151
|
Imbalanced post- and extrasynaptic SHANK2A functions during development affect social behavior in SHANK2-mediated neuropsychiatric disorders. Mol Psychiatry 2021; 26:6482-6504. [PMID: 34021263 PMCID: PMC8760046 DOI: 10.1038/s41380-021-01140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Mutations in SHANK genes play an undisputed role in neuropsychiatric disorders. Until now, research has focused on the postsynaptic function of SHANKs, and prominent postsynaptic alterations in glutamatergic signal transmission have been reported in Shank KO mouse models. Recent studies have also suggested a possible presynaptic function of SHANK proteins, but these remain poorly defined. In this study, we examined how SHANK2 can mediate electrophysiological, molecular, and behavioral effects by conditionally overexpressing either wild-type SHANK2A or the extrasynaptic SHANK2A(R462X) variant. SHANK2A overexpression affected pre- and postsynaptic targets and revealed a reversible, development-dependent autism spectrum disorder-like behavior. SHANK2A also mediated redistribution of Ca2+-permeable AMPA receptors between apical and basal hippocampal CA1 dendrites, leading to impaired synaptic plasticity in the basal dendrites. Moreover, SHANK2A overexpression reduced social interaction and increased the excitatory noise in the olfactory cortex during odor processing. In contrast, overexpression of the extrasynaptic SHANK2A(R462X) variant did not impair hippocampal synaptic plasticity, but still altered the expression of presynaptic/axonal signaling proteins. We also observed an attention-deficit/hyperactivity-like behavior and improved social interaction along with enhanced signal-to-noise ratio in cortical odor processing. Our results suggest that the disruption of pre- and postsynaptic SHANK2 functions caused by SHANK2 mutations has a strong impact on social behavior. These findings indicate that pre- and postsynaptic SHANK2 actions cooperate for normal neuronal function, and that an imbalance between these functions may lead to different neuropsychiatric disorders.
Collapse
|
152
|
Effects of systemic endocannabinoid manipulation on social and exploratory behavior in prairie voles (Microtus ochrogaster). Psychopharmacology (Berl) 2021; 238:293-304. [PMID: 33130926 PMCID: PMC7796938 DOI: 10.1007/s00213-020-05683-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE Anandamide is an endocannabinoid that contributes to certain aspects of social behavior, like play and reward, by binding to cannabinoid receptor type 1 (CB1). Most interesting is the recent discovery that anandamide may be mobilized by oxytocin receptor activation under certain contexts, particularly in the nucleus accumbens. OBJECTIVES Given the established role of oxytocin and the nucleus accumbens in the neurobiology of pair-bonding, we investigated whether systemic administration of brain-permeable modulators of the endocannabinoid system could alter preferential partner contact in both male and female prairie voles. METHODS Specifically, we tested whether intraperitoneal administration of the neutral CB1 antagonist AM4113 (4.0-16.0 mg/kg) or the anandamide hydrolysis inhibitor URB597 (5.0-20.0 mg/kg) could prevent or facilitate partner preference formation, respectively. To further investigate the specificity of effects on partner preference, we repeated our URB597 dosing regimen on an additional group of females and tested their anxiety-related behavior in both an elevated-plus maze and a light/dark test. RESULTS AM4113 administration had no effect on partner preference. But while URB597 also had no effect on partner preference, low-dose females did increase absolute preferential contact with either the partner or the stranger; individual females spent significant contact time with either the partner or the stranger. None of our outcome measures in either anxiety test showed significant effects of treatment. CONCLUSIONS Our results reveal that experimentally increasing anandamide levels in female prairie voles can increase social contact with both a familiar and novel male via unknown mechanisms that are likely separate from anxiety reduction.
Collapse
|
153
|
Social Structure. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
154
|
Translational opportunities for circuit-based social neuroscience: advancing 21st century psychiatry. Curr Opin Neurobiol 2020; 68:1-8. [PMID: 33260106 DOI: 10.1016/j.conb.2020.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
The recent advancements of social behavioral neuroscience are unprecedented. Through manipulations targeting neural circuits, complex behaviors can be switched on and off, social bonds can be induced, and false memories can be 'incepted.' Psychiatry, however, remains tethered to concepts and techniques developed over half a century ago, including purely behavioral definitions of psychopathology and chronic, brain-wide pharmacological interventions. Drawing on recent animal and human research, we outline a circuit-level approach to the social brain and highlight studies demonstrating the translational potential of this approach. We conclude by suggesting ways both clinical practice and translational research can apply circuit-level neuroscientific knowledge to advance psychiatry, including adopting neuroscience-based nomenclature, stratifying patients into diagnostic subgroups based on neurobiological phenotypes, and pharmacologically enhancing psychotherapy.
Collapse
|
155
|
Netser S, Meyer A, Magalnik H, Zylbertal A, de la Zerda SH, Briller M, Bizer A, Grinevich V, Wagner S. Distinct dynamics of social motivation drive differential social behavior in laboratory rat and mouse strains. Nat Commun 2020; 11:5908. [PMID: 33219219 PMCID: PMC7679456 DOI: 10.1038/s41467-020-19569-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Mice and rats are widely used to explore mechanisms of mammalian social behavior in health and disease, raising the question whether they actually differ in their social behavior. Here we address this question by directly comparing social investigation behavior between two mouse and rat strains used most frequently for behavioral studies and as models of neuropathological conditions: C57BL/6 J mice and Sprague Dawley (SD) rats. Employing novel experimental systems for behavioral analysis of both subjects and stimuli during the social preference test, we reveal marked differences in behavioral dynamics between the strains, suggesting stronger and faster induction of social motivation in SD rats. These different behavioral patterns, which correlate with distinctive c-Fos expression in social motivation-related brain areas, are modified by competition with non-social rewarding stimuli, in a strain-specific manner. Thus, these two strains differ in their social behavior, which should be taken into consideration when selecting an appropriate model organism. Laboratory rat and mouse strains serve as animal models to explore brain mechanisms underlying social behavior. Here, the authors describe differences in social behavior between commonly used rat and mouse strains, which may reflect distinct dynamics of social motivation.
Collapse
Affiliation(s)
- Shai Netser
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Ana Meyer
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, J5, 69159, Germany
| | - Hen Magalnik
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Asaph Zylbertal
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WCE1 6BT, UK
| | - Shani Haskal de la Zerda
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Mayan Briller
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Alexander Bizer
- Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, J5, 69159, Germany
| | - Shlomo Wagner
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
156
|
Chung M, Wang M, Huang Z, Okuyama T. Diverse sensory cues for individual recognition. Dev Growth Differ 2020; 62:507-515. [DOI: 10.1111/dgd.12697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Myung Chung
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Mu‐Yun Wang
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Ziyan Huang
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Teruhiro Okuyama
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
- JST, PRESTO Tokyo Japan
| |
Collapse
|
157
|
De Leon D, Nishitani S, Walum H, McCormack KM, Wilson ME, Smith AK, Young LJ, Sanchez MM. Methylation of OXT and OXTR genes, central oxytocin, and social behavior in female macaques. Horm Behav 2020; 126:104856. [PMID: 32979349 PMCID: PMC7725942 DOI: 10.1016/j.yhbeh.2020.104856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/01/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
Oxytocin (OXT) and its receptor (OXTR) are encoded by OXT and OXTR, respectively. Variable methylation of these genes has been linked to variability in sociability and neuroendophenotypes. Here we examine whether OXTR or OXT methylation in blood predicts concentrations of OXT in cerebrospinal fluid (CSF) (n = 166) and social behavior (n = 207) in socially-housed female rhesus macaques. We report a similarity between human and rhesus CpG sites for OXT and OXTR and a putative negative association between methylation of two OXTR CpG units with aggressive behavior (both P = 0.003), though this finding does not survive the most stringent correction for multiple comparison testing. We did not detect a statistically significant association between methylation of any CpG sites and CSF OXT concentrations, either. Because none of the tested associations survived statistical corrections, if there is any relationship between blood-derived methylation of these genes and the behavioral and physiological outcomes measured here, the effect size is too small to be detected reliably with this sample size. These results do not support the hypothesis that blood methylation of OXT or OXTR is robustly associated with CSF OXT concentration or social behavior in rhesus. It is possible, though, that methylation of these loci in the brain or in cheek epithelia may be associated with central OXT release and behavior. Finally, we consider the limitations of this exploratory study in the context of statistical power.
Collapse
Affiliation(s)
- Desirée De Leon
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, United States of America; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States of America
| | - Shota Nishitani
- Dept. of Gynecology and Obstetrics, Emory School of Medicine, Emory University, Atlanta, GA, United States of America; Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Dept. of Psychiatry & Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Hasse Walum
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, United States of America
| | - Kai M McCormack
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Dept. of Psychology, Spelman College, Atlanta, GA, United States of America
| | - Mark E Wilson
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Dept. of Psychiatry & Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Alicia K Smith
- Dept. of Gynecology and Obstetrics, Emory School of Medicine, Emory University, Atlanta, GA, United States of America; Dept. of Psychiatry & Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Larry J Young
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, United States of America; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States of America; Dept. of Psychiatry & Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Mar M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, United States of America; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States of America; Dept. of Psychiatry & Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA, United States of America.
| |
Collapse
|
158
|
Oti T, Satoh K, Uta D, Nagafuchi J, Tateishi S, Ueda R, Takanami K, Young LJ, Galione A, Morris JF, Sakamoto T, Sakamoto H. Oxytocin Influences Male Sexual Activity via Non-synaptic Axonal Release in the Spinal Cord. Curr Biol 2020; 31:103-114.e5. [PMID: 33125871 DOI: 10.1016/j.cub.2020.09.089] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 09/29/2020] [Indexed: 01/15/2023]
Abstract
Oxytocinergic neurons in the paraventricular nucleus of the hypothalamus that project to extrahypothalamic brain areas and the lumbar spinal cord play an important role in the control of erectile function and male sexual behavior in mammals. The gastrin-releasing peptide (GRP) system in the lumbosacral spinal cord is an important component of the neural circuits that control penile reflexes in rats, circuits that are commonly referred to as the "spinal ejaculation generator (SEG)." We have examined the functional interaction between the SEG neurons and the hypothalamo-spinal oxytocin system in rats. Here, we show that SEG/GRP neurons express oxytocin receptors and are activated by oxytocin during male sexual behavior. Intrathecal injection of oxytocin receptor antagonist not only attenuates ejaculation but also affects pre-ejaculatory behavior during normal sexual activity. Electron microscopy of potassium-stimulated acute slices of the lumbar cord showed that oxytocin-neurophysin-immunoreactivity was detected in large numbers of neurosecretory dense-cored vesicles, many of which are located close to the plasmalemma of axonal varicosities in which no electron-lucent microvesicles or synaptic membrane thickenings were visible. These results suggested that, in rats, release of oxytocin in the lumbar spinal cord is not limited to conventional synapses but occurs by exocytosis of the dense-cored vesicles from axonal varicosities and acts by diffusion-a localized volume transmission-to reach oxytocin receptors on GRP neurons and facilitate male sexual function.
