151
|
Liu M, Mallinger A, Tortorici M, Newbatt Y, Richards M, Mirza A, van Montfort RLM, Burke R, Blagg J, Kaserer T. Evaluation of APOBEC3B Recognition Motifs by NMR Reveals Preferred Substrates. ACS Chem Biol 2018; 13:2427-2432. [PMID: 30130388 PMCID: PMC6430498 DOI: 10.1021/acschembio.8b00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022]
Abstract
APOBEC3B (A3B) deamination activity on ssDNA is considered a contributing factor to tumor heterogeneity and drug resistance in a number of human cancers. Despite its clinical impact, little is known about A3B ssDNA substrate preference. We have used nuclear magnetic resonance to monitor the catalytic turnover of A3B substrates in real-time. This study reports preferred nucleotide sequences for A3B substrates, including optimized 4-mer oligonucleotides, and reveals a breadth of substrate recognition that includes DNA sequences known to be mutated in drug-resistant cancer clones. Our results are consistent with available clinical and structural data and may inform the design of substrate-based A3B inhibitors.
Collapse
Affiliation(s)
- Manjuan Liu
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Aurélie Mallinger
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Marcello Tortorici
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Yvette Newbatt
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Meirion Richards
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Amin Mirza
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Rob L M van Montfort
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Teresa Kaserer
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| |
Collapse
|
152
|
Strategy of Human Cytomegalovirus To Escape Interferon Beta-Induced APOBEC3G Editing Activity. J Virol 2018; 92:JVI.01224-18. [PMID: 30045985 DOI: 10.1128/jvi.01224-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/26/2023] Open
Abstract
The apolipoprotein B editing enzyme catalytic subunit 3 (APOBEC3) is a family of DNA cytosine deaminases that mutate and inactivate viral genomes by single-strand DNA editing, thus providing an innate immune response against a wide range of DNA and RNA viruses. In particular, APOBEC3A (A3A), a member of the APOBEC3 family, is induced by human cytomegalovirus (HCMV) in decidual tissues where it efficiently restricts HCMV replication, thereby acting as an intrinsic innate immune effector at the maternal-fetal interface. However, the widespread incidence of congenital HCMV infection implies that HCMV has evolved to counteract APOBEC3-induced mutagenesis through mechanisms that still remain to be fully established. Here, we have assessed gene expression and deaminase activity of various APOBEC3 gene family members in HCMV-infected primary human foreskin fibroblasts (HFFs). Specifically, we show that APOBEC3G (A3G) gene products and, to a lesser degree, those of A3F but not of A3A, are upregulated in HCMV-infected HFFs. We also show that HCMV-mediated induction of A3G expression is mediated by interferon beta (IFN-β), which is produced early during HCMV infection. However, knockout or overexpression of A3G does not affect HCMV replication, indicating that A3G is not a restriction factor for HCMV. Finally, through a bioinformatics approach, we show that HCMV has evolved mutational robustness against IFN-β by limiting the presence of A3G hot spots in essential open reading frames (ORFs) of its genome. Overall, our findings uncover a novel immune evasion strategy by HCMV with profound implications for HCMV infections.IMPORTANCE APOBEC3 family of proteins plays a pivotal role in intrinsic immunity defense mechanisms against multiple viral infections, including retroviruses, through the deamination activity. However, the currently available data on APOBEC3 editing mechanisms upon HCMV infection remain unclear. In the present study, we show that particularly the APOBEC3G (A3G) member of the deaminase family is strongly induced upon infection with HCMV in fibroblasts and that its upregulation is mediated by IFN-β. Furthermore, we were able to demonstrate that neither A3G knockout nor A3G overexpression appears to modulate HCMV replication, indicating that A3G does not inhibit HCMV replication. This may be explained by HCMV escape strategy from A3G activity through depletion of the preferred nucleotide motifs (hot spots) from its genome. The results may shed light on antiviral potential of APOBEC3 activity during HCMV infection, as well as the viral counteracting mechanisms under A3G-mediated selective pressure.
Collapse
|
153
|
Jaguva Vasudevan AA, Kreimer U, Schulz WA, Krikoni A, Schumann GG, Häussinger D, Münk C, Goering W. APOBEC3B Activity Is Prevalent in Urothelial Carcinoma Cells and Only Slightly Affected by LINE-1 Expression. Front Microbiol 2018; 9:2088. [PMID: 30233553 PMCID: PMC6132077 DOI: 10.3389/fmicb.2018.02088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
The most common mutational signature in urothelial carcinoma (UC), the most common type of urinary bladder cancer is assumed to be caused by the misdirected activity of APOBEC3 (A3) cytidine deaminases, especially A3A or A3B, which are known to normally restrict the propagation of exogenous viruses and endogenous retroelements such as LINE-1 (L1). The involvement of A3 proteins in urothelial carcinogenesis is unexpected because, to date, UC is thought to be caused by chemical carcinogens rather than viral activity. Therefore, we explored the relationship between A3 expression and L1 activity, which is generally upregulated in UC. We found that UC cell lines highly express A3B and in some cases A3G, but not A3A, and exhibit corresponding cytidine deamination activity in vitro. While we observed evidence suggesting that L1 expression has a weak positive effect on A3B and A3G expression and A3B promoter activity, neither efficient siRNA-mediated knockdown nor overexpression of functional L1 elements affected catalytic activity of A3 proteins consistently. However, L1 knockdown diminished proliferation of a UC cell line exhibiting robust endogenous L1 expression, but had little impact on a cell line with low L1 expression levels. Our results indicate that UC cells express A3B at levels exceeding A3A levels by far, making A3B the prime candidate for causing genomic mutations. Our data provide evidence that L1 activation constitutes only a minor and negligible factor involved in induction or upregulation of endogenous A3 expression in UC.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Kreimer
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aikaterini Krikoni
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Goering
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Pathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
154
|
St. Martin A, Salamango D, Serebrenik A, Shaban N, Brown WL, Donati F, Munagala U, Conticello SG, Harris RS. A fluorescent reporter for quantification and enrichment of DNA editing by APOBEC-Cas9 or cleavage by Cas9 in living cells. Nucleic Acids Res 2018; 46:e84. [PMID: 29746667 PMCID: PMC6101615 DOI: 10.1093/nar/gky332] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/26/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Base editing is an exciting new genome engineering technology. C-to-T mutations in genomic DNA have been achieved using ribonucleoprotein complexes comprised of rat APOBEC1 single-stranded DNA deaminase, Cas9 nickase (Cas9n), uracil DNA glycosylase inhibitor (UGI), and guide (g)RNA. Here, we report the first real-time reporter system for quantification of APOBEC-mediated base editing activity in living mammalian cells. The reporter expresses eGFP constitutively as a marker for transfection or transduction, and editing restores functionality of an upstream mCherry cassette through the simultaneous processing of two gRNA binding regions that each contain an APOBEC-preferred 5'TCA target site. Using this system as both an episomal and a chromosomal editing reporter, we show that human APOBEC3A-Cas9n-UGI and APOBEC3B-Cas9n-UGI base editing complexes are more efficient than the original rat APOBEC1-Cas9n-UGI construct. We also demonstrate coincident enrichment of editing events at a heterologous chromosomal locus in reporter-edited, mCherry-positive cells. The mCherry reporter also quantifies the double-stranded DNA cleavage activity of Cas9, and may therefore be adaptable for use with many different CRISPR systems. The combination of a rapid, fluorescence-based editing reporter system and more efficient, structurally defined DNA editing enzymes broadens the versatility of the rapidly expanding toolbox of genome editing and engineering technologies.
Collapse
Affiliation(s)
- Amber St. Martin
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - Daniel Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - Artur Serebrenik
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - Nadine Shaban
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | | | | | | | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
155
|
Wang X, Li J, Wang Y, Yang B, Wei J, Wu J, Wang R, Huang X, Chen J, Yang L. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat Biotechnol 2018; 36:946-949. [PMID: 30125268 DOI: 10.1038/nbt.4198] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/03/2018] [Indexed: 01/02/2023]
Abstract
Base editors (BEs) enable the generation of targeted single-nucleotide mutations, but currently used rat APOBEC1-based BEs are relatively inefficient in editing cytosines in highly methylated regions or in GpC contexts. By screening a variety of APOBEC and AID deaminases, we show that human APOBEC3A-conjugated BEs and versions we engineered to have narrower editing windows can mediate efficient C-to-T base editing in regions with high methylation levels and GpC dinucleotide content.
