of brain tumor. The presence of unique brain-resident cell types, namely neurons and glial cells, and an exceptionally immunosuppressive microenvironment pose additional important challenges to the development of effective treatments targeting the TME. In this review, we provide an overview on the direct and indirect interplay between glioma and neuronal and glial cells, introducing new players and mechanisms that still deserve further investigation. We will focus on the effects of neural activity and glial response in controlling glioma cell behavior and discuss the potential of exploiting these cellular interactions to develop new therapeutic approaches with the aim to preserve proper brain functionality.
Collapse
Affiliation(s)
- Elena Parmigiani
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marta Scalera
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | | | - Elena Tantillo
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| |
Collapse
|
191
|
Li Y, Chen J, Chen Z, Xu X, Weng J, Zhang Y, Mo Y, Liu Y, Wang J, Ke Y. CircGLIS3 Promotes High-Grade Glioma Invasion via Modulating Ezrin Phosphorylation. Front Cell Dev Biol 2021; 9:663207. [PMID: 34540823 PMCID: PMC8446459 DOI: 10.3389/fcell.2021.663207] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
High-grade glioma is highly invasive and malignant, resistant to combined therapies, and easy to relapse. A better understanding of circular RNA (circRNA) biological function in high-grade glioma might contribute to the therapeutic efficacy. Here, a circRNA merely upregulated in high-grade glioma, circGLIS3 (hsa_circ_0002874, originating from exon 2 of GLIS3), was validated by microarray and Real-time quantitative reverse transcription PCR (qRT-PCR). The role of circGLIS3 in glioma was assessed by functional experiments both in vitro and in vivo. Fluorescence in situ hybridization (FISH), RNA pull-down, RNA immunoprecipitation (RIP), and immunohistochemical staining were performed for mechanistic study. Cocultured brain endothelial cells with glioma explored the role of exosome-derived circGLIS3 in the glioma microenvironment. We found that upregulation of circGLIS3 promoted glioma cell migration and invasion and showed aggressive characteristics in tumor-bearing mice. Mechanistically, we found that circGLIS3 could promote the Ezrin T567 phosphorylation level. Moreover, circGLIS3 could be excreted by glioma through exosomes and induced endothelial cell angiogenesis. Our findings indicate that circGLIS3 is upregulated in high-grade glioma and contributes to the invasion and angiogenesis of glioma via modulating Ezrin T567 phosphorylation.
Collapse
Affiliation(s)
- Yan Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiansheng Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Huizhou Municipal Central Hospital, Huizhou, China
| | - Zetao Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangdong Xu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepticbile Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxuan Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunzhao Mo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jihui Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
192
|
Yadav G, Kulshreshtha R. Metastasis associated long noncoding RNAs in glioblastoma: Biomarkers and therapeutic targets. J Cell Physiol 2021; 237:401-420. [PMID: 34533835 DOI: 10.1002/jcp.30577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
Glioblastoma (GBM) is the most aggressive, malignant, and therapeutically challenging Grade IV tumor of the brain. Although the possibility of distant metastasis is extremely rare, GBM is known to cause intracranial metastasis forming aggressive secondary lesions resulting in a dismal prognosis. Metastasis also plays an important role in tumor dissemination and recurrence making GBM largely incurable. Recent studies have indicated the importance of long noncoding RNAs (lncRNAs) in GBM metastasis. lncRNAs are a class of regulatory noncoding RNAs (>200 nt) that interact with DNA, RNA, and proteins to regulate various biological processes. This is the first comprehensive review summarizing the lncRNAs associated with GBM metastasis and the underlying molecular mechanism involved in migration/invasion. We also highlight the complex network of lncRNA/miRNA/protein that collaborate/compete to regulate metastasis-associated genes. Many of these lncRNAs also show attractive potential as diagnostic/prognostic biomarkers. Finally, we discuss various therapeutic strategies and potential applications of lncRNAs as therapeutic targets for the treatment of GBM.