Collapse
Affiliation(s)
- Takumi Oti
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan
| | - Keita Satoh
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Junta Nagafuchi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Sayaka Tateishi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kita-ku, Tsushimanaka, Okayama 700-8530, Japan
| | - Ryota Ueda
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kita-ku, Tsushimanaka, Okayama 700-8530, Japan
| | - Keiko Takanami
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Mouse Genomics Resources Laboratory, National Institute of Genetics, Yata, Mishima, Shizuoka 411-8540, Japan
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - John F Morris
- Department of Physiology, Anatomy & Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Department of Physiology, Anatomy & Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| |
Collapse
|
159
|
Oxytocin receptor binding in the titi monkey hippocampal formation is associated with parental status and partner affiliation. Sci Rep 2020; 10:17301. [PMID: 33057124 PMCID: PMC7560868 DOI: 10.1038/s41598-020-74243-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
Social cognition is facilitated by oxytocin receptors (OXTR) in the hippocampus, a brain region that changes dynamically with pregnancy, parturition, and parenting experience. We investigated the impact of parenthood on hippocampal OXTR in male and female titi monkeys, a pair-bonding primate species that exhibits biparental care of offspring. We hypothesized that in postmortem brain tissue, OXTR binding in the hippocampal formation would differ between parents and non-parents, and that OXTR density would correlate with frequencies of observed parenting and affiliative behaviors between partners. Subjects were 10 adult titi monkeys. OXTR binding in the hippocampus (CA1, CA2/3, CA4, dentate gyrus, subiculum) and presubiculum layers (PSB1, PSB3) was determined using receptor autoradiography. The average frequency of partner affiliation (Proximity, Contact, and Tail Twining) and infant carrying were determined from longitudinal observations (5-6 per day). Analyses showed that parents exhibited higher OXTR binding than non-parents in PSB1 (t(8) = - 2.33, p = 0.048), and that OXTR binding in the total presubiculm correlated negatively with Proximity (r = - 0.88) and Contact (r = - 0.91), but not Tail Twining or infant carrying. These results suggest that OXTR binding in the presubiculum supports pair bonding and parenting behavior, potentially by mediating changes in hippocampal plasticity.
Collapse
|
160
|
Effects of Mating and Social Exposure on Cell Proliferation in the Adult Male Prairie Vole ( Microtus ochrogaster). Neural Plast 2020; 2020:8869669. [PMID: 33029122 PMCID: PMC7528033 DOI: 10.1155/2020/8869669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022] Open
Abstract
Microtus ochrogaster is a rodent with a monogamous reproductive strategy characterized by strong pair bond formation after 6 h of mating. Here, we determine whether mating-induced pair bonding increases cell proliferation in the subventricular zone (SVZ), rostral migratory stream (RMS), and dentate gyrus (DG) of the hippocampus in male voles. Males were assigned to one of the four groups: (1) control: males were placed alone in a clean cage; (2) social exposure to a female (SE m/f): males that could see, hear, and smell a sexually receptive female but where physical contact was not possible, because the animals were separated by an acrylic screen with small holes; (3) social exposure to a male (SE m/m): same as group 2 but males were exposed to another male without physical contact; and (4) social cohabitation with mating (SCM): males that mated freely with a receptive female for 6 h. This procedure leads to pair bond formation. Groups 2 and 3 were controls for social interaction. Male prairie voles were injected with 5-bromo-2′-deoxyuridine (BrdU) during the behavioral tests and were sacrificed 48 h later. Brains were processed to identify the new cells (BrdU-positive) and neuron precursor cells (neuroblasts). Our principal findings are that in the dorsal region of the SVZ, SCM and SE m/f and m/m increase the percentage of neuron precursor cells. In the anterior region of the RMS, SE m/f decreases the percentage of neuron precursor cells, and in the medial region SE m/f and m/m decrease the number of new cells and neuron precursor cells. In the infrapyramidal blade of the subgranular zone of the DG, SE m/m and SCM increase the number of new neuron precursor cells and SE m/m increases the percentage of these neurons. Our data suggests that social interaction, as well as sexual stimulation, leads to pair bonding in male voles modulating cell proliferation and differentiation to neuronal precursor cells at the SVZ, RMS, and DG.
Collapse
|
161
|
Ortiz R, Yee JR, Kulkarni PP, Solomon NG, Keane B, Cai X, Ferris CF, Cushing BS. Differences in Diffusion-Weighted Imaging and Resting-State Functional Connectivity Between Two Culturally Distinct Populations of Prairie Vole. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 7:588-597. [PMID: 33239258 DOI: 10.1016/j.bpsc.2020.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND We used the highly prosocial prairie vole to test the hypothesis that higher-order brain structure-microarchitecture and functional connectivity (FC)-would differ between males from populations with distinctly different levels of prosocial behavior. Specifically, we studied males from Illinois (IL), which display high levels of prosocial behavior, and first generation males from Kansas dams and IL males (KI), which display the lowest level of prosocial behavior and higher aggression. Behavioral differences between these males are associated with overexpression of estrogen receptor alpha in the medial amygdala and bed nucleus of the stria terminalis and neuropeptide expression in the paraventricular nucleus. METHODS We compared apparent diffusion coefficient, fractional anisotropy, and blood oxygen level-dependent resting-state FC between males. RESULTS IL males displayed higher apparent diffusion coefficient in regions associated with prosocial behavior, including the bed nucleus of the stria terminalis, paraventricular nucleus, and anterior thalamic nuclei, while KI males showed higher apparent diffusion coefficient in the brainstem. KI males showed significantly higher fractional anisotropy than IL males in 26 brain regions, with the majority being in the brainstem reticular activating system. IL males showed more blood oxygen level-dependent resting-state FC between the bed nucleus of the stria terminalis, paraventricular nucleus, and medial amygdala along with other brain regions, including the hippocampus and areas associated with social and reward networks. CONCLUSIONS Our results suggest that gray matter microarchitecture and FC may play a role the expression of prosocial behavior and that differences in other brain regions, especially the brainstem, could be involved. The differences between males suggests that this system represents a potentially valuable model system for studying emotional differences and vulnerability to stress and addiction.
Collapse
Affiliation(s)
- Richard Ortiz
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas
| | - Jason R Yee
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | - Praveen P Kulkarni
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | | | - Brian Keane
- Department of Biological Sciences, Miami University, Hamilton, Ohio
| | - Xuezhu Cai
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | - Craig F Ferris
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | - Bruce S Cushing
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas.
| |
Collapse
|
162
|
Abstract
Brain-wide circuits that coordinate affective and social behaviours intersect in the amygdala. Consequently, amygdala lesions cause a heterogeneous array of social and non-social deficits. Social behaviours are not localized to subdivisions of the amygdala even though the inputs and outputs that carry social signals are anatomically restricted to distinct subnuclear regions. This observation may be explained by the multidimensional response properties of the component neurons. Indeed, the multitudes of circuits that converge in the amygdala enlist the same subset of neurons into different ensembles that combine social and non-social elements into high-dimensional representations. These representations may enable flexible, context-dependent social decisions. As such, multidimensional processing may operate in parallel with subcircuits of genetically identical neurons that serve specialized and functionally dissociable functions. When combined, the activity of specialized circuits may grant specificity to social behaviours, whereas multidimensional processing facilitates the flexibility and nuance needed for complex social behaviour.
Collapse
|
163
|
Yamashita J, Takeuchi A, Hosono K, Fleming T, Nagahama Y, Okubo K. Male-predominant galanin mediates androgen-dependent aggressive chases in medaka. eLife 2020; 9:59470. [PMID: 32783809 PMCID: PMC7423395 DOI: 10.7554/elife.59470] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
Recent studies in mice demonstrate that a subset of neurons in the medial preoptic area (MPOA) that express galanin play crucial roles in regulating parental behavior in both sexes. However, little information is available on the function of galanin in social behaviors in other species. Here, we report that, in medaka, a subset of MPOA galanin neurons occurred nearly exclusively in males, resulting from testicular androgen stimulation. Galanin-deficient medaka showed a greatly reduced incidence of male-male aggressive chases. Furthermore, while treatment of female medaka with androgen induced male-typical aggressive acts, galanin deficiency in these females attenuated the effect of androgen on chases. Given their male-biased and androgen-dependent nature, the subset of MPOA galanin neurons most likely mediate androgen-dependent male-male chases. Histological studies further suggested that variability in the projection targets of the MPOA galanin neurons may account for the species-dependent functional differences in these evolutionarily conserved neural substrates.
Collapse
Affiliation(s)
- Junpei Yamashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akio Takeuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Hosono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Thomas Fleming
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Nagahama
- Division of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
164
|
Rescue of oxytocin response and social behaviour in a mouse model of autism. Nature 2020; 584:252-256. [PMID: 32760004 PMCID: PMC7116741 DOI: 10.1038/s41586-020-2563-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
Abstract
One of the most fundamental challenges in developing treatments for autism-spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of autism cases1–3. Subsets of risk genes can be grouped into functionally-related pathways, most prominently synaptic proteins, translational regulation, and chromatin modifications. To possibly circumvent this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4–6 which regulate aspects of social behavior in mammals7. However, whether genetic risk factors might predispose to autism due to modification of oxytocinergic signaling remains largely unknown. Here, we report that an autism-associated mutation in the synaptic adhesion molecule neuroligin-3 (Nlgn3) results in impaired oxytocin signaling in dopaminergic neurons and in altered social novelty responses in mice. Surprisingly, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3KO mice with a novel, highly specific, brain-penetrant inhibitor of MAP-kinase interacting kinases resets mRNA translation and restores oxytocin and social novelty responses. Thus, this work identifies an unexpected convergence between the genetic autism risk factor Nlgn3, translational regulation, and oxytocinergic signaling. Focus on such common core plasticity elements might provide a pragmatic approach to reduce the heterogeneity of autism. Ultimately, this would allow for mechanism-based stratification of patient populations to increase the success of therapeutic interventions.