Collapse
Affiliation(s)
- Xiao Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ruixuan Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jia Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
156
|
Gehrke JM, Cervantes O, Clement MK, Wu Y, Zeng J, Bauer DE, Pinello L, Joung JK. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol 2018; 36:977-982. [PMID: 30059493 PMCID: PMC6181770 DOI: 10.1038/nbt.4199] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Abstract
Base editor (BE) technology, which uses CRISPR-Cas9 to direct cytidine deaminase enzymatic activity to specific genomic loci, enables the highly efficient introduction of precise cytidine-to-thymidine DNA alterations1–6. However, existing BEs create unwanted C to T alterations when more than one C is present in the enzyme’s five-base-pair editing window. Here we describe a strategy for reducing bystander mutations using an engineered human APOBEC3A (eA3A) domain, which preferentially deaminates cytidines in specific motifs according to a TCR>TCY>VCN hierarchy. In direct comparisons with the widely used BE3 fusion in human cells, our eA3A-BE3 fusion exhibits similar activities on cytidines in TC motifs but greatly reduced editing on cytidines in other sequence contexts. eA3A-BE3 corrects a human beta-thalassemia promoter mutation with much higher (>40-fold) precision than BE3. We also demonstrate that eA3A-BE3 shows reduced mutation frequencies on known off-target sites of BE3, even when targeting promiscuous homopolymeric sites.
Collapse
Affiliation(s)
- Jason M Gehrke
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Oliver Cervantes
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - M Kendell Clement
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuxuan Wu
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Pinello
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - J Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
157
|
Gao J, Choudhry H, Cao W. Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like family genes activation and regulation during tumorigenesis. Cancer Sci 2018; 109:2375-2382. [PMID: 29856501 PMCID: PMC6113426 DOI: 10.1111/cas.13658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer is currently viewed as a disease of evolving genomic instability and abnormal epigenomic modifications. Most solid cancers harbor oncogenic gene mutations driven by both extrinsic and intrinsic factors. Apolipoprotein B mRNA editing catalytic polypeptide‐like family (APOBEC) enzymes have an intrinsic deamination activity to convert cytosine to uracil during RNA editing and retrovirus or retrotransposon restriction. Beyond their natural defense in innate immunity, compelling evidence showed that a subclass of APOBEC3 can cause high mutation burden in various types of cancer genomes, and high expression subtypes of APOBEC3 may contribute to drug resistance and associate with clinical outcomes. The underlying molecular mechanisms of APOBEC‐mediated hypermutation phenotype are poorly understood. In this review, we discuss the linkage of activation‐induced deaminase (AID)/APOBEC3 enzymes to tumorigenesis, highlight the dysregulatory mechanisms of APOBEC3 activities during cancer development, and propose potential approaches to targeting APOBEC3‐mediated mutagenesis for cancer interventions.
Collapse
Affiliation(s)
| | | | - Wei Cao
- Translational Medical Center, Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
158
|
Maiti A, Myint W, Kanai T, Delviks-Frankenberry K, Sierra Rodriguez C, Pathak VK, Schiffer CA, Matsuo H. Crystal structure of the catalytic domain of HIV-1 restriction factor APOBEC3G in complex with ssDNA. Nat Commun 2018; 9:2460. [PMID: 29941968 PMCID: PMC6018426 DOI: 10.1038/s41467-018-04872-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/29/2018] [Indexed: 12/03/2022] Open
Abstract
The human APOBEC3G protein is a cytidine deaminase that generates cytidine to deoxy-uridine mutations in single-stranded DNA (ssDNA), and capable of restricting replication of HIV-1 by generating mutations in viral genome. The mechanism by which APOBEC3G specifically deaminates 5′-CC motifs has remained elusive since structural studies have been hampered due to apparently weak ssDNA binding of the catalytic domain of APOBEC3G. We overcame the problem by generating a highly active variant with higher ssDNA affinity. Here, we present the crystal structure of this variant complexed with a ssDNA substrate at 1.86 Å resolution. This structure reveals atomic-level interactions by which APOBEC3G recognizes a functionally-relevant 5′-TCCCA sequence. This complex also reveals a key role of W211 in substrate recognition, implicating a similar recognition in activation-induced cytidine deaminase (AID) with a conserved tryptophan. APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytidine deaminase that restricts HIV-1. Here the authors provide molecular insights into A3G substrate recognition by determining the 1.86 Å resolution crystal structure of its catalytic domain bound to ssDNA.
Collapse
Affiliation(s)
- Atanu Maiti
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Wazo Myint
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tapan Kanai
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Krista Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Christina Sierra Rodriguez
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Hiroshi Matsuo
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
159
|
Fisher AJ, Beal PA. Structural basis for eukaryotic mRNA modification. Curr Opin Struct Biol 2018; 53:59-68. [PMID: 29913347 DOI: 10.1016/j.sbi.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
All messenger RNAs in eukaryotes are modified co-transcriptionally and post-transcriptionally. They are all capped at the 5'-end and polyadenylated at the 3'-end. However, many mRNAs are also found to be chemically modified internally for regulation of mRNA processing, translation, stability, and to recode the message. This review will briefly summarize the structural basis for formation of the two most common modifications found at internal sites in mRNAs; methylation and deamination. The structures of the enzymes that catalyze these modifications show structural similarity to other family members within each modifying enzyme class. RNA methyltransferases, including METTL3/METTL14 responsible for N6-methyladensosine (m6A) formation, share a common structural core and utilize S-adenosyl methionine as a methyl donor. RNA deaminases, including adenosine deaminases acting on RNA (ADARs), also share a common structural core and similar signature sequence motif with conserved residues used for binding zinc and catalyzing the deamination reaction. In spite of recent reports of high resolution structures for members of these two RNA-modifying enzyme families, a great deal remains to be uncovered for a complete understanding of the structural basis for mRNA modification. Of particular interest is the definition of factors that control modification site specificity.
Collapse
Affiliation(s)
- Andrew J Fisher
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, University of California, One Shields Ave, Davis, CA 95616, USA.
| | - Peter A Beal
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
160
|
Eid A, Alshareef S, Mahfouz MM. CRISPR base editors: genome editing without double-stranded breaks. Biochem J 2018. [PMID: 29891532 DOI: 10.1042/bcj2017079.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 adaptive immunity system has been harnessed for genome editing applications across eukaryotic species, but major drawbacks, such as the inefficiency of precise base editing and off-target activities, remain. A catalytically inactive Cas9 variant (dead Cas9, dCas9) has been fused to diverse functional domains for targeting genetic and epigenetic modifications, including base editing, to specific DNA sequences. As base editing does not require the generation of double-strand breaks, dCas9 and Cas9 nickase have been used to target deaminase domains to edit specific loci. Adenine and cytidine deaminases convert their respective nucleotides into other DNA bases, thereby offering many possibilities for DNA editing. Such base-editing enzymes hold great promise for applications in basic biology, trait development in crops, and treatment of genetic diseases. Here, we discuss recent advances in precise gene editing using different platforms as well as their potential applications in basic biology and biotechnology.
Collapse
Affiliation(s)
- Ayman Eid
- Laboratory for Genome Engineering, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sahar Alshareef
- Laboratory for Genome Engineering, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
161
|
CRISPR base editors: genome editing without double-stranded breaks. Biochem J 2018; 475:1955-1964. [PMID: 29891532 PMCID: PMC5995079 DOI: 10.1042/bcj20170793] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 adaptive immunity system has been harnessed for genome editing applications across eukaryotic species, but major drawbacks, such as the inefficiency of precise base editing and off-target activities, remain. A catalytically inactive Cas9 variant (dead Cas9, dCas9) has been fused to diverse functional domains for targeting genetic and epigenetic modifications, including base editing, to specific DNA sequences. As base editing does not require the generation of double-strand breaks, dCas9 and Cas9 nickase have been used to target deaminase domains to edit specific loci. Adenine and cytidine deaminases convert their respective nucleotides into other DNA bases, thereby offering many possibilities for DNA editing. Such base-editing enzymes hold great promise for applications in basic biology, trait development in crops, and treatment of genetic diseases. Here, we discuss recent advances in precise gene editing using different platforms as well as their potential applications in basic biology and biotechnology.
