151
|
Noushmehr H, Herrgott G, Morosini NS, Castro AV. Noninvasive approaches to detect methylation-based markers to monitor gliomas. Neurooncol Adv 2022; 4:ii22-ii32. [PMID: 36380867 PMCID: PMC9650474 DOI: 10.1093/noajnl/vdac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
In this review, we summarize the current approaches used to detect glioma tissue-derived DNA methylation markers in liquid biopsy specimens with the aim to diagnose, prognosticate and potentially track treatment response and evolution of patients with gliomas.
Collapse
Affiliation(s)
- Houtan Noushmehr
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Grayson Herrgott
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Natalia S Morosini
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Ana Valeria Castro
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
152
|
von Knebel Doeberitz N, Paech D, Sturm D, Pusch S, Turcan S, Saunthararajah Y. Changing paradigms in oncology: Toward noncytotoxic treatments for advanced gliomas. Int J Cancer 2022; 151:1431-1446. [PMID: 35603902 PMCID: PMC9474618 DOI: 10.1002/ijc.34131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Glial-lineage malignancies (gliomas) recurrently mutate and/or delete the master regulators of apoptosis p53 and/or p16/CDKN2A, undermining apoptosis-intending (cytotoxic) treatments. By contrast to disrupted p53/p16, glioma cells are live-wired with the master transcription factor circuits that specify and drive glial lineage fates: these transcription factors activate early-glial and replication programs as expected, but fail in their other usual function of forcing onward glial lineage-maturation-late-glial genes have constitutively "closed" chromatin requiring chromatin-remodeling for activation-glioma-genesis disrupts several epigenetic components needed to perform this work, and simultaneously amplifies repressing epigenetic machinery instead. Pharmacologic inhibition of repressing epigenetic enzymes thus allows activation of late-glial genes and terminates glioma self-replication (self-replication = replication without lineage-maturation), independent of p53/p16/apoptosis. Lineage-specifying master transcription factors therefore contrast with p53/p16 in being enriched in self-replicating glioma cells, reveal a cause-effect relationship between aberrant epigenetic repression of late-lineage programs and malignant self-replication, and point to specific epigenetic targets for noncytotoxic glioma-therapy.
Collapse
Affiliation(s)
| | - Daniel Paech
- Division of RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of NeuroradiologyBonn University HospitalBonnGermany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ) HeidelbergHeidelbergGermany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Department of Pediatric Oncology, Hematology & ImmunologyHeidelberg University HospitalHeidelbergGermany
| | - Stefan Pusch
- Department of NeuropathologyInstitute of Pathology, Ruprecht‐Karls‐University HeidelbergHeidelbergGermany
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sevin Turcan
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology ResearchTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
153
|
Noorani I, Mischel PS, Swanton C. Leveraging extrachromosomal DNA to fine-tune trials of targeted therapy for glioblastoma: opportunities and challenges. Nat Rev Clin Oncol 2022; 19:733-743. [PMID: 36131011 DOI: 10.1038/s41571-022-00679-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma evolution is facilitated by intratumour heterogeneity, which poses a major hurdle to effective treatment. Evidence indicates a key role for oncogene amplification on extrachromosomal DNA (ecDNA) in accelerating tumour evolution and thus resistance to treatment, particularly in glioblastomas. Oncogenes contained within ecDNA can reach high copy numbers and expression levels, and their unequal segregation can result in more rapid copy number changes in response to therapy than is possible through natural selection of intrachromosomal genomic loci. Notably, targeted therapies inhibiting oncogenic pathways have failed to improve glioblastoma outcomes. In this Perspective, we outline reasons for this disappointing lack of clinical translation and present the emerging evidence implicating ecDNA as an important driver of tumour evolution. Furthermore, we suggest that through detection of ecDNA, patient selection for clinical trials of novel agents can be optimized to include those most likely to benefit based on current understanding of resistance mechanisms. We discuss the challenges to successful translation of this approach, including accurate detection of ecDNA in tumour tissue with novel technologies, development of faithful preclinical models for predicting the efficacy of novel agents in the presence of ecDNA oncogenes, and understanding the mechanisms of ecDNA formation during cancer evolution and how they could be attenuated therapeutically. Finally, we evaluate the feasibility of routine ecDNA characterization in the clinic and how this process could be integrated with other methods of molecular stratification to maximize the potential for clinical translation of precision medicines.
Collapse
Affiliation(s)
- Imran Noorani
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine and Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
154
|
Mo Z, Xin J, Chai R, Woo PY, Chan DT, Wang J. Epidemiological characteristics and genetic alterations in adult diffuse glioma in East Asian populations. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0418. [PMID: 36350002 PMCID: PMC9630523 DOI: 10.20892/j.issn.2095-3941.2022.0418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2022] [Indexed: 05/06/2024] Open
Abstract
Understanding the racial specificities of diseases-such as adult diffuse glioma, the most common primary malignant tumor of the central nervous system-is a critical step toward precision medicine. Here, we comprehensively review studies of gliomas in East Asian populations and other ancestry groups to clarify the racial differences in terms of epidemiology and genomic characteristics. Overall, we observed a lower glioma incidence in East Asians than in Whites; notably, patients with glioblastoma had significantly younger ages of onset and longer overall survival than the Whites. Multiple genome-wide association studies of various cohorts have revealed single nucleotide polymorphisms associated with overall and subtype-specific glioma susceptibility. Notably, only 3 risk loci-5p15.33, 11q23.3, and 20q13.33-were shared between patients with East Asian and White ancestry, whereas other loci predominated only in particular populations. For instance, risk loci 12p11.23, 15q15-21.1, and 19p13.12 were reported in East Asians, whereas risk loci 8q24.21, 1p31.3, and 1q32.1 were reported in studies in White patients. Although the somatic mutational profiles of gliomas between East Asians and non-East Asians were broadly consistent, a lower incidence of EGFR amplification in glioblastoma and a higher incidence of 1p19q-IDH-TERT triple-negative low-grade glioma were observed in East Asian cohorts. By summarizing large-scale disease surveillance, germline, and somatic genomic studies, this review reveals the unique characteristics of adult diffuse glioma among East Asians, to guide clinical management and policy design focused on patients with East Asian ancestry.
Collapse
Affiliation(s)
- Zongchao Mo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518000, China
| | - Junyi Xin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ruichao Chai
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Peter Y.M. Woo
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong SAR, China
- Hong Kong Neuro-Oncology Society, Hong Kong SAR, China
| | - Danny T.M. Chan
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jiguang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518000, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
155
|
Zhang Y, Lucas CHG, Young JS, Morshed RA, McCoy L, Oberheim Bush NA, Taylor JW, Daras M, Butowski NA, Villanueva-Meyer JE, Cha S, Wrensch M, Wiencke JK, Lee JC, Pekmezci M, Phillips JJ, Perry A, Bollen AW, Aghi MK, Theodosopoulos P, Chang EF, Hervey-Jumper SL, Berger MS, Clarke JL, Chang SM, Molinaro AM, Solomon DA. Prospective genomically guided identification of "early/evolving" and "undersampled" IDH-wildtype glioblastoma leads to improved clinical outcomes. Neuro Oncol 2022; 24:1749-1762. [PMID: 35395677 PMCID: PMC9527525 DOI: 10.1093/neuonc/noac089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Genomic profiling studies of diffuse gliomas have led to new improved classification schemes that better predict patient outcomes compared to conventional histomorphology alone. One example is the recognition that patients with IDH-wildtype diffuse astrocytic gliomas demonstrating lower-grade histologic features but genomic and/or epigenomic profile characteristic of glioblastoma typically have poor outcomes similar to patients with histologically diagnosed glioblastoma. Here we sought to determine the clinical impact of prospective genomic profiling for these IDH-wildtype diffuse astrocytic gliomas lacking high-grade histologic features but with molecular profile of glioblastoma. METHODS Clinical management and outcomes were analyzed for 38 consecutive adult patients with IDH-wildtype diffuse astrocytic gliomas lacking necrosis or microvascular proliferation on histologic examination that were genomically profiled on a prospective clinical basis revealing criteria for an integrated diagnosis of "diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV" per cIMPACT-NOW criteria. RESULTS We identified that this diagnosis consists of two divergent clinical scenarios based on integration of radiologic, histologic, and genomic features that we term "early/evolving" and "undersampled" glioblastoma, IDH-wildtype. We found that prospective genomically guided identification of early/evolving and undersampled IDH-wildtype glioblastoma resulted in more aggressive patient management and improved clinical outcomes compared to a biologically matched historical control patient cohort receiving standard-of-care therapy based on histomorphologic diagnosis alone. CONCLUSIONS These results support routine use of genomic and/or epigenomic profiling to accurately classify glial neoplasms, as these assays not only improve diagnostic classification but critically lead to more appropriate patient management that can improve clinical outcomes.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Nancy Ann Oberheim Bush
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jennie W Taylor
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Mariza Daras
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas A Butowski
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Javier E Villanueva-Meyer
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Julieann C Lee
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Arie Perry
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Philip Theodosopoulos
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer L Clarke
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
156
|
Lange JT, Rose JC, Chen CY, Pichugin Y, Xie L, Tang J, Hung KL, Yost KE, Shi Q, Erb ML, Rajkumar U, Wu S, Taschner-Mandl S, Bernkopf M, Swanton C, Liu Z, Huang W, Chang HY, Bafna V, Henssen AG, Werner B, Mischel PS. The evolutionary dynamics of extrachromosomal DNA in human cancers. Nat Genet 2022; 54:1527-1533. [PMID: 36123406 PMCID: PMC9534767 DOI: 10.1038/s41588-022-01177-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/01/2022] [Indexed: 12/21/2022]
Abstract
Oncogene amplification on extrachromosomal DNA (ecDNA) is a common event, driving aggressive tumor growth, drug resistance and shorter survival. Currently, the impact of nonchromosomal oncogene inheritance-random identity by descent-is poorly understood. Also unclear is the impact of ecDNA on somatic variation and selection. Here integrating theoretical models of random segregation, unbiased image analysis, CRISPR-based ecDNA tagging with live-cell imaging and CRISPR-C, we demonstrate that random ecDNA inheritance results in extensive intratumoral ecDNA copy number heterogeneity and rapid adaptation to metabolic stress and targeted treatment. Observed ecDNAs benefit host cell survival or growth and can change within a single cell cycle. ecDNA inheritance can predict, a priori, some of the aggressive features of ecDNA-containing cancers. These properties are facilitated by the ability of ecDNA to rapidly adapt genomes in a way that is not possible through chromosomal oncogene amplification. These results show how the nonchromosomal random inheritance pattern of ecDNA contributes to poor outcomes for patients with cancer.