Collapse
|
165
|
Boender AJ, Young LJ. Oxytocin, vasopressin and social behavior in the age of genome editing: A comparative perspective. Horm Behav 2020; 124:104780. [PMID: 32544402 PMCID: PMC7486992 DOI: 10.1016/j.yhbeh.2020.104780] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Behavioral neuroendocrinology has a rich history of using diverse model organisms to elucidate general principles and evolution of hormone-brain-behavior relationships. The oxytocin and vasopressin systems have been studied in many species, revealing their role in regulating social behaviors. Oxytocin and vasopressin receptors show remarkable species and individual differences in distribution in the brain that have been linked to diversity in social behaviors. New technologies allow for unprecedented interrogation of the genes and neural circuitry regulating behaviors, but these approaches often require transgenic models and are most often used in mice. Here we discuss seminal findings relating the oxytocin and vasopressin systems to social behavior with a focus on non-traditional animal models. We then evaluate the potential of using CRISPR/Cas9 genome editing to examine the roles of genes and enable circuit dissection, manipulation and activity monitoring of the oxytocin and vasopressin systems. We believe that it is essential to incorporate these genetic and circuit level techniques in comparative behavioral neuroendocrinology research to ensure that our field remains innovative and attractive for the next generation of investigators and funding agencies.
Collapse
Affiliation(s)
- Arjen J Boender
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA.
| |
Collapse
|
166
|
Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat Neurosci 2020; 23:1125-1137. [PMID: 32719563 DOI: 10.1038/s41593-020-0674-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Oxytocin (OT) is a great facilitator of social life but, although its effects on socially relevant brain regions have been extensively studied, OT neuron activity during actual social interactions remains unexplored. Most OT neurons are magnocellular neurons, which simultaneously project to the pituitary and forebrain regions involved in social behaviors. In the present study, we show that a much smaller population of OT neurons, parvocellular neurons that do not project to the pituitary but synapse onto magnocellular neurons, is preferentially activated by somatosensory stimuli. This activation is transmitted to the larger population of magnocellular neurons, which consequently show coordinated increases in their activity during social interactions between virgin female rats. Selectively activating these parvocellular neurons promotes social motivation, whereas inhibiting them reduces social interactions. Thus, parvocellular OT neurons receive particular inputs to control social behavior by coordinating the responses of the much larger population of magnocellular OT neurons.
Collapse
|
167
|
Oettl LL, Scheller M, Filosa C, Wieland S, Haag F, Loeb C, Durstewitz D, Shusterman R, Russo E, Kelsch W. Phasic dopamine reinforces distinct striatal stimulus encoding in the olfactory tubercle driving dopaminergic reward prediction. Nat Commun 2020; 11:3460. [PMID: 32651365 PMCID: PMC7351739 DOI: 10.1038/s41467-020-17257-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/16/2020] [Indexed: 01/07/2023] Open
Abstract
The learning of stimulus-outcome associations allows for predictions about the environment. Ventral striatum and dopaminergic midbrain neurons form a larger network for generating reward prediction signals from sensory cues. Yet, the network plasticity mechanisms to generate predictive signals in these distributed circuits have not been entirely clarified. Also, direct evidence of the underlying interregional assembly formation and information transfer is still missing. Here we show that phasic dopamine is sufficient to reinforce the distinctness of stimulus representations in the ventral striatum even in the absence of reward. Upon such reinforcement, striatal stimulus encoding gives rise to interregional assemblies that drive dopaminergic neurons during stimulus-outcome learning. These assemblies dynamically encode the predicted reward value of conditioned stimuli. Together, our data reveal that ventral striatal and midbrain reward networks form a reinforcing loop to generate reward prediction coding. It is not entirely understood how network plasticity produces the coding of predicted value during stimulus-outcome learning. Here, the authors reveal a reinforcing loop in distributed limbic circuits, transforming sensory stimuli into reward prediction coding broadcasted by dopamine neurons to the brain.
Collapse
Affiliation(s)
- Lars-Lennart Oettl
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, W1T 4JG, UK
| | - Max Scheller
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Carla Filosa
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Sebastian Wieland
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Franziska Haag
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Cathrin Loeb
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Roman Shusterman
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Eleonora Russo
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany. .,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.
| |
Collapse
|
168
|
Ávila-González D, Young LJ, Camacho F, Paredes RG, Díaz NF, Portillo W. Culture of Neurospheres Derived from the Neurogenic Niches in Adult Prairie Voles. J Vis Exp 2020. [PMID: 32597870 DOI: 10.3791/61402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neurospheres are primary cell aggregates that comprise neural stem cells and progenitor cells. These 3D structures are an excellent tool to determine the differentiation and proliferation potential of neural stem cells, as well as to generate cell lines than can be assayed over time. Also, neurospheres can create a niche (in vitro) that allows the modeling of the dynamic changing environment, such as varying growth factors, hormones, neurotransmitters, among others. Microtus ochrogaster (prairie vole) is a unique model for understanding the neurobiological basis of socio-sexual behaviors and social cognition. However, the cellular mechanisms involved in these behaviors are not well known. The protocol aims to obtain neural progenitor cells from the neurogenic niches of the adult prairie vole, which are cultured under non-adherent conditions, to generate neurospheres. The size and number of neurospheres depend on the region (subventricular zone or dentate gyrus) and sex of the prairie vole. This method is a remarkable tool to study sex-dependent differences in neurogenic niches in vitro and the neuroplasticity changes associated with social behaviors such as pair bonding and biparental care. Also, cognitive conditions that entail deficits in social interactions (autism spectrum disorders and schizophrenia) could be examined.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México;
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University
| | - Francisco Camacho
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México
| | - Raúl G Paredes
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México; Escuela Nacional de Estudios Superiores Juriquilla, Universidad Nacional Autónoma de México
| | - Néstor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología;
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México;
| |
Collapse
|
169
|
Okabe S, Takayanagi Y, Yoshida M, Onaka T. Gentle stroking stimuli induce affiliative responsiveness to humans in male rats. Sci Rep 2020; 10:9135. [PMID: 32499488 PMCID: PMC7272613 DOI: 10.1038/s41598-020-66078-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/15/2020] [Indexed: 11/29/2022] Open
Abstract
Gentle tactile stimuli have been shown to play an important role in the establishment and maintenance of affiliative social interactions. Oxytocin has also been shown to have similar actions. We investigated the effects of gentle stroking on affiliative relationships between humans and rats and the effects of gentle stroking on activation of oxytocin neurons. Male rats received 5-min stroking stimuli from an experimenter every other day for 4 weeks between 3 and 6 weeks of age (S3–6 group), for 4 weeks between 7 and 10 weeks of age (S7–10 group), or for 8 weeks between 3 and 10 weeks of age (S3–10 group). Control rats did not receive stroking stimuli. Rats in the S7–10 and S3–10 groups emitted 50-kHz calls, an index of positive emotion, more frequently during stroking stimuli. Rats in the S3–6, S7–10, and S3–10 groups showed affiliative behaviors toward the experimenter. Oxytocin neurons in the hypothalamic paraventricular nucleus of rats in the S3–6, S7–10, and S3–10 groups were activated following stroking stimuli. These findings revealed that post-weaning repeated stroking stimuli induce an affiliative relationship between rats and humans and activation of oxytocin neurons.
Collapse
Affiliation(s)
- Shota Okabe
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, 329-0498, Japan
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, 329-0498, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, 329-0498, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, 329-0498, Japan.
| |
Collapse
|
170
|
Abstract
Resilience - a key topic in clinical science and practice - still lacks a clear conceptualization that integrates its evolutionary and human-specific features, refrains from exclusive focus on fear physiology, incorporates a developmental approach, and, most importantly, is not based on the negation (i.e., absence of symptoms following trauma). Building on the initial condition of mammals, whose brain matures in the context of the mother's body and caregiving behavior, we argue that systems and processes that participate in tuning the brain to the social ecology and adapting to its hardships mark the construct of resilience. These include the oxytocin system, the affiliative brain, and biobehavioral synchrony, all characterized by great flexibility across phylogenesis and ontogenesis. Three core features of resilience are outlined: plasticity, sociality and meaning. Mechanisms of sociality by which coordinated action supports diversity, endurance and adaptation are described across animal evolution. Humans' biobehavioral synchrony matures from maternal attuned behavior in the postpartum to adult-adult relationships of empathy, perspective-taking and intimacy, and extends from the mother-child relationship to other affiliative bonds throughout life, charting a fundamental trajectory in the development of resilience. Findings from three high-risk cohorts, each tapping a distinct disruption to maternal-infant bonding (prematurity, maternal depression, and early life stress/trauma), and followed from birth to adolescence/young adulthood, demonstrate how components of the neurobiology of affiliation confer resilience and uniquely shape the social brain.
Collapse
Affiliation(s)
- Ruth Feldman
- Interdisciplinary CenterHerzliyaIsrael,Yale Child Study CenterUniversity of YaleNew HavenCTUSA
| |
Collapse
|
171
|
Lieberz J, Scheele D, Spengler FB, Matheisen T, Schneider L, Stoffel-Wagner B, Kinfe TM, Hurlemann R. Kinetics of oxytocin effects on amygdala and striatal reactivity vary between women and men. Neuropsychopharmacology 2020; 45:1134-1140. [PMID: 31785587 PMCID: PMC7235226 DOI: 10.1038/s41386-019-0582-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Accumulating evidence suggests that intranasal oxytocin (OXT; 24 IU) reduces amygdala responses to fear-related stimuli in men, while exerting inverse effects in women. However, OXT enhances activity of the brain reward system in both sexes. Importantly, a crucial and still open question is whether there are sex-specific dose-response relationships for the amygdala and striatal regions. To address this question, a total of 90 healthy women participated in a double-blind, placebo-controlled crossover functional magnetic resonance imaging (fMRI) study and the results were compared with our previous findings from men. Participants were randomly assigned to three doses of OXT (6 IU, 12 IU, and 24 IU) and completed an emotional face recognition task including fearful and happy faces of varying emotional intensities. Across doses, OXT enhanced amygdala reactivity to low fearful faces compared to placebo and increased responses to happy faces in the dorsal striatum in women. While treatment effects on amygdala reactivity were evident at each given dose, the OXT effect on striatal responses to social stimuli was more pronounced with higher doses, but this dose-dependent effect did not survive correction for multiple comparisons. Importantly, OXT effects on amygdala and striatal activation significantly differed between sexes and striatal baseline sexual-dimorphic response patterns were diminished after administration of OXT. Our findings suggest that OXT increases the salience of social signals by strengthening the sensitivity for these signals in the amygdala and in the striatum in women, while OXT may primarily induce anxiolysis by reducing amygdala responses in men.