Collapse
|
162
|
Salter JD, Smith HC. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Trends Biochem Sci 2018; 43:606-622. [PMID: 29803538 PMCID: PMC6073885 DOI: 10.1016/j.tibs.2018.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. APOBEC proteins catalyze deamination of cytidine or deoxycytidine in either a sequence-specific or semi-specific manner on either DNA or RNA. APOBECs each possess the cytidine deaminase core fold, but sequence and structural differences among loops surrounding the zinc-dependent active site impart differences in sequence-dependent target preferences, binding affinity, catalytic rate, and regulation of substrate access to the active site among the 11 family members. APOBECs also regulate the deamination reaction through additional nucleic acid substrate binding sites located within surface grooves or patches of positive electrostatic potential that are distal to the active site but may do so nonspecifically. Binding of nonsubstrate RNA and RNA-mediated oligomerization by APOBECs that deaminate ssDNA downregulates catalytic activity but also controls APOBEC subcellular or virion localization. The presence of a second, though noncatalytic, cytidine deaminase domain for some APOBECs and the ability of some APOBECs to oligomerize add additional molecular surfaces for positive or negative regulation of catalysis through nucleic acid binding.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
163
|
Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions. Sci Rep 2018; 8:7511. [PMID: 29760455 PMCID: PMC5951847 DOI: 10.1038/s41598-018-25881-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A–ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A’s involvement in mutation of endogenous or exogenous DNA.
Collapse
|
164
|
Ziegler SJ, Liu C, Landau M, Buzovetsky O, Desimmie BA, Zhao Q, Sasaki T, Burdick RC, Pathak VK, Anderson KS, Xiong Y. Insights into DNA substrate selection by APOBEC3G from structural, biochemical, and functional studies. PLoS One 2018; 13:e0195048. [PMID: 29596531 PMCID: PMC5875850 DOI: 10.1371/journal.pone.0195048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/15/2018] [Indexed: 01/27/2023] Open
Abstract
Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 (A3) proteins are a family of cytidine deaminases that catalyze the conversion of deoxycytidine (dC) to deoxyuridine (dU) in single-stranded DNA (ssDNA). A3 proteins act in the innate immune response to viral infection by mutating the viral ssDNA. One of the most well-studied human A3 family members is A3G, which is a potent inhibitor of HIV-1. Each A3 protein prefers a specific substrate sequence for catalysis-for example, A3G deaminates the third dC in the CCCA sequence motif. However, the interaction between A3G and ssDNA is difficult to characterize due to poor solution behavior of the full-length protein and loss of DNA affinity of the truncated protein. Here, we present a novel DNA-anchoring fusion strategy using the protection of telomeres protein 1 (Pot1) which has nanomolar affinity for ssDNA, with which we captured an A3G-ssDNA interaction. We crystallized a non-preferred adenine in the -1 nucleotide-binding pocket of A3G. The structure reveals a unique conformation of the catalytic site loops that sheds light onto how the enzyme scans substrate in the -1 pocket. Furthermore, our biochemistry and virology studies provide evidence that the nucleotide-binding pockets on A3G influence each other in selecting the preferred DNA substrate. Together, the results provide insights into the mechanism by which A3G selects and deaminates its preferred substrates and help define how A3 proteins are tailored to recognize specific DNA sequences. This knowledge contributes to a better understanding of the mechanism of DNA substrate selection by A3G, as well as A3G antiviral activity against HIV-1.
Collapse
Affiliation(s)
- Samantha J. Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Chang Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Mark Landau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Olga Buzovetsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Belete A. Desimmie
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Qi Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Tomoaki Sasaki
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Karen S. Anderson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
165
|
Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proc Natl Acad Sci U S A 2018; 115:E3201-E3210. [PMID: 29555751 PMCID: PMC5889660 DOI: 10.1073/pnas.1720897115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AID/APOBEC deaminases (AADs) convert cytidine to uridine in single-stranded nucleic acids. They are involved in numerous mutagenic processes, including those underpinning vertebrate innate and adaptive immunity. Using a multipronged sequence analysis strategy, we uncover several AADs across metazoa, dictyosteliida, and algae, including multiple previously unreported vertebrate clades, and versions from urochordates, nematodes, echinoderms, arthropods, lophotrochozoans, cnidarians, and porifera. Evolutionary analysis suggests a fundamental division of AADs early in metazoan evolution into secreted deaminases (SNADs) and classical AADs, followed by diversification into several clades driven by rapid-sequence evolution, gene loss, lineage-specific expansions, and lateral transfer to various algae. Most vertebrate AADs, including AID and APOBECs1-3, diversified in the vertebrates, whereas the APOBEC4-like clade has a deeper origin in metazoa. Positional entropy analysis suggests that several AAD clades are diversifying rapidly, especially in the positions predicted to interact with the nucleic acid target motif, and with potential viral inhibitors. Further, several AADs have evolved neomorphic metal-binding inserts, especially within loops predicted to interact with the target nucleic acid. We also observe polymorphisms, driven by alternative splicing, gene loss, and possibly intergenic recombination between paralogs. We propose that biological conflicts of AADs with viruses and genomic retroelements are drivers of rapid AAD evolution, suggesting a widespread presence of mutagenesis-based immune-defense systems. Deaminases like AID represent versions "institutionalized" from the broader array of AADs pitted in such arms races for mutagenesis of self-DNA, and similar recruitment might have independently occurred elsewhere in metazoa.
Collapse
|
166
|
Adolph MB, Love RP, Chelico L. Biochemical Basis of APOBEC3 Deoxycytidine Deaminase Activity on Diverse DNA Substrates. ACS Infect Dis 2018; 4:224-238. [PMID: 29347817 DOI: 10.1021/acsinfecdis.7b00221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Apolipoprotein B mRNA editing complex (APOBEC) family of enzymes contains single-stranded polynucleotide cytidine deaminases. These enzymes catalyze the deamination of cytidine in RNA or single-stranded DNA, which forms uracil. From this 11 member enzyme family in humans, the deamination of single-stranded DNA by the seven APOBEC3 family members is considered here. The APOBEC3 family has many roles, such as restricting endogenous and exogenous retrovirus replication and retrotransposon insertion events and reducing DNA-induced inflammation. Similar to other APOBEC family members, the APOBEC3 enzymes are a double-edged sword that can catalyze deamination of cytosine in genomic DNA, which results in potential genomic instability due to the many mutagenic fates of uracil in DNA. Here, we discuss how these enzymes find their single-stranded DNA substrate in different biological contexts such as during human immunodeficiency virus (HIV) proviral DNA synthesis, retrotransposition of the LINE-1 element, and the "off-target" genomic DNA substrate. The enzymes must be able to efficiently deaminate transiently available single-stranded DNA during reverse transcription, replication, or transcription. Specific biochemical characteristics promote deamination in each situation to increase enzyme efficiency through processivity, rapid enzyme cycling between substrates, or oligomerization state. The use of biochemical data to clarify biological functions and alignment with cellular data is discussed. Models to bridge knowledge from biochemical, structural, and single molecule experiments are presented.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| |
Collapse
|
167
|
Fang Y, Xiao X, Li SX, Wolfe A, Chen XS. Molecular Interactions of a DNA Modifying Enzyme APOBEC3F Catalytic Domain with a Single-Stranded DNA. J Mol Biol 2018; 430:87-101. [PMID: 29191651 PMCID: PMC5738261 DOI: 10.1016/j.jmb.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
The single-stranded DNA (ssDNA) cytidine deaminase APOBEC3F (A3F) deaminates cytosine (C) to uracil (U) and is a known restriction factor of HIV-1. Its C-terminal catalytic domain (CD2) alone is capable of binding single-stranded nucleic acids and is important for deamination. However, little is known about how the CD2 interacts with ssDNA. Here we report a crystal structure of A3F-CD2 in complex with a 10-nucleotide ssDNA composed of poly-thymine, which reveals a novel positively charged nucleic acid binding site distal to the active center that plays a key role in substrate DNA binding and catalytic activity. Lysine and tyrosine residues within this binding site interact with the ssDNA, and mutating these residues dramatically impairs both ssDNA binding and catalytic activity. This binding site is not conserved in APOBEC3G (A3G), which may explain differences in ssDNA-binding characteristics between A3F-CD2 and A3G-CD2. In addition, we observed an alternative Zn-coordination conformation around the active center. These findings reveal the structural relationships between nucleic acid interactions and catalytic activity of A3F.
