151
|
Hubbard PA, Moody CL, Murali R. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities. Front Physiol 2014; 5:478. [PMID: 25566081 PMCID: PMC4267178 DOI: 10.3389/fphys.2014.00478] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/23/2014] [Indexed: 12/24/2022] Open
Abstract
GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways.
Collapse
Affiliation(s)
- Paul A Hubbard
- Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Colleen L Moody
- Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Department of Pathology and Laboratory Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
152
|
Identification of synthetic lethality of PRKDC in MYC-dependent human cancers by pooled shRNA screening. BMC Cancer 2014; 14:944. [PMID: 25495526 PMCID: PMC4320452 DOI: 10.1186/1471-2407-14-944] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/20/2014] [Indexed: 01/09/2023] Open
Abstract
Background MYC family members are among the most frequently deregulated oncogenes in human cancers, yet direct therapeutic targeting of MYC in cancer has been challenging thus far. Synthetic lethality provides an opportunity for therapeutic intervention of MYC-driven cancers. Methods A pooled kinase shRNA library screen was performed and next-generation deep sequencing efforts identified that PRKDC was synthetically lethal in cells overexpressing MYC. Genes and proteins of interest were knocked down or inhibited using RNAi technology and small molecule inhibitors, respectively. Quantitative RT-PCR using TaqMan probes examined mRNA expression levels and cell viability was assessed using CellTiter-Glo (Promega). Western blotting was performed to monitor different protein levels in the presence or absence of RNAi or compound treatment. Statistical significance of differences among data sets were determined using unpaired t test (Mann–Whitney test) or ANOVA. Results Inhibition of PRKDC using RNAi (RNA interference) or small molecular inhibitors preferentially killed MYC-overexpressing human lung fibroblasts. Moreover, inducible PRKDC knockdown decreased cell viability selectively in high MYC-expressing human small cell lung cancer cell lines. At the molecular level, we found that inhibition of PRKDC downregulated MYC mRNA and protein expression in multiple cancer cell lines. In addition, we confirmed that overexpression of MYC family proteins induced DNA double-strand breaks; our results also revealed that PRKDC inhibition in these cells led to an increase in DNA damage levels. Conclusions Our data suggest that the synthetic lethality between PRKDC and MYC may in part be due to PRKDC dependent modulation of MYC expression, as well as MYC-induced DNA damage where PRKDC plays a key role in DNA damage repair. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-944) contains supplementary material, which is available to authorized users.
Collapse
|
153
|
Abstract
PDK1 is a key member of the AGC protein kinase family. It plays an important role in a variety of cellular functions, leading to the activation of the PI3K signaling pathway, an event often associated with the onset and progression of several human cancers. Numerous recent observations suggest that PDK1 inhibitors may provide novel opportunities for the development of effective classes of therapeutics. On these premises, recent years have witnessed an increased effort by medicinal chemists to develop novel scaffolds to derive potent and selective PDK1 inhibitors. The intent of this review is to update the reader on the recent patent literature, covering applications published between June 2008 and September 2011 that report on PDK1 inhibitors.
Collapse
|
154
|
Kim YB, Kang CW, Ranatunga S, Yang H, Sebti SM, Del Valle JR. Imidazo[1,2-a]pyridine-based peptidomimetics as inhibitors of Akt. Bioorg Med Chem Lett 2014; 24:4650-4653. [PMID: 25205195 DOI: 10.1016/j.bmcl.2014.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 12/26/2022]
Abstract
We report the design, synthesis, and biological evaluation of imidazopyridine-based peptidomimetics based on the substrate consensus sequence of Akt, an AGC family serine/threonine kinase hyperactivated in over 50% of human tumors. Our ligand-based approach led to the identification of novel substrate mimetic inhibitors of Akt1 featuring an unnatural extended dipeptide surrogate. Compound 11 inhibits Akt isoforms in the sub-micromolar range and exhibits improved proteolytic stability relative to a parent pentapeptide.
Collapse
Affiliation(s)
- Young B Kim
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Chang Won Kang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Sujeewa Ranatunga
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Hua Yang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Said M Sebti
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Juan R Del Valle
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
155
|
Integrated analysis identifies interaction patterns between small molecules and pathways. BIOMED RESEARCH INTERNATIONAL 2014; 2014:931825. [PMID: 25114931 PMCID: PMC4121214 DOI: 10.1155/2014/931825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/13/2014] [Accepted: 05/22/2014] [Indexed: 01/21/2023]
Abstract
Previous studies have indicated that the downstream proteins in a key pathway can be potential drug targets and that the pathway can play an important role in the action of drugs. So pathways could be considered as targets of small molecules. A link map between small molecules and pathways was constructed using gene expression profile, pathways, and gene expression of cancer cell line intervened by small molecules and then we analysed the topological characteristics of the link map. Three link patterns were identified based on different drug discovery implications for breast, liver, and lung cancer. Furthermore, molecules that significantly targeted the same pathways tended to treat the same diseases. These results can provide a valuable reference for identifying drug candidates and targets in molecularly targeted therapy.
Collapse
|
156
|
Evangelisti C, Evangelisti C, Chiarini F, Lonetti A, Buontempo F, Bressanin D, Cappellini A, Orsini E, McCubrey JA, Martelli AM. Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (review). Int J Oncol 2014; 45:909-18. [PMID: 24968804 DOI: 10.3892/ijo.2014.2525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/12/2014] [Indexed: 11/05/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases. Even if the prognosis of T-ALL has improved especially in the childhood due to the use of new intensified treatment protocols, the outcome of relapsed patients who are resistant to conventional chemotherapeutic drugs or who relapse is still poor. For this reason, there is a need for novel and less toxic targeted therapies against signaling pathways aberrantly activated in T-ALL, such as the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR). Small molecules designed to target key components of this signaling axis have proven their efficacy both in vitro and in vivo in pre-clinical settings of T-ALL. In particular, different classes of mTOR inhibitors have been disclosed by pharmaceutical companies, and they are currently being tested in clinical trials for treating T-ALL patients. One of the most promising approaches for the treatment of T-ALL seems to be the combination of mTOR inhibitors with traditional chemotherapeutic agents. This could lead to a lower drug dosage that may circumvent the systemic side effects of chemotherapeutics. In this review, we focus on the different classes of mTOR inhibitors that will possibly have an impact on the therapeutic arsenal we have at our disposal against T-ALL.
Collapse
Affiliation(s)
- Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
157
|
Sanjiv K, Chen CW, Kakadiya R, Tala S, Suman S, Wu MH, Chen YH, Su TL, Lee TC. PI3K Inhibition Augments the Therapeutic Efficacy of a 3a-aza-Cyclopenta[α]indene Derivative in Lung Cancer Cells. Transl Oncol 2014; 7:256-266.e5. [PMID: 24913674 PMCID: PMC4101349 DOI: 10.1016/j.tranon.2014.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/03/2014] [Accepted: 01/30/2014] [Indexed: 11/29/2022] Open
Abstract
The synergistic targeting of DNA damage and DNA repair is a promising strategy for the development of new chemotherapeutic agents for human lung cancer. The DNA interstrand cross-linking agent BO-1509, a derivative of 3a-aza-cyclopenta[α]indene, was synthesized and combined with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 to treat human lung cancer cells. Our results showed that the BO-1509 and LY294002 combination synergistically killed lung cancer cells in culture and also suppressed the growth of lung cancer xenografts in mice, including those derived from gefitinib-resistant cells. We also found that LY294002 suppressed the induction of several DNA repair proteins by BO-1509 and inhibited the nuclear translocation of Rad51. On the basis of the results of the γH2AX foci formation assays, LY294002 apparently inhibited the repair of DNA damage that was induced by BO-1509. According to the complete blood profile, biochemical enzyme analysis, and histopathologic analysis of major organs, no apparent toxicity was observed in mice treated with BO-1509 alone or in combination with LY294002. Our results suggest that the combination of a DNA cross-linking agent with a PI3K inhibitor is a feasible strategy for the treatment of patients with lung cancer.