Collapse
Affiliation(s)
- Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
193
|
Lee SY, Choi SH, Lee MS, Kurmashev A, Lee HN, Ko YG, Lee K, Jeong S, Seong J, Kang JH, Kim H. Retraction fibers produced by fibronectin-integrin α5β1 interaction promote motility of brain tumor cells. FASEB J 2021; 35:e21906. [PMID: 34490940 DOI: 10.1096/fj.202100452rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 11/11/2022]
Abstract
Glioblastoma (GBM) is a refractory disease that has a highly infiltrative characteristic. Over the past decade, GBM perivascular niche (PVN) has been described as a route of dissemination. Here, we investigated that trailed membrane structures, namely retraction fibers (RFs), are formed by perivascular extracellular matrix (ECM) proteins. By using the anatomical GBM database, we validated that the ECM-related genes were highly expressed in the cells within the PVN where fibronectin (FN) induced RF formation. By disrupting candidates of FN-binding integrins, integrin α5β1 was identified as the main regulator of RF formation. De novo RFs were produced at the trailing edge, and focal adhesions were actively localized in RFs, indicating that adhesive force makes RFs remain at the bottom surface. Furthermore, we observed that GBM cells more frequently migrated along the residual RFs formed by preceding cells in microfluidic channels in comparison to those in the channels without RFs, suggesting that the infiltrative characteristics GBM could be attributed to RFs formed by the preceding cells in concert with chemoattractant cues. Altogether, we demonstrated that shedding membrane structures of GBM cells are maintained by FN-integrin α5β1 interaction and promoted their motility .
Collapse
Affiliation(s)
- Seon Yong Lee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sang-Hun Choi
- Department of Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Seok Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Amanzhol Kurmashev
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Gyu Ko
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Kanghun Lee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sohee Jeong
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
194
|
Dong C, Li X, Yang J, Yuan D, Zhou Y, Zhang Y, Shi G, Zhang R, Liu J, Fu P, Sun M. PPFIBP1 induces glioma cell migration and invasion through FAK/Src/JNK signaling pathway. Cell Death Dis 2021; 12:827. [PMID: 34480020 PMCID: PMC8417031 DOI: 10.1038/s41419-021-04107-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with a 5-year survival ratio <5%. Invasive growth is a major determinant of the poor prognosis in GBM. In this study, we demonstrate that high expression of PPFIA binding protein 1 (PPFIBP1) correlates with remarkable invasion and poor prognosis of GBM patients. Using scratch and transwell assay, we find that the invasion and migration of GBM cells are promoted by overexpression of PPFIBP1, while inhibited by knockdown of PPFIBP1. Then, we illustrate that overexpression of PPFIBP1 facilitates glioma cell infiltration and reduces survival in xenograft models. Next, RNA-Seq and GO enrichment analysis reveal that PPFIBP1 regulates differentially expressed gene clusters involved in the Wnt and adhesion-related signaling pathways. Furthermore, we demonstrate that PPFIBP1 activates focal adhesion kinase (FAK), Src, c-Jun N-terminal kinase (JNK), and c-Jun, thereby enhancing Matrix metalloproteinase (MMP)-2 expression probably through interacting with SRCIN1 (p140Cap). Finally, inhibition of phosphorylation of Src and FAK significantly reversed the augmentation of invasion and migration caused by PPFIBP1 overexpression in GBM cells. In conclusion, these findings uncover a novel mechanism of glioma invasion and identify PPFIBP1 as a potential therapeutic target of glioma.