Collapse
Affiliation(s)
- Yao Fang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; 161 Hospital of PLA, Wuhan, 430012, China; Department of Clinical Microbiology and Immunology of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiao Xiao
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shu-Xing Li
- Center of Excellence in NanoBiophysics, Los Angeles, CA 90089, USA
| | - Aaron Wolfe
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
168
|
Wan L, Nagata T, Katahira M. Influence of the DNA sequence/length and pH on deaminase activity, as well as the roles of the amino acid residues around the catalytic center of APOBEC3F. Phys Chem Chem Phys 2018; 20:3109-3117. [DOI: 10.1039/c7cp04477a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The roles of the amino acid residues responsible for the deaminase activity of APOBEC3F were identified by mutation analysis.
Collapse
Affiliation(s)
- Li Wan
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| | - Takashi Nagata
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| | - Masato Katahira
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| |
Collapse
|
169
|
Liu X, Meng FL. Generation of Genomic Alteration from Cytidine Deamination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:49-64. [DOI: 10.1007/978-981-13-0593-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
170
|
The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by an RNA-Mediated Dimerization Mechanism. Mol Cell 2017; 69:75-86.e9. [PMID: 29290613 DOI: 10.1016/j.molcel.2017.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/25/2017] [Accepted: 12/13/2017] [Indexed: 01/23/2023]
Abstract
Human APOBEC3H and homologous single-stranded DNA cytosine deaminases are unique to mammals. These DNA-editing enzymes function in innate immunity by restricting the replication of viruses and transposons. APOBEC3H also contributes to cancer mutagenesis. Here, we address the fundamental nature of RNA in regulating human APOBEC3H activities. APOBEC3H co-purifies with RNA as an inactive protein, and RNase A treatment enables strong DNA deaminase activity. RNA-binding-defective mutants demonstrate clear separation of function by becoming DNA hypermutators. Biochemical and crystallographic data demonstrate a mechanism in which double-stranded RNA mediates enzyme dimerization. Additionally, APOBEC3H separation-of-function mutants show that RNA binding is required for cytoplasmic localization, packaging into HIV-1 particles, and antiviral activity. Overall, these results support a model in which structured RNA negatively regulates the potentially harmful DNA deamination activity of APOBEC3H while, at the same time, positively regulating its antiviral activity.
Collapse
|
171
|
Yaparla A, Popovic M, Grayfer L. Differentiation-dependent antiviral capacities of amphibian ( Xenopus laevis) macrophages. J Biol Chem 2017; 293:1736-1744. [PMID: 29259133 DOI: 10.1074/jbc.m117.794065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 12/12/2017] [Indexed: 12/30/2022] Open
Abstract
Infections by ranaviruses such as Frog virus 3 (Fv3), are significantly contributing to worldwide amphibian population declines. Notably, amphibian macrophages (Mφs) are important to both the Fv3 infection strategies and the immune defense against this pathogen. However, the mechanisms underlying amphibian Mφ Fv3 susceptibility and resistance remain unknown. Mφ differentiation is mediated by signaling through the colony-stimulating factor-1 receptor (CSF-1R) which is now known to be bound not only by CSF-1, but also by the unrelated interleukin-34 (IL-34) cytokine. Pertinently, amphibian (Xenopus laevis) Mφs differentiated by CSF-1 and IL-34 are highly susceptible and resistant to Fv3, respectively. Accordingly, in the present work, we elucidate the facets of this Mφ Fv3 susceptibility and resistance. Because cellular resistance to viral replication is marked by expression of antiviral restriction factors, it was intuitive to find that IL-34-Mφs possess significantly greater mRNA levels of select restriction factor genes than CSF-1-Mφs. Xenopodinae amphibians have highly expanded repertoires of antiviral interferon (IFN) cytokine gene families, and our results indicated that in comparison with the X. laevis CSF-1-Mφs, the IL-34-Mφs express substantially greater transcripts of representative IFN genes, belonging to distinct gene family clades, as well as their cognate receptor genes. Finally, we demonstrate that IL-34-Mφ-conditioned supernatants confer IFN-mediated anti-Fv3 protection to the virally susceptible X. laevis kidney (A6) cell line. Together, this work underlines the differentiation pathways leading to Fv3-susceptible and -resistant amphibian Mφ populations and defines the molecular mechanisms responsible for these differences.
Collapse
Affiliation(s)
- Amulya Yaparla
- From the Department of Biological Sciences, George Washington University, Washington, D. C. 20052-0066
| | - Milan Popovic
- From the Department of Biological Sciences, George Washington University, Washington, D. C. 20052-0066
| | - Leon Grayfer
- From the Department of Biological Sciences, George Washington University, Washington, D. C. 20052-0066
| |
Collapse
|
172
|
Glaser AP, Fantini D, Wang Y, Yu Y, Rimar KJ, Podojil JR, Miller SD, Meeks JJ. APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response. Oncotarget 2017; 9:4537-4548. [PMID: 29435122 PMCID: PMC5796993 DOI: 10.18632/oncotarget.23344] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/26/2017] [Indexed: 12/20/2022] Open
Abstract
APOBEC enzymes are responsible for a mutation signature (TCW>T/G) implicated in a wide variety of tumors. We explore the APOBEC mutational signature in bladder cancer and the relationship with specific mutations, molecular subtype, gene expression, and survival using sequencing data from The Cancer Genome Atlas (n = 395), Beijing Genomics Institute (n = 99), and Cancer Cell Line Encyclopedia. Tumors were split into “APOBEC-high” and “APOBEC-low” based on APOBEC enrichment. Patients with APOBEC-high tumors have better overall survival compared to those with APOBEC-low tumors (38.2 vs. 18.5 months, p = 0.005). APOBEC-high tumors are more likely to have mutations in DNA damage response genes (TP53, ATR, BRCA2) and chromatin regulatory genes (ARID1A, MLL, MLL3), while APOBEC-low tumors are more likely to have mutations in FGFR3 and KRAS. APOBEC3A and APOBEC3B expression correlates with mutation burden, regardless of bladder tumor molecular subtype. APOBEC mutagenesis is associated with increased expression of immune signatures, including interferon signaling, and expression of APOBEC3B is increased after stimulation of APOBEC-high bladder cancer cell lines with IFNγ. In summary, APOBEC-high tumors are more likely to have mutations in DNA damage response and chromatin regulatory genes, potentially providing more substrate for APOBEC enzymes, leading to a hypermutational phenotype and the subsequent enhanced immune response.