Collapse
Affiliation(s)
- Joshua T Lange
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - John C Rose
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Celine Y Chen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yuriy Pichugin
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Liangqi Xie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA, USA
| | - Jun Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Quanming Shi
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcella L Erb
- University of California San Diego Light Microscopy Core Facility, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Marie Bernkopf
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Weini Huang
- Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China.
- Department of Mathematics, Queen Mary University of London, London, UK.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Anton G Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Benjamin Werner
- Evolutionary Dynamics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
157
|
Abstract
Standard treatment for patients with IDH-mutant gliomas with radiation therapy and chemotherapy is non-curative and associated with long-term neurotoxicity. This has created intense interest in targeted therapeutic strategies that are specifically designed of IDH-mutant tumors. Much progress has been made in understanding the unique biology of IDH-mutant gliomas, and now various IDH-mutant-specific targeting strategies are in various phases of development. Here, we will review a range of IDH-mutant targeting treatments being explored, including direct IDH inhibitors, as well as strategies that take advantage of IDH-mutant-specific vulnerabilities.
Collapse
Affiliation(s)
- Julie J Miller
- Department of Neurology, Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
158
|
Abstract
Glioblastoma is the most aggressive primary brain tumor with a poor prognosis. The 2021 WHO CNS5 classification has further stressed the importance of molecular signatures in diagnosis although therapeutic breakthroughs are still lacking. In this review article, updates on the current and novel therapies in IDH-wildtype GBM will be discussed.
Collapse
Affiliation(s)
- Jawad M Melhem
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - James R Perry
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
159
|
Barger CJ, Suwala AK, Soczek KM, Wang AS, Kim MY, Hong C, Doudna JA, Chang SM, Phillips JJ, Solomon DA, Costello JF. Conserved features of TERT promoter duplications reveal an activation mechanism that mimics hotspot mutations in cancer. Nat Commun 2022; 13:5430. [PMID: 36114166 PMCID: PMC9481613 DOI: 10.1038/s41467-022-33099-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
Mutations in the TERT promoter represent the genetic underpinnings of tumor cell immortality. Beyond the two most common point mutations, which selectively recruit the ETS factor GABP to activate TERT, the significance of other variants is unknown. In seven cancer types, we identify duplications of wildtype sequence within the core promoter region of TERT that have strikingly similar features including an ETS motif, the duplication length and insertion site. The duplications recruit a GABP tetramer by virtue of the native ETS motif and its precisely spaced duplicated counterpart, activate the promoter and are clonal in a TERT expressing multifocal glioblastoma. We conclude that recurrent TERT promoter duplications are functionally and mechanistically equivalent to the hotspot mutations that confer tumor cell immortality. The shared mechanism of these divergent somatic genetic alterations suggests a strong selective pressure for recruitment of the GABP tetramer to activate TERT.
Collapse
Affiliation(s)
- Carter J Barger
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Abigail K Suwala
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Katarzyna M Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Albert S Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Min Y Kim
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - David A Solomon
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| |
Collapse
|
160
|
Weller J, Katzendobler S, Blobner J, Thiele F, Becker H, Quach S, Egensperger R, Niyazi M, Suchorska B, Thon N, Weller M, Tonn JC. Limited efficacy of temozolomide alone for astrocytoma, IDH-mutant, CNS WHO grades 2 or 3. J Neurooncol 2022; 160:149-158. [PMID: 36112301 PMCID: PMC9622511 DOI: 10.1007/s11060-022-04128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Purpose The role of temozolomide chemotherapy alone in isocitrate dehydrogenase (IDH)-mutant astrocytomas has not been conclusively determined. Radiotherapy might be superior to temozolomide. Recent studies have linked temozolomide with induction of hypermutation and poor clinical course in some IDH-mutant gliomas. Methods In this retrospective study, 183 patients with astrocytoma, IDH-mutant, CNS WHO grade 2 or 3 and diagnosed between 2001 and 2019 were included. Patients initially monitored by wait-and-scan strategies or treated with radiotherapy or temozolomide alone were studied. Patient data were correlated with outcome. Matched pair and subgroup analyses were conducted. Results Radiotherapy was associated with longer progression-free survival than temozolomide (6.2 vs 3.4 years, p = 0.02) and wait-and-scan strategies (6.2 vs 4 years, p = 0.03). Patients treated with radiotherapy lived longer than patients treated with temozolomide (14.4 vs 10.7 years, p = 0.02). Survival was longer in the wait-and-scan cohort than in the temozolomide cohort (not reached vs 10.7 years, p < 0.01). Patients from the wait-and-scan cohort receiving temozolomide at first progression had significantly shorter survival times than patients treated with any other therapy at first progression (p < 0.01). Post-surgical T2 tumor volume, contrast enhancement on MRI and WHO grade were associated with overall survival in univariate analyses (p < 0.01). Conclusion The results suggest superiority of radiotherapy over temozolomide and wait-and-scan strategies regarding progression-free survival and superiority of radiotherapy over temozolomide regarding overall survival. Our results are consistent with the notion that early temozolomide might compromise outcome in some patients.
Collapse
|
161
|
Gimple RC, Yang K, Halbert ME, Agnihotri S, Rich JN. Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nat Rev Cancer 2022; 22:497-514. [PMID: 35710946 DOI: 10.1038/s41568-022-00486-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Malignant brain tumours are complex ecosystems containing neoplastic and stromal components that generate adaptive and evolutionarily driven aberrant tissues in the central nervous system. Brain cancers are cultivated by a dynamic population of stem-like cells that enforce intratumoural heterogeneity and respond to intrinsic microenvironment or therapeutically guided insults through proliferation, plasticity and restructuring of neoplastic and stromal components. Far from a rigid hierarchy, heterogeneous neoplastic populations transition between cellular states with differential self-renewal capacities, endowing them with powerful resilience. Here we review the biological machinery used by brain tumour stem cells to commandeer tissues in the intracranial space, evade immune responses and resist chemoradiotherapy. Through recent advances in single-cell sequencing, improved models to investigate the role of the tumour microenvironment and a deeper understanding of the fundamental role of the immune system in cancer biology, we are now better equipped to explore mechanisms by which these processes can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
162
|
Tang F, Pan Z, Wang Y, Lan T, Wang M, Li F, Quan W, Liu Z, Wang Z, Li Z. Advances in the Immunotherapeutic Potential of Isocitrate Dehydrogenase Mutations in Glioma. Neurosci Bull 2022; 38:1069-1084. [PMID: 35670952 PMCID: PMC9468211 DOI: 10.1007/s12264-022-00866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) is an essential metabolic enzyme in the tricarboxylic acid cycle (TAC). The high mutation frequency of the IDH gene plays a complicated role in gliomas. In addition to affecting gliomas directly, mutations in IDH can also alter their immune microenvironment and can change immune-cell function in direct and indirect ways. IDH mutations mediate immune-cell infiltration and function by modulating immune-checkpoint gene expression and chemokine secretion. In addition, IDH mutation-derived D2-hydroxyglutarate can be absorbed by surrounding immune cells, also affecting their functioning. In this review, we summarize current knowledge about the effects of IDH mutations as well as other gene mutations on the immune microenvironment of gliomas. We also describe recent preclinical and clinical data related to IDH-mutant inhibitors for the treatment of gliomas. Finally, we discuss different types of immunotherapy and the immunotherapeutic potential of IDH mutations in gliomas.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Zhiyong Pan
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Yi Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Tian Lan
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Mengyue Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Fengping Li
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Wei Quan
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Zhenyuan Liu
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Zefen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| | - Zhiqiang Li
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China.
| |
Collapse
|
163
|
Precision neuro-oncology: a pilot analysis of personalized treatment in recurrent glioma. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04050-w. [PMID: 35953681 DOI: 10.1007/s00432-022-04050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE When brain cancer relapses, treatment options are scarce. The use of molecularly matched targeted therapies may provide a feasible and efficacious way to treat individual patients based on the molecular tumor profile. Since little information is available on this strategy in neuro-oncology, we retrospectively analyzed the clinical course of 41 patients who underwent advanced molecular testing at disease relapse. METHODS We performed Sanger sequencing, targeted next generation sequencing, and immunohistochemistry for analysis of potential targets, including programmed death ligand 1, cyclin D1, phosphorylated mechanistic target of rapamycin, telomerase reverse transcriptase promoter mutation, cyclin-dependent kinase inhibitor 2A/B deletion, or BRAF-V600E mutation. In selected patients, whole exome sequencing was conducted. RESULTS The investigation included 41 patients, of whom 32 had isocitrate dehydrogenase (IDH) wildtype glioblastoma. Molecular analysis revealed actionable targets in 31 of 41 tested patients and 18 patients were treated accordingly (matched therapy group). Twenty-three patients received molecularly unmatched empiric treatment (unmatched therapy group). In both groups, 16 patients were diagnosed with recurrent IDH wildtype glioblastoma. The number of severe adverse events was comparable between the therapy groups. Regarding the IDH wildtype glioblastoma patients, median progression-free survival (mPFS) and median overall survival (mOS) were longer in the matched therapy group (mPFS: 3.8 versus 2.0 months, p = 0.0057; mOS: 13.0 versus 4.3 months, p = 0.0357). CONCLUSION These encouraging data provide a rationale for molecularly matched targeted therapy in glioma patients. For further validation, future study designs need to additionally consider the prevalence and persistence of actionable molecular alterations in patient tissue.
Collapse
|
164
|
Jiang L, Yang J, Xu Q, Lv K, Cao Y. Machine learning for the micropeptide encoded by LINC02381 regulates ferroptosis through the glucose transporter SLC2A10 in glioblastoma. BMC Cancer 2022; 22:882. [PMID: 35962317 PMCID: PMC9373536 DOI: 10.1186/s12885-022-09972-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary intracranial tumor in the central nervous system, and resistance to temozolomide is an important reason for the failure of GBM treatment. We screened out that Solute Carrier Family 2 Member 10 (SLC2A10) is significantly highly expressed in GBM with a poor prognosis, which is also enriched in the NF-E2 p45-related factor 2 (NRF2) signalling pathway. The NRF2 signalling pathway is an important defence mechanism against ferroptosis. SLC2A10 related LINC02381 is highly expressed in GBM, which is localized in the cytoplasm/exosomes, and LINC02381 encoded micropeptides are localized in the exosomes. The micropeptide encoded by LINC02381 may be a potential treatment strategy for GBM, but the underlying mechanism of its function is not precise yet. We put forward the hypothesis: “The micropeptide encoded by LINC02381 regulates ferroptosis through the glucose transporter SLC2A10 in GBM.” This study innovatively used machine learning for micropeptide to provide personalized diagnosis and treatment plans for precise treatment of GBM, thereby promoting the development of translational medicine. The study aimed to help find new disease diagnoses and prognostic biomarkers and provide a new strategy for experimental scientists to design the downstream validation experiments.