Collapse
Affiliation(s)
- Kumar Sanjiv
- Molecular Medicine Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Wei Chen
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Rajesh Kakadiya
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Satishkumar Tala
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sharda Suman
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsann-Long Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan.
| | - Te-Chang Lee
- Molecular Medicine Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
158
|
Kang KW, Lee MJ, Song JA, Jeong JY, Kim YK, Lee C, Kim TH, Kwak KB, Kim OJ, An HJ. Overexpression of goosecoid homeobox is associated with chemoresistance and poor prognosis in ovarian carcinoma. Oncol Rep 2014; 32:189-98. [PMID: 24858567 DOI: 10.3892/or.2014.3203] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/29/2014] [Indexed: 11/06/2022] Open
Abstract
Ovarian carcinoma is the most lethal cancer among all gynecological malignancies due to recurrence through chemoresistance. The aim of the present study was to identify new biomarkers to predict chemoresistance and prognosis in ovarian carcinomas. The mRNA expression by qRT-PCR was examined in 60 ovarian serous carcinomas for selected genes from the screening by PCR array focusing on apoptosis, epithelial-to-mesenchymal transition and cancer pathways. The clinical impact was assessed by analyzing the correlation between gene expression and clinicopathological variables. Further validation with immunohistochemistry was performed with 75 cases of serous carcinomas. The chemoresistance was significantly associated with high expression of FOS, GSC, SNAI1, TERT and TNFRSF10D, and low expression of CDKN1A, TNFRSF10A, TNFRSF10C and TRAF1 (p<0.05, t-test). Low expression of TRAF1 and high expression of E2F1, FOS, TERT and GSC were significantly associated with advanced clinical stage (p<0.05, χ2-test). Lymph node metastasis was significantly associated with high expression of GSC. The upregulation group of TERT, GSC, NOTCH1 and SNAI1, and downregulation group of TRAF1 were significantly associated with poor overall survival (p<0.05, log-rank test). On further validation with immunohistochemistry, overexpression of goosecoid homeobox (GSC) was associated with poor overall survival. The results suggest that GSC is the most potential biomarker of drug response and poor prognosis in ovarian serous carcinomas.
Collapse
Affiliation(s)
- Kyong-Won Kang
- Institute for Clinical Research, College of Medicine, CHA University, Sungnam 463-712, Republic of Korea
| | - Mi-Jung Lee
- Institute for Clinical Research, College of Medicine, CHA University, Sungnam 463-712, Republic of Korea
| | - Ji-Ae Song
- Institute for Clinical Research, College of Medicine, CHA University, Sungnam 463-712, Republic of Korea
| | - Ju-Yeon Jeong
- Institute for Clinical Research, College of Medicine, CHA University, Sungnam 463-712, Republic of Korea
| | - Yoo-Kyong Kim
- Institute for Clinical Research, College of Medicine, CHA University, Sungnam 463-712, Republic of Korea
| | - Chan Lee
- Department of Gynecologic Oncology, College of Medicine, CHA University, Sungnam 463-712, Republic of Korea
| | - Tae-Heon Kim
- Institute for Clinical Research, College of Medicine, CHA University, Sungnam 463-712, Republic of Korea
| | - Kyu-Beom Kwak
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 463-712, Republic of Korea
| | - Ok-Jun Kim
- Institute for Clinical Research, College of Medicine, CHA University, Sungnam 463-712, Republic of Korea
| | - Hee Jung An
- Institute for Clinical Research, College of Medicine, CHA University, Sungnam 463-712, Republic of Korea
| |
Collapse
|
159
|
Ocana A, Vera-Badillo F, Al-Mubarak M, Templeton AJ, Corrales-Sanchez V, Diez-Gonzalez L, Cuenca-Lopez MD, Seruga B, Pandiella A, Amir E. Activation of the PI3K/mTOR/AKT pathway and survival in solid tumors: systematic review and meta-analysis. PLoS One 2014; 9:e95219. [PMID: 24777052 PMCID: PMC4002433 DOI: 10.1371/journal.pone.0095219] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/24/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Aberrations in the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/AKT pathway are common in solid tumors. Numerous drugs have been developed to target different components of this pathway. However the prognostic value of these aberrations is unclear. METHODS PubMed was searched for studies evaluating the association between activation of the PI3K/mTOR/AKT pathway (defined as PI3K mutation [PIK3CA], lack of phosphatase and tensin homolog [PTEN] expression by immunohistochemistry or western-blot or increased expression/activation of downstream components of the pathway by immunohistochemistry) with overall survival (OS) in solid tumors. Published data were extracted and computed into odds ratios (OR) for death at 5 years. Data were pooled using the Mantel-Haenszel random-effect model. RESULTS Analysis included 17 studies. Activation of the PI3K/mTOR/AKT pathway was associated with significantly worse 5-year survival (OR:2.12, 95% confidence intervals 1.42-3.16, p<0.001). Loss of PTEN expression and increased expression/activation of downstream components were associated with worse survival. No association between PIK3CA mutations and survival was observed. Differences between methods for assessing activation of the PI3K/mTOR/AKT pathway were statistically significant (p = 0.04). There was no difference in the effect of up-regulation of the pathway on survival between different cancer sites (p = 0.13). CONCLUSION Activation of the PI3K/AKT/mTOR pathway, especially if measured by loss of PTEN expression or increased expression/activation of downstream components is associated with poor survival. PIK3CA mutational status is not associated with adverse outcome, challenging its value as a biomarker of patient outcome or as a stratification factor for patients treated with agents acting on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Alberto Ocana
- Translational Research Unit, Albacete University Hospital, Albacete, Spain
| | - Francisco Vera-Badillo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre and University of Toronto, Toronto, Canada
| | - Mustafa Al-Mubarak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre and University of Toronto, Toronto, Canada
| | - Arnoud J. Templeton
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre and University of Toronto, Toronto, Canada
| | | | | | | | - Bostjan Seruga
- Sector of medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain
| | - Eitan Amir
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre and University of Toronto, Toronto, Canada
| |
Collapse
|
160
|
The mitochondria as a target for cardioprotection in acute myocardial ischemia. Pharmacol Ther 2014; 142:33-40. [DOI: 10.1016/j.pharmthera.2013.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 12/28/2022]
|
161
|
Heavey S, O’Byrne KJ, Gately K. Strategies for co-targeting the PI3K/AKT/mTOR pathway in NSCLC. Cancer Treat Rev 2014; 40:445-56. [DOI: 10.1016/j.ctrv.2013.08.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/11/2013] [Accepted: 08/16/2013] [Indexed: 12/20/2022]
|
162
|
Liu M, Li CM, Chen ZF, Ji R, Guo QH, Li Q, Zhang HL, Zhou YN. Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cells. Int J Mol Med 2014; 33:1451-8. [PMID: 24676394 PMCID: PMC4055439 DOI: 10.3892/ijmm.2014.1713] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/20/2014] [Indexed: 01/16/2023] Open
Abstract
Gastric cancer, one of the most common malignancies worldwide, typically has a poor prognosis and poor survival rate. Previous studies have investigated the chemopreventive effect of celecoxib. In the present study, the SGC-7901 human gastric cancer cell line was utilized to examine the chemopreventive mechanisms of celecoxib. The inhibition of cell proliferation was determined using MTT assay, cell apoptosis was monitored by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) and flow cytometry, and cell ultrastructural changes were assessed via transmission electron microscopy. The mRNA expression of Akt, caspase-8 and -9 was examined using quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) and p-Akt, procaspase-8 and -9 were analyzed via western blotting. The results showed that celecoxib inhibited the proliferation of SGC-7901 cells in a time- and dose-dependent manner. Additionally, celecoxib induced apoptosis as substantiated by typical apoptotic bodies, autophagosomes and an increased apoptotic rate. It was found that following celecoxib treatment, Akt mRNA expression was not significantly altered, and that p-Akt protein levels decreased in a time- and dose-dependent manner. Additionally, caspase-8 and -9 mRNA expression was significantly increased, while procaspase-8 and -9 protein expression decreased relative to the time- and dose-dependent effects. These results demonstrated that celecoxib induced apoptosis and autophagy of gastric cancer cells in vitro through the PI3K/Akt signaling pathway. Moreover, our findings suggested that celecoxib induces apoptosis in gastric cancer cells through the mitochondrial and death receptor pathways, providing additional understanding regarding the chemopreventive behaviors of celecoxib and its uses in cancer therapy.
Collapse
Affiliation(s)
- Min Liu
- Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chun-Mei Li
- Division of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhao-Feng Chen
- Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ri Ji
- Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qing-Hong Guo
- Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qiang Li
- Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hong-Ling Zhang
- Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yong-Ning Zhou
- Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
163
|
Abstract
The central role of phosphoinositide 3-kinase (PI3K) activation in tumour cell biology has prompted a sizeable effort to target PI3K and/or downstream kinases such as AKT and mammalian target of rapamycin (mTOR) in cancer. However, emerging clinical data show limited single-agent activity of inhibitors targeting PI3K, AKT or mTOR at tolerated doses. One exception is the response to PI3Kδ inhibitors in chronic lymphocytic leukaemia, where a combination of cell-intrinsic and -extrinsic activities drive efficacy. Here, we review key challenges and opportunities for the clinical development of inhibitors targeting the PI3K-AKT-mTOR pathway. Through a greater focus on patient selection, increased understanding of immune modulation and strategic application of rational combinations, it should be possible to realize the potential of this promising class of targeted anticancer agents.