Collapse
Affiliation(s)
- Alexander P Glaser
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Damiano Fantini
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Yiduo Wang
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Yanni Yu
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Kalen J Rimar
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Joseph R Podojil
- Interdepartmental Immunobiology Center, Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | - Stephen D Miller
- Interdepartmental Immunobiology Center, Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | - Joshua J Meeks
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
173
|
Adolph MB, Love RP, Feng Y, Chelico L. Enzyme cycling contributes to efficient induction of genome mutagenesis by the cytidine deaminase APOBEC3B. Nucleic Acids Res 2017; 45:11925-11940. [PMID: 28981865 PMCID: PMC5714209 DOI: 10.1093/nar/gkx832] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The single-stranded DNA cytidine deaminases APOBEC3B, APOBEC3H haplotype I, and APOBEC3A can contribute to cancer through deamination of cytosine to form promutagenic uracil in genomic DNA. The enzymes must access single-stranded DNA during the dynamic processes of DNA replication or transcription, but the enzymatic mechanisms enabling this activity are not known. To study this, we developed a method to purify full length APOBEC3B and characterized it in comparison to APOBEC3A and APOBEC3H on substrates relevant to cancer mutagenesis. We found that the ability of an APOBEC3 to cycle between DNA substrates determined whether it was able to efficiently deaminate single-stranded DNA produced by replication and single-stranded DNA bound by replication protein A (RPA). APOBEC3 deaminase activity during transcription had a size limitation that inhibited APOBEC3B tetramers, but not APOBEC3A monomers or APOBEC3H dimers. Altogether, the data support a model in which the availability of single-stranded DNA is necessary, but alone not sufficient for APOBEC3-induced mutagenesis in cells because there is also a dependence on the inherent biochemical properties of the enzymes. The biochemical properties identified in this study can be used to measure the mutagenic potential of other APOBEC enzymes in the genome.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuqing Feng
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
174
|
Shi K, Demir Ö, Carpenter MA, Wagner J, Kurahashi K, Harris RS, Amaro RE, Aihara H. Conformational Switch Regulates the DNA Cytosine Deaminase Activity of Human APOBEC3B. Sci Rep 2017; 7:17415. [PMID: 29234087 PMCID: PMC5727031 DOI: 10.1038/s41598-017-17694-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
The APOBEC3B (A3B) single-stranded DNA (ssDNA) cytosine deaminase has important roles in innate immunity but is also a major endogenous source of mutations in cancer. Previous structural studies showed that the C-terminal catalytic domain of human A3B has a tightly closed active site, and rearrangement of the surrounding loops is required for binding to substrate ssDNA. Here we report structures of the A3B catalytic domain in a new crystal form that show alternative, yet still closed, conformations of active site loops. All-atom molecular dynamics simulations support the dynamic behavior of active site loops and recapitulate the distinct modes of interactions that maintain a closed active site. Replacing segments of A3B loop 1 to mimic the more potent cytoplasmic deaminase APOBEC3A leads to elevated ssDNA deaminase activity, likely by facilitating opening of the active site. These data collectively suggest that conformational equilibrium of the A3B active site loops, skewed toward being closed, controls enzymatic activity by regulating binding to ssDNA substrates.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Jeff Wagner
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kayo Kurahashi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, 55455, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA. .,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
175
|
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017. [PMID: 29160308 DOI: 10.1038/nature24644.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The spontaneous deamination of cytosine is a major source of transitions from C•G to T•A base pairs, which account for half of known pathogenic point mutations in humans. The ability to efficiently convert targeted A•T base pairs to G•C could therefore advance the study and treatment of genetic diseases. The deamination of adenine yields inosine, which is treated as guanine by polymerases, but no enzymes are known to deaminate adenine in DNA. Here we describe adenine base editors (ABEs) that mediate the conversion of A•T to G•C in genomic DNA. We evolved a transfer RNA adenosine deaminase to operate on DNA when fused to a catalytically impaired CRISPR-Cas9 mutant. Extensive directed evolution and protein engineering resulted in seventh-generation ABEs that convert targeted A•T base pairs efficiently to G•C (approximately 50% efficiency in human cells) with high product purity (typically at least 99.9%) and low rates of indels (typically no more than 0.1%). ABEs introduce point mutations more efficiently and cleanly, and with less off-target genome modification, than a current Cas9 nuclease-based method, and can install disease-correcting or disease-suppressing mutations in human cells. Together with previous base editors, ABEs enable the direct, programmable introduction of all four transition mutations without double-stranded DNA cleavage.
Collapse
Affiliation(s)
- Nicole M Gaudelli
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Alexis C Komor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Holly A Rees
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Michael S Packer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Ahmed H Badran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David I Bryson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
176
|
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017; 551:464-471. [PMID: 29160308 PMCID: PMC5726555 DOI: 10.1038/nature24644] [Citation(s) in RCA: 2536] [Impact Index Per Article: 317.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022]
Abstract
The spontaneous deamination of cytosine is a major source of transitions from C•G to T•A base pairs, which account for half of known pathogenic point mutations in humans. The ability to efficiently convert targeted A•T base pairs to G•C could therefore advance the study and treatment of genetic diseases. The deamination of adenine yields inosine, which is treated as guanine by polymerases, but no enzymes are known to deaminate adenine in DNA. Here we describe adenine base editors (ABEs) that mediate the conversion of A•T to G•C in genomic DNA. We evolved a transfer RNA adenosine deaminase to operate on DNA when fused to a catalytically impaired CRISPR-Cas9 mutant. Extensive directed evolution and protein engineering resulted in seventh-generation ABEs that convert targeted A•T base pairs efficiently to G•C (approximately 50% efficiency in human cells) with high product purity (typically at least 99.9%) and low rates of indels (typically no more than 0.1%). ABEs introduce point mutations more efficiently and cleanly, and with less off-target genome modification, than a current Cas9 nuclease-based method, and can install disease-correcting or disease-suppressing mutations in human cells. Together with previous base editors, ABEs enable the direct, programmable introduction of all four transition mutations without double-stranded DNA cleavage.
Collapse
Affiliation(s)
- Nicole M. Gaudelli
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
- Broad Institute of MIT and Harvard, Cambridge, MA, 02141
| | - Alexis C. Komor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
- Broad Institute of MIT and Harvard, Cambridge, MA, 02141
| | - Holly A. Rees
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
- Broad Institute of MIT and Harvard, Cambridge, MA, 02141
| | - Michael S. Packer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
- Broad Institute of MIT and Harvard, Cambridge, MA, 02141
| | - Ahmed H. Badran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
- Broad Institute of MIT and Harvard, Cambridge, MA, 02141
| | - David I. Bryson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
- Broad Institute of MIT and Harvard, Cambridge, MA, 02141
| | - David R. Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
- Broad Institute of MIT and Harvard, Cambridge, MA, 02141
| |
Collapse
|
177
|
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017. [PMID: 29160308 DOI: 10.1038/nature24644.programmable] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The spontaneous deamination of cytosine is a major source of transitions from C•G to T•A base pairs, which account for half of known pathogenic point mutations in humans. The ability to efficiently convert targeted A•T base pairs to G•C could therefore advance the study and treatment of genetic diseases. The deamination of adenine yields inosine, which is treated as guanine by polymerases, but no enzymes are known to deaminate adenine in DNA. Here we describe adenine base editors (ABEs) that mediate the conversion of A•T to G•C in genomic DNA. We evolved a transfer RNA adenosine deaminase to operate on DNA when fused to a catalytically impaired CRISPR-Cas9 mutant. Extensive directed evolution and protein engineering resulted in seventh-generation ABEs that convert targeted A•T base pairs efficiently to G•C (approximately 50% efficiency in human cells) with high product purity (typically at least 99.9%) and low rates of indels (typically no more than 0.1%). ABEs introduce point mutations more efficiently and cleanly, and with less off-target genome modification, than a current Cas9 nuclease-based method, and can install disease-correcting or disease-suppressing mutations in human cells. Together with previous base editors, ABEs enable the direct, programmable introduction of all four transition mutations without double-stranded DNA cleavage.
Collapse
Affiliation(s)
- Nicole M Gaudelli
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Alexis C Komor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Holly A Rees
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Michael S Packer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Ahmed H Badran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David I Bryson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
178
|
Gorle S, Pan Y, Sun Z, Shlyakhtenko LS, Harris RS, Lyubchenko YL, Vuković L. Computational Model and Dynamics of Monomeric Full-Length APOBEC3G. ACS CENTRAL SCIENCE 2017; 3:1180-1188. [PMID: 29202020 PMCID: PMC5704289 DOI: 10.1021/acscentsci.7b00346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 05/29/2023]
Abstract
APOBEC3G (A3G) is a restriction factor that provides innate immunity against HIV-1 in the absence of viral infectivity factor (Vif) protein. However, structural information about A3G, which can aid in unraveling the mechanisms that govern its interactions and define its antiviral activity, remains unknown. Here, we built a computer model of a full-length A3G using docking approaches and molecular dynamics simulations, based on the available X-ray and NMR structural data for the two protein domains. The model revealed a large-scale dynamics of the A3G monomer, as the two A3G domains can assume compact forms or extended dumbbell type forms with domains visibly separated from each other. To validate the A3G model, we performed time-lapse high-speed atomic force microscopy (HS-AFM) experiments enabling us to get images of a fully hydrated A3G and to directly visualize its dynamics. HS-AFM confirmed that A3G exists in two forms, a globular form (∼84% of the time) and a dumbbell form (∼16% of the time), and can dynamically switch from one form to the other. The obtained HS-AFM results are in line with the computer modeling, which demonstrates a similar distribution between two forms. Furthermore, our simulations capture the complete process of A3G switching from the DNA-bound state to the closed state. The revealed dynamic nature of monomeric A3G could aid in target recognition including scanning for cytosine locations along the DNA strand and in interactions with viral RNA during packaging into HIV-1 particles.