Collapse
Affiliation(s)
- Lan Jiang
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, China
| | - Jianke Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Qiancheng Xu
- Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, China
| | - Kun Lv
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China. .,Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China. .,Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, China.
| | - Yunpeng Cao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
165
|
Kim S, Chowdhury T, Yu HJ, Kahng JY, Lee CE, Choi SA, Kim KM, Kang H, Lee JH, Lee ST, Won JK, Kim KH, Kim MS, Lee JY, Kim JW, Kim YH, Kim TM, Choi SH, Phi JH, Shin YK, Ku JL, Lee S, Yun H, Lee H, Kim D, Kim K, Hur JK, Park SH, Kim SK, Park CK. The telomere maintenance mechanism spectrum and its dynamics in gliomas. Genome Med 2022; 14:88. [PMID: 35953846 PMCID: PMC9367055 DOI: 10.1186/s13073-022-01095-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The activation of the telomere maintenance mechanism (TMM) is one of the critical drivers of cancer cell immortality. In gliomas, TERT expression and TERT promoter mutation are considered to reliably indicate telomerase activation, while ATRX mutation and/or loss indicates an alternative lengthening of telomeres (ALT). However, these relationships have not been extensively validated in tumor tissues. METHODS Telomerase repeated amplification protocol (TRAP) and C-circle assays were used to profile and characterize the TMM cross-sectionally (n = 412) and temporally (n = 133) across glioma samples. WES, RNA-seq, and NanoString analyses were performed to identify and validate the genetic characteristics of the TMM groups. RESULTS We show through the direct measurement of telomerase activity and ALT in a large set of glioma samples that the TMM in glioma cannot be defined solely by the combination of telomerase activity and ALT, regardless of TERT expression, TERT promoter mutation, and ATRX loss. Moreover, we observed that a considerable proportion of gliomas lacked both telomerase activity and ALT. This telomerase activation-negative and ALT negative group exhibited evidence of slow growth potential. By analyzing a set of longitudinal samples from a separate cohort of glioma patients, we discovered that the TMM is not fixed and can change with glioma progression. CONCLUSIONS This study suggests that the TMM is dynamic and reflects the plasticity and oncogenicity of tumor cells. Direct measurement of telomerase enzyme activity and evidence of ALT should be considered when defining TMM. An accurate understanding of the TMM in glioma is expected to provide important information for establishing cancer management strategies.
Collapse
Affiliation(s)
- Sojin Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tamrin Chowdhury
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyeon Jong Yu
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jee Ye Kahng
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chae Eun Lee
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seung Ah Choi
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Kyung-Min Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ho Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joo Ho Lee
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Soon-Tae Lee
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Jae-Kyung Won
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Kyung Hyun Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Min-Sung Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ji Yeoun Lee
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jin Wook Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yong-Hwy Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Tae Min Kim
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Seung Hong Choi
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Ji Hoon Phi
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Young-Kyoung Shin
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ja-Lok Ku
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hwajin Lee
- Biomedical Knowledge Engineering Laboratory and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Junho K Hur
- Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Sung-Hye Park
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea.
| |
Collapse
|
166
|
Leone A, Colamaria A, Fochi NP, Sacco M, Landriscina M, Parbonetti G, de Notaris M, Coppola G, De Santis E, Giordano G, Carbone F. Recurrent Glioblastoma Treatment: State of the Art and Future Perspectives in the Precision Medicine Era. Biomedicines 2022; 10:biomedicines10081927. [PMID: 36009473 PMCID: PMC9405902 DOI: 10.3390/biomedicines10081927] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022] Open
Abstract
Current treatment guidelines for the management of recurrent glioblastoma (rGBM) are far from definitive, and the prognosis remains dismal. Despite recent advancements in the pharmacological and surgical fields, numerous doubts persist concerning the optimal strategy that clinicians should adopt for patients who fail the first lines of treatment and present signs of progressive disease. With most recurrences being located within the margins of the previously resected lesion, a comprehensive molecular and genetic profiling of rGBM revealed substantial differences compared with newly diagnosed disease. In the present comprehensive review, we sought to examine the current treatment guidelines and the new perspectives that polarize the field of neuro-oncology, strictly focusing on progressive disease. For this purpose, updated PRISMA guidelines were followed to search for pivotal studies and clinical trials published in the last five years. A total of 125 articles discussing locoregional management, radiotherapy, chemotherapy, and immunotherapy strategies were included in our analysis, and salient findings were critically summarized. In addition, an in-depth description of the molecular profile of rGBM and its distinctive characteristics is provided. Finally, we integrate the above-mentioned evidence with the current guidelines published by international societies, including AANS/CNS, EANO, AIOM, and NCCN.
Collapse
Affiliation(s)
- Augusto Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Nicola Pio Fochi
- Department of Neurosurgery, University of Foggia, 71122 Foggia, Italy
| | - Matteo Sacco
- Department of Neurosurgery, Riuniti Hospital, 71122 Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical
Oncology and Biomolecular Therapy, Department of Medical and Surgical
Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Matteo de Notaris
- Department of Neurosurgery, “Rummo” Hospital, 82100 Benevento, Italy
| | - Giulia Coppola
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Elena De Santis
- Department of Anatomical Histological Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Guido Giordano
- Unit of Medical
Oncology and Biomolecular Therapy, Department of Medical and Surgical
Sciences, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| | - Francesco Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
- Department of Neurosurgery, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
167
|
Stackhouse CT, Anderson JC, Yue Z, Nguyen T, Eustace NJ, Langford CP, Wang J, Rowland JR, Xing C, Mikhail FM, Cui X, Alrefai H, Bash RE, Lee KJ, Yang ES, Hjelmeland AB, Miller CR, Chen JY, Gillespie GY, Willey CD. An in vivo model of glioblastoma radiation resistance identifies long non-coding RNAs and targetable kinases. JCI Insight 2022; 7:148717. [PMID: 35852875 PMCID: PMC9462495 DOI: 10.1172/jci.insight.148717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Key molecular regulators of acquired radiation resistance in recurrent glioblastoma (GBM) are largely unknown, with a dearth of accurate preclinical models. To address this, we generated 8 GBM patient-derived xenograft (PDX) models of acquired radiation therapy–selected (RTS) resistance compared with same-patient, treatment-naive (radiation-sensitive, unselected; RTU) PDXs. These likely unique models mimic the longitudinal evolution of patient recurrent tumors following serial radiation therapy. Indeed, while whole-exome sequencing showed retention of major genomic alterations in the RTS lines, we did detect a chromosome 12q14 amplification that was associated with clinical GBM recurrence in 2 RTS models. A potentially novel bioinformatics pipeline was applied to analyze phenotypic, transcriptomic, and kinomic alterations, which identified long noncoding RNAs (lncRNAs) and targetable, PDX-specific kinases. We observed differential transcriptional enrichment of DNA damage repair pathways in our RTS models, which correlated with several lncRNAs. Global kinomic profiling separated RTU and RTS models, but pairwise analyses indicated that there are multiple molecular routes to acquired radiation resistance. RTS model–specific kinases were identified and targeted with clinically relevant small molecule inhibitors. This cohort of in vivo RTS patient-derived models will enable future preclinical therapeutic testing to help overcome the treatment resistance seen in patients with GBM.
Collapse
Affiliation(s)
| | | | - Zongliang Yue
- Informatics Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA. Birmingham, Alabama, USA
| | - Thanh Nguyen
- Informatics Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA. Birmingham, Alabama, USA
| | | | | | - Jelai Wang
- Informatics Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA. Birmingham, Alabama, USA
| | - James R. Rowland
- Department of Physics, The Ohio State University, Columbus, Ohio, USA
| | | | - Fady M. Mikhail
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Ryan E. Bash
- Division of Neuropathology, Department of Pathology, and
| | | | | | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - C. Ryan Miller
- Division of Neuropathology, Department of Pathology, and
| | - Jake Y. Chen
- Informatics Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA. Birmingham, Alabama, USA
| | | | | |
Collapse
|
168
|
Buehler M, Yi X, Ge W, Blattmann P, Rushing E, Reifenberger G, Felsberg J, Yeh C, Corn JE, Regli L, Zhang J, Cloos A, Ravi VM, Wiestler B, Heiland DH, Aebersold R, Weller M, Guo T, Weiss T. Quantitative proteomic landscapes of primary and recurrent glioblastoma reveal a protumorigeneic role for FBXO2-dependent glioma-microenvironment interactions. Neuro Oncol 2022; 25:290-302. [PMID: 35802605 PMCID: PMC9925714 DOI: 10.1093/neuonc/noac169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Recent efforts have described the evolution of glioblastoma from initial diagnosis to post-treatment recurrence on a genomic and transcriptomic level. However, the evolution of the proteomic landscape is largely unknown. METHODS Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) was used to characterize the quantitative proteomes of two independent cohorts of paired newly diagnosed and recurrent glioblastomas. Recurrence-associated proteins were validated using immunohistochemistry and further studied in human glioma cell lines, orthotopic xenograft models, and human organotypic brain slice cultures. External spatial transcriptomic, single-cell, and bulk RNA sequencing data were analyzed to gain mechanistic insights. RESULTS Although overall proteomic changes were heterogeneous across patients, we identified BCAS1, INF2, and FBXO2 as consistently upregulated proteins at recurrence and validated these using immunohistochemistry. Knockout of FBXO2 in human glioma cells conferred a strong survival benefit in orthotopic xenograft mouse models and reduced invasive growth in organotypic brain slice cultures. In glioblastoma patient samples, FBXO2 expression was enriched in the tumor infiltration zone and FBXO2-positive cancer cells were associated with synaptic signaling processes. CONCLUSIONS These findings demonstrate a potential role of FBXO2-dependent glioma-microenvironment interactions to promote tumor growth. Furthermore, the published datasets provide a valuable resource for further studies.