Collapse
|
164
|
del Alcazar CRG, Gillam MC, Mukherjee B, Tomimatsu N, Gao X, Yan J, Xie XJ, Bachoo R, Li L, Habib AA, Burma S. Inhibition of DNA double-strand break repair by the dual PI3K/mTOR inhibitor NVP-BEZ235 as a strategy for radiosensitization of glioblastoma. Clin Cancer Res 2014; 20:1235-48. [PMID: 24366691 PMCID: PMC3947495 DOI: 10.1158/1078-0432.ccr-13-1607] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Inhibitors of the DNA damage response (DDR) have great potential for radiosensitization of numerous cancers, including glioblastomas, which are extremely radio- and chemoresistant brain tumors. Currently, there are no DNA double-strand break (DSB) repair inhibitors that have been successful in treating glioblastoma. Our laboratory previously demonstrated that the dual phosphoinositide 3-kinase/mTOR inhibitor NVP-BEZ235 can potently inhibit the two central DDR kinases, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia-telangiectasia mutated (ATM), in vitro. Here, we tested whether NVP-BEZ235 could also inhibit ATM and DNA-PKcs in tumors in vivo and assessed its potential as a radio- and chemosensitizer in preclinical mouse glioblastoma models. EXPERIMENTAL DESIGN The radiosensitizing effect of NVP-BEZ235 was tested by following tumor growth in subcutaneous and orthotopic glioblastoma models. Tumors were generated using the radioresistant U87-vIII glioma cell line and GBM9 neurospheres in nude mice. These tumors were then treated with ionizing radiation and/or NVP-BEZ235 and analyzed for DNA-PKcs and ATM activation, DSB repair inhibition, and attenuation of growth. RESULTS NVP-BEZ235 potently inhibited both DNA-PKcs and ATM kinases and attenuated the repair of ionizing radiation-induced DNA damage in tumors. This resulted in striking tumor radiosensitization, which extended the survival of brain tumor-bearing mice. Notably, tumors displayed a higher DSB-load when compared with normal brain tissue. NVP-BEZ235 also sensitized a subset of subcutaneous tumors to temozolomide, a drug routinely used concurrently with ionizing radiation for the treatment of glioblastoma. CONCLUSIONS These results demonstrate that it may be possible to significantly improve glioblastoma therapy by combining ionizing radiation with potent and bioavailable DNA repair inhibitors such as NVP-BEZ235.
Collapse
Affiliation(s)
| | - Molly Catherine Gillam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nozomi Tomimatsu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiaohuan Gao
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jingsheng Yan
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xian-Jin Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Li Li
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
- VA North Texas Health Care System, Dallas, TX
| | - Amyn A. Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
- VA North Texas Health Care System, Dallas, TX
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
165
|
Weng W, Feng J, Qin H, Ma Y. Molecular therapy of colorectal cancer: progress and future directions. Int J Cancer 2014; 136:493-502. [PMID: 24420815 DOI: 10.1002/ijc.28722] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/08/2014] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) remains one of the most common types of cancer and leading causes of cancer death worldwide. Although the introduction of cytotoxic drugs such as oxaliplatin, irinotecan and fluorouracil has improved the treatment of advanced CRC, the individual response to chemoradiotherapy varies tremendously from one patient to another. However, recent progress in CRC molecular therapies may provide new insight into the treatment of this disease. Currently, components of the EGFR, VEGF, Wnt and NF-kB pathways are the most important targets for CRC therapy. This review chronicles the development of molecular CRC therapies over the past few decades. We also provide an update on the current progress of research concerning the molecular pathways leading to CRC and discuss the possible implications for CRC therapy.
Collapse
Affiliation(s)
- Wenhao Weng
- Department of Clinical laboratory, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
166
|
Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, Li J. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 2014; 26:192-7. [DOI: 10.1016/j.cellsig.2013.11.004] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/01/2013] [Indexed: 02/06/2023]
|
167
|
Gao YH, Zhang HP, Yang SM, Yang Y, Ma YY, Zhang XY, Yang YM. Inactivation of Akt by arsenic trioxide induces cell death via mitochondrial-mediated apoptotic signaling in SGC-7901 human gastric cancer cells. Oncol Rep 2014; 31:1645-52. [PMID: 24482137 DOI: 10.3892/or.2014.2994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/13/2014] [Indexed: 11/05/2022] Open
Abstract
Arsenic trioxide (As2O3) has been recognized as a potential chemotherapeutic agent, yet the details concerning its mechanism of action in solid cancers remain undetermined. The present study assessed the role of Akt in the cell death induced by As2O3. The MTT assay showed that As2O3 suppressed the proliferation of SGC-7901 cells in a dose- and time-dependent manner. Characteristic apoptotic changes were observed in the As2O3‑treated cells by Hoechst 33342 staining, and FACS analysis showed that As2O3 caused dose-dependent apoptotic cell death. As2O3 activated caspase-3 and -9, and PARP cleavage in a dose-dependent manner. Compromised mitochondrial membrane potential and an increased protein level of Bax indicated involvement of mitochondia. As2O3 decreased the levels of p-Akt (Ser473), p-Akt (Thr308) and p-GSK-3β (Ser9), suggesting that As2O3 inactivated Akt kinase. In addition, LY294002 (a PI3 kinase inhibitor) augmented the apoptosis induced by As2O3. These results demonstrated that inhibition of PI3K/Akt signaling was involved in As2O3-induced apoptosis of gastric cancer SGC-7901 cells.
Collapse
Affiliation(s)
- Yan-Hui Gao
- The Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hao-Peng Zhang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shu-Meng Yang
- Department of Outpatient Surgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Yue Yang
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yu-Yan Ma
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xin-Yu Zhang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan-Mei Yang
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
168
|
Saurat T, Buron F, Rodrigues N, de Tauzia ML, Colliandre L, Bourg S, Bonnet P, Guillaumet G, Akssira M, Corlu A, Guillouzo C, Berthier P, Rio P, Jourdan ML, Bénédetti H, Routier S. Design, Synthesis, and Biological Activity of Pyridopyrimidine Scaffolds as Novel PI3K/mTOR Dual Inhibitors. J Med Chem 2014; 57:613-31. [DOI: 10.1021/jm401138v] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thibault Saurat
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Frédéric Buron
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| | - Nuno Rodrigues
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| | | | - Lionel Colliandre
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| | - Stéphane Bourg
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Pascal Bonnet
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| | - Gérald Guillaumet
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| | - Mohamed Akssira
- Équipe de Chimie Bioorganique & Analytique, URAC 22, Université Hassan II Mohammedia-Casablanca, BP 146, 28800 Mohammedia, Morocco
| | - Anne Corlu
- Hôpital
de Pontchaillou, Université de Rennes 1, INSERM, UMR-991, 65033 Rennes Cedex, France
| | - Christiane Guillouzo
- Hôpital
de Pontchaillou, Université de Rennes 1, INSERM, UMR-991, 65033 Rennes Cedex, France
| | - Pauline Berthier
- Faculté
de Médecine, Centre Hospitalier Universitaire (CHU) Tours, INSERM U1069, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Pascale Rio
- Faculté
de Médecine, Centre Hospitalier Universitaire (CHU) Tours, INSERM U1069, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Marie-Lise Jourdan
- Faculté
de Médecine, Centre Hospitalier Universitaire (CHU) Tours, INSERM U1069, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Sylvain Routier
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| |
Collapse
|
169
|
Drappatz J, Norden AD, Wen PY. Therapeutic strategies for inhibiting invasion in glioblastoma. Expert Rev Neurother 2014; 9:519-34. [DOI: 10.1586/ern.09.10] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
170
|
PI3K. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
171
|
Targeted therapies in breast cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
172
|
Zhu J, Pan P, Li Y, Wang M, Li D, Cao B, Mao X, Hou T. Theoretical studies on beta and delta isoform-specific binding mechanisms of phosphoinositide 3-kinase inhibitors. MOLECULAR BIOSYSTEMS 2013; 10:454-66. [PMID: 24336903 DOI: 10.1039/c3mb70314b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) is known to be closely related to tumorigenesis and cell proliferation, and controls a variety of cellular processes, including proliferation, growth, apoptosis, migration, metabolism, etc. The PI3K family comprises eight catalytic isoforms, which are subdivided into three classes. Recently, the discovery of inhibitors that block a single isoform of PI3K has continued to attract special attention because they may have higher selectivity for certain tumors and less toxicity for healthy cells. The PI3Kβ and PI3Kδ share fewer studies than α/γ, and therefore, in this work, the combination of molecular dynamics simulations and free energy calculations was employed to explore the binding of three isoform-specific PI3K inhibitors (COM8, IC87114, and GDC-0941) to PI3Kβ or PI3Kδ. The isoform specificities of the studied inhibitors derived from the predicted binding free energies are in good agreement with the experimental data. In addition, the key residues critical for PI3Kβ or PI3Kδ selectivity were highlighted by decomposing the binding free energies into the contributions from individual residues. It was observed that although PI3Kβ and PI3Kδ share the conserved ATP-binding pockets, individual residues do behave differently, particularly the residues critical for PI3Kβ or PI3Kδ selectivity. It can be concluded that the inhibitor specificity between PI3Kβ and PI3Kδ is determined by the additive contributions from multiple residues, not just a single one. This study provides valuable information for understanding the isoform-specific binding mechanisms of PI3K inhibitors, and should be useful for the rational design of novel and selective PI3K inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Akinleye A, Avvaru P, Furqan M, Song Y, Liu D. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol 2013; 6:88. [PMID: 24261963 PMCID: PMC3843585 DOI: 10.1186/1756-8722-6-88] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/12/2013] [Indexed: 02/08/2023] Open
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate diverse cellular processes including proliferation, adhesion, survival, and motility. Dysregulated PI3K pathway signaling occurs in one-third of human tumors. Aberrantly activated PI3K signaling also confers sensitivity and resistance to conventional therapies. PI3K has been recognized as an attractive molecular target for novel anti-cancer molecules. In the last few years, several classes of potent and selective small molecule PI3K inhibitors have been developed, and at least fifteen compounds have progressed into clinical trials as new anticancer drugs. Among these, idelalisib has advanced to phase III trials in patients with advanced indolent non-Hodgkin's lymphoma and mantle cell lymphoma. In this review, we summarized the major molecules of PI3K signaling pathway, and discussed the preclinical models and clinical trials of potent small-molecule PI3K inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Delong Liu
- Division of Hematology/Oncology, Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA.