Collapse
Affiliation(s)
- Jana Lieberz
- 0000 0001 2240 3300grid.10388.32Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Dirk Scheele
- Division of Medical Psychology, University of Bonn, 53105, Bonn, Germany.
| | - Franny B. Spengler
- grid.5963.9Institute for Psychology, University of Freiburg, 79104 Freiburg, Germany
| | - Tatjana Matheisen
- 0000 0001 2240 3300grid.10388.32Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Lìa Schneider
- 0000 0001 2240 3300grid.10388.32Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Birgit Stoffel-Wagner
- 0000 0001 2240 3300grid.10388.32Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53105 Bonn, Germany
| | - Thomas M. Kinfe
- 0000 0001 2107 3311grid.5330.5Department of Neurosurgery, Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - René Hurlemann
- 0000 0001 2240 3300grid.10388.32Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Psychiatry, University of Bonn, 53105 Bonn, Germany ,0000 0001 1009 3608grid.5560.6Department of Psychiatry, University of Oldenburg Medical Campus, 26160 Bad Zwischenahn, Germany
| |
Collapse
|
172
|
Epigenetic modification of the oxytocin receptor gene: implications for autism symptom severity and brain functional connectivity. Neuropsychopharmacology 2020; 45:1150-1158. [PMID: 31931508 PMCID: PMC7235273 DOI: 10.1038/s41386-020-0610-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 11/08/2022]
Abstract
The role of oxytocin in social cognition has attracted tremendous interest in social neuroscience and psychiatry. Some studies have reported improvement in social symptoms following oxytocin treatment in autism spectrum disorders (ASD), while others point to endogenous factors influencing its efficiency and to mixed results in terms of long-term clinical benefits. Epigenetic modification to the oxytocin receptor gene (OXTR) in ASD could be an informative biomarker of treatment efficacy. Yet, little is known about the relationship between OXTR methylation, clinical severity, and brain function in ASD. Here, we investigated the relationship between OXTR methylation, ASD diagnosis (in N = 35 ASD and N = 64 neurotypical group), measures of social responsiveness, and resting-state functional connectivity (rsFC) between areas involved in social cognition and reward processing (in a subset of ASD, N = 30). Adults with ASD showed higher OXTR methylation levels in the intron 1 area compared with neurotypical subjects. This hypermethylation was related to clinical symptoms and to a hypoconnectivity between cortico-cortical areas involved in theory of mind. Methylation at a CpG site in the exon 1 area was positively related to social responsiveness deficits in ASD and to a hyperconnectivity between striatal and cortical brain areas. Taken together, these findings provide initial evidence for OXTR hypermethylation in the intron area as a potential biomarker for adults with ASD with less severe developmental communication deficits, but with impairments in theory of mind and self-awareness. Also, OXTR methylation in the exon 1 area could be a potential biomarker of sociability sensitive to life experiences.
Collapse
|
173
|
Panaro MA, Benameur T, Porro C. Hypothalamic Neuropeptide Brain Protection: Focus on Oxytocin. J Clin Med 2020; 9:jcm9051534. [PMID: 32438751 PMCID: PMC7290962 DOI: 10.3390/jcm9051534] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Oxytocin (OXT) is hypothalamic neuropeptide synthetized in the brain by magnocellular and parvo cellular neurons of the paraventricular (PVN), supraoptic (SON) and accessory nuclei (AN) of the hypothalamus. OXT acts in the central and peripheral nervous systems via G-protein-coupled receptors. The classical physiological functions of OXT are uterine contractions, the milk ejection reflex during lactation, penile erection and sexual arousal, but recent studies have demonstrated that OXT may have anti-inflammatory and anti-oxidant properties and regulate immune and anti-inflammatory responses. In the pathogenesis of various neurodegenerative diseases, microglia are present in an active form and release high levels of pro-inflammatory cytokines and chemokines that are implicated in the process of neural injury. A promising treatment for neurodegenerative diseases involves new therapeutic approaches targeting activated microglia. Recent studies have reported that OXT exerts neuroprotective effects through the inhibition of production of pro-inflammatory mediators, and in the development of correct neural circuitry. The focus of this review is to attribute a new important role of OXT in neuroprotection through the microglia–OXT interaction of immature and adult brains. In addition, we analyzed the strategies that could enhance the delivery of OXT in the brain and amplify its positive effects.
Collapse
Affiliation(s)
- Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, 31982 Al-Ahsa, Saudi Arabia;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
- Correspondence:
| |
Collapse
|
174
|
Acevedo BP, Poulin MJ, Collins NL, Brown LL. After the Honeymoon: Neural and Genetic Correlates of Romantic Love in Newlywed Marriages. Front Psychol 2020; 11:634. [PMID: 32457675 PMCID: PMC7223160 DOI: 10.3389/fpsyg.2020.00634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
In Western culture, romantic love is commonly a basis for marriage. Although it is associated with relationship satisfaction, stability, and individual well-being, many couples experience declines in romantic love. In newlyweds, specifically, changes in love predict marital outcomes. However, the biological mechanisms underlying the critical transition to marriage are unknown. Thus, for the first time, we explored the neural and genetic correlates of romantic love in newlyweds. Nineteen first-time newlyweds were scanned (with functional MRI) while viewing face images of the partner versus a familiar acquaintance, around the time of the wedding (T1) and 1 year after (T2). They also provided saliva samples for genetic analysis (AVPR1a rs3, OXTR rs53576, COMT rs4680, and DRD4-7R), and completed self-report measures of relationship quality including the Eros (romantic love) scale. We hypothesized that romantic love is a developed form of the mammalian drive to find, and keep, preferred mates; and that its maintenance is orchestrated by the brain's reward system. Results showed that, at both time points, romantic love maintenance (Eros difference score: T2-T1) was associated with activation of the dopamine-rich substantia nigra in response to face images of the partner. Interactions with vasopressin, oxytocin, and dopamine genes implicated in pair-bonding (AVPR1a rs3, OXTR rs53576, COMT rs4680, and DRD4-7R) also conferred strong activation in the dopamine-rich ventral tegmental area at both time points. Consistent with work highlighting the role of sexual intimacy in relationships, romantic love maintenance showed correlations in the paracentral lobule (genital region) and cortical areas involved in sensory and cognitive processing (occipital, angular gyrus, insular cortex). These findings suggest that romantic love, and its maintenance, are orchestrated by dopamine-, vasopressin- and oxytocin-rich brain regions, as seen in humans and other monogamous animals. We also provide genetic evidence of polymorphisms associated with oxytocin, vasopressin and dopamine function that affect the propensity to sustain romantic love in early stage marriages. We conclude that romantic love maintenance is part of a broad mammalian strategy for reproduction and long-term attachment that is influenced by basic reward circuitry, complex cognitive processes, and genetic factors.
Collapse
Affiliation(s)
- Bianca P. Acevedo
- Neuroscience Research Institute and Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael J. Poulin
- Department of Psychology, University at Buffalo, Buffalo, NY, United States
| | - Nancy L. Collins
- Neuroscience Research Institute and Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Lucy L. Brown
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
175
|
Abstract
Pair-bond formation depends vitally on neuromodulatory signaling within the nucleus accumbens, but the neuronal dynamics underlying this behavior remain unclear. Using 1-photon in vivo Ca2+ imaging in monogamous prairie voles, we found that pair bonding does not elicit differences in overall nucleus accumbens Ca2+ activity. Instead, we identified distinct ensembles of neurons in this region that are recruited during approach to either a partner or a novel vole. The partner-approach neuronal ensemble increased in size following bond formation, and differences in the size of approach ensembles for partner and novel voles predict bond strength. In contrast, neurons comprising departure ensembles do not change over time and are not correlated with bond strength, indicating that ensemble plasticity is specific to partner approach. Furthermore, the neurons comprising partner and novel-approach ensembles are nonoverlapping while departure ensembles are more overlapping than chance, which may reflect another key feature of approach ensembles. We posit that the features of the partner-approach ensemble and its expansion upon bond formation potentially make it a key neuronal substrate associated with bond formation and maturation.
Collapse
|
176
|
|
177
|
Cymerblit-Sabba A, Smith AS, Williams Avram SK, Stackmann M, Korgan AC, Tickerhoof MC, Young WS. Inducing Partner Preference in Mice by Chemogenetic Stimulation of CA2 Hippocampal Subfield. Front Mol Neurosci 2020; 13:61. [PMID: 32390799 PMCID: PMC7192236 DOI: 10.3389/fnmol.2020.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022] Open
Abstract
Social recognition is fundamental for social decision making and the establishment of long-lasting affiliative behaviors in behaviorally complex social groups. It is a critical step in establishing a selective preference for a social partner or group member. C57BL/6J lab mice do not form monogamous relationships, and typically do not show prolonged social preferences for familiar mice. The CA2 hippocampal subfield plays a crucial role in social memory and optogenetic stimulation of inputs to the dorsal CA2 field during a short memory acquisition period can enhance and extend social memories in mice. Here, we show that partner preference in mice can be induced by chemogenetic selective stimulation of the monosynaptic projections from the hypothalamic paraventricular nucleus (PVN) to the CA2 during the cohabitation period. Specifically, male mice spend more time in social contact, grooming and huddling with the partner compared to a novel female. Preference was not induced by prolonging the cohabitation period and allowing more time for social interactions and males to sire pups with the familiar female. These results suggest that PVN-to-CA2 projections are part of an evolutionarily conserved neural circuitry underlying the formation of social preference and may promote behavioral changes with appropriate stimulation.