Collapse
Affiliation(s)
| | | | - Weigang Ge
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China,Westlake Omics Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Elisabeth Rushing
- Department of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University, Duesseldorf, Germany,German Cancer Consortium, partner site Essen/Düsseldorf, Duesseldorf, Germany
| | - Joerg Felsberg
- Department of Neuropathology, Heinrich Heine University, Duesseldorf, Germany,German Cancer Consortium, partner site Essen/Düsseldorf, Duesseldorf, Germany
| | - Charles Yeh
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Jacob E Corn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Junyi Zhang
- Microenvironment and Immunology Research Laboratory, Department of Neurosurgery, Medical Center, University of Freiburg, Germany,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany,Translational Neuro-Oncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ann Cloos
- Microenvironment and Immunology Research Laboratory, Department of Neurosurgery, Medical Center, University of Freiburg, Germany,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany,Translational Neuro-Oncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany
| | - Vidhya M Ravi
- Microenvironment and Immunology Research Laboratory, Department of Neurosurgery, Medical Center, University of Freiburg, Germany,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany,Translational Neuro-Oncology Research Group, Medical Center, University of Freiburg, Freiburg, Germany,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Department of Neurosurgery, Medical Center, University of Freiburg, Germany,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Tobias Weiss
- Corresponding Author: Tobias Weiss, MD, PhD, Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland ()
| |
Collapse
|
169
|
Alanio C, Binder ZA, Chang RB, Nasrallah MP, Delman D, Li JH, Tang OY, Zhang LY, Zhang JV, Wherry EJ, O’Rourke DM, Beatty GL. Immunologic Features in De Novo and Recurrent Glioblastoma Are Associated with Survival Outcomes. Cancer Immunol Res 2022; 10:800-810. [PMID: 35507919 PMCID: PMC9250610 DOI: 10.1158/2326-6066.cir-21-1050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/09/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023]
Abstract
Glioblastoma (GBM) is an immunologically "cold" tumor characterized by poor responsiveness to immunotherapy. Standard of care for GBM is surgical resection followed by chemoradiotherapy and maintenance chemotherapy. However, tumor recurrence is the norm, and recurring tumors are found frequently to have acquired molecular changes (e.g., mutations) that may influence their immunobiology. Here, we compared the immune contexture of de novo GBM and recurrent GBM (rGBM) using high-dimensional cytometry and multiplex IHC. Although myeloid and T cells were similarly abundant in de novo and rGBM, their spatial organization within tumors differed and was linked to outcomes. In rGBM, T cells were enriched and activated in perivascular regions and clustered with activated macrophages and fewer regulatory T cells. Moreover, a higher expression of phosphorylated STAT1 by T cells in these regions at recurrence was associated with a favorable prognosis. Together, our data identify differences in the immunobiology of de novo GBM and rGBM and identify perivascular T cells as potential therapeutic targets. See related Spotlight by Bayik et al., p. 787.
Collapse
Affiliation(s)
- Cécile Alanio
- INSERM U932, PSL University, Institut Curie, Paris 75005, France,Laboratoire d'immunologie clinique, Institut Curie, Paris 75005, France,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, 19104 USA,Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Correspondence: Gregory L. Beatty, MD, PhD, University of Pennsylvania, Perelman Center for Advanced Medicine, South Pavilion, Room 8-107, 3400 Civic Center Blvd., Philadelphia, PA 19104-5156, , Cecile Alanio, MD, PhD, Deputy Director of the Clinical Immunology Laboratory at Institut Curie, Scientist in the U932 INSERM “Immunity and Cancer” Unit, Center for Cancer Immunotherapy, Hopital - 2ème Etage, 26 rue d’Ulm, 75248 Paris Cedex 05, France,
| | - Zev A. Binder
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Renee B. Chang
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - MacLean P. Nasrallah
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Devora Delman
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Joey H. Li
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Oliver Y. Tang
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Warren Alpert Medical School of Brown University, Brown University, Providence, RI, 02903
| | - Logan Y. Zhang
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Jiasi Vicky Zhang
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - E. John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, 19104 USA,Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Donald M. O’Rourke
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Gregory L. Beatty
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA,Correspondence: Gregory L. Beatty, MD, PhD, University of Pennsylvania, Perelman Center for Advanced Medicine, South Pavilion, Room 8-107, 3400 Civic Center Blvd., Philadelphia, PA 19104-5156, , Cecile Alanio, MD, PhD, Deputy Director of the Clinical Immunology Laboratory at Institut Curie, Scientist in the U932 INSERM “Immunity and Cancer” Unit, Center for Cancer Immunotherapy, Hopital - 2ème Etage, 26 rue d’Ulm, 75248 Paris Cedex 05, France,
| |
Collapse
|
170
|
Lauko A, Lo A, Ahluwalia MS, Lathia JD. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin Cancer Biol 2022; 82:162-175. [PMID: 33640445 PMCID: PMC9618157 DOI: 10.1016/j.semcancer.2021.02.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Brain tumors remain one of the most difficult tumors to treat and, depending on the diagnosis, have a poor prognosis. Of brain tumors, glioblastoma (GBM) is the most common malignant glioma and has a dismal prognosis, with only about 5% of patients alive five years after diagnosis. While advances in targeted therapies and immunotherapies are rapidly improving outcomes in a variety of other cancers, the standard of care for GBM has largely remained unaltered since 2005. There are many well-studied challenges that are either unique to brain tumors (i.e., blood-brain barrier and immunosuppressive environment) or amplified within GBM (i.e., tumor heterogeneity at the cellular and molecular levels, plasticity, and cancer stem cells) that make this disease particularly difficult to treat. While we touch on all these concepts, the focus of this review is to discuss the immense inter- and intra-tumoral heterogeneity and advances in our understanding of tumor cell plasticity and epigenetics in GBM. With each improvement in technology, our understanding of the complexity of tumoral heterogeneity and plasticity improves and we gain more clarity on the causes underlying previous therapeutic failures. However, these advances are unlocking new therapeutic opportunities that scientists and physicians are currently exploiting and have the potential for new breakthroughs.
Collapse
Affiliation(s)
- Adam Lauko
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Alice Lo
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Manmeet S Ahluwalia
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, United States; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
171
|
Lim-Fat MJ, Youssef GC, Touat M, Iorgulescu JB, Whorral S, Allen M, Rahman R, Chukwueke U, McFaline-Figueroa JR, Nayak L, Lee EQ, Batchelor TT, Arnaout O, Peruzzi PP, Chiocca EA, Reardon DA, Meredith D, Santagata S, Beroukhim R, Bi WL, Ligon KL, Wen PY. Clinical utility of targeted next-generation sequencing assay in IDH-wildtype glioblastoma for therapy decision-making. Neuro Oncol 2022; 24:1140-1149. [PMID: 34878541 PMCID: PMC9248387 DOI: 10.1093/neuonc/noab282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Targeted gene NGS testing is available through many academic institutions and commercial entities and is increasingly incorporated in practice guidelines for glioblastoma (GBM). This single-center retrospective study aimed to evaluate the clinical utility of incorporating NGS results in the management of GBM patients at a clinical trials-focused academic center. METHODS We identified 1011 consecutive adult patients with pathologically confirmed GBM (IDHwt or IDHmut) who had somatic tumor sequencing (Oncopanel, ~500 cancer gene panel) at DFCI from 2013-2019. Clinical records of all IDHwt GBM patients were reviewed to capture clinical trial enrollment and off-label targeted therapy use based on NGS results. RESULTS Of the 557 IDHwt GBM patients with sequencing, 182 entered clinical trials at diagnosis (32.7%) and 213 (38.2%) entered after recurrence. Sequencing results for 130 patients (23.3%) were utilized for clinical trial enrollment for either targeted therapy indications (6.9 % upfront and 27.7% at recurrent clinical trials and 3.1% for off-label targeted therapy) or exploratory studies (55.4% upfront and 6.9% recurrent clinical trials). Median overall survival was 20.1 months with no survival difference seen between patients enrolled in clinical trials compared to those who were not, in a posthoc analysis. CONCLUSIONS While NGS testing has become essential for improved molecular diagnostics, our study illustrates that targeted gene panels remain underutilized for selecting therapy in GBM-IDHwt. Targeted therapy and clinical trial design remain to be improved to help leverage the potential of NGS in clinical care.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gilbert C Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - J Bryan Iorgulescu
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sydney Whorral
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marie Allen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rifaquat Rahman
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ugonma Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - J Ricardo McFaline-Figueroa
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lakshmi Nayak
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tracy T Batchelor
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David Meredith
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sandro Santagata
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Keith L Ligon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
172
|
Xu S, Sheng Z, Yu J, Deng K, Wu S, Bu Y, Guo G, Zhang Z, Liu G, Gao Y, Yan Z, Bu C, He Y, Liu G, Zemmar A, Hernesniemi J, Kong L, Wang M, Li T, Bu X. Real-time longitudinal analysis of human gliomas reveals in vivo genome evolution and therapeutic impact under standardized treatment. Clin Transl Med 2022; 12:e956. [PMID: 35802830 PMCID: PMC9269997 DOI: 10.1002/ctm2.956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sensen Xu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Zhiyuan Sheng
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Jinliang Yu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Kaiyuan Deng
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Shuang Wu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yage Bu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Guangzhong Guo
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Ziyue Zhang
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Guanzheng Liu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yushuai Gao
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Zhaoyue Yan
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Chaojie Bu
- Department of Psychological Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yingkun He
- Henan Provincial Neurointerventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, China.,Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Gang Liu
- Department of Center for Clinical Single Cell Biomedicine, Clinical Research Center, Department of Oncology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Ajmal Zemmar
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Juha Hernesniemi
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Lingfei Kong
- Department of Pathology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Meiyun Wang
- Department of Radiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Tianxiao Li
- Henan Provincial Neurointerventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, China.,Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Xingyao Bu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
173
|
Koh L, Novera W, Lim SW, Chong YK, Pang QY, Low D, Ang BT, Tang C. Integrative multi-omics approach to targeted therapy for glioblastoma. Pharmacol Res 2022; 182:106308. [PMID: 35714825 DOI: 10.1016/j.phrs.2022.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
This review describes recent technological advances applied to glioblastoma (GBM), a brain tumor with dismal prognosis. International consortial efforts suggest the presence of molecular subtypes within histologically identical GBM tumors. This emphasizes that future treatment decisions should no longer be made based solely on morphological analyses, but must now take into consideration such molecular and cellular heterogeneity. The use of single-cell technologies has advanced our understanding and assignation of functional subtypes revealing therapeutic vulnerabilities. Our team has developed stratification approaches in the past few years, and we have been able to identify patient cohorts enriched for various signaling pathways. Importantly, our Glioportal brain tumor resource has been established under the National Neuroscience Institute Tissue Bank in 2021. This resource offers preclinical capability to validate working hypotheses established from patient clinical datasets. This review highlights recent developments with the ultimate goal of assigning functional meaning to molecular subtypes, revealing therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Lynnette Koh
- Department of Research, National Neuroscience Institute, Singapore.
| | - Wisna Novera
- Department of Research, National Neuroscience Institute, Singapore
| | - See Wee Lim
- Department of Research, National Neuroscience Institute, Singapore
| | - Yuk Kien Chong
- Department of Research, National Neuroscience Institute, Singapore
| | - Qing You Pang
- Department of Research, National Neuroscience Institute, Singapore
| | - David Low
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Carol Tang
- Department of Research, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
174
|
Varn FS, Johnson KC, Martinek J, Huse JT, Nasrallah MP, Wesseling P, Cooper LAD, Malta TM, Wade TE, Sabedot TS, Brat D, Gould PV, Wöehrer A, Aldape K, Ismail A, Sivajothi SK, Barthel FP, Kim H, Kocakavuk E, Ahmed N, White K, Datta I, Moon HE, Pollock S, Goldfarb C, Lee GH, Garofano L, Anderson KJ, Nehar-Belaid D, Barnholtz-Sloan JS, Bakas S, Byrne AT, D'Angelo F, Gan HK, Khasraw M, Migliozzi S, Ormond DR, Paek SH, Van Meir EG, Walenkamp AME, Watts C, Weiss T, Weller M, Palucka K, Stead LF, Poisson LM, Noushmehr H, Iavarone A, Verhaak RGW. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell 2022; 185:2184-2199.e16. [PMID: 35649412 PMCID: PMC9189056 DOI: 10.1016/j.cell.2022.04.038] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 01/22/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022]
Abstract
The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.