| |
Collapse
|
174
|
Phosphoproteomic characterization of DNA damage response in melanoma cells following MEK/PI3K dual inhibition. Proc Natl Acad Sci U S A 2013; 110:19426-31. [PMID: 24218548 DOI: 10.1073/pnas.1309473110] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeted therapeutics that block signal transduction through the RAS-RAF-MEK and PI3K-AKT-mTOR pathways offer significant promise for the treatment of human malignancies. Dual inhibition of MAP/ERK kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) with the potent and selective small-molecule inhibitors GDC-0973 and GDC-0941 has been shown to trigger tumor cell death in preclinical models. Here we have used phosphomotif antibodies and mass spectrometry (MS) to investigate the effects of MEK/PI3K dual inhibition during the period immediately preceding cell death. Upon treatment, melanoma cell lines responded by dramatically increasing phosphorylation on proteins containing a canonical DNA damage-response (DDR) motif, as defined by a phosphorylated serine or threonine residue adjacent to glutamine, [s/t]Q. In total, >2,000 [s/t]Q phosphorylation sites on >850 proteins were identified by LC-MS/MS, including an extensive network of DDR proteins. Linear mixed-effects modeling revealed 101 proteins in which [s/t]Q phosphorylation was altered significantly in response to GDC-0973/GDC-0941. Among the most dramatic changes, we observed rapid and sustained phosphorylation of sites within the ABCDE cluster of DNA-dependent protein kinase. Preincubation of cells with the inhibitors of the DDR kinases DNA-dependent protein kinase or ataxia-telangiectasia mutated enhanced GDC-0973/GDC-0941-mediated cell death. Network analysis revealed specific enrichment of proteins involved in RNA metabolism along with canonical DDR proteins and suggested a prominent role for this pathway in the response to MEK/PI3K dual inhibition.
Collapse
|
175
|
Jin H, Liu L, Deng W, Lu Y, Tian J, Li H, Liu J. HDAC inhibitor DWP0016 suppresses miR-22 to induce growth inhibition and apoptosis via p53-independent PTEN activation in neuroblastoma SH-SY5Y cells. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
176
|
Jin H, Sun Y, Wang S, Cheng X. Matrine activates PTEN to induce growth inhibition and apoptosis in V600EBRAF harboring melanoma cells. Int J Mol Sci 2013; 14:16040-57. [PMID: 23912239 PMCID: PMC3759898 DOI: 10.3390/ijms140816040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023] Open
Abstract
Here, we report a natural chemical Matrine, which exhibits anti-melanoma potential with its PTEN activation mechanism. Matrine effectively inhibited proliferation of several carcinoma cell lines, including melanoma V600EBRAF harboring M21 cells. Flow cytometry analysis showed Matrine induced G0/G1 cell cycle arrest in M21 cells dose-dependently. Apoptosis in M21 cells induced by Matrine was identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis and Annexin-V/FITC staining. Molecular mechanistic study suggested that Matrine upregulated both mRNA level and protein expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN), leading to inhibition of the PI3K/Akt pathway. Downregulation of phosphor-Aktser473 by Matrine activated p21 and Bax, which contributed to G0/G1 cell cycle and apoptosis. Besides, Matrine enhanced the PI3K/Akt inhibition effects to inhibit the cell proliferation with PI3K inhibitor, LY2940002. In summary, our findings suggest Matrine is a promising antitumor drug candidate with its possible PTEN activation mechanisms for treating cancer diseases, such as melanomas.
Collapse
Affiliation(s)
- Hui Jin
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; E-Mail:
| | - Yu Sun
- Yue-yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; E-Mails: (Y.S.); (S.W.)
| | - Shuiying Wang
- Yue-yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; E-Mails: (Y.S.); (S.W.)
| | - Xiaodong Cheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; E-Mail:
- Yue-yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; E-Mails: (Y.S.); (S.W.)
- East Hospital, Tongji University, Shanghai 200120, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-21-6598-0295
| |
Collapse
|
177
|
Pachl F, Plattner P, Ruprecht B, Médard G, Sewald N, Kuster B. Characterization of a chemical affinity probe targeting Akt kinases. J Proteome Res 2013; 12:3792-800. [PMID: 23795919 DOI: 10.1021/pr400455j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein kinases are key regulators of cellular processes, and aberrant function is often associated with human disease. Consequently, kinases represent an important class of therapeutic targets and about 20 kinase inhibitors (KIs) are in clinical use today. Detailed knowledge about the selectivity of KIs is important for the correct interpretation of their pharmacological and systems biological effects. Chemical proteomic approaches for systematic kinase inhibitor selectivity profiling have emerged as important molecular tools in this regard, but the coverage of the human kinome is still incomplete. Here, we describe a new affinity probe targeting Akt and many other members of the AGC kinase family that considerably extends the scope of KI profiling by chemical proteomics. In combination with the previously published kinobeads, the synthesized probe was applied to selectivity profiling of the Akt inhibitors GSK690693 and GSK2141795 in human cancer cells. The results confirmed the inhibition of all Akt isoforms and of a number of known as well as CDC42BPB as a novel putative target for GSK690693. This work also established, for the first time, the kinase selectivity profile of the clinical phase I drug GSK2141795 and identified PRKG1 as a low nanomolar kinase target as well as the ATP-dependent 5'-3' DNA helicase ERCC2 as a potential new non-kinase off-target.
Collapse
Affiliation(s)
- Fiona Pachl
- Chair for Proteomics and Bioanalytics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | | | | | | | | | | |
Collapse
|
178
|
Expression of PTEN in Mycosis Fungoides and Correlation With Loss of Heterozygosity. Am J Dermatopathol 2013; 35:555-60. [DOI: 10.1097/dad.0b013e318276cc68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
179
|
Fang DD, Zhang CC, Gu Y, Jani JP, Cao J, Tsaparikos K, Yuan J, Thiel M, Jackson-Fisher A, Zong Q, Lappin PB, Hayashi T, Schwab RB, Wong A, John-Baptiste A, Bagrodia S, Los G, Bender S, Christensen J, VanArsdale T. Antitumor Efficacy of the Dual PI3K/mTOR Inhibitor PF-04691502 in a Human Xenograft Tumor Model Derived from Colorectal Cancer Stem Cells Harboring a PIK3CA Mutation. PLoS One 2013; 8:e67258. [PMID: 23826249 PMCID: PMC3695076 DOI: 10.1371/journal.pone.0067258] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 05/13/2013] [Indexed: 12/30/2022] Open
Abstract
PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide) mutations can help predict the antitumor activity of phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway inhibitors in both preclinical and clinical settings. In light of the recent discovery of tumor-initiating cancer stem cells (CSCs) in various tumor types, we developed an in vitro CSC model from xenograft tumors established in mice from a colorectal cancer patient tumor in which the CD133+/EpCAM+ population represented tumor-initiating cells. CD133+/EpCAM+ CSCs were enriched under stem cell culture conditions and formed 3-dimensional tumor spheroids. Tumor spheroid cells exhibited CSC properties, including the capability for differentiation and self-renewal, higher tumorigenic potential and chemo-resistance. Genetic analysis using an OncoCarta™ panel revealed a PIK3CA (H1047R) mutation in these cells. Using a dual PI3K/mTOR inhibitor, PF-04691502, we then showed that blockage of the PI3K/mTOR pathway inhibited the in vitro proliferation of CSCs and in vivo xenograft tumor growth with manageable toxicity. Tumor growth inhibition in mice was accompanied by a significant reduction of phosphorylated Akt (pAKT) (S473), a well-established surrogate biomarker of PI3K/mTOR signaling pathway inhibition. Collectively, our data suggest that PF-04691502 exhibits potent anticancer activity in colorectal cancer by targeting both PIK3CA (H1047R) mutant CSCs and their derivatives. These results may assist in the clinical development of PF-04691502 for the treatment of a subpopulation of colorectal cancer patients with poor outcomes.