Collapse
Affiliation(s)
- Adi Cymerblit-Sabba
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - Adam S. Smith
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
- Neuroscience Program, Department of Pharmacology and Toxicology, School of Pharmacy, University Kansas, Lawrence, KS, United States
| | - Sarah K. Williams Avram
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
- Systems Neuroscience Imaging Resource, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - Michelle Stackmann
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
- Neurobiology and Behavior Program, Columbia University, New York, NY, United States
| | - Austin C. Korgan
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
- Center for Alzheimer and Dementia Research, The Jackson Laboratory, Bar Harbor, ME, United States
| | - Maria C. Tickerhoof
- Neuroscience Program, Department of Pharmacology and Toxicology, School of Pharmacy, University Kansas, Lawrence, KS, United States
| | - W. Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| |
Collapse
|
178
|
Abstract
PURPOSE OF REVIEW Research on the pathophysiology of syndromic autism spectrum disorder (ASD) has contributed to the uncovering of mechanisms in nonsyndromic ASD. The current review aims to compare recent progress in therapeutics development for ASD with those for fragile X syndrome (FXS), the most frequent monogenic form of ASD. RECENT FINDINGS Although candidates such as oxytocin, vasopressin, and cannabinoids are being tested as novel therapeutics, it remains difficult to focus on a specific molecular target of drug development for ASD core symptoms. As the pathophysiology of FXS has been well described as having a causal gene, fragile X mental retardation-1, development of therapeutic agents for FXS is focused on specific molecular targets, such as metabotropic glutamate receptor 5 and GABAB receptor. SUMMARY There is a large unmet medical need in ASD, a heterogeneous and clinically defined behavioral syndrome, owing to its high prevalence in the general population, lifelong cognitive and behavioral deficits, and no established treatment of ASD core symptoms, such as deficits in social communication and restrictive repetitive behaviors. The molecular pathogenesis of nonsyndromic ASD is largely undefined. Lessons from initial attempts at targeted treatment development in FXS, and new designs resulting from these lessons, will inform trials in nonsyndromic ASD for development of therapeutics for its core symptoms.
Collapse
|
179
|
Stress in groups: Lessons from non-traditional rodent species and housing models. Neurosci Biobehav Rev 2020; 113:354-372. [PMID: 32278793 DOI: 10.1016/j.neubiorev.2020.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
A major feature of life in groups is that individuals experience social stressors of varying intensity and type. Social stress can have profound effects on health, social behavior, and ongoing relationships. Relationships can also buffer the experience of exogenous stressors. Social stress has most commonly been investigated in dyadic contexts in mice and rats that produce intense stress. Here we review findings from studies of diverse rodents and non-traditional group housing paradigms, focusing on laboratory studies of mice and rats housed in visible burrow systems, prairie and meadow voles, and mole-rats. We argue that the use of methods informed by the natural ecology of rodent species provides novel insights into the relationship between social stress, behavior and physiology. In particular, we describe how this ethologically inspired approach reveals how individuals vary in their experience of and response to social stress, and how ecological and social contexts impact the effects of stress. Social stress induces adaptive changes, as well as long-term disruptive effects on behavior and physiology.
Collapse
|
180
|
Hirota Y, Arai A, Young LJ, Osako Y, Yuri K, Mitsui S. Oxytocin receptor antagonist reverses the blunting effect of pair bonding on fear learning in monogamous prairie voles. Horm Behav 2020; 120:104685. [PMID: 31935400 PMCID: PMC7117995 DOI: 10.1016/j.yhbeh.2020.104685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 01/31/2023]
Abstract
Social relationships among spouses, family members, and friends are known to affect physical and mental health. In particular, long-lasting bonds between socio-sexual partners have profound effects on cognitive, social, emotional, and physical well-being. We have previously reported that pair bonding in monogamous prairie voles (Microtus ochrogaster) is prevented by a single prolonged stress (SPS) paradigm, which causes behavioral and endocrine symptoms resembling post-traumatic stress disorder (PTSD) patients in rats (Arai et al., 2016). Since fear memory function is crucial for anxiety-related disorders such as PTSD, we investigated the effects of pair bonding on fear learning in prairie voles. We applied an SPS paradigm to male prairie voles after the cohabitation with a male (cage-mate group) or female (pair-bonded group). The cage-mate group, but not the pair-bonded group, showed enhanced fear response in a contextual fear conditioning test following the SPS treatment. Immunohistochemical analyses revealed that cFos-positive cells in the central amygdala were increased in the pair-bonded group after the contextual fear conditioning test and that oxytocin immunoreactivity in the paraventricular nucleus of the hypothalamus was significantly higher in the pair-bonded group than the cage-mate group. This pair-bonding dependent blunting of fear memory response was confirmed by a passive avoidance test, another fear-based learning test. Interestingly, intracerebroventricular injection of an oxytocin receptor antagonist 30 min before the passive avoidance test blocked the blunting effect of pair bonding on fear learning. Thus, pair bonding between socio-sexual partners results in social buffering in the absence of the partner, blunting fear learning, which may be mediated by oxytocin signaling.
Collapse
Affiliation(s)
- Yu Hirota
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma 371-8514, Japan
| | - Aki Arai
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma 371-8514, Japan
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Center, Emory University School of Medicine, 954 Gatewood Rd., Atlanta, GA 30329, USA; Center for Social Neural Networks, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Yoji Osako
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Kazunari Yuri
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma 371-8514, Japan.
| |
Collapse
|
181
|
Abstract
Oxytocin is a central neuromodulator required for facilitating mate preferences for familiar individuals in a monogamous rodent (prairie vole), irrespective of sex. While the role of oxytocin in mate choice is only understood in a few monogamous species, its function in nonmonogamous species, comprising the vast majority of vertebrate species, remains unclear. To address this issue, we evaluated the involvement of an oxytocin homolog (isotocin, referred herein as oxt) in mate choice in medaka fish (Oryzias latipes). Female medaka prefer to choose familiar mates, whereas male medaka court indiscriminately, irrespective of familiarity. We generated mutants of the oxt ligand (oxt) and receptor genes (oxtr1 and oxtr2) and revealed that the oxt-oxtr1 signaling pathway was essential for eliciting female mate preference for familiar males. This pathway was also required for unrestricted and indiscriminate mating strategy in males. That is, either oxt or oxtr1 mutation in males decreased the number of courtship displays toward novel females, but not toward familiar females. Further, males with these mutations exhibited enhanced mate-guarding behaviors toward familiar females, but not toward novel females. In addition, RNA-sequencing (seq) analysis revealed that the transcription of genes involved in gamma-amino butyric acid metabolism as well as those encoding ion-transport ATPase are up-regulated in both oxt and oxtr1 mutants only in female medaka, potentially explaining the sex difference of the mutant phenotype. Our findings provide genetic evidence that oxt-oxtr1 signaling plays a role in the mate choice for familiar individuals in a sex-specific manner in medaka fish.
Collapse
|
182
|
Embodied self-other overlap in romantic love: a review and integrative perspective. PSYCHOLOGICAL RESEARCH 2020; 85:899-914. [PMID: 32062730 DOI: 10.1007/s00426-020-01301-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/31/2020] [Indexed: 12/27/2022]
Abstract
Romantic love has long intrigued scientists in various disciplines. Social-cognitive research has provided ample evidence for overlapping mental representations of self and romantic partner. This overlap between self and romantic partner would contribute to the experience of love and has been found to be a predictor of relationship quality. Self-partner overlap has been mainly documented at the level of conceptual or narrative self, with studies showing confusion between one's own and partner's identity aspects, perspectives, and outcomes. But the self is not restricted to abstract, conceptual representations but also involves body-related representations, which, research has revealed, are linked to social-cognitive processes. In this article, we review the emerging evidence that romantic love involves not only a blurring of conceptual selves but also a reduction of the distinction between self and romantic partner at a bodily level. We discuss the potential function(s) of self-other overlap in romantic relationship at the level of body-related representations and consider possible mechanisms. We conclude with possible future directions to further investigate how romantic love engages embodied self-other representations involved in social interactions.
Collapse
|
183
|
Sun Q, Li X, Li A, Zhang J, Ding Z, Gong H, Luo Q. Ventral Hippocampal-Prefrontal Interaction Affects Social Behavior via Parvalbumin Positive Neurons in the Medial Prefrontal Cortex. iScience 2020; 23:100894. [PMID: 32092698 PMCID: PMC7038035 DOI: 10.1016/j.isci.2020.100894] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/23/2019] [Accepted: 02/04/2020] [Indexed: 11/24/2022] Open
Abstract
Ventral hippocampus (vHIP) and medial prefrontal cortex (mPFC) are both critical regions for social behaviors. However, how their interactions affect social behavior is not well understood. By viral tracing, optogenetics, chemogenetics, and fiber photometry, we demonstrated that inhibition of vHIP or direct projections from vHIP to mPFC impaired social memory expression. Via rabies retrograde tracing, we found that all three major GABAergic neurons in mPFC received direct inputs from vHIP. Activation of parvalbumin positive (PV+) neurons in mPFC but not somatostatin positive (SST+) neurons can rescue the social memory impairment caused by vHIP inhibition. Furthermore, fiber photometry results demonstrated that social behaviors preferentially recruited PV+ neurons and inhibition of hippocampal neurons disrupted the activity of PV+ neurons during social interactions. These results revealed a new mechanism of how vHIP and mPFC regulate social behavior in complementarity with the existing neural circuitry mechanism. Inhibition of vHIP or direct vHIP-mPFC pathway disrupts social memory expression Social behaviors preferentially recruit PV+ neurons in mPFC Activation of PV+ neurons in mPFC rescue the vHIP-related impairment of social memory Inhibition of VIP+ neurons in mPFC rescue the vHIP-related impairment of social memory
Collapse
Affiliation(s)
- Qingtao Sun
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China
| | - Jianping Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhangheng Ding
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China.