Collapse
Affiliation(s)
- Frederick S Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Kevin C Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jason T Huse
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - MacLean P Nasrallah
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pieter Wesseling
- Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lee A D Cooper
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tathiane M Malta
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Brazil, Ribeirao Preto, São Paulo, Brazil
| | - Taylor E Wade
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Thais S Sabedot
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Daniel Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter V Gould
- service d'anatomopathologie, Hôpital de l'Enfant-Jésus du Centre hospitalier universitaire de Québec, Université Laval, Quebec City, QC, Canada
| | - Adelheid Wöehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Azzam Ismail
- Department of Cellular and Molecular Pathology, Leeds Teaching Hospital NHS Trust, St James's University Hospital, Leeds, UK
| | | | - Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Cancer and Cell Biology Division, the Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Hoon Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Biopharmaceutical Convergence, Department of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeong gi-do, South Korea
| | - Emre Kocakavuk
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, Essen, Germany
| | | | - Kieron White
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Indrani Datta
- Department of Public Health Sciences, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Hyo-Eun Moon
- Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | - Ga-Hyun Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Luciano Garofano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Kevin J Anderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Jill S Barnholtz-Sloan
- Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH, USA; Center for Biomedical Informatics and Information Technology & Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Spyridon Bakas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Annette T Byrne
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Hui K Gan
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Simona Migliozzi
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sun Ha Paek
- Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Erwin G Van Meir
- Department of Neurosurgery, School of Medicine and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Annemiek M E Walenkamp
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Colin Watts
- Academic Department of Neurosurgery, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zürich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zürich, Switzerland
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Laila M Poisson
- Department of Public Health Sciences, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Houtan Noushmehr
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Neurosurgery, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands.
| |
Collapse
|
175
|
Gatto L, Franceschi E, Tosoni A, Nunno VD, Bartolini S, Brandes AA. Hypermutation as a potential predictive biomarker of immunotherapy efficacy in high-grade gliomas: a broken dream? Immunotherapy 2022; 14:799-813. [PMID: 35670093 DOI: 10.2217/imt-2021-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A high tumor mutational burden and mismatch repair deficiency are observed in 'hypermutated' high-grade gliomas (HGGs); however, the molecular characterization of this distinct subtype and whether it predicts the response to immune checkpoint inhibitors (ICIs) are largely unknown. Pembrolizumab is a valid therapeutic option for the treatment of hypermutated cancers of diverse origin, but only a few clinical trials have explored the activity of ICIs in hypermutated HGGs. HGGs appear to differ from other cancers, likely due to the prevalence of subclonal versus clonal neoantigens, which are unable to elicit an immune response with ICIs. The main aim of this review is to summarize the current knowledge on hypermutation in HGGs, focusing on the broken promises of tumor mutational burden and mismatch repair deficiency as potential biomarkers of response to ICIs.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
176
|
Haddock S, Alban TJ, Turcan Ş, Husic H, Rosiek E, Ma X, Wang Y, Bale T, Desrichard A, Makarov V, Monette S, Wu W, Gardner R, Manova K, Boire A, Chan TA. Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia 2022; 28:100790. [PMID: 35398668 PMCID: PMC9014446 DOI: 10.1016/j.neo.2022.100790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Mutations in IDH1 and IDH2 drive the development of gliomas. These genetic alterations promote tumor cell renewal, disrupt differentiation states, and induce stem-like properties. Understanding how this phenotypic reprogramming occurs remains an area of high interest in glioma research. Previously, we showed that IDH mutation results in the development of a CD24-positive cell population in gliomas. Here, we demonstrate that this CD24-positive population possesses striking stem-like properties at the molecular and phenotypic levels. We found that CD24 expression is associated with stem-like features in IDH-mutant tumors, a patient-derived gliomasphere model, and a neural stem cell model of IDH1-mutant glioma. In orthotopic models, CD24-positive cells display enhanced tumor initiating potency compared to CD24-negative cells. Furthermore, CD24 knockdown results in changes in cell viability, proliferation rate, and gene expression that closely resemble a CD24-negative phenotype. Our data demonstrate that induction of a CD24-positive population is one mechanism by which IDH-mutant tumors acquire stem-like properties. These findings have significant implications for our understanding of the molecular underpinnings of IDH-mutant gliomas.
Collapse
|
177
|
Goodman AL, Velázquez Vega JE, Glenn C, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of neuropathology in the management of progressive glioblastoma in adults. J Neurooncol 2022; 158:179-224. [PMID: 35648306 DOI: 10.1007/s11060-022-04005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients with progressive or recurrent glioblastoma (GBM). QUESTION For adult patients with progressive glioblastoma does testing for Isocitrate Dehydrogenase (IDH) 1 or 2 mutations provide new additional management or prognostic information beyond that derived from the tumor at initial presentation? RECOMMENDATION Level III: Repeat IDH mutation testing is not necessary if the tumor is histologically similar to the primary tumor and the patient's clinical course is as expected. QUESTION For adult patients with progressive glioblastoma does repeat testing for MGMT promoter methylation provide new or additional management or prognostic information beyond that derived from the tumor at initial presentation and what methods of detection are optimal? RECOMMENDATION Level III: Repeat MGMT promoter methylation is not recommended. QUESTION For adult patients with progressive glioblastoma does EGFR amplification or mutation testing provide management or prognostic information beyond that provided by histologic analysis and if performed on previous tissue samples, does it need to be repeated? RECOMMENDATION Level III: In cases that are difficult to classify as glioblastoma on histologic features EGFR amplification testing may help in classification. If a previous EGFR amplification was detected, repeat testing is not necessary. Repeat EGFR amplification or mutational testing may be recommended in patients in which target therapy is being considered. QUESTION For adult patients with progressive glioblastoma does large panel or whole genome sequencing provide management or prognostic information beyond that derived from histologic analysis? RECOMMENDATION Level III: Primary or repeat large panel or whole genome sequencing may be considered in patients who are eligible or interested in molecularly guided therapy or clinical trials. QUESTION For adult patients with progressive glioblastoma should immune checkpoint biomarker testing be performed to provide management and prognostic information beyond that obtained from histologic analysis? RECOMMENDATION Level III: The current evidence does not support making PD-L1 or mismatch repair (MMR) enzyme activity a component of standard testing. QUESTION For adult patients with progressive glioblastoma are there meaningful biomarkers for bevacizumab responsiveness and does their assessment provide additional information for tumor management and prognosis beyond that learned by standard histologic analysis? RECOMMENDATION Level III: No established Bevacizumab biomarkers are currently available based upon the inclusion criteria of this guideline.
Collapse
Affiliation(s)
- Abigail L Goodman
- Carolinas Pathology, Atrium Health Carolinas Medical Center, Charlotte, NC, USA.
| | - José E Velázquez Vega
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Chad Glenn
- Department of Neurosurgery, Stephenson Cancer Center, The University of Oklahoma, Oklahoma City, OK, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
178
|
Clinical measures, radiomics, and genomics offer synergistic value in AI-based prediction of overall survival in patients with glioblastoma. Sci Rep 2022; 12:8784. [PMID: 35610333 PMCID: PMC9130299 DOI: 10.1038/s41598-022-12699-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Multi-omic data, i.e., clinical measures, radiomic, and genetic data, capture multi-faceted tumor characteristics, contributing to a comprehensive patient risk assessment. Here, we investigate the additive value and independent reproducibility of integrated diagnostics in prediction of overall survival (OS) in isocitrate dehydrogenase (IDH)-wildtype GBM patients, by combining conventional and deep learning methods. Conventional radiomics and deep learning features were extracted from pre-operative multi-parametric MRI of 516 GBM patients. Support vector machine (SVM) classifiers were trained on the radiomic features in the discovery cohort (n = 404) to categorize patient groups of high-risk (OS < 6 months) vs all, and low-risk (OS ≥ 18 months) vs all. The trained radiomic model was independently tested in the replication cohort (n = 112) and a patient-wise survival prediction index was produced. Multivariate Cox-PH models were generated for the replication cohort, first based on clinical measures solely, and then by layering on radiomics and molecular information. Evaluation of the high-risk and low-risk classifiers in the discovery/replication cohorts revealed area under the ROC curves (AUCs) of 0.78 (95% CI 0.70-0.85)/0.75 (95% CI 0.64-0.79) and 0.75 (95% CI 0.65-0.84)/0.63 (95% CI 0.52-0.71), respectively. Cox-PH modeling showed a concordance index of 0.65 (95% CI 0.6-0.7) for clinical data improving to 0.75 (95% CI 0.72-0.79) for the combination of all omics. This study signifies the value of integrated diagnostics for improved prediction of OS in GBM.