Collapse
Affiliation(s)
- Caihua Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiao Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yina Zhang
- Neurological Department, Helios-Amper Clinic Dachau, Dachau, Germany
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ruobing Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jianping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
195
|
Xin X, Liu W, Zhang ZA, Han Y, Qi LL, Zhang YY, Zhang XT, Duan HX, Chen LQ, Jin MJ, Wang QM, Gao ZG, Huang W. Efficient Anti-Glioma Therapy Through the Brain-Targeted RVG15-Modified Liposomes Loading Paclitaxel-Cholesterol Complex. Int J Nanomedicine 2021; 16:5755-5776. [PMID: 34471351 PMCID: PMC8403987 DOI: 10.2147/ijn.s318266] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background Glioma is the most common primary malignant brain tumor with a dreadful overall survival and high mortality. One of the most difficult challenges in clinical treatment is that most drugs hardly pass through the blood–brain barrier (BBB) and achieve efficient accumulation at tumor sites. Thus, to circumvent this hurdle, developing an effectively traversing BBB drug delivery nanovehicle is of significant clinical importance. Rabies virus glycoprotein (RVG) is a derivative peptide that can specifically bind to nicotinic acetylcholine receptor (nAChR) widely overexpressed on BBB and glioma cells for the invasion of rabies virus into the brain. Inspired by this, RVG has been demonstrated to potentiate drugs across the BBB, promote the permeability, and further enhance drug tumor-specific selectivity and penetration. Methods Here, we used the RVG15, rescreened from the well-known RVG29, to develop a brain-targeted liposome (RVG15-Lipo) for enhanced BBB permeability and tumor-specific delivery of paclitaxel (PTX). The paclitaxel-cholesterol complex (PTX-CHO) was prepared and then actively loaded into liposomes to acquire high entrapment efficiency (EE) and fine stability. Meanwhile, physicochemical properties, in vitro and in vivo delivery efficiency and therapeutic effect were investigated thoroughly. Results The particle size and zeta potential of PTX-CHO-RVG15-Lipo were 128.15 ± 1.63 nm and −15.55 ± 0.78 mV, respectively. Compared with free PTX, PTX-CHO-RVG15-Lipo exhibited excellent targeting efficiency and safety in HBMEC and C6 cells, and better transport efficiency across the BBB in vitro model. Furthermore, PTX-CHO-RVG15-Lipo could noticeably improve the accumulation of PTX in the brain, and then promote the chemotherapeutic drugs penetration in C6luc orthotopic glioma based on in vivo imaging assays. The in vivo antitumor results indicated that PTX-CHO-RVG15-Lipo significantly inhibited glioma growth and metabasis, therefore improved survival rate of tumor-bearing mice with little adverse effect. Conclusion Our study demonstrated that the RVG15 was a promising brain-targeted specific ligands owing to the superior BBB penetration and tumor targeting ability. Based on the outstanding therapeutic effect both in vitro and in vivo, PTX-CHO-RVG15-Lipo was proved to be a potential delivery system for PTX to treat glioma in clinic.
Collapse
Affiliation(s)
- Xin Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Zhe-Ao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ying Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ling-Ling Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ying-Ying Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Xin-Tong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Hong-Xia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Li-Qing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ming-Ji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Qi-Ming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Zhong-Gao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| |
Collapse
|
196
|
Constitutive Neurogenesis in the Brain of Different Vertebrate Groups. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
197
|
Umans RA, Ten Kate M, Pollock C, Sontheimer H. Fishing for Contact: Modeling Perivascular Glioma Invasion in the Zebrafish Brain. ACS Pharmacol Transl Sci 2021; 4:1295-1305. [PMID: 34423267 DOI: 10.1021/acsptsci.0c00129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive, central nervous system (CNS) cancer for which there is no cure. Invading tumor cells evade treatment, limiting the efficacy of the current standard of care regimen. Understanding the underlying invasive behaviors that support tumor growth may allow for generation of novel GBM therapies. Zebrafish (Danio rerio) are attractive for genetics and live imaging and have, in recent years, emerged as a model system suitable for cancer biology research. While other groups have studied CNS tumors using zebrafish, few have concentrated on the invasive behaviors supporting the development of these diseases. Previous studies demonstrated that one of the main mechanisms of GBM invasion is perivascular invasion, i.e., single tumor cell migration along blood vessels. Here, we characterize phenotypes, methodology, and potential therapeutic avenues for utilizing zebrafish to model perivascular GBM invasion. Using patient-derived xenolines or an adherent cell line, we demonstrate tumor expansion within the zebrafish brain. Within 24-h postintracranial injection, D54-MG-tdTomato glioma cells produce fingerlike projections along the zebrafish brain vasculature. As few as 25 GBM cells were sufficient to promote single cell vessel co-option. Of note, these tumor-vessel interactions are CNS specific and do not occur on pre-existing blood vessels when injected into the animal's peripheral tissue. Tumor-vessel interactions increase over time and can be pharmacologically disrupted through inhibition of Wnt signaling. Therefore, zebrafish serve as a favorable model system to study perivascular glioma invasion, one of the deadly characteristics that make GBM so difficult to treat.