| |
Collapse
|
184
|
Mulholland MM, Navabpour SV, Mareno MC, Schapiro SJ, Young LJ, Hopkins WD. AVPR1A variation is linked to gray matter covariation in the social brain network of chimpanzees. GENES BRAIN AND BEHAVIOR 2020; 19:e12631. [PMID: 31894656 DOI: 10.1111/gbb.12631] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022]
Abstract
The vasopressin system has been implicated in the regulation of social behavior and cognition in humans, nonhuman primates and other social mammals. In chimpanzees, polymorphisms in the vasopressin V1a receptor gene (AVPR1A) have been associated with social dimensions of personality, as well as to responses to sociocommunicative cues and mirror self-recognition. Despite evidence of this association with social cognition and behavior, there is little research on the neuroanatomical correlates of AVPR1A variation. In the current study, we tested the association between AVPR1A polymorphisms in the RS3 promotor region and gray matter covariation in chimpanzees using magnetic resonance imaging and source-based morphometry. The analysis identified 13 independent brain components, three of which differed significantly in covariation between the two AVPR1A genotypes (DupB-/- and DupB+/-; P < .05). DupB+/- chimpanzees showed greater covariation in gray matter in the premotor and prefrontal cortex, basal forebrain, lunate and cingulate cortex, and lesser gray matter covariation in the superior temporal sulcus and postcentral sulcus. Some of these regions were previously found to differ in vasopressin and oxytocin neural fibers between nonhuman primates, and in AVPR1A gene expression in humans with different RS3 alleles. This is the first report of an association between AVPR1A and gray matter covariation in nonhuman primates, and specifically links an AVPR1A polymorphism to structural variation in the social brain network. These results further affirm the value of chimpanzees as a model species for investigating the relationship between genetic variation, brain structure and social cognition with relevance to psychiatric disorders, including autism.
Collapse
Affiliation(s)
- Michele M Mulholland
- Georgia State University, Atlanta, Georgia.,Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas
| | | | - Mary C Mareno
- Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas
| | - Steven J Schapiro
- Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas.,University of Copenhagen, Copenhagen, Denmark
| | - Larry J Young
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - William D Hopkins
- Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas
| |
Collapse
|
185
|
Prounis GS, Ophir AG. One cranium, two brains not yet introduced: Distinct but complementary views of the social brain. Neurosci Biobehav Rev 2020; 108:231-245. [PMID: 31743724 PMCID: PMC6949399 DOI: 10.1016/j.neubiorev.2019.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/04/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Social behavior is pervasive across the animal kingdom, and elucidating how the brain enables animals to respond to social contexts is of great interest and profound importance. Our understanding of 'the social brain' has been fractured as it has matured. Two drastically different conceptualizations of the social brain have emerged with relatively little awareness of each other. In this review, we briefly recount the history behind the two dominant definitions of a social brain. The divide that has emerged between these visions can, in part, be attributed to differential attention to cortical or sub-cortical regions in the brain, and differences in methodology, comparative perspectives, and emphasis on functional specificity or generality. We discuss how these factors contribute to a lack of communication between research efforts, and propose ways in which each version of the social brain can benefit from the perspectives, tools, and approaches of the other. Interface between the two characterizations of social brain networks is sure to provide essential insight into what the social brain encompasses.
Collapse
Affiliation(s)
- George S Prounis
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
186
|
Madrid JE, Parker KJ, Ophir AG. Variation, plasticity, and alternative mating tactics: Revisiting what we know about the socially monogamous prairie vole. ADVANCES IN THE STUDY OF BEHAVIOR 2020. [DOI: 10.1016/bs.asb.2020.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
187
|
Chuang JY. Oxytocin and Three Kinds of Dangerous Behaviors in a Romantic Relationship: Playing, Suffering, and Stalking. Front Psychiatry 2020; 11:572654. [PMID: 33192699 PMCID: PMC7609402 DOI: 10.3389/fpsyt.2020.572654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
Romantic relationships are an essential element of healthy living. Although difficulties in love are encountered often, it seems that three kinds of behaviors in a romantic relationship are more susceptible to physical or psychiatric disorders: playing (sexually transmitted disease), suffering (major depressive disorder or suicide), and stalking (violence or homicide). Oxytocin plays an important role in pair-bonding. Elevated plasma oxytocin concentrations have been observed in new lovers when compared with singles. It is hypothesized that those who display these dangerous behaviors in a romantic relationship might possess specific oxytocin receptor gene aberrancy and the resultant deviant pair-bonding pattern is likely to recur in successive relationships. It is postulated that a blunted oxytocin surge might be observed in playing, whereas exaggerated oxytocin surge might be observed in suffering and stalking. The distinction between suffering and stalking might stem from the difference in their aggression tendencies. Those who suffer displays aggression toward self, while those who stalk displays aggression toward others. The exaggerated oxytocin concentrations in people who suffer and people who stalk might not be suppressed by the discouraging attitudes of their partners and might be maintained by rumination. Considering the whole-body influence of oxytocin, intranasal oxytocin application or gene therapy should be used exclusively for those who display these dangerous behaviors and not for the general population. Future research is warranted to confirm this hypothesis with analysis of modifiers such as gender.
Collapse
Affiliation(s)
- Jie-Yu Chuang
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
188
|
Hayashi R, Kasahara Y, Hidema S, Fukumitsu S, Nakagawa K, Nishimori K. Oxytocin Ameliorates Impaired Behaviors of High Fat Diet-Induced Obese Mice. Front Endocrinol (Lausanne) 2020; 11:379. [PMID: 32719656 PMCID: PMC7347791 DOI: 10.3389/fendo.2020.00379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Excessive intake of fat is a major risk factor for lifestyle-related diseases such as heart disease and also affects brain function such as object recognition memory, social recognition, anxiety behavior, and depression-like behavior. Although oxytocin (OXT) has been reported to improve object recognition, social recognition, anxiety behavior, and depression-like behavior in specific conditions, previous studies did not explore the impact of OXT in high-fat diet (HFD)-fed mice. Furthermore, it remains unclear whether intake of HFD affects OXT/oxytocin receptor (OXTR) in the brain. Here, we demonstrated that peripheral OXT administration improves not only social recognition but also object recognition and depressive-like behavior in HFD-fed mice. In contrast, peripheral OXT administration to HFD-fed male mice increased fear and anxiety-related behavior. In addition, we observed that intake of HFD decreased OXTR and c-fos mRNA expression in the hippocampus, specifically. Furthermore, peripheral OXT administration increased OXT mRNA expression in the hypothalamus. Altogether, these findings suggest that OXT has the potential to improve various recognition memory processes via peripheral administration but also has side effects that increase fear-related behavior in males.
Collapse
Affiliation(s)
- Ryotaro Hayashi
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Nippon Flour Mills Co., Ltd., Innovation Center, Kanagawa, Japan
| | - Yoshiyuki Kasahara
- Department of Fetal Pathology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shizu Hidema
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Satoshi Fukumitsu
- Nippon Flour Mills Co., Ltd., Innovation Center, Kanagawa, Japan
- Collaborative Graduate School Program, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima, Japan
- *Correspondence: Katsuhiko Nishimori
| |
Collapse
|
189
|
Scarna H. Genesis of the Heroin-Induced Addictive Process: Articulation Between Psychodynamic and Neurobiological Theories. Front Psychiatry 2020; 11:524764. [PMID: 33362589 PMCID: PMC7755881 DOI: 10.3389/fpsyt.2020.524764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
Psychotherapeutic consultations of drug addict's patients in a Care, Support and Prevention Center in Addictology led us to propose several hypotheses on the genesis of addiction and its articulation with currently available neurobiological data. This care center dispenses both pharmacological maintenance medications for heroin dependence, such as methadone or buprenorphine, and psychological support. Our first hypothesis posits that the addictive process is driven by the narcissistic vulnerability of these patients, its neurobiological foundations being mainly mediated by the activation of endogenous opioid systems. Drug use/abuse could be a way to make arise the "True Self," therefore overcoming the defensive system's set up to protect oneself from early traumas. The neurobiological impact of traumas is also developed and articulated with psychodynamic concepts, particularly those of Winnicott. Additionally, functions of addiction such as defensive, anti-depressant roles and emotional regulation are discussed in relationship with their currently known neuroscientific bases. Although the experience in the psychodynamic clinic is at a level of complexity much higher than what is currently accessible to the neurosciences, most of the research in this domain stays in line with our psychological understanding of the addictive process. Finally, we outline some critically sensitive points regarding the therapeutic support.
Collapse
Affiliation(s)
- Hélène Scarna
- Centre de Recherche en Psychopathologie et Psychologie Clinique, Université Lumière Lyon 2, Bron, France.,Laboratoire de Psychologie EA 3188, Université de Bourgogne Franche-Comté, Besançon, France.,Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.,Centre de Soin, d'Accompagnement et de Prévention en Addictologie, Hôpital de la Croix-Rousse, Lyon, France
| |
Collapse
|
190
|
Heifets BD, Salgado JS, Taylor MD, Hoerbelt P, Cardozo Pinto DF, Steinberg EE, Walsh JJ, Sze JY, Malenka RC. Distinct neural mechanisms for the prosocial and rewarding properties of MDMA. Sci Transl Med 2019; 11:eaaw6435. [PMID: 31826983 PMCID: PMC7123941 DOI: 10.1126/scitranslmed.aaw6435] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
The extensively abused recreational drug (±)3,4-methylenedioxymethamphetamine (MDMA) has shown promise as an adjunct to psychotherapy for treatment-resistant psychiatric disease. It is unknown, however, whether the mechanisms underlying its prosocial therapeutic effects and abuse potential are distinct. We modeled both the prosocial and nonsocial drug reward of MDMA in mice and investigated the mechanism of these processes using brain region-specific pharmacology, transgenic manipulations, electrophysiology, and in vivo calcium imaging. We demonstrate in mice that MDMA acting at the serotonin transporter within the nucleus accumbens is necessary and sufficient for MDMA's prosocial effect. MDMA's acute rewarding properties, in contrast, require dopaminergic signaling. MDMA's prosocial effect requires 5-HT1b receptor activation and is mimicked by d-fenfluramine, a selective serotonin-releasing compound. By dissociating the mechanisms of MDMA's prosocial effects from its addictive properties, we provide evidence for a conserved neuronal pathway, which can be leveraged to develop novel therapeutics with limited abuse liability.