Collapse
|
179
|
Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature 2022; 606:389-395. [PMID: 35589842 PMCID: PMC9177421 DOI: 10.1038/s41586-022-04735-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Cancer immunoediting1 is a hallmark of cancer2 that predicts that lymphocytes kill more immunogenic cancer cells to cause less immunogenic clones to dominate a population. Although proven in mice1,3, whether immunoediting occurs naturally in human cancers remains unclear. Here, to address this, we investigate how 70 human pancreatic cancers evolved over 10 years. We find that, despite having more time to accumulate mutations, rare long-term survivors of pancreatic cancer who have stronger T cell activity in primary tumours develop genetically less heterogeneous recurrent tumours with fewer immunogenic mutations (neoantigens). To quantify whether immunoediting underlies these observations, we infer that a neoantigen is immunogenic (high-quality) by two features—‘non-selfness’ based on neoantigen similarity to known antigens4,5, and ‘selfness’ based on the antigenic distance required for a neoantigen to differentially bind to the MHC or activate a T cell compared with its wild-type peptide. Using these features, we estimate cancer clone fitness as the aggregate cost of T cells recognizing high-quality neoantigens offset by gains from oncogenic mutations. With this model, we predict the clonal evolution of tumours to reveal that long-term survivors of pancreatic cancer develop recurrent tumours with fewer high-quality neoantigens. Thus, we submit evidence that that the human immune system naturally edits neoantigens. Furthermore, we present a model to predict how immune pressure induces cancer cell populations to evolve over time. More broadly, our results argue that the immune system fundamentally surveils host genetic changes to suppress cancer. The human immune system naturally edits cancers of high-quality neoantigens.
Collapse
|
180
|
Chromatin structure predicts survival in glioma patients. Sci Rep 2022; 12:8221. [PMID: 35581287 PMCID: PMC9114333 DOI: 10.1038/s41598-022-11019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
The pathological changes in epigenetics and gene regulation that accompany the progression of low-grade to high-grade gliomas are under-studied. The authors use a large set of paired atac-seq and RNA-seq data from surgically resected glioma specimens to infer gene regulatory relationships in glioma. Thirty-eight glioma patient samples underwent atac-seq sequencing and 16 samples underwent additional RNA-seq analysis. Using an atac-seq/RNA-seq correlation matrix, atac-seq peaks were paired with genes based on high correlation values (|r2| > 0.6). Samples clustered by IDH1 status but not by grade. Surprisingly there was a trend for IDH1 mutant samples to have more peaks. The majority of peaks are positively correlated with survival and positively correlated with gene expression. Constructing a model of the top six atac-seq peaks created a highly accurate survival prediction model (r2 = 0.68). Four of these peaks were still significant after controlling for age, grade, pathology, IDH1 status and gender. Grade II, III, and IV (primary) samples have similar transcription factors and gene modules. However, grade IV (recurrent) samples have strikingly few peaks. Patient-derived glioma cultures showed decreased peak counts following radiation indicating that this may be radiation-induced. This study supports the notion that IDH1 mutant and IDH1 wildtype gliomas have different epigenetic landscapes and that accessible chromatin sites mapped by atac-seq peaks tend to be positively correlated with expression. The data in this study leads to a new model of treatment response wherein glioma cells respond to radiation therapy by closing open regions of DNA.
Collapse
|
181
|
van der Meulen M, Mason WP. First-line chemotherapeutic treatment for oligodendroglioma, WHO grade 3-PCV or temozolomide? Neurooncol Pract 2022; 9:163-164. [PMID: 35601972 PMCID: PMC9113249 DOI: 10.1093/nop/npac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthijs van der Meulen
- Departments of Neurology and Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Warren P Mason
- Departments of Neurology and Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
182
|
Brat DJ, Aldape K, Bridge JA, Canoll P, Colman H, Hameed MR, Harris BT, Hattab EM, Huse JT, Jenkins RB, Lopez-Terrada DH, McDonald WC, Rodriguez FJ, Souter LH, Colasacco C, Thomas NE, Yount MH, van den Bent MJ, Perry A. Molecular Biomarker Testing for the Diagnosis of Diffuse Gliomas. Arch Pathol Lab Med 2022; 146:547-574. [PMID: 35175291 PMCID: PMC9311267 DOI: 10.5858/arpa.2021-0295-cp] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The diagnosis and clinical management of patients with diffuse gliomas (DGs) have evolved rapidly over the past decade with the emergence of molecular biomarkers that are used to classify, stratify risk, and predict treatment response for optimal clinical care. OBJECTIVE.— To develop evidence-based recommendations for informing molecular biomarker testing for pediatric and adult patients with DGs and provide guidance for appropriate laboratory test and biomarker selection for optimal diagnosis, risk stratification, and prediction. DESIGN.— The College of American Pathologists convened an expert panel to perform a systematic review of the literature and develop recommendations. A systematic review of literature was conducted to address the overarching question, "What ancillary tests are needed to classify DGs and sufficiently inform the clinical management of patients?" Recommendations were derived from quality of evidence, open comment feedback, and expert panel consensus. RESULTS.— Thirteen recommendations and 3 good practice statements were established to guide pathologists and treating physicians on the most appropriate methods and molecular biomarkers to include in laboratory testing to inform clinical management of patients with DGs. CONCLUSIONS.— Evidence-based incorporation of laboratory results from molecular biomarker testing into integrated diagnoses of DGs provides reproducible and clinically meaningful information for patient management.
Collapse
Affiliation(s)
- Daniel J Brat
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (Brat)
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland (Aldape)
| | - Julia A Bridge
- The Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska (Bridge)
- Cytogenetics, ProPath, Dallas, Texas (Bridge)
| | - Peter Canoll
- The Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York (Canoll)
| | - Howard Colman
- The Department of Neurosurgery and Huntsman Cancer Institute, University of Utah, Salt Lake City (Colman)
| | - Meera R Hameed
- The Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York (Hameed)
| | - Brent T Harris
- The Department of Neurology and Pathology, MedStar Georgetown University Hospital, Washington, DC (Harris)
| | - Eyas M Hattab
- The Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky (Hattab)
| | - Jason T Huse
- The Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston (Huse)
| | - Robert B Jenkins
- The Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Jenkins)
| | - Dolores H Lopez-Terrada
- The Departments of Pathology and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas (Lopez-Terrada)
| | - William C McDonald
- The Department of Pathology, Abbott Northwestern Hospital, Minneapolis, Minnesota (McDonald)
| | - Fausto J Rodriguez
- The Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland (Rodriguez)
| | | | - Carol Colasacco
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | - Nicole E Thomas
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | | | - Martin J van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute University Medical Center Rotterdam, Rotterdam, the Netherlands (van den Bent)
| | - Arie Perry
- The Departments of Pathology and Neurological Surgery, University of California San Francisco School of Medicine, San Francisco (Perry)
| |
Collapse
|
183
|
Lamba N, McAvoy M, Kavouridis VK, Smith TR, Touat M, Reardon DA, Iorgulescu JB. Short-term outcomes associated with temozolomide or PCV chemotherapy for 1p/19q-codeleted WHO grade 3 oligodendrogliomas: A national evaluation. Neurooncol Pract 2022; 9:201-207. [PMID: 35601971 PMCID: PMC9113268 DOI: 10.1093/nop/npac004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The optimal chemotherapy regimen between temozolomide and procarbazine, lomustine, and vincristine (PCV) remains uncertain for WHO grade 3 oligodendroglioma (Olig3) patients. We therefore investigated this question using national data. Methods Patients diagnosed with radiotherapy-treated 1p/19q-codeleted Olig3 between 2010 and 2018 were identified from the National Cancer Database. The overall survival (OS) associated with first-line single-agent temozolomide vs multi-agent PCV was estimated by Kaplan-Meier techniques and evaluated by multivariable Cox regression. Results One thousand five hundred ninety-six radiotherapy-treated 1p/19q-codeleted Olig3 patients were identified: 88.6% (n = 1414) treated with temozolomide and 11.4% (n = 182) with PCV (from 5.4% in 2010 to 12.0% in 2018) in the first-line setting. The median follow-up was 35.5 months (interquartile range [IQR] 20.7-60.6 months) with 63.3% of patients alive at the time of analysis. There was a significant difference in unadjusted OS between temozolomide (5-year OS 58.9%, 95%CI: 55.6-62.0) and PCV (5-year OS 65.1%, 95%CI: 54.8-73.5; P = .04). However, a significant OS difference between temozolomide and PCV was not observed in the Cox regression analysis adjusted by age and extent of resection (PCV vs temozolomide HR 0.81, 95%CI: 0.59-1.11, P = .18). PCV was more frequently used for younger Olig3s but otherwise was not associated with patient's insurance status or care setting. Conclusions In a national analysis of Olig3s, first-line PCV chemotherapy was associated with a slightly improved unadjusted short-term OS compared to temozolomide; but not following adjustment by patient age and extent of resection. There has been an increase in PCV utilization since 2010. These findings provide preliminary data while we await the definitive results from the CODEL trial.
Collapse
Affiliation(s)
- Nayan Lamba
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Malia McAvoy
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, Washington, USA
| | - Vasileios K Kavouridis
- Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
| | - Timothy R Smith
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Mehdi Touat
- Service de Neurologie 2-Mazarin, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and Site de Recherche Intégrée sur le Cancer (SIRIC) Cancer United Research Associating Medicine, University & Society (CURAMUS), Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Center, Boston, Massachusetts, USA
| | - J Bryan Iorgulescu
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
184
|
Dissecting and analyzing the Subclonal Mutations Associated with Poor Prognosis in Diffuse Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4919111. [PMID: 35496054 PMCID: PMC9039777 DOI: 10.1155/2022/4919111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022]
Abstract
The prognostic and therapeutic implications in diffuse gliomas are still challenging. In this study, we first performed an integrative framework to infer the clonal status of mutations in glioblastomas (GBMs) and low-grade gliomas (LGGs) by using exome sequencing data from TCGA and observed both clonal and subclonal mutations for most mutant genes. Based on the clonal status of a given gene, we systematically investigated its prognostic value in GBM and LGG, respectively. Focusing on the subclonal mutations, our results showed that they were more likely to contribute to the poor prognosis, which could be hardly figured out without considering clonal status. These risk subclonal mutations were associated with some specific genomic features, such as genomic instability and intratumor heterogeneity, and their accumulation could enhance the prognostic value. By analyzing the regulatory mechanisms underlying the risk subclonal mutations, we found that the subclonal mutations of AHNAK and AHNAK2 in GBM and those of NF1 and PTEN in LGG could influence some important molecules and functions associated with glioma progression. Furthermore, we dissected the role of risk subclonal mutations in tumor evolution and found that advanced subclonal mutations showed poorer overall survival. Our study revealed the importance of clonal status in prognosis analysis, highlighting the role of the subclonal mutation in glioma prognosis.