Collapse
Affiliation(s)
- Suresh Gorle
- Department
of Chemistry, University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Yangang Pan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Zhiqiang Sun
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luda S. Shlyakhtenko
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Reuben S. Harris
- Department
of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular
Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Howard
Hughes Medical Institute, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuri L. Lyubchenko
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Lela Vuković
- Department
of Chemistry, University of Texas at El
Paso, El Paso, Texas 79968, United States
| |
Collapse
|
179
|
Wan L, Nagata T, Morishita R, Takaori-Kondo A, Katahira M. Observation by Real-Time NMR and Interpretation of Length- and Location-Dependent Deamination Activity of APOBEC3B. ACS Chem Biol 2017; 12:2704-2708. [PMID: 28952713 DOI: 10.1021/acschembio.7b00662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human APOBEC3B (A3B) deaminates a cytosine into a uracil in single-stranded (ss) DNA, resulting in human cancers. A3B's deamination activity is conferred by its C-terminal domain (CTD). However, little is known about the mechanism by which target sequences are searched and deaminated. Here, we applied a real-time NMR method to elucidate the deamination properties. We found that A3B CTD shows higher activity toward its target sequence in short ssDNA and efficiently deaminates a target sequence located near the center of ssDNA. These properties are quite different from those of well-studied APOBEC3G, which shows higher activity toward its target sequence in long ssDNA and one located close to the 5'-end. The unique properties of the A3B CTD can be rationally interpreted by considering that after nonspecific binding to ssDNA, A3B slides only for a relatively short distance and tends to dissociate from the ssDNA before reaching the target sequence.
Collapse
Affiliation(s)
- Li Wan
- Institute
of Advanced Energy and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, 611-0011, Kyoto, Japan
| | - Takashi Nagata
- Institute
of Advanced Energy and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, 611-0011, Kyoto, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., 790-8577, Matsuyama, Ehime, Japan
| | - Akifumi Takaori-Kondo
- Department
of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Masato Katahira
- Institute
of Advanced Energy and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, 611-0011, Kyoto, Japan
| |
Collapse
|
180
|
APOBEC Enzymes as Targets for Virus and Cancer Therapy. Cell Chem Biol 2017; 25:36-49. [PMID: 29153851 DOI: 10.1016/j.chembiol.2017.10.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/11/2017] [Accepted: 10/18/2017] [Indexed: 01/08/2023]
Abstract
Human DNA cytosine-to-uracil deaminases catalyze mutations in both pathogen and cellular genomes. APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H restrict human immunodeficiency virus 1 (HIV-1) infection in cells deficient in the viral infectivity factor (Vif), and have the potential to catalyze sublethal levels of mutation in viral genomes in Vif-proficient cells. At least two APOBEC3 enzymes, and in particular APOBEC3B, are sources of somatic mutagenesis in cancer cells that drive tumor evolution and may manifest clinically as recurrence, metastasis, and/or therapy resistance. Consequently, APOBEC3 enzymes are tantalizing targets for developing chemical probes and therapeutic molecules to harness mutational processes in human disease. This review highlights recent efforts to chemically manipulate APOBEC3 activities.
Collapse
|
181
|
Xiao X, Yang H, Arutiunian V, Fang Y, Besse G, Morimoto C, Zirkle B, Chen XS. Structural determinants of APOBEC3B non-catalytic domain for molecular assembly and catalytic regulation. Nucleic Acids Res 2017; 45:7494-7506. [PMID: 28575276 PMCID: PMC5499559 DOI: 10.1093/nar/gkx362] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/27/2017] [Indexed: 12/26/2022] Open
Abstract
The catalytic activity of human cytidine deaminase APOBEC3B (A3B) has been correlated with kataegic mutational patterns within multiple cancer types. The molecular basis of how the N-terminal non-catalytic CD1 regulates the catalytic activity and consequently, biological function of A3B remains relatively unknown. Here, we report the crystal structure of a soluble human A3B-CD1 variant and delineate several structural elements of CD1 involved in molecular assembly, nucleic acid interactions and catalytic regulation of A3B. We show that (i) A3B expressed in human cells exists in hypoactive high-molecular-weight (HMW) complexes, which can be activated without apparent dissociation into low-molecular-weight (LMW) species after RNase A treatment. (ii) Multiple surface hydrophobic residues of CD1 mediate the HMW complex assembly and affect the catalytic activity, including one tryptophan residue W127 that likely acts through regulating nucleic acid binding. (iii) One of the highly positively charged surfaces on CD1 is involved in RNA-dependent attenuation of A3B catalysis. (iv) Surface hydrophobic residues of CD1 are involved in heterogeneous nuclear ribonucleoproteins (hnRNPs) binding to A3B. The structural and biochemical insights described here suggest that unique structural features on CD1 regulate the molecular assembly and catalytic activity of A3B through distinct mechanisms.
Collapse
Affiliation(s)
- Xiao Xiao
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- These authors contributed equally to this work as first authors
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- These authors contributed equally to this work as first authors
| | - Vagan Arutiunian
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yao Fang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Clinical Microbiology and Immunology of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- 161 Hospital, Wuhan 430012, China
| | - Guillaume Besse
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Polytech' Clermont-Ferrand, Université Blaise Pascal, Clermont-Ferrand, France
| | - Cherie Morimoto
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Brett Zirkle
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S. Chen
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- To whom correspondence should be addressed. Tel: +1 213 740 5487; Fax: +1 213 740 4340;
| |
Collapse
|
182
|
Schutsky EK, Nabel CS, Davis A, DeNizio JE, Kohli RM. APOBEC3A efficiently deaminates methylated, but not TET-oxidized, cytosine bases in DNA. Nucleic Acids Res 2017; 45:7655-7665. [PMID: 28472485 PMCID: PMC5570014 DOI: 10.1093/nar/gkx345] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
AID/APOBEC family enzymes are best known for deaminating cytosine bases to uracil in single-stranded DNA, with characteristic sequence preferences that can produce mutational signatures in targets such as retroviral and cancer cell genomes. These deaminases have also been proposed to function in DNA demethylation via deamination of either 5-methylcytosine (mC) or TET-oxidized mC bases (ox-mCs), which include 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. One specific family member, APOBEC3A (A3A), has been shown to readily deaminate mC, raising the prospect of broader activity on ox-mCs. To investigate this claim, we developed a novel assay that allows for parallel profiling of activity on all modified cytosines. Our steady-state kinetic analysis reveals that A3A discriminates against all ox-mCs by >3700-fold, arguing that ox-mC deamination does not contribute substantially to demethylation. A3A is, by contrast, highly proficient at C/mC deamination. Under conditions of excess enzyme, C/mC bases can be deaminated to completion in long DNA segments, regardless of sequence context. Interestingly, under limiting A3A, the sequence preferences observed with targeting unmodified cytosine are further exaggerated when deaminating mC. Our study informs how methylation, oxidation, and deamination can interplay in the genome and suggests A3A's potential utility as a biotechnological tool to discriminate between cytosine modification states.
Collapse
Affiliation(s)
- Emily K. Schutsky
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher S. Nabel
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy K. F. Davis
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie E. DeNizio
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
- To whom correspondence should be addressed. Tel: +1 215 573 7523; Fax: +1 215 348 5111;
| |
Collapse
|
183
|
Molan AM, Hanson HM, Chweya CM, Anderson BD, Starrett GJ, Richards CM, Harris RS. APOBEC3B lysine residues are dispensable for DNA cytosine deamination, HIV-1 restriction, and nuclear localization. Virology 2017; 511:74-81. [PMID: 28841445 DOI: 10.1016/j.virol.2017.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022]
Abstract
The APOBEC3 DNA cytosine deaminase family comprises a fundamental arm of the innate immune response and is best known for retrovirus restriction. Several APOBEC3 enzymes restrict HIV-1 and related retroviruses by deaminating viral cDNA cytosines to uracils compromising viral genomes. Human APOBEC3B (A3B) shows strong virus restriction activities in a variety of experimental systems, and is subjected to tight post-translational regulation evidenced by cell-specific HIV-1 restriction activity and active nuclear import. Here we ask whether lysines and/or lysine post-translational modifications are required for these A3B activities. A lysine-free derivative of human A3B was constructed and shown to be indistinguishable from the wild-type enzyme in DNA cytosine deamination, HIV-1 restriction, and nuclear localization activities. However, lysine loss did render the protein resistant to degradation by SIV Vif. Taken together, we conclude that lysine side chains and modifications thereof are unlikely to be central to A3B function or regulation in human cells.