Collapse
Affiliation(s)
- Douglas D. Fang
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Cathy C. Zhang
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
- * E-mail:
| | - Yin Gu
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Jitesh P. Jani
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Joan Cao
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Konstantinos Tsaparikos
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Jing Yuan
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Melissa Thiel
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Amy Jackson-Fisher
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Qing Zong
- Drug Safety Research and Development, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Patrick B. Lappin
- Drug Safety Research and Development, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Tomoko Hayashi
- Moores UCSD Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Richard B. Schwab
- Moores UCSD Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Anthony Wong
- Drug Safety Research and Development, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Annette John-Baptiste
- Drug Safety Research and Development, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Shubha Bagrodia
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Geritt Los
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Steve Bender
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - James Christensen
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| | - Todd VanArsdale
- Oncology Research Unit, Pfizer Global Research & Development, San Diego, California, United States of America
| |
Collapse
|
180
|
Greene LM, Nolan DP, Regan-Komito D, Campiani G, Williams DC, Zisterer DM. Inhibition of late-stage autophagy synergistically enhances pyrrolo-1,5-benzoxazepine-6-induced apoptotic cell death in human colon cancer cells. Int J Oncol 2013; 43:927-35. [PMID: 23799546 DOI: 10.3892/ijo.2013.1989] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/23/2013] [Indexed: 11/06/2022] Open
Abstract
The pyrrolo-1,5-benzoxazepines (PBOXs) are a novel group of selective apoptotic agents displaying promising therapeutic potential in both ex vivo chemotherapy-refractory patient samples and in vivo murine carcinoma models. In this report, we present novel data concerning the induction of autophagy by the PBOXs in adenocarcinoma-derived colon cancer cells. Autophagy is a lysosome-dependent degradative pathway recently associated with chemotherapy. However, whether autophagy facilitates cell survival in response to chemotherapy or contributes to chemotherapy-induced cell death is highly controversial. Autophagy was identified by enhanced expression of LC3B-II, an autophagosome marker, an increase in the formation of acridine orange-stained cells, indicative of increased vesicle formation and electron microscopic confirmation of autophagic structures. The vacuolar H+ ATPase inhibitor bafilomycin-A1 (BAF-A1) inhibited vesicle formation and enhanced the apoptotic potential of PBOX-6. These findings suggest a cytoprotective role of autophagy in these cells following prolonged exposure to PBOX-6. Furthermore, BAF-A1 and PBOX-6 interactions were determined to be synergistic and caspase-dependent. Potentiation of PBOX-6-induced apoptosis by BAF-A1 was associated with a decrease in the levels of the anti-apoptotic protein, Mcl-1. The data provide evidence that autophagy functions as a survival mechanism in colon cancer cells to PBOX-6-induced apoptosis and a rationale for the use of autophagy inhibitors to further enhance PBOX‑6‑induced apoptosis in colon cancer.
Collapse
Affiliation(s)
- Lisa M Greene
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
181
|
Salama AKS. Evolving pharmacotherapies for the treatment of metastatic melanoma. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2013; 7:137-49. [PMID: 23843723 PMCID: PMC3698188 DOI: 10.4137/cmo.s9565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metastatic melanoma remains a difficult disease to treat, and long term survivors are rare. Over the past few years, however, breakthroughs in both immunotherapy as well as targeted agents have had a tremendous impact on patients diagnosed with this disease. This review summarizes recent advances in systemic therapies for melanoma, including immune modulators directed against cytotoxic T lymphocyte associated antigen-4 (CTLA-4) and programmed death-1 (PD-1), as well as a number of targeted agents. These approaches hold great promise as the landscape of therapeutic options for advanced melanoma continues to evolve.
Collapse
Affiliation(s)
- April K S Salama
- Division of Medical Oncology, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
182
|
Evangelisti C, Evangelisti C, Bressanin D, Buontempo F, Chiarini F, Lonetti A, Soncin M, Spartà A, McCubrey JA, Martelli AM. Targeting phosphatidylinositol 3-kinase signaling in acute myelogenous leukemia. Expert Opin Ther Targets 2013; 17:921-36. [DOI: 10.1517/14728222.2013.808333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
183
|
Network nonlinearities in drug treatment. Interdiscip Sci 2013; 5:85-94. [PMID: 23740389 DOI: 10.1007/s12539-013-0165-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/25/2012] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
Despite major achievements in the understanding of human disease, there is a general perception that the drug development industry has failed to meet the expectations that recent advances in biotechnology should drive. One of the potential sources of failure of many next generation drugs is that their targets are embedded in highly nonlinear signaling pathways and gene networks with multiple negative and positive feedback loops of regulation. There is increasing evidence that this complex network shapes the response to external perturbations in the form of drug treatment, originating bistability, hypersensitivity, robustness, complex dose-response curves or schedule dependent activity. This review focuses on the effect of nonlinearities on signaling and gene networks involved in human disease, using tools from Nonlinear Dynamics to discuss the implications and to overcome the effects of the nonlinearities on regulatory networks.
Collapse
|
184
|
Lei M, Ribeiro H, Kolodin G, Gill J, Wang YS, Maloney D, Fan Y, Li S, Myer L, Beluch M, Zhang L, Schweizer L. Establishing a high-throughput and automated cancer cell proliferation panel for oncology lead optimization. ACTA ACUST UNITED AC 2013; 18:1043-53. [PMID: 23733846 DOI: 10.1177/1087057113491825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tumor cell proliferation assays are widely used for oncology drug discovery, including target validation, lead compound identification, and optimization, as well as determination of compound off-target activities. Taking advantage of robotic systems to maintain cell culture and perform cell proliferation assays would greatly increase productivity and efficiency. Here we describe the establishment of automated systems for high-throughput cell proliferation assays in a panel of 13 human tumor cell lines. These cell lines were selected from various types of human tumors containing a broad range of well-characterized mutations in multiple cellular signaling pathways. Standard procedures for cell culture and assay performance were developed and optimized in each cell line. Moreover, in-house developed software (i.e., Toolset, Curvemaster, and Biobars) was applied to analyze the data and generate data reports. Using tool compounds, we have shown that results obtained through this panel exhibit high reproducibility over a long period. Furthermore, we have demonstrated that this panel can be used to identify sensitive and insensitive cell lines for specific cancer targets, to drive cellular structure-activity relationships, and to profile compound off-target activities. All those efforts are important for cancer drug discovery lead optimization.
Collapse
Affiliation(s)
- Ming Lei
- 1Department of Lead Evaluation and Mechanistic Biochemistry, Bristol-Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Zhang YX, van Oosterwijk JG, Sicinska E, Moss S, Remillard SP, van Wezel T, Bühnemann C, Hassan AB, Demetri GD, Bovée JVMG, Wagner AJ. Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy. Clin Cancer Res 2013; 19:3796-807. [PMID: 23714727 DOI: 10.1158/1078-0432.ccr-12-3647] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Chondrosarcomas are notoriously resistant to cytotoxic chemotherapeutic agents. We sought to identify critical signaling pathways that contribute to their survival and proliferation, and which may provide potential targets for rational therapeutic interventions. EXPERIMENTAL DESIGN Activation of receptor tyrosine kinases (RTK) was surveyed using phospho-RTK arrays. S6 phosphorylation and NRAS mutational status were examined in chondrosarcoma primary tumor tissues. siRNA or small-molecule inhibitors against RTKs or downstream signaling proteins were applied to chondrosarcoma cells and changes in biochemical signaling, cell cycle, and cell viability were determined. In vivo antitumor activity of BEZ235, a phosphoinositide 3-kinase (PI3K)/mTOR inhibitor, was evaluated in a chondrosarcoma xenograft model. RESULTS Several RTKs were identified as critical mediators of cell growth, but the RTK dependencies varied among cell lines. In exploration of downstream signaling pathways, strong S6 phosphorylation was found in 69% of conventional chondrosarcomas and 44% of dedifferentiated chondrosarcomas. Treatment with BEZ235 resulted in dramatic reduction in the growth of all chondrosarcoma cell lines. Tumor growth was similarly inhibited in a xenograft model of chondrosarcoma. In addition, chondrosarcoma cells with an NRAS mutation were sensitive to treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor. Functional NRAS mutations were found in 12% of conventional central chondrosarcomas. CONCLUSIONS RTKs are commonly activated in chondrosarcoma, but because of their considerable heterogeneity, targeted inhibition of the PI3K/mTOR pathway represents a rational therapeutic strategy. Chondrosarcomas with NRAS mutations may benefit from treatment with MEK inhibitors.