Collapse
|
185
|
Zi H, Tuo Z, He Q, Meng J, Hu Y, Li Y, Yang K. Comprehensive Bioinformatics Analysis of Gasdermin Family of Glioma. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9046507. [PMID: 35463276 PMCID: PMC9033320 DOI: 10.1155/2022/9046507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022]
Abstract
Pyroptosis is a programmed cell death mediated by gasdermins (GSDMs). The prognostic value of pyroptosis-related genes in different tumor types has been gradually demonstrated recently. However, the prognostic impact of GSDMs expression in glioma remains unclear. Here, we present a comprehensive bioinformatic analysis of gasdermin family member gene expression, producing a prognostic model for glioma and creating a competing endogenous RNA (ceRNA) network. The mRNA expression profiles and clinical information of glioma patients were downloaded from TCGA and CGGA. A risk score based on the gasdermin family was constructed in the TCGA cohort and validated in CGGA. The Jurkat cell was used to verify the relationship between pyroptosis and activation-induced cell death (AICD). We identify a significant association between the expression of GSDMD and GSDME and the glioma stage. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was used to construct a prognostic gene model based on the four prognostic gasdermin family genes (GSDMC, GSDMD, GSDME, and PJVK). This model was able to predict the overall survival of glioma patients with high accuracy. We show that gasdermin family genes are expressed primarily by immune cells, endothelial cells, and neuronal cells in the tumor microenvironment, rather than by malignant tumor cells. T cells were significantly activated in high-risk patients; however, the activation-induced cell death (AICD) pathway was also significantly activated, suggesting widespread expiration of cytotoxic T lymphocytes (CTLs), facilitating tumor progression. We also identify the lncRNA/miR-296-5p/GSDMD regulatory axis as an important player in glioma progression. We have conducted a comprehensive bioinformatic analysis identifying the importance of gasdermin family members in glioma; a prognostic algorithm containing four genes was constructed.
Collapse
Affiliation(s)
- Huaduan Zi
- Cancer Center Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhan Tuo
- Cancer Center Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyuan He
- Cancer Center Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingshu Meng
- Cancer Center Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Hu
- Cancer Center Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Li
- Cancer Center Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kunyu Yang
- Cancer Center Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
186
|
Couturier CP, Nadaf J, Li Z, Baig S, Riva G, Le P, Kloosterman DJ, Monlong J, Nkili Meyong A, Allache R, Degenhard T, Al-Rashid M, Guiot MC, Bourque G, Ragoussis J, Akkari L, Quintana FJ, Petrecca K. Glioblastoma scRNAseq Shows Treatment-induced, Immune-dependent Rise In Mesenchymal Cancer Cells, and Structural Variants in Distal Neural Stem Cells. Neuro Oncol 2022; 24:1494-1508. [PMID: 35416251 PMCID: PMC9435507 DOI: 10.1093/neuonc/noac085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Glioblastoma is a treatment-resistant brain cancer. Its hierarchical cellular nature and its tumour microenvironment (TME) before, during, and after treatments remain unresolved. METHODS Here, we used single-cell RNA-sequencing to analyze new and recurrent glioblastoma, and the nearby subventricular zone (SVZ). RESULTS We found four glioblastoma neural lineages are present in new and recurrent glioblastoma with an enrichment of the cancer mesenchymal lineage, immune cells, and reactive astrocytes in early recurrences. Cancer lineages were hierarchically organized around cycling oligodendrocytic and astrocytic progenitors that are transcriptomically similar but distinct to SVZ neural stem cells (NSCs). Furthermore, NSCs from the SVZ of glioblastoma patients harbored glioblastoma chromosomal anomalies. Lastly, mesenchymal cancer cells and TME reactive astrocytes shared similar gene signatures which were induced by radiotherapy in a myeloid-dependent fashion in vivo. CONCLUSION These data reveal the dynamic, immune-dependent nature of glioblastoma's response to treatments and identify distant NSCs as likely cells of origin.
Collapse
Affiliation(s)
- Charles P Couturier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University
| | - Javad Nadaf
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University.,McGill University and Genome Québec Innovation Centre, Montreal, Quebec, Canada, Department of Human Genetics, Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Salma Baig
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University
| | - Gabriele Riva
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University
| | - Phuong Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University
| | - Daan J Kloosterman
- Tumour Biology and Immunology Division, The Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Jean Monlong
- McGill University and Genome Québec Innovation Centre, Montreal, Quebec, Canada, Department of Human Genetics, Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada.,UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Andriniaina Nkili Meyong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University
| | - Redouane Allache
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University
| | - Theresa Degenhard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University
| | - Mariam Al-Rashid
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University
| | - Marie-Christine Guiot
- Department of Neuropathology, Montreal Neurological Institute-Hospital, McGill University
| | - Guillaume Bourque
- McGill University and Genome Québec Innovation Centre, Montreal, Quebec, Canada, Department of Human Genetics, Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Jiannis Ragoussis
- McGill University and Genome Québec Innovation Centre, Montreal, Quebec, Canada, Department of Human Genetics, Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Leila Akkari
- Tumour Biology and Immunology Division, The Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University
| |
Collapse
|
187
|
Xu PF, Li C, Xi SY, Chen FR, Wang J, Zhang ZQ, Liu Y, Li X, Chen ZP. Whole Exome Sequencing Reveals the Genetic Heterogeneity and Evolutionary History of Primary Gliomas and Matched Recurrences. Comput Struct Biotechnol J 2022; 20:2235-2246. [PMID: 35615029 PMCID: PMC9117816 DOI: 10.1016/j.csbj.2022.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Peng-Fei Xu
- Scientific Research Center, The 7th Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 510275, PR China
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
- School of Medical, Sun Yat-Sen University, Shenzhen, Guandong 510275, PR China
| | - Cong Li
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, Guandong 510120, PR China
| | - Shao-Yan Xi
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Fu-Rong Chen
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Jing Wang
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Zhi-Qiang Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, Guandong 510120, PR China
| | - Yan Liu
- Scientific Research Center, The 7th Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 510275, PR China
| | - Xin Li
- School of Medical, Sun Yat-Sen University, Shenzhen, Guandong 510275, PR China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China
- Corresponding authors.
| | - Zhong-Ping Chen
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
- Corresponding authors.
| |
Collapse
|
188
|
Hicks WH, Bird CE, Gattie LC, Shami ME, Traylor JI, Shi DD, McBrayer SK, Abdullah KG. Creation and Development of Patient-Derived Organoids for Therapeutic Screening in Solid Cancer. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00211-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
189
|
Liu Y, Sathe AA, Abdullah KG, McBrayer SK, Adams SH, Brenner AJ, Hatanpaa KJ, Viapiano MS, Xing C, Walker JM, Richardson TE. Global DNA methylation profiling reveals chromosomal instability in IDH-mutant astrocytomas. Acta Neuropathol Commun 2022; 10:32. [PMID: 35264242 PMCID: PMC8908645 DOI: 10.1186/s40478-022-01339-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
Diffusely infiltrating gliomas are among the most common central nervous system tumors in adults. Over the past decade, the subcategorization of these tumors has changed to include both traditional histologic features and more recently identified molecular factors. However, one molecular feature that has yet to be integrated is the presence/absence of chromosomal instability (CIN). Herein, we use global methylation profiling to evaluate a reference cohort of IDH-mutant astrocytomas with and without prior evidence of CIN (n = 42), and apply the resulting methylation-based characteristics to a larger test cohort of publicly-available IDH-mutant astrocytomas (n = 245). We demonstrate that IDH-mutant astrocytomas with evidence of CIN cluster separately from their chromosomally-stable counterparts. CIN cases were associated with higher initial histologic grade, altered expression patterns of genes related to CIN in other cancers, elevated initial total copy number burden, and significantly worse progression-free and overall survival. In addition, in a grade-for-grade analysis, patients with CIN-positive WHO grade 2 and 3 tumors had significantly worse survival. These results suggest that global methylation profiling can be used to discriminate between chromosomally stable and unstable IDH-mutant astrocytomas, and may therefore provide a reliable and cost-effective method for identifying gliomas with chromosomal instability and resultant poor clinical outcome.
Collapse
Affiliation(s)
- Yan Liu
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Adwait Amod Sathe
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kalil G. Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA 15213 USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA 15232 USA
| | - Samuel K. McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Steven H. Adams
- Department of Pathology, Stony Brook University Hospital, Stony Brook, NY 11794 USA
| | - Andrew J. Brenner
- Department of Internal Medicine, Division of Hematology & Oncology, University of Texas Health San Antonio, San Antonio, TX 78229 USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - Kimmo J. Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210 USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY 13210 USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jamie M. Walker
- Department of Pathology and Laboratory Medicine, Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Disease, University of Texas Health San Antonio, 7703 Floyd Curl Dr., MC 8070, San Antonio, TX 78229 USA
| | - Timothy E. Richardson
- Department of Pathology and Laboratory Medicine, Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Disease, University of Texas Health San Antonio, 7703 Floyd Curl Dr., MC 8070, San Antonio, TX 78229 USA
| |
Collapse
|
190
|
Waqar M, Trifiletti DM, McBain C, O'Connor J, Coope DJ, Akkari L, Quinones-Hinojosa A, Borst GR. Early Therapeutic Interventions for Newly Diagnosed Glioblastoma: Rationale and Review of the Literature. Curr Oncol Rep 2022; 24:311-324. [PMID: 35119629 PMCID: PMC8885508 DOI: 10.1007/s11912-021-01157-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Glioblastoma is the commonest primary brain cancer in adults whose outcomes are amongst the worst of any cancer. The current treatment pathway comprises surgery and postoperative chemoradiotherapy though unresectable diffusely infiltrative tumour cells remain untreated for several weeks post-diagnosis. Intratumoural heterogeneity combined with increased hypoxia in the postoperative tumour microenvironment potentially decreases the efficacy of adjuvant interventions and fails to prevent early postoperative regrowth, called rapid early progression (REP). In this review, we discuss the clinical implications and biological foundations of post-surgery REP. Subsequently, clinical interventions potentially targeting this phenomenon are reviewed systematically. RECENT FINDINGS Early interventions include early systemic chemotherapy, neoadjuvant immunotherapy, local therapies delivered during surgery (including Gliadel wafers, nanoparticles and stem cell therapy) and several radiotherapy techniques. We critically appraise and compare these strategies in terms of their efficacy, toxicity, challenges and potential to prolong survival. Finally, we discuss the most promising strategies that could benefit future glioblastoma patients. There is biological rationale to suggest that early interventions could improve the outcome of glioblastoma patients and they should be investigated in future trials.