Collapse
Affiliation(s)
- Robyn A Umans
- Center for Glial Biology in Health, Disease, and Cancer, The Fralin Biomedical Research Institute at VTC, Roanoke, Virginia 24016, United States
| | - Mattie Ten Kate
- School of Neuroscience, Virginia Tech, Sandy Hall, 210 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Carolyn Pollock
- School of Neuroscience, Virginia Tech, Sandy Hall, 210 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Harald Sontheimer
- Center for Glial Biology in Health, Disease, and Cancer, The Fralin Biomedical Research Institute at VTC, Roanoke, Virginia 24016, United States.,School of Neuroscience, Virginia Tech, Sandy Hall, 210 Drillfield Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
198
|
Serpe C, Monaco L, Relucenti M, Iovino L, Familiari P, Scavizzi F, Raspa M, Familiari G, Civiero L, D’Agnano I, Limatola C, Catalano M. Microglia-Derived Small Extracellular Vesicles Reduce Glioma Growth by Modifying Tumor Cell Metabolism and Enhancing Glutamate Clearance through miR-124. Cells 2021; 10:2066. [PMID: 34440835 PMCID: PMC8393731 DOI: 10.3390/cells10082066] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Brain homeostasis needs continuous exchange of intercellular information among neurons, glial cells, and immune cells, namely microglial cells. Extracellular vesicles (EVs) are active players of this process. All the cells of the body, including the brain, release at least two subtypes of EVs, the medium/large EVs (m/lEVs) and small EVs (sEVs). sEVs released by microglia play an important role in brain patrolling in physio-pathological processes. One of the most common and malignant forms of brain cancer is glioblastoma. Altered intercellular communications constitute a base for the onset and the development of the disease. In this work, we used microglia-derived sEVs to assay their effects in vitro on murine glioma cells and in vivo in a glioma model on C57BL6/N mice. Our findings indicated that sEVs carry messages to cancer cells that modify glioma cell metabolism, reducing lactate, nitric oxide (NO), and glutamate (Glu) release. sEVs affect Glu homeostasis, increasing the expression of Glu transporter Glt-1 on astrocytes. We demonstrated that these effects are mediated by miR-124 contained in microglia-released sEVs. The in vivo benefit of microglia-derived sEVs results in a significantly reduced tumor mass and an increased survival of glioma-bearing mice, depending on miR-124.
Collapse
Affiliation(s)
- Carmela Serpe
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (C.S.); (L.M.)
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (C.S.); (L.M.)
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, 00185 Rome, Italy; (M.R.); (G.F.)
| | - Ludovica Iovino
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.I.); (L.C.)
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Sapienza University, 00185 Rome, Italy;
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (F.S.); (M.R.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (F.S.); (M.R.)
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, 00185 Rome, Italy; (M.R.); (G.F.)
| | - Laura Civiero
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.I.); (L.C.)
- IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Igea D’Agnano
- Institute of Biomedical Technologies, CNR, 20054 Segrate, Italy;
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (C.S.); (L.M.)
| |
Collapse
|
199
|
Montessori A, Tiribocchi A, Bogdan M, Bonaccorso F, Lauricella M, Guzowski J, Succi S. Translocation Dynamics of High-Internal Phase Double Emulsions in Narrow Channels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9026-9033. [PMID: 34291636 PMCID: PMC8503876 DOI: 10.1021/acs.langmuir.1c01026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/18/2021] [Indexed: 06/13/2023]
Abstract
We numerically study the translocation dynamics of double emulsion drops with multiple close-packed inner droplets within constrictions. Such liquid architectures, which we refer to as HIPdEs (high-internal phase double emulsions), consist of a ternary fluid, in which monodisperse droplets are encapsulated within a larger drop in turn immersed in a bulk fluid. Extensive two-dimensional lattice Boltzmann simulations show that if the area fraction of the internal drops is close to the packing fraction limit of hard spheres and the height of the channel is much smaller than the typical size of the emulsion, the crossing yields permanent shape deformations persistent over long periods of time. Morphological changes and rheological response are quantitatively assessed in terms of the structure of the velocity field, circularity of the emulsion, and rate of energy dissipated by viscous forces. Our results may be used to improve the design of soft mesoscale porous materials, which employ HIPdEs as templates for tissue engineering applications.
Collapse
Affiliation(s)
- Andrea Montessori
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy
| | - Adriano Tiribocchi
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy
- Center
for Life Nanoscience at la Sapienza, Istituto
Italiano di Tecnologia, Viale Regina Elena 295, Rome 00161, Italy
| | - Michał Bogdan
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Fabio Bonaccorso
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy
- Center
for Life Nanoscience at la Sapienza, Istituto
Italiano di Tecnologia, Viale Regina Elena 295, Rome 00161, Italy
- Dipartimento
di Fisica, Università degli Studi
di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Marco Lauricella
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy
| | - Jan Guzowski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Sauro Succi
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy
- Center
for Life Nanoscience at la Sapienza, Istituto
Italiano di Tecnologia, Viale Regina Elena 295, Rome 00161, Italy
- Institute
for Applied Computational Science, Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
200
|
Sprugnoli G, Rossi S, Rotenberg A, Pascual-Leone A, El-Fakhri G, Golby AJ, Santarnecchi E. Personalised, image-guided, noninvasive brain stimulation in gliomas: Rationale, challenges and opportunities. EBioMedicine 2021; 70:103514. [PMID: 34391090 PMCID: PMC8365310 DOI: 10.1016/j.ebiom.2021.103514] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
Malignant brain tumours are among the most aggressive human cancers, and despite intensive efforts made over the last decades, patients' survival has scarcely improved. Recently, high-grade gliomas (HGG) have been found to be electrically integrated with healthy brain tissue, a communication that facilitates tumour mitosis and invasion. This link to neuronal activity has provided new insights into HGG pathophysiology and opened prospects for therapeutic interventions based on electrical modulation of neural and synaptic activity in the proximity of tumour cells, which could potentially slow tumour growth. Noninvasive brain stimulation (NiBS), a group of techniques used in research and clinical settings to safely modulate brain activity and plasticity via electromagnetic or electrical stimulation, represents an appealing class of interventions to characterise and target the electrical properties of tumour-neuron interactions. Beyond neuronal activity, NiBS may also modulate function of a range of substrates and dynamics that locally interacts with HGG (e.g., vascular architecture, perfusion and blood-brain barrier permeability). Here we discuss emerging applications of NiBS in patients with brain tumours, covering potential mechanisms of action at both cellular, regional, network and whole-brain levels, also offering a conceptual roadmap for future research to prolong survival or promote wellbeing via personalised NiBS interventions.
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy; Image Guided Neurosurgery laboratory, Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Brain investigation and Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Simone Rossi
- Brain investigation and Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Alexander Rotenberg
- Department of Neurology and Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew Senior Life, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann, Universitat Autonoma, Barcelona, Spain
| | - Georges El-Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Image Guided Neurosurgery laboratory, Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|