Collapse
Affiliation(s)
- Yi-Xiang Zhang
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
García-Regalado A, Vargas M, García-Carrancá A, Aréchaga-Ocampo E, González-De la Rosa CH. Activation of Akt pathway by transcription-independent mechanisms of retinoic acid promotes survival and invasion in lung cancer cells. Mol Cancer 2013; 12:44. [PMID: 23693014 PMCID: PMC3665688 DOI: 10.1186/1476-4598-12-44] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022] Open
Abstract
Background All-trans retinoic acid (ATRA) is currently being used in clinical trials for cancer treatment. The use of ATRA is limited because some cancers, such as lung cancer, show resistance to treatment. However, little is known about the molecular mechanisms that regulate resistance to ATRA treatment. Akt is a kinase that plays a key role in cell survival and cell invasion. Akt is often activated in lung cancer, suggesting its participation in resistance to chemotherapy. In this study, we explored the hypothesis that activation of the Akt pathway promotes resistance to ATRA treatment at the inhibition of cell survival and invasion in lung cancer. We aimed to provide guidelines for the proper use of ATRA in clinical trials and to elucidate basic biological mechanisms of resistance. Results We performed experiments using the A549 human lung adenocarcinoma cell line. We found that ATRA treatment promotes PI3k-Akt pathway activation through transcription-independent mechanisms. Interestingly, ATRA treatment induces the translocation of RARα to the plasma membrane, where it colocalizes with Akt. Immunoprecipitation assays showed that ATRA promotes Akt activation mediated by RARα-Akt interaction. Activation of the PI3k-Akt pathway by ATRA promotes invasion through Rac-GTPase, whereas pretreatment with 15e (PI3k inhibitor) or over-expression of the inactive form of Akt blocks ATRA-induced invasion. We also found that treatment with ATRA induces cell survival, which is inhibited by 15e or over-expression of an inactive form of Akt, through a subsequent increase in the levels of the active form of caspase-3. Finally, we showed that over-expression of the active form of Akt significantly decreases expression levels of the tumor suppressors RARβ2 and p53. In contrast, over-expression of the inactive form of Akt restores RARβ2 expression in cells treated with ATRA, indicating that activation of the PI3k-Akt pathway inhibits the expression of ATRA target genes. Conclusion Our results demonstrate that rapid activation of Akt blocks transcription-dependent mechanism of ATRA, promotes invasion and cell survival and confers resistance to retinoic acid treatment in lung cancer cells. These findings provide an incentive for the design and clinical testing of treatment regimens that combine ATRA and PI3k inhibitors for lung cancer treatment.
Collapse
Affiliation(s)
- Alejandro García-Regalado
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Artificios 40, Col, Hidalgo, México, D, F 01120, Mexico
| | | | | | | | | |
Collapse
|
187
|
Liu Q, Xu C, Kirubakaran S, Zhang X, Hur W, Liu Y, Kwiatkowski NP, Wang J, Westover KD, Gao P, Ercan D, Niepel M, Thoreen CC, Kang SA, Patricelli MP, Wang Y, Tupper T, Altabef A, Kawamura H, Held KD, Chou DM, Elledge SJ, Janne PA, Wong KK, Sabatini DM, Gray NS. Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Cancer Res 2013; 73:2574-86. [PMID: 23436801 PMCID: PMC3760004 DOI: 10.1158/0008-5472.can-12-1702] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
mTOR is a highly conserved serine/threonine protein kinase that serves as a central regulator of cell growth, survival, and autophagy. Deregulation of the PI3K/Akt/mTOR signaling pathway occurs commonly in cancer and numerous inhibitors targeting the ATP-binding site of these kinases are currently undergoing clinical evaluation. Here, we report the characterization of Torin2, a second-generation ATP-competitive inhibitor that is potent and selective for mTOR with a superior pharmacokinetic profile to previous inhibitors. Torin2 inhibited mTORC1-dependent T389 phosphorylation on S6K (RPS6KB1) with an EC(50) of 250 pmol/L with approximately 800-fold selectivity for cellular mTOR versus phosphoinositide 3-kinase (PI3K). Torin2 also exhibited potent biochemical and cellular activity against phosphatidylinositol-3 kinase-like kinase (PIKK) family kinases including ATM (EC(50), 28 nmol/L), ATR (EC(50), 35 nmol/L), and DNA-PK (EC(50), 118 nmol/L; PRKDC), the inhibition of which sensitized cells to Irradiation. Similar to the earlier generation compound Torin1 and in contrast to other reported mTOR inhibitors, Torin2 inhibited mTOR kinase and mTORC1 signaling activities in a sustained manner suggestive of a slow dissociation from the kinase. Cancer cell treatment with Torin2 for 24 hours resulted in a prolonged block in negative feedback and consequent T308 phosphorylation on Akt. These effects were associated with strong growth inhibition in vitro. Single-agent treatment with Torin2 in vivo did not yield significant efficacy against KRAS-driven lung tumors, but the combination of Torin2 with mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor AZD6244 yielded a significant growth inhibition. Taken together, our findings establish Torin2 as a strong candidate for clinical evaluation in a broad number of oncologic settings where mTOR signaling has a pathogenic role.
Collapse
Affiliation(s)
- Qingsong Liu
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Chunxiao Xu
- Ludwig Center at Dana-Farber–Harvard Cancer Center, Departments of Medicine and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA, 02115
| | - Sivapriya Kirubakaran
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Xin Zhang
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Wooyoung Hur
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Yan Liu
- Ludwig Center at Dana-Farber–Harvard Cancer Center, Departments of Medicine and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA, 02115
| | - Nicholas P. Kwiatkowski
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | | | - Peng Gao
- Ludwig Center at Dana-Farber–Harvard Cancer Center, Departments of Medicine and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA, 02115
| | - Dalia Ercan
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Mario Niepel
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115
| | - Carson C. Thoreen
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Seong A. Kang
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Koch Center for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139
| | | | - Yuchuan Wang
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Tanya Tupper
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Abigail Altabef
- Ludwig Center at Dana-Farber–Harvard Cancer Center, Departments of Medicine and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA, 02115
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Kathryn D. Held
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Danny M. Chou
- Department of Genetics, Harvard Medical School, Boston, MA, 02115
- Howard Hughes Medical Institute, Division of Genetics, Brigham and Women’s Hospital, Harvard University Medical School, Boston, MA 02115
| | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Boston, MA, 02115
- Howard Hughes Medical Institute, Division of Genetics, Brigham and Women’s Hospital, Harvard University Medical School, Boston, MA 02115
| | - Pasi A. Janne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Kwok-Kin Wong
- Ludwig Center at Dana-Farber–Harvard Cancer Center, Departments of Medicine and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA, 02115
| | - David M. Sabatini
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Koch Center for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
188
|
Yu J, Wu J, Li M, Yi Y, Shyr Y, Xie L. Cross-Platform Microarray Data Integration Combining Meta-Analysis and Gene Set Enrichment Analysis. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Integrative analysis of microarray data has been proven as a more reliable approach to deciphering molecular mechanisms underlying biological studies. Traditional integration such as meta-analysis is usually gene-centered. Recently, gene set enrichment analysis (GSEA) has been widely applied to bring gene-level interpretation to pathway-level. GSEA is an algorithm focusing on whether an a priori defined set of genes shows statistically significant differences between two biological states. However, GSEA does not support integrating multiple microarray datasets generated from different studies. To overcome this, the improved version of GSEA, ASSESS, is more applicable, after necessary modifications. By making proper combined use of meta-analysis, GSEA, and modified ASSESS, this chapter reports two workflow pipelines to extract consistent expression pattern change at pathway-level, from multiple microarray datasets generated by the same or different microarray production platforms, respectively. Such strategies amplify the advantage and overcome the disadvantage than if using each method individually, and may achieve a more comprehensive interpretation towards a biological theme based on an increased sample size. With further network analysis, it may also allow an overview of cross-talking pathways based on statistical integration of multiple gene expression studies. A web server where one of the pipelines is implemented is available at: http://lifecenter.sgst.cn/mgsea//home.htm.
Collapse
Affiliation(s)
| | - Jun Wu
- Shanghai Center for Bioinformation Technology, China
| | - Miaoxin Li
- Shanghai Center for Bioinformation Technology, China
| | | | | | - Lu Xie
- Shanghai Center for Bioinformation Technology, China
| |
Collapse
|
189
|
Novel method for PIK3CA mutation analysis: locked nucleic acid--PCR sequencing. J Mol Diagn 2013; 15:312-8. [PMID: 23541593 DOI: 10.1016/j.jmoldx.2012.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 01/08/2023] Open
Abstract
Somatic mutations in PIK3CA are commonly seen in invasive breast cancer and several other carcinomas, occurring in three hotspots: codons 542 and 545 of exon 9 and in codon 1047 of exon 20. We designed a locked nucleic acid (LNA)-PCR sequencing assay to detect low levels of mutant PIK3CA DNA with attention to avoiding amplification of a pseudogene on chromosome 22 that has >95% homology to exon 9 of PIK3CA. We tested 60 FFPE breast DNA samples with known PIK3CA mutation status (48 cases had one or more PIK3CA mutations, and 12 were wild type) as identified by PCR-mass spectrometry. PIK3CA exons 9 and 20 were amplified in the presence or absence of LNA-oligonucleotides designed to bind to the wild-type sequences for codons 542, 545, and 1047, and partially suppress their amplification. LNA-PCR sequencing confirmed all 51 PIK3CA mutations; however, the mutation detection rate by standard Sanger sequencing was only 69% (35 of 51). Of the 12 PIK3CA wild-type cases, LNA-PCR sequencing detected three additional H1047R mutations in "normal" breast tissue and one E545K in usual ductal hyperplasia. Histopathological review of these three normal breast specimens showed columnar cell change in two (both with known H1047R mutations) and apocrine metaplasia in one. The novel LNA-PCR shows higher sensitivity than standard Sanger sequencing and did not amplify the known pseudogene.