Collapse
Affiliation(s)
- Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Juliana S Salgado
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Madison D Taylor
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Paul Hoerbelt
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Daniel F Cardozo Pinto
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth E Steinberg
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jessica J Walsh
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Ji Y Sze
- Department of Molecular Pharmacology and Rose F. Kennedy Intellectual and Developmental Disabilities Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
191
|
Alger SJ, Kelm-Nelson CA, Stevenson SA, Juang C, Gammie SC, Riters LV. Complex patterns of dopamine-related gene expression in the ventral tegmental area of male zebra finches relate to dyadic interactions with long-term female partners. GENES BRAIN AND BEHAVIOR 2019; 19:e12619. [PMID: 31634415 DOI: 10.1111/gbb.12619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
Dopaminergic projections from the ventral tegmental area (VTA) to multiple efferent targets are implicated in pair bonding, yet the role of the VTA in the maintenance of long-term pair bonds is not well characterized. Complex interactions between numerous neuromodulators modify activity in the VTA, suggesting that individual differences in patterns of gene expression in this region may explain individual differences in long-term social interactions in bonded pairs. To test this hypothesis we used RNA-seq to measure expression of over 8000 annotated genes in male zebra finches in established male-female pairs. Weighted gene co-expression network analysis identified a gene module that contained numerous dopamine-related genes with TH found to be the most connected gene of the module. Genes in this module related to male agonistic behaviors as well as bonding-related behaviors produced by female partners. Unsupervised learning approaches identified two groups of males that differed with respect to expression of numerous genes. Enrichment analyses showed that many dopamine-related genes and modulators differed between these groups, including dopamine receptors, synthetic and degradative enzymes, the avian dopamine transporter and several GABA- and glutamate-related genes. Many of the bonding-related behaviors closely associated with VTA gene expression in the two male groups were produced by the male's partner, rather than the male himself. Collectively, results highlight numerous candidate genes in the VTA that can be explored in future studies and raise the possibility that the molecular/genetic organization of the VTA may be strongly shaped by a social partner and/or the strength of the pair bond.
Collapse
Affiliation(s)
- Sarah J Alger
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin
| | - Cynthia A Kelm-Nelson
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sharon A Stevenson
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Charity Juang
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
192
|
Gil M, Torres-Reveron A, Ramirez AC, Maldonado O, VandeBerg JL, de Erausquin GA. Influence of biological sex on social behavior, individual recogntion, and non-associative learning in the adult gray short-tailed opossum (Monodelphis domestica). Physiol Behav 2019; 211:112659. [PMID: 31465782 PMCID: PMC7028220 DOI: 10.1016/j.physbeh.2019.112659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 10/26/2022]
Abstract
Social behavior is critical for relationship formation and is influenced by myriad environmental and individual factors. Basic and preclinical research typically relies on rodent models to identify the mechanisms that underlie behavior; however, it is important to use non-rodent models as well. A major objective of the present study was to test the hypothesis that biological sex and social experience modulate the expression of social behavior in the adult gray short-tailed opossum (Monodelphis domestica), a non-traditional model. We also investigated the non-associative learning abilities of these animals. Following a period of social isolation, animals of both sexes were paired with a non-familiar, same-sex partner for 10 min on three different occasions, with 24-hour inter-trial intervals. We are the first research group to find significant sex differences in submissive and nonsocial behaviors in Monodelphis. Females displayed significantly higher durations of nonsocial behavior that increased over trials. Males were more aggressive; their latencies to the first attack and submissive behavior decreased over trials whereas these latencies increased for females; males' duration of submissive behavior increased over trials whereas it decreased for females. A different group of subjects habituated in response to repeated presentations to neutral odors and dishabituated in response to novel odors. In addition, both males and females demonstrated the ability to form social memories in a standard individual (social) recognition test. Our results contribute to the characterization of this marsupial species, an important first step in developing it as a model of complex social behaviors.
Collapse
Affiliation(s)
- Mario Gil
- Department of Psychological Science, The University of Texas Rio Grande Valley, Brownsville, TX 78520, United States of America; Department of Neuroscience, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, United States of America; The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX 78539, United States of America.
| | - Annelyn Torres-Reveron
- Department of Neuroscience, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, United States of America; Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, United States of America; The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX 78539, United States of America
| | - Ana C Ramirez
- Department of Psychological Science, The University of Texas Rio Grande Valley, Brownsville, TX 78520, United States of America; Department of Psychiatry, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Oscar Maldonado
- Department of Neuroscience, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, United States of America
| | - John L VandeBerg
- Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, United States of America; South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, United States of America; The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX 78539, United States of America
| | - Gabriel A de Erausquin
- Department of Neuroscience, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, United States of America; Department of Psychiatry and Neurology, The University of Texas Rio Grande Valley School of Medicine, Harlingen, TX 78550, United States of America
| |
Collapse
|
193
|
Insular Cortex Projections to Nucleus Accumbens Core Mediate Social Approach to Stressed Juvenile Rats. J Neurosci 2019; 39:8717-8729. [PMID: 31591155 DOI: 10.1523/jneurosci.0316-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Social interactions are shaped by features of the interactants, including age, emotion, sex, and familiarity. Age-specific responses to social affect are evident when an adult male rat is presented with a pair of unfamiliar male conspecifics, one of which is stressed via two foot shocks and the other naive to treatment. Adult test rats prefer to interact with stressed juvenile (postnatal day 30, PN30) conspecifics but avoid stressed adult (PN50) conspecifics. This pattern depends upon the insular cortex (IC), which is anatomically connected to the nucleus accumbens core (NAc). The goal of this work was to test the necessity of IC projections to NAc during social affective behavior. Here, bilateral pharmacological inhibition of the NAc with tetrodotoxin (1 μm; 0.5 μl/side) abolished the preference for stressed PN30, but did not alter interactions with PN50 conspecifics. Using a combination of retrograding tracing and c-Fos immunohistochemistry, we report that social interactions with stressed PN30 conspecifics elicit greater Fos immunoreactivity in IC → NAc neurons than interactions with naive PN30 conspecifics. Chemogenetic stimulation of IC terminals in the NAc increased social exploration with juvenile, but not adult, conspecifics, whereas chemogenetic inhibition of this tract blocked the preference to investigate stressed PN30 conspecifics, which expands upon our previous finding that optogenetic inhibition of IC projection neurons mediated approach and avoidance. These new findings suggest that outputs of IC to the NAc modulate social approach, which provides new insight to the neural circuitry underlying social decision-making.SIGNIFICANCE STATEMENT Social decision-making underlies an animal's behavioral response to others in a range of social contexts. Previous findings indicate the insular cortex (IC) and the nucleus accumbens (NAc) play important roles in social behaviors, and human neuroimaging implicates both IC and NAc in autism and other psychiatric disorders characterized by aberrant social cognition. To test whether IC projections to the NAc are involved in social decision-making, circuit-specific chemogenetic manipulations demonstrated that the IC → NAc pathway mediates social approach toward distressed juvenile, but not adult, conspecifics. This finding is the first to implicate this circuit in rodent socioemotional behaviors and may be a neuroanatomical substrate for integration of emotion with social reward.
Collapse
|
194
|
Portillo W, Paredes RG. Motivational Drive in Non-copulating and Socially Monogamous Mammals. Front Behav Neurosci 2019; 13:238. [PMID: 31636551 PMCID: PMC6787552 DOI: 10.3389/fnbeh.2019.00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
Motivational drives guide behaviors in animals of different species, including humans. Some of these motivations, like looking for food and water, are crucial for the survival of the individual and hence for the preservation of the species. But there is at least another motivation that is also important for the survival of the species but not for the survival of the individual. Undoubtedly, sexual motivation is important for individuals to find a mate and reproduce, thus ensuring the survival of the species. In species with sexual reproduction, when males find a female in the appropriate hormonal conditions, they will display sexual behavior. However, some healthy males do not mate when they have access to a sexually receptive female, even though they are repeatedly tested. These non-copulating (NC) individuals have been reported in murine, cricetid and ungulates. In humans this sexual orientation is denominated asexuality. Asexual individuals are physically and emotionally healthy men and women without desire for sexual intercourse. Different species have developed a variety of strategies to find a mate and reproduce. Most species of mammals are polygamous; they mate with one or several partners at the same time, as occur in rats, or they can reproduce with different conspecifics throughout their life span. There are also monogamous species that only mate with one partner. One of the most studied socially monogamous species is the Prairie vole. In this species mating or cohabitation for long periods induces the formation of a long-lasting pair bond. Both males and females share the nest, show a preference for their sexual partner, display aggression to other males and females and display parental behavior towards their pups. This broad spectrum of reproductive strategies demonstrates the biological variability of sexual motivation and points out the importance of understanding the neurobiological basis of sexual motivational drives in different species.
Collapse
Affiliation(s)
- Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
195
|
Prounis GS, Ophir AG. The Impact of Early Postnatal and Juvenile Social Environments on the Effects of Chronic Intranasal Oxytocin in the Prairie Vole. Front Behav Neurosci 2019; 13:206. [PMID: 31572140 PMCID: PMC6753389 DOI: 10.3389/fnbeh.2019.00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/29/2019] [Indexed: 11/17/2022] Open
Abstract
Interactions between social experiences at different stages of development (e.g., with parents as juveniles and peers as subadults) can profoundly shape the expression of social behavior. Rarely are the influences of more than one stage of developmental sensitivity to social environment investigated simultaneously. Furthermore, oxytocin (OT) has an extraordinary effect on a breadth of social behaviors, activationally or organizationally. The use of intranasal OT (IN-OT) has become increasingly common therapeutically in humans and scientifically in non-human experiments, however very little attention has been paid to the potential developmental consequences on social behavior that might result. We investigated the effects of early-life social environments and the impact of chronic IN-OT on social behavior at different stages of development in male prairie voles (Microtus ochrogaster). We raised animals under two conditions: “socially enriched” (in which they were biparentally reared and then weaned into group housing as subadults), or “socially limited” (in which they were reared by a single-mother, and that were then weaned into social isolation). Males raised under each condition were either administered daily doses of IN-OT or a saline control for 21 days from postnatal day (PND) 21–42. During this time, we assessed the prosocial behavior subjects demonstrated by evaluating juvenile affiliation (as subadults), alloparental care (as adults no longer being exposed to IN-OT), and partner preference tests to assess tendencies to form adult monogamous pairbonds. We found that “socially limited” males, exhibited increased social contact in juvenile affiliation tests at PND 35 and 42. These males were also more likely to form a partner preference than “socially enriched” males and formed stronger partner preferences overall. IN-OT did not alter these behavioral effects. We also found that “socially limited” males exhibited a distinct response to chronic IN-OT treatment. When compared to all other treatment groups, “socially limited” males that received IN-OT exhibited a greater amount of huddling behavior in the alloparental care test. This effect was, in part, explained by an absence of attack behavior, found only in these males. This study contributes to understanding the complex interactions between the developmental social environment, oxytocin, and social behavior.