Collapse
Affiliation(s)
- Amy M Molan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Heather M Hanson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cynthia M Chweya
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brett D Anderson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gabriel J Starrett
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher M Richards
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
184
|
Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression. Viruses 2017; 9:v9080233. [PMID: 28825669 PMCID: PMC5580490 DOI: 10.3390/v9080233] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
The apolipoprotein B messenger RNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family of cytidine deaminases plays an important role in the innate immune response to viral infections by editing viral genomes. However, the cytidine deaminase activity of APOBEC3 enzymes also induces somatic mutations in host genomes, which may drive cancer progression. Recent studies of human papillomavirus (HPV) infection and disease outcome highlight this duality. HPV infection is potently inhibited by one family member, APOBEC3A. Expression of APOBEC3A and APOBEC3B is highly elevated by the HPV oncoproteins E6 and E7 during persistent virus infection and disease progression. Furthermore, there is a high prevalence of APOBEC3A and APOBEC3B mutation signatures in HPV-associated cancers. These findings suggest that induction of an APOBEC3-mediated antiviral response during HPV infection may inadvertently contribute to cancer mutagenesis and virus evolution. Here, we discuss current understanding of APOBEC3A and APOBEC3B biology in HPV restriction, evolution, and associated cancer mutagenesis.
Collapse
|
185
|
Yang B, Li X, Lei L, Chen J. APOBEC: From mutator to editor. J Genet Genomics 2017; 44:423-437. [PMID: 28964683 DOI: 10.1016/j.jgg.2017.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Abstract
APOBECs (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) are a family of cytidine deaminases that prefer single-stranded nucleic acids as substrates. Besides their physiological functions, APOBEC family members have been found to cause hypermutations of cancer genomes, which could be correlated with cancer development and poor prognosis. Recently, APOBEC family members have been combined with the versatile CRISPR/Cas9 system to perform targeted base editing or induce hypermutagenesis. This combination improved the CRISPR/Cas9-mediated gene editing at single-base precision, greatly enhancing its usefulness. Here, we review the physiological functions and structural characteristics of APOBEC family members and their roles as endogenous mutators that contribute to hypermutations during carcinogenesis. We also review the various iterations of the APOBEC-CRISPR/Cas9 gene-editing tools, pointing out their features and limitations as well as the possibilities for future developments.
Collapse
Affiliation(s)
- Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Xiaosa Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liqun Lei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
186
|
Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H. AID Recognizes Structured DNA for Class Switch Recombination. Mol Cell 2017; 67:361-373.e4. [PMID: 28757211 PMCID: PMC5771415 DOI: 10.1016/j.molcel.2017.06.034] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates both class switch recombination (CSR) and somatic hypermutation (SHM) in antibody diversification. Mechanisms of AID targeting and catalysis remain elusive despite its critical immunological roles and off-target effects in tumorigenesis. Here, we produced active human AID and revealed its preferred recognition and deamination of structured substrates. G-quadruplex (G4)-containing substrates mimicking the mammalian immunoglobulin switch regions are particularly good AID substrates in vitro. By solving crystal structures of maltose binding protein (MBP)-fused AID alone and in complex with deoxycytidine monophosphate, we surprisingly identify a bifurcated substrate-binding surface that explains structured substrate recognition by capturing two adjacent single-stranded overhangs simultaneously. Moreover, G4 substrates induce cooperative AID oligomerization. Structure-based mutations that disrupt bifurcated substrate recognition or oligomerization both compromise CSR in splenic B cells. Collectively, our data implicate intrinsic preference of AID for structured substrates and uncover the importance of G4 recognition and oligomerization of AID in CSR.
Collapse
Affiliation(s)
- Qi Qiao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Li Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fei-Long Meng
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce K Hwang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
187
|
Feng Y, Cai S, Xiong G, Zhang G, Wang S, Su X, Yu C. Sensitive Detection of DNA Lesions by Bulge-Enhanced Highly Specific Coamplification at Lower Denaturation Temperature Polymerase Chain Reaction. Anal Chem 2017; 89:8084-8091. [PMID: 28675037 DOI: 10.1021/acs.analchem.7b01599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mutagenic modifications of nucleotides or DNA lesions that result from environmental stress have proven to be associated with a variety of diseases, particularly cancer. The method for accurately detecting the lesions is therefore of great importance for biomedical research and toxicity study. We develop a sensitive and low-cost bulge-enhanced coamplification at lower denaturation temperature polymerase chain reaction (COLD-PCR) method for detecting DNA lesions (uracil and 8-oxoguanine) by combining an in vitro base excision repair (BER) pathway and COLD-PCR. The modified bases are converted to bulge via the BER pathway involving converting modified bases to an apurinic/apyrimidinic (AP) site, cleavage at the AP site, and break ligation. The presence of the bulge induces a large change of the hybridization thermodynamics of double-stranded DNA, eventually enhancing the specificity of COLD-PCR. Besides, we used the free energy of hybridization as a reference to optimize the critical denaturation temperature (Tc) of COLD-PCR obtaining more specific amplification than empirical Tc. Taking advantage of the proposed bulge-enhanced COLD-PCR, we are able to identify the presence of DNA lesion-containing strands at low abundance down to 0.01%. This method also exhibits high sensitivity for glycosylase with a detection limit of 10-4 U/mL [3 S/N (signal-to-noise ratio)] that is superior than some recently reported methods. With the design of the repair guide probe, the level of oxidative damage in genomic DNA caused by chemicals and photodynamic therapy (PDT) can be evaluated, heralding more applications in clinical diagnosis and epigenetic study.
Collapse
Affiliation(s)
- Yu Feng
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Shuang Cai
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine , Shenzhen 518033, Guangdong, China
| | - Guanfei Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Shihui Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xin Su
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Changyuan Yu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
188
|
Budzko L, Jackowiak P, Kamel K, Sarzynska J, Bujnicki JM, Figlerowicz M. Mutations in human AID differentially affect its ability to deaminate cytidine and 5-methylcytidine in ssDNA substrates in vitro. Sci Rep 2017. [PMID: 28634398 PMCID: PMC5478644 DOI: 10.1038/s41598-017-03936-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is known for its established role in antibody production. AID induces the diversification of antibodies by deaminating deoxycytidine (C) within immunoglobulin genes. The capacity of AID to deaminate 5-methyldeoxycytidine (5 mC) and/or 5-hydroxymethyldeoxycytidine (5 hmC), and consequently AID involvement in active DNA demethylation, is not fully resolved. For instance, structural determinants of AID activity on different substrates remain to be identified. To better understand the latter issue, we tested how mutations in human AID (hAID) influence its ability to deaminate C, 5 mC, and 5 hmC in vitro. We showed that each of the selected mutations differentially affects hAID’s ability to deaminate C and 5 mC. At the same time, we did not observe hAID activity on 5 hmC. Surprisingly, we found that the N51A hAID mutant, with no detectable activity on C, efficiently deaminated 5 mC, which may suggest different requirements for C and 5 mC deamination. Homology modeling and molecular dynamics simulations revealed that the pattern of enzyme-substrate recognition is one of the important factors determining enzyme activity on C and 5 mC. Consequently, we have proposed mechanisms that explain why wild type hAID more efficiently deaminates C than 5 mC in vitro and why 5 hmC is not deaminated.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Karol Kamel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109, Warsaw, Poland.,Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland. .,Institute of Computing Science, Poznan University of Technology, Piotrowo 3A, 60-965, Poznan, Poland.
| |
Collapse
|
189
|
Harjes S, Jameson GB, Filichev VV, Edwards P, Harjes E. NMR-based method of small changes reveals how DNA mutator APOBEC3A interacts with its single-stranded DNA substrate. Nucleic Acids Res 2017; 45:5602-5613. [PMID: 28369637 PMCID: PMC5435981 DOI: 10.1093/nar/gkx196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
APOBEC3 proteins are double-edged swords. They deaminate cytosine to uracil in single-stranded DNA and provide protection, as part of our innate immune system, against viruses and retrotransposons, but they are also involved in cancer evolution and development of drug resistance. We report a solution-state model of APOBEC3A interaction with its single-stranded DNA substrate obtained with the 'method of small changes'. This method compares pairwise the 2D 15N-1H NMR spectra of APOBEC3A bearing a deactivating mutation E72A in the presence of 36 slightly different DNA substrates. From changes in chemical shifts of peptide N-H moieties, the positions of each nucleotide relative to the protein can be identified. This provided distance restraints for molecular-dynamic simulations to derive a 3-D molecular model of the APOBEC3A-ssDNA complex. The model reveals that loops 1 and 7 of APOBEC3A move to accommodate substrate binding, indicating an important role for protein-DNA dynamics. Overall, our method may prove useful to study other DNA-protein complexes where crystallographic techniques or full NMR structure calculations are hindered by weak binding or other problems. Subsequent to submission, an APOBEC3A structure with a bound DNA oligomer was published and coordinates released, which has provided an unbiased validation of the 'method of small changes'.