Collapse
|
190
|
Yao C, Wei JJ, Wang ZY, Ding HM, Li D, Yan SC, Yang YJ, Gu ZP. Perifosine induces cell apoptosis in human osteosarcoma cells: new implication for osteosarcoma therapy? Cell Biochem Biophys 2013; 65:217-27. [PMID: 23015227 DOI: 10.1007/s12013-012-9423-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite the advances of adjuvant chemotherapy and significant improvement of survival, the prognosis for patients with osteosarcoma is generally poor. The search for more effective anti-osteosarcoma agents is necessary and urgent. Here we report that perifosine induces cell apoptosis and growth inhibition in cultured human osteosarcoma cells. Perifosine blocks Akt/mTOR complex 1 (mTORC1) signaling, while promoting caspase-3, c-Jun N-terminal kinases (JNK), and p53 activation. Further, perifosine inhibits survivin expression probably by disrupting its association with heat shock protein-90 (HSP-90). These signaling changes together were responsible for a marked increase of osteosarcoma cell apoptosis and growth inhibition. Finally, we found that a low dose of perifosine enhanced etoposide- or doxorubicin-induced anti-OS cells activity. The results together suggest that perifosine might be used as a novel and effective anti-osteosarcoma agent.
Collapse
Affiliation(s)
- Chen Yao
- Department of Orthopedics, BenQ Medical Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Lamming DW, Ye L, Sabatini DM, Baur JA. Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 2013; 123:980-9. [PMID: 23454761 DOI: 10.1172/jci64099] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rapamycin, an inhibitor of mechanistic target of rapamycin (mTOR), has the strongest experimental support to date as a potential anti-aging therapeutic in mammals. Unlike many other compounds that have been claimed to influence longevity, rapamycin has been repeatedly tested in long-lived, genetically heterogeneous mice, in which it extends both mean and maximum life spans. However, the mechanism that accounts for these effects is far from clear, and a growing list of side effects make it doubtful that rapamycin would ultimately be beneficial in humans. This Review discusses the prospects for developing newer, safer anti-aging therapies based on analogs of rapamycin (termed rapalogs) or other approaches targeting mTOR signaling.
Collapse
Affiliation(s)
- Dudley W Lamming
- Whitehead Institute for Biomedical Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
192
|
Fabian AK, März A, Neimanis S, Biondi RM, Kozany C, Hausch F. InterAKTions with FKBPs--mutational and pharmacological exploration. PLoS One 2013; 8:e57508. [PMID: 23469007 PMCID: PMC3585324 DOI: 10.1371/journal.pone.0057508] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/22/2013] [Indexed: 11/27/2022] Open
Abstract
The FK506-binding protein 51 (FKBP51) is an Hsp90-associated co-chaperone which regulates steroid receptors and kinases. In pancreatic cancer cell lines, FKBP51 was shown to recruit the phosphatase PHLPP to facilitate dephosphorylation of the kinase Akt, which was associated with reduced chemoresistance. Here we show that in addition to FKBP51 several other members of the FKBP family bind directly to Akt. FKBP51 can also form complexes with other AGC kinases and mapping studies revealed that FKBP51 interacts with Akt via multiple domains independent of their activation or phosphorylation status. The FKBP51-Akt1 interaction was not affected by FK506 analogs or Akt active site inhibitors, but was abolished by the allosteric Akt inhibitor VIII. None of the FKBP51 inhibitors affected AktS473 phosphorylation or downstream targets of Akt. In summary, we show that FKBP51 binds to Akt directly as well as via Hsp90. The FKBP51-Akt interaction is sensitive to the conformation of Akt1, but does not depend on the FK506-binding pocket of FKBP51. Therefore, FKBP inhibitors are unlikely to inhibit the Akt-FKBP-PHLPP network.
Collapse
Affiliation(s)
- Anne-Katrin Fabian
- Research Group Chemical Genomics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Andreas März
- Research Group Chemical Genomics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sonja Neimanis
- Research Group PhosphoSites, Universitaetsklinikum Frankfurt, Medizinische Klinik I, Frankfurt/Main, Germany
| | - Ricardo M. Biondi
- Research Group PhosphoSites, Universitaetsklinikum Frankfurt, Medizinische Klinik I, Frankfurt/Main, Germany
| | - Christian Kozany
- Research Group Chemical Genomics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Felix Hausch
- Research Group Chemical Genomics, Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail:
| |
Collapse
|
193
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, Mazzarino MC, Fagone P, Nicoletti F, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Chiarini F, Evangelisti C, Cocco L, Martelli AM. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2013; 3:1068-111. [PMID: 23085539 PMCID: PMC3717945 DOI: 10.18632/oncotarget.659] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Qurishi Y, Hamid A, Sharma PR, Wani ZA, Mondhe DM, Singh SK, Zargar MA, Andotra SS, Shah BA, Taneja SC, Saxena AK. PARP cleavage and perturbance in mitochondrial membrane potential by 3-α-propionyloxy-β-boswellic acid results in cancer cell death and tumor regression in murine models. Future Oncol 2013; 8:867-81. [PMID: 22830406 DOI: 10.2217/fon.12.68] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Apoptotic induction in cancer cells has become a major focus of anticancer therapeutics. In this regard, β-boswellic acids, naturally occurring pentacyclic triterpenes, have demonstrated antiproliferative and cytotoxic effects against different types of cancers. Surprisingly, not much has been reported regarding the chemical modifications or preparation of structural analogs of the key constituents of β-boswellic acid. AIM The anticancer activity of 3-α-propionyloxy-β-boswellic acid (POBA) was investigated and this article reports for the first time that the triterpenoid ring of the boswellic acid derivative POBA is targeting the PI3K pathway. MATERIALS & METHODS Induction of apoptosis of the semi-synthetic derivative of β-boswellic acid-POBA in vitro was analyzed using a battery of human cancer cell lines followed by cell cycle phase distribution, further validated by DNA fragmentation, and was found to cause mitochondrial membrane potential loss with ultrastructural changes, as observed by electron microscopy studies and expression study using PARP cleavage, as well as validated by in vivo anti-tumor activity. RESULTS The cytotoxicity data revealed the sensitivity of various human cancer cell lines of varied tissue origin to β-boswellic acid, which robustly induced cell cycle arrest, DNA fragmentation and loss of mitochondrial membrane potential. Morphological studies of the effects of POBA revealed loss of surface projections, chromatin condensation, apoptotic body formation and POBA-mediated PARP cleavage. For in vivo therapeutic experiments, murine tumor models were treated with POBA and the treatment resulted in a significantly higher level of growth inhibition and apoptosis was significantly induced. CONCLUSION These findings demonstrate that acyl substituents/groups in the main skeleton of β-boswellic acid have the potential to be potent chemotherapeutic agents.
Collapse
Affiliation(s)
- Yasrib Qurishi
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (Council of Scientific & Industrial Research), Canal Road, Jammu-Tawi 180001, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Genomic variation is a trend observed in various human diseases including cancer. Genetic studies have set out to understand how and why these variations result in cancer, why some populations are pre-disposed to the disease, and also how genetics affect drug responses. The melanoma incidence has been increasing at an alarming rate worldwide. The burden posed by melanoma has made it a necessity to understand the fundamental signaling pathways involved in this deadly disease. Signaling cascades such as mitogen-activated protein kinase and PI3K/AKT have been shown to be crucial in the regulation of processes that are commonly dysregulated during cancer development such as aberrant proliferation, loss of cell cycle control, impaired apoptosis, and altered drug metabolism. Understanding how these and other oncogenic pathways are regulated has been integral in our challenge to develop potent anti-melanoma drugs. With advances in technology and especially in next generation sequencing, we have been able to explore melanoma genomes and exomes leading to the identification of previously unknown genes with functions in melanomagenesis such as GRIN2A and PREX2. The therapeutic potential of these novel candidate genes is actively being pursued with some presenting as druggable targets while others serve as indicators of therapeutic responses. In addition, the analysis of the mutational signatures of melanoma tumors continues to cement the causative role of UV exposure in melanoma pathogenesis. It has become distinctly clear that melanomas from sun-exposed skin areas have distinct mutational signatures including C to T transitions indicative of UV-induced damage. It is thus necessary to continue spreading awareness on how to decrease the risk factors of developing the disease while at the same time working for a cure. Given the large amount of information gained from these sequencing studies, it is likely that in the future, treatment of melanoma will follow a highly personalized route that takes into account the differential mutational signatures of each individual’s cancer.