Collapse
Affiliation(s)
- George S Prounis
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
196
|
DeMayo MM, Young LJ, Hickie IB, Song YJC, Guastella AJ. Circuits for social learning: A unified model and application to Autism Spectrum Disorder. Neurosci Biobehav Rev 2019; 107:388-398. [PMID: 31560922 DOI: 10.1016/j.neubiorev.2019.09.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/13/2019] [Accepted: 09/22/2019] [Indexed: 12/31/2022]
Abstract
Early life social experiences shape neural pathways in infants to develop lifelong social skills. This review presents the first unified circuit-based model of social learning that can be applied to early life social development, drawing together unique human developmental milestones, sensitive learning periods, and behavioral and neural scaffolds. Circuit domains for social learning are identified governing Activation, Integration, Discrimination, Response and Reward (AIDRR) to sculpt and drive human social learning. This unified model can be used to identify social delays earlier in development. We propose social impairments observed in Autism Spectrum Disorder are underpinned by early mistimed sensitive periods in brain development and alterations in amygdala development to disrupt the AIDRR circuits. This model directs how interventions can target neural circuits for social development and be applied early in life. To illustrate, the role of oxytocin and its use as an intervention is explored. The AIDRR model shifts focus away from delivering broad treatments based only on diagnostic classifications, to specifying and targeting the relevant circuits, at the right time of development, to optimize social learning.
Collapse
Affiliation(s)
- Marilena M DeMayo
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.
| | - Ian B Hickie
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Yun Ju C Song
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Adam J Guastella
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| |
Collapse
|
197
|
A Computational Model of Oxytocin Modulation of Olfactory Recognition Memory. eNeuro 2019; 6:ENEURO.0201-19.2019. [PMID: 31399493 PMCID: PMC6727149 DOI: 10.1523/eneuro.0201-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/14/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022] Open
Abstract
Social recognition in mammals depends on complex interactions between sensory and other brain areas as well as modulatory inputs by specific neuropeptides such as oxytocin (OXT). Social recognition memory specifically has been shown to depend among others on olfactory processing, and can be probed using methods similar to those used when probing non-social odor memory. We here use a computational model of two interconnected olfactory networks in the mouse, the olfactory bulb (OB) and anterior olfactory nucleus, to propose a mechanism for olfactory short-term recognition memory and its modulation in social situations. Based on previous experiments, we propose one early locus for memory to be the OB. During social encounters in mice, pyramidal cells in the anterior olfactory nucleus, themselves driven by olfactory input, are rendered more excitable by OXT release, resulting in stronger feedback to OB local interneurons. This additional input to the OB creates stronger dynamics and improves signal-to-noise ratio of odor responses in the OB proper. As a consequence, mouse social olfactory memories are more strongly encoded and their duration is modulated.
Collapse
|
198
|
Juntti S. The Future of Gene-Guided Neuroscience Research in Non-Traditional Model Organisms. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:108-121. [PMID: 31416064 DOI: 10.1159/000500072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022]
Abstract
Natural variations across animals in form, function, and behavior have long been sources of inspiration to scientists. Despite this, experimentalists focusing on the neural bases of behavior have increasingly focused on a select few model species. This consolidation is motivated primarily by the availability of resources and technologies for manipulation in these species. Recent years have witnessed a proliferation of experimental approaches that were developed primarily in traditional model species, but that may in principle be readily applied to any species. High-throughput sequencing, CRISPR gene editing, transgenesis, and other technologies have enabled new insights through their deployment in non-traditional model species. The availability of such approaches changes the calculation of which species to study, particularly when a trait of interest is most readily observed in a non-traditional model organism. If these technologies are widely adopted in many new species, it promises to revolutionize the field of neuroethology.
Collapse
Affiliation(s)
- Scott Juntti
- Department of Biology, University of Maryland, College Park, Maryland, USA,
| |
Collapse
|
199
|
Burunat E. Love is a physiological motivation (like hunger, thirst, sleep or sex). Med Hypotheses 2019; 129:109225. [PMID: 31371074 DOI: 10.1016/j.mehy.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/17/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
The multitude of terms associated with love has given rise to a false perception of love. In this paper, only maternal and romantic love are considered. Love is usually regarded as a feeling, motivation, addiction, passion, and, above all, an emotion. This confusion has consequences in the lives of human beings, leading not only to divorces, suicides, femicides but possibly also to a number of mental illnesses and suffering. Therefore, it is crucial to first clarify what is meant by emotion, motivation and love. This work aims to finally place love within the category of physiological motivations, such as hunger, thirst, sleep, or sex, on the basis that love is also essential for human survival, especially in childhood. Love is presented from an evolutionary perspective. Some other similarities between love and other physiological motivations are pointed out, such as its importance for appropriate human development, both its ontogeny and its permanence, and the long-lasting consequences of abuse and neglect. There are summarized reasons that account for this, such as the fact that physiological motivations are essential for survival and that love is an essential motivation for the survival of human offspring. Other reasons are that minimum changes in the quantity and quality of love alters development, that there can be a variety of neurophysiological and behavioural states within a motivation, and that motivations (also love) appear and change throughout development. Also, motivations and love sometimes may lead to an addictive behaviour. Finally, it is recognized that once physiological motivations (and love) appear, they become permanent. In a third section, some potential social, cultural, clinical and scientific consequences of the proposed consideration of love as a motivation are discussed. Accordingly, love's recognition as a motivation in the clinical field would imply a better understanding of its disorders and its inclusion in classifications manuals such as The Diagnostic and Statistical Manual of Mental Disorders (DSM), or in the International Classification of Diseases (ICD). Considering love as a motivation rather than an emotion could also impact the results of scientific research (an example is included). A comprehensive understanding of these questions could potentially allow for a new therapeutic approach in the treatment of mental illness, while offering an all-inclusive evolutionary explanation of cultural phenomena such as the origin and diffusion of both language and art. Love should be understood as a physiological motivation, like hunger, sleep or sex, and not as an emotion as it is commonly considered.
Collapse
Affiliation(s)
- Enrique Burunat
- School of Health Sciences/School of Psychology, Department of Clinical Psychology, Psychobiology and Methodology, University of La Laguna, P.O. Box 456, 38200 Santa Cruz de Tenerife, Canary Islands, Spain.
| |
Collapse
|
200
|
Rothwell ES, Mendoza SP, Ragen BJ, Bales KL. Dopamine D1-like receptors regulate agonistic components of pair bond maintenance behaviors in male titi monkeys (Callicebus cupreus). Psychoneuroendocrinology 2019; 106:259-267. [PMID: 31022585 PMCID: PMC7430189 DOI: 10.1016/j.psyneuen.2019.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 01/12/2023]
Abstract
Several neurobiological mechanisms are implicated in the formation of selective pair bonds in socially monogamous mammals, however much less is known about the mechanisms that underlie the long-term behavioral maintenance of these bonds. In prairie voles (Microtus ochrogaster), agonistic behavior that contributes to pair bond maintenance are regulated by dopamine activity at D1-like receptors (D1R) within the mesocorticolimbic system. Evidence suggests D1Rs similarly regulate the behavioral components of pair bond maintenance in socially monogamous titi monkeys (Callicebus cupreus); however, evaluation with behavioral pharmacology is necessary to evaluate this hypothesis. In the current study we evaluated the role of D1Rs in behavioral components of pair bond maintenance in captive male titi monkeys (N = 8). We administered two doses of a D1R selective antagonist, SCH23390, (0.1 mg/kg, 0.01 mg/kg) or saline vehicle to male titi monkeys and presented pairs with a simulated intruder monkey via the use of a mirror stimulus. The non-reflective back of the mirror stimulus was used for control sessions. We video recorded responses to the five-minute stimulus presentations and later scored for arousal and agonistic behaviors relevant to mate guarding as well as affiliative behavior between the pair mates. We also conducted a locomotor assessment to evaluate the potential side effect for SCH23390 of impaired locomotion. Finally, we collected blood samples at the end of each session to assay for plasma cortisol responses. We found evidence of locomotor impairment only with the high dose of SCH23390, and therefore analyses were conducted comparing only test sessions where low dose SCH23390 and saline were administered. With saline administration, males displayed more agonistic behavior via back arching and tail lashing as well as restraining their female partners when viewing the mirror compared to the back of the mirror. D1R antagonist treatment attenuated these agonistic behaviors indicative of mate guarding when males viewed the mirror. Results also indicated that this reduction in agonistic behavior occurred without evidence of overall behavioral blunting or generally reduced social interest. Likewise changes in agonistic behavior were not driven by differences in HPA activity across testing sessions. Mate-directed affiliative behavior, including lip smacks and approaches to female partners, were not altered by D1R antagonist treatment. Dyadic social contact was higher with D1R antagonist treatment, but this was due to a reduction in contact termination by the treated males, which was typically followed by an approach or arousal display to the simulated intruder. These results provide further evidence that D1R activity regulates mate guarding behaviors in titi monkeys and suggests that the dopamine system plays a similar role in the agonistic behavioral components of pair bond maintenance behavior in non-human primates and rodents.
Collapse
Affiliation(s)
- Emily S Rothwell
- California National Primate Research Center, University of California- Davis, One Shields Avenue, Davis, CA, 95616, USA; Animal Behavior Graduate Group, University of California- Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Sally P Mendoza
- Department of Psychology, University of California- Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Benjamin J Ragen
- Department of Psychology, University of California- Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Karen L Bales
- California National Primate Research Center, University of California- Davis, One Shields Avenue, Davis, CA, 95616, USA; Animal Behavior Graduate Group, University of California- Davis, One Shields Avenue, Davis, CA, 95616, USA; Department of Psychology, University of California- Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|