Collapse
Affiliation(s)
- Stefan Harjes
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Geoffrey B. Jameson
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Vyacheslav V. Filichev
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Patrick J. B. Edwards
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Elena Harjes
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
190
|
Ito F, Fu Y, Kao SCA, Yang H, Chen XS. Family-Wide Comparative Analysis of Cytidine and Methylcytidine Deamination by Eleven Human APOBEC Proteins. J Mol Biol 2017; 429:1787-1799. [PMID: 28479091 DOI: 10.1016/j.jmb.2017.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/17/2023]
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) proteins are a family of cytidine deaminases involved in various important biological processes such as antibody diversification/maturation, restriction of viral infection, and generation of somatic mutations. Catalytically active APOBEC proteins execute their biological functions mostly through deaminating cytosine (C) to uracil on single-stranded DNA/RNA. Activation-induced cytidine deaminase, one of the APOBEC members, was reported to deaminate methylated cytosine (mC) on DNA, and this mC deamination was proposed to be involved in the demethylation of mC for epigenetic regulation. The mC deamination activity is later demonstrated for APOBEC3A (A3A) and more recently for APOBEC3B and APOBEC3H (A3H). Despite extensive studies on APOBEC proteins, questions regarding whether the rest of APOBEC members have any mC deaminase activity and what are the relative deaminase activities for each APOBEC member remain unclear. Here, we performed a family-wide analysis of deaminase activities on C and mC by using purified recombinant proteins for 11 known human APOBEC proteins under similar conditions. Our comprehensive analyses revealed that each APOBEC has unique deaminase activity and selectivity for mC. A3A and A3H showed distinctively high deaminase activities on C and mC with relatively high selectivity for mC, whereas six other APOBEC members showed relatively low deaminase activity and selectivity for mC. Our mutational analysis showed that loop-1 of A3A is responsible for its high deaminase activity and selectivity for mC. These findings extend our understanding of APOBEC family proteins that have important roles in diverse biological functions and in genetic mutations.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yang Fu
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Shen-Chi A Kao
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hanjing Yang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
191
|
King JJ, Larijani M. A Novel Regulator of Activation-Induced Cytidine Deaminase/APOBECs in Immunity and Cancer: Schrödinger's CATalytic Pocket. Front Immunol 2017; 8:351. [PMID: 28439266 PMCID: PMC5382155 DOI: 10.3389/fimmu.2017.00351] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) and its relative APOBEC3 cytidine deaminases boost immune response by mutating immune or viral genes. Because of their genome-mutating activities, AID/APOBECs are also drivers of tumorigenesis. Due to highly charged surfaces, extensive non-specific protein-protein/nucleic acid interactions, formation of polydisperse oligomers, and general insolubility, structure elucidation of these proteins by X-ray crystallography and NMR has been challenging. Hence, almost all available AID/APOBEC structures are of mutated and/or truncated versions. In 2015, we reported a functional structure for AID using a combined computational-biochemical approach. In so doing, we described a new regulatory mechanism that is a first for human DNA/RNA-editing enzymes. This mechanism involves dynamic closure of the catalytic pocket. Subsequent X-ray and NMR studies confirmed our discovery by showing that other APOBEC3s also close their catalytic pockets. Here, we highlight catalytic pocket closure as an emerging and important regulatory mechanism of AID/APOBEC3s. We focus on three sub-topics: first, we propose that variable pocket closure rates across AID/APOBEC3s underlie differential activity in immunity and cancer and review supporting evidence. Second, we discuss dynamic pocket closure as an ever-present internal regulator, in contrast to other proposed regulatory mechanisms that involve extrinsic binding partners. Third, we compare the merits of classical approaches of X-ray and NMR, with that of emerging computational-biochemical approaches, for structural elucidation specifically for AID/APOBEC3s.
Collapse
Affiliation(s)
- Justin J. King
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
192
|
Polevoda B, Joseph R, Friedman AE, Bennett RP, Greiner R, De Zoysa T, Stewart RA, Smith HC. DNA mutagenic activity and capacity for HIV-1 restriction of the cytidine deaminase APOBEC3G depend on whether DNA or RNA binds to tyrosine 315. J Biol Chem 2017; 292:8642-8656. [PMID: 28381554 DOI: 10.1074/jbc.m116.767889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/04/2017] [Indexed: 12/23/2022] Open
Abstract
APOBEC3G (A3G) belongs to the AID/APOBEC protein family of cytidine deaminases (CDA) that bind to nucleic acids. A3G mutates the HIV genome by deamination of dC to dU, leading to accumulation of virus-inactivating mutations. Binding to cellular RNAs inhibits A3G binding to substrate single-stranded (ss) DNA and CDA activity. Bulk RNA and substrate ssDNA bind to the same three A3G tryptic peptides (amino acids 181-194, 314-320, and 345-374) that form parts of a continuously exposed protein surface extending from the catalytic domain in the C terminus of A3G to its N terminus. We show here that the A3G tyrosines 181 and 315 directly cross-linked ssDNA. Binding experiments showed that a Y315A mutation alone significantly reduced A3G binding to both ssDNA and RNA, whereas Y181A and Y182A mutations only moderately affected A3G nucleic acid binding. Consistent with these findings, the Y315A mutant exhibited little to no deaminase activity in an Escherichia coli DNA mutator reporter, whereas Y181A and Y182A mutants retained ∼50% of wild-type A3G activity. The Y315A mutant also showed a markedly reduced ability to assemble into viral particles and had reduced antiviral activity. In uninfected cells, the impaired RNA-binding capacity of Y315A was evident by a shift of A3G from high-molecular-mass ribonucleoprotein complexes to low-molecular-mass complexes. We conclude that Tyr-315 is essential for coordinating ssDNA interaction with or entry to the deaminase domain and hypothesize that RNA bound to Tyr-315 may be sufficient to competitively inhibit ssDNA deaminase-dependent antiviral activity.
Collapse
Affiliation(s)
- Bogdan Polevoda
- From the Departments of Biochemistry and Biophysics and.,Center for RNA Biology, and
| | | | | | | | | | | | | | - Harold C Smith
- From the Departments of Biochemistry and Biophysics and .,Center for RNA Biology, and.,OyaGen, Inc., Rochester, New York 14623.,Center for AIDS Research, University of Rochester Medical Center, Rochester, New York 14642 and
| |
Collapse
|
193
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
194
|
Pham P, Afif SA, Shimoda M, Maeda K, Sakaguchi N, Pedersen LC, Goodman MF. Activation-induced deoxycytidine deaminase: Structural basis for favoring WRC hot motif specificities unique among APOBEC family members. DNA Repair (Amst) 2017; 54:8-12. [PMID: 28388461 DOI: 10.1016/j.dnarep.2017.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Samir A Afif
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Mayuko Shimoda
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; Laboratory of Host Defence, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita 565-0871, Japan; World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita 565-0871, Japan
| | - Kazuhiko Maeda
- Laboratory of Host Defence, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita 565-0871, Japan; World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita 565-0871, Japan
| | - Nobuo Sakaguchi
- World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita 565-0871, Japan; Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, United States
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
195
|
Schutsky EK, Hostetler ZM, Kohli RM. Mechanisms for targeted, purposeful mutation revealed in an APOBEC–DNA complex. Nat Struct Mol Biol 2017; 24:97-98. [DOI: 10.1038/nsmb.3373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|