Collapse
Affiliation(s)
- Janet Wangari-Talbot
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| | | |
Collapse
|
196
|
Floris G, Wozniak A, Sciot R, Li H, Friedman L, Van Looy T, Wellens J, Vermaelen P, Deroose CM, Fletcher JA, Debiec-Rychter M, Schöffski P. A potent combination of the novel PI3K Inhibitor, GDC-0941, with imatinib in gastrointestinal stromal tumor xenografts: long-lasting responses after treatment withdrawal. Clin Cancer Res 2012; 19:620-30. [PMID: 23231951 DOI: 10.1158/1078-0432.ccr-12-2853] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Oncogenic signaling in gastrointestinal stromal tumors (GIST) is sustained via PI3K/AKT pathway. We used a panel of six GIST xenograft models to assess efficacy of GDC-0941 as single agent or in combination with imatinib (IMA). EXPERIMENTAL DESIGN Nude mice (n = 136) were grafted bilaterally with human GIST carrying diverse KIT mutations. Mice were orally dosed over four weeks, grouped as follows: (A) control; (B) GDC-0941; (C) imatinib, and (D) GDC+IMA treatments. Xenografts regrowth after treatment discontinuation was assessed in groups C and D for an additional four weeks. Tumor response was assessed by volume measurements, micro-PET imaging, histopathology, and immunoblotting. Moreover, genomic alterations in PTEN/PI3K/AKT pathway were evaluated. RESULTS In all models, GDC-0941 caused tumor growth stabilization, inhibiting tumor cell proliferation, but did not induce apoptosis. Under GDC+IMA, profound tumor regression, superior to either treatment alone, was observed. This effect was associated with the best histologic response, a nearly complete proliferation arrest and increased apoptosis. Tumor regrowth assays confirmed superior activity of GDC+IMA over imatinib; in three of six models, tumor volume remained reduced and stable even after treatment discontinuation. A positive correlation between response to GDC+IMA and PTEN loss, both on gene and protein levels, was found. CONCLUSION GDC+IMA has significant antitumor efficacy in GIST xenografts, inducing more substantial tumor regression, apoptosis, and durable effects than imatinib. Notably, after treatment withdrawal, tumor regression was sustained in tumors exposed to GDC+IMA, which was not observed under imatinib. Assessment of PTEN status may represent a useful predictive biomarker for patient selection.
Collapse
Affiliation(s)
- Giuseppe Floris
- Department of Pathology, KU Leuven and University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Cidado J, Park BH. Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy. J Mammary Gland Biol Neoplasia 2012; 17:205-16. [PMID: 22865098 PMCID: PMC3724399 DOI: 10.1007/s10911-012-9264-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/23/2012] [Indexed: 01/06/2023] Open
Abstract
Recent advances in genetics and genomics have revealed new pathways that are aberrantly activated in many breast cancers. Chief among these genetic changes are somatic mutations and/or gains and losses of key genes within the phosphoinositide 3-kinase (PI3K) pathway. Since breast cancer cell growth and progression is often dependent upon activation of the PI3K pathway, there has been intense research interest in finding therapeutic agents that can selectively inhibit one or more constituents of this signaling cascade. Here we review key molecules involved with aberrant PI3K pathway activation in breast cancers and current efforts to target these components for therapeutic gain.
Collapse
Affiliation(s)
- Justin Cidado
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| |
Collapse
|
198
|
Joh EH, Hollenbaugh JA, Kim B, Kim DH. Pleckstrin homology domain of Akt kinase: a proof of principle for highly specific and effective non-enzymatic anti-cancer target. PLoS One 2012. [PMID: 23189201 PMCID: PMC3506615 DOI: 10.1371/journal.pone.0050424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While pharmacological inhibition of Akt kinase has been regarded as a promising anti-cancer strategy, most of the Akt inhibitors that have been developed are enzymatic inhibitors that target the kinase active site of Akt. Another key cellular regulatory event for Akt activation is the translocation of Akt kinase to the cell membrane from the cytoplasm, which is accomplished through the pleckstrin homology (PH) domain of Akt. However, compounds specifically interacting with the PH domain of Akt to inhibit Akt activation are currently limited. Here we identified a compound, lancemaside A (LAN-A), which specifically binds to the PH domain of Akt kinase. First, our mass spectra analysis of cellular Akt kinase isolated from cells treated with LAN-A revealed that LAN-A specifically binds to the PH domain of cellular Akt kinase. Second, we observed that LAN-A inhibits the translocation of Akt kinase to the membrane and thus Akt activation, as examined by the phosphorylation of various downstream targets of Akt such as GSK3β, mTOR and BAD. Third, in a co-cultured cell model containing human lung epithelial cancer cells (A549) and normal human primary lung fibroblasts, LAN-A specifically restricts the growth of the A549 cells. LAN-A also displayed anti-proliferative effects on various human cancer cell lines. Finally, in the A549-luciferase mouse transplant model, LAN-A effectively inhibited A549 cell growth with little evident cytotoxicity. Indeed, the therapeutic index of LAN-A in this mouse model was >250, supporting that LAN-A is a potential lead compound for PH domain targeting as a safe anti-cancer Akt inhibitor.
Collapse
Affiliation(s)
- Eun-Ha Joh
- Department of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Joseph A. Hollenbaugh
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Baek Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (DHK); (BK)
| | - Dong-Hyun Kim
- Department of Pharmacy, Kyung-Hee University, Seoul, South Korea
- * E-mail: (DHK); (BK)
| |
Collapse
|
199
|
Wojtalla A, Fischer B, Kotelevets N, Mauri FA, Sobek J, Rehrauer H, Wotzkow C, Tschan MP, Seckl MJ, Zangemeister-Wittke U, Arcaro A. Targeting the phosphoinositide 3-kinase p110-α isoform impairs cell proliferation, survival, and tumor growth in small cell lung cancer. Clin Cancer Res 2012; 19:96-105. [PMID: 23172887 DOI: 10.1158/1078-0432.ccr-12-1138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The phosphoinositide 3-kinase (PI3K) pathway is fundamental for cell proliferation and survival and is frequently altered and activated in neoplasia, including carcinomas of the lung. In this study, we investigated the potential of targeting the catalytic class I(A) PI3K isoforms in small cell lung cancer (SCLC), which is the most aggressive of all lung cancer types. EXPERIMENTAL DESIGN The expression of PI3K isoforms in patient specimens was analyzed. The effects on SCLC cell survival and downstream signaling were determined following PI3K isoform inhibition by selective inhibitors or downregulation by siRNA. RESULTS Overexpression of the PI3K isoforms p110-α and p110-β and the antiapoptotic protein Bcl-2 was shown by immunohistochemistry in primary SCLC tissue samples. Targeting the PI3K p110-α with RNA interference or selective pharmacologic inhibitors resulted in strongly affected cell proliferation of SCLC cells in vitro and in vivo, whereas targeting p110-β was less effective. Inhibition of p110-α also resulted in increased apoptosis and autophagy, which was accompanied by decreased phosphorylation of Akt and components of the mTOR pathway, such as the ribosomal S6 protein, and the eukaryotic translation initiation factor 4E-binding protein 1. A DNA microarray analysis revealed that p110-α inhibition profoundly affected the balance of pro- and antiapoptotic Bcl-2 family proteins. Finally, p110-α inhibition led to impaired SCLC tumor formation and vascularization in vivo. CONCLUSION Together our data show the key involvement of the PI3K isoform p110-α in the regulation of multiple tumor-promoting processes in SCLC.
Collapse
Affiliation(s)
- Anna Wojtalla
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Wilhelm A, Lopez-Garcia LA, Busschots K, Fröhner W, Maurer F, Boettcher S, Zhang H, Schulze JO, Biondi RM, Engel M. 2-(3-Oxo-1,3-diphenylpropyl)malonic Acids as Potent Allosteric Ligands of the PIF Pocket of Phosphoinositide-Dependent Kinase-1: Development and Prodrug Concept. J Med Chem 2012; 55:9817-30. [DOI: 10.1021/jm3010477] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Adriana Wilhelm
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2.3, D-66123 Saarbrücken, Germany
| | - Laura A. Lopez-Garcia
- Department of Internal Medicine
I, University of Frankfurt, Theodor-Stern-Kai
7, D-60590 Frankfurt a.M., Germany
| | - Katrien Busschots
- Department of Internal Medicine
I, University of Frankfurt, Theodor-Stern-Kai
7, D-60590 Frankfurt a.M., Germany
| | - Wolfgang Fröhner
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2.3, D-66123 Saarbrücken, Germany
| | - Frauke Maurer
- Organic Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken,
Germany
| | - Stefan Boettcher
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2.3, D-66123 Saarbrücken, Germany
| | - Hua Zhang
- Department of Internal Medicine
I, University of Frankfurt, Theodor-Stern-Kai
7, D-60590 Frankfurt a.M., Germany
| | - Jörg O. Schulze
- Department of Internal Medicine
I, University of Frankfurt, Theodor-Stern-Kai
7, D-60590 Frankfurt a.M., Germany
| | - Ricardo M. Biondi
- Department of Internal Medicine
I, University of Frankfurt, Theodor-Stern-Kai
7, D-60590 Frankfurt a.M., Germany
| | - Matthias Engel
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|