Collapse
Affiliation(s)
- Mueez Waqar
- Department of Academic Neurological Surgery, Geoffrey Jefferson Brain Research Centre, Salford Royal Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL, 32224, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Catherine McBain
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK
| | - James O'Connor
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK
| | - David J Coope
- Department of Academic Neurological Surgery, Geoffrey Jefferson Brain Research Centre, Salford Royal Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alfredo Quinones-Hinojosa
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL, 32224, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Gerben R Borst
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
191
|
Robin AM, Pawloski JA, Snyder JM, Walbert T, Rogers L, Mikkelsen T, Noushmehr H, Lee I, Rock J, Kalkanis SN, Rosenblum ML. Neurosurgery's Impact on Neuro-Oncology—“Can We Do Better?”—Lessons Learned Over 50 Years. Neurosurgery 2022; 68:17-26. [DOI: 10.1227/neu.0000000000001879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 11/19/2022] Open
|
192
|
Barresi V, Mafficini A, Calicchia M, Piredda ML, Musumeci A, Ghimenton C, Scarpa A. Recurrent oligodendroglioma with changed 1p/19q status. Neuropathology 2022; 42:160-166. [PMID: 35144313 PMCID: PMC9546156 DOI: 10.1111/neup.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022]
Abstract
We report a case of oligodendroglioma that had consistent histopathological features as well as a distinct change in 1p/19q status in the second recurrence, after temozolomide chemotherapy and radiotherapy. The first tumor recurrence had oligodendroglial morphology, IDH1 R132H and TERT promoter mutations, and 1p/19q codeletion detected by fluorescent in situ hybridization (FISH). Copy number analysis, assessed by next‐generation sequencing, confirmed 1p/19q codeletion, and disclosed loss of heterozygosity (LOH) of chromosomes 4 and 9 and chromosome 11 gain. The second recurrence featured not only oligodendroglial morphology but also the appearance of admixed multinucleated giant cells or neoplastic cells having oval nuclei and mitoses and showing microvascular proliferation; it maintained IDH1 R132H and TERT promoter mutations, acquired TP53 mutation, and showed 19q LOH, but disomic 1p, detected by FISH. Copy number analysis depicted LOH of chromosomes 3p, 13, and 19q, 1p partial deletion (1p chr1p34.2‐p11), and gain of chromosomes 2p25.3‐p24.1, 8q12.2‐q24.3, and 11q13.3‐q25. B‐allele frequency analysis of polymorphic sites disclosed copy‐neutral LOH at 1p36.33‐p34.2, supporting the initial deletion of 1p, followed by reduplication of 1p36.33‐p34.2 alone. These findings suggest that the two tumor recurrences might have originated from an initial neoplastic clone, featuring 1p/19q codeletion and IDH1 and TERT promoter mutations, and have independently acquired other copy number alterations. The reduplication of chromosome 1p might be the result of temozolomide treatment, and gave rise to false negative 1p deletion detected by FISH. The possibility of 1p copy‐neutral LOH should be considered in recurrent oligodendrogliomas with altered 1p/19q status detected by FISH.
Collapse
Affiliation(s)
- Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy.,ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Martina Calicchia
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Maria Liliana Piredda
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Angelo Musumeci
- Department of Neurosciences, Unit of Neurosurgery, Hospital Trust of Verona, Verona, Italy
| | - Claudio Ghimenton
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy.,ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
193
|
Broggi G, Piombino E, Altieri R, Romano C, Certo F, Barbagallo GMV, Vigneri P, Condorelli D, Colarossi L, Colarossi C, Magro G, Tirrò E. Glioblastoma, IDH-Wild Type With FGFR3-TACC3 Fusion: When Morphology May Reliably Predict the Molecular Profile of a Tumor. A Case Report and Literature Review. Front Neurol 2022; 13:823015. [PMID: 35222252 PMCID: PMC8863931 DOI: 10.3389/fneur.2022.823015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
It has been reported that in-frame FGFR3-TACC3 fusions confer to glioblastomas, IDH-wild type (GBMs, IDHwt) some unusual morphologic features, including monomorphous rounded cells with ovoid nuclei, nuclear palisading, endocrinoid network of “chicken-wire” vessels, microcalcifications and desmoplastic stroma, whose observation may predict the molecular profile of the tumor. We herein present a case of recurrent GBMs, IDHwt, exhibiting some of the above-mentioned morphological features and a molecularly-proven FGFR3-TACC3 fusion. A 56-year-old man presented to our hospital for a recurrent GBM, IDHwt, surgically treated at another center. Histologically, the tumor, in addition to the conventional GBM morphology, exhibited the following peculiar morphologic features: (1) monomorphous neoplastic cells with rounded nuclei and scant pale cytoplasm; (2) thin capillary-like vessels with “chicken-wire” pattern; (3) nuclear palisading; (4) formation of vague perivascular pseudorosettes; (5) spindled tumor cells embedded in a loose, myxoid background. Based on this unusual morphology, molecular analyses were performed and an FGFR3 exon17-TACC3 exon 10 fusion was found. The present case contributes to widening the morphologic spectrum of FGFR3-TACC3-fused GBM, IDHwt and emphasizes that pathologists, in the presence of a GBM, IDHwt with unconventional morphology, should promptly search for this fusion gene.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
- *Correspondence: Giuseppe Broggi
| | - Eliana Piombino
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico-San Marco” University Hospital, University of Catania, Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Francesco Certo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico-San Marco” University Hospital, University of Catania, Catania, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico-San Marco” University Hospital, University of Catania, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Dario Condorelli
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Lorenzo Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
| | - Elena Tirrò
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-San Marco”, Catania, Italy
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
194
|
Richardson LG, Miller JJ, Kitagawa Y, Wakimoto H, Choi BD, Curry WT. Implications of IDH mutations on immunotherapeutic strategies for malignant glioma. Neurosurg Focus 2022; 52:E6. [DOI: 10.3171/2021.11.focus21604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022]
Abstract
Immunotherapy has emerged as a promising approach for treating aggressive solid tumors, even within the CNS. Mutation in the metabolic gene isocitrate dehydrogenase 1 (IDH1) represents not only a major glioma defining biomarker but also an attractive therapeutic neoantigen. As patients with IDH-mutant glioma enter early-phase vaccine and immune checkpoint inhibitor clinical trials, there is emerging evidence that implicates the oncometabolite, 2-hydroxyglutarate (2HG), generated by the neomorphic activity of mutant IDH, as a potential barrier to current immunotherapeutic approaches. Here, the authors review the immunomodulatory and immunosuppressive roles of 2HG within the unique IDH-mutant glioma tumor immune microenvironment and discuss promising immunotherapeutic approaches currently being investigated in preclinical models.
Collapse
Affiliation(s)
- Leland G. Richardson
- Translational Brain Tumor Immunology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Julie J. Miller
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Bryan D. Choi
- Translational Brain Tumor Immunology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - William T. Curry
- Translational Brain Tumor Immunology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
195
|
Suwala AK, Felix M, Friedel D, Stichel D, Schrimpf D, Hinz F, Hewer E, Schweizer L, Dohmen H, Pohl U, Staszewski O, Korshunov A, Stein M, Wongsurawat T, Cheunsuacchon P, Sathornsumetee S, Koelsche C, Turner C, Le Rhun E, Mühlebner A, Schucht P, Özduman K, Ono T, Shimizu H, Prinz M, Acker T, Herold-Mende C, Kessler T, Wick W, Capper D, Wesseling P, Sahm F, von Deimling A, Hartmann C, Reuss DE. Oligosarcomas, IDH-mutant are distinct and aggressive. Acta Neuropathol 2022; 143:263-281. [PMID: 34967922 PMCID: PMC8742817 DOI: 10.1007/s00401-021-02395-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 01/21/2023]
Abstract
Oligodendrogliomas are defined at the molecular level by the presence of an IDH mutation and codeletion of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 24 IDH-mutant oligosarcomas from 23 patients forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 12 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dense network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA and CALD1, loss of OLIG2 and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Copy number neutral LOH was determined as underlying mechanism. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional CNS WHO grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas as first recurrence than for grade 3 oligodendrogliomas as first recurrence. These results establish oligosarcomas as a distinct group of IDH-mutant gliomas differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. The diagnosis can be based on the combined presence of (a) sarcomatous histology, (b) IDH-mutation and (c) TERT promoter mutation and/or 1p/19q codeletion, or, in unresolved cases, on its characteristic DNA methylation profile.
Collapse
|
196
|
Aguilar-Morante D, Gómez-Cabello D, Quek H, Liu T, Hamerlik P, Lim YC. Therapeutic Opportunities of Disrupting Genome Integrity in Adult Diffuse Glioma. Biomedicines 2022; 10:biomedicines10020332. [PMID: 35203541 PMCID: PMC8869545 DOI: 10.3390/biomedicines10020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Adult diffuse glioma, particularly glioblastoma (GBM), is a devastating tumor of the central nervous system. The existential threat of this disease requires on-going treatment to counteract tumor progression. The present outcome is discouraging as most patients will succumb to this disease. The low cure rate is consistent with the failure of first-line therapy, radiation and temozolomide (TMZ). Even with their therapeutic mechanism of action to incur lethal DNA lesions, tumor growth remains undeterred. Delivering additional treatments only delays the inescapable development of therapeutic tolerance and disease recurrence. The urgency of establishing lifelong tumor control needs to be re-examined with a greater focus on eliminating resistance. Early genomic and transcriptome studies suggest each tumor subtype possesses a unique molecular network to safeguard genome integrity. Subsequent seminal work on post-therapy tumor progression sheds light on the involvement of DNA repair as the causative contributor for hypermutation and therapeutic failure. In this review, we will provide an overview of known molecular factors that influence the engagement of different DNA repair pathways, including targetable vulnerabilities, which can be exploited for clinical benefit with the use of specific inhibitors.
Collapse
Affiliation(s)
- Diana Aguilar-Morante
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Daniel Gómez-Cabello
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Hazel Quek
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Tianqing Liu
- NICM Health Research Institute, Westmead, NSW 2145, Australia;
| | | | - Yi Chieh Lim
- Danish Cancer Society, 2100 København, Denmark;
- Correspondence: ; Tel.: +45-35-257-413
| |
Collapse
|
197
|
Li J, Bi D, Zhang X, Cao Y, Lv K, Jiang L. Network Pharmacology and Inflammatory Microenvironment Strategy Approach to Finding the Potential Target of Siraitia grosvenorii (Luo Han Guo) for Glioblastoma. Front Genet 2022; 12:799799. [PMID: 34987553 PMCID: PMC8721149 DOI: 10.3389/fgene.2021.799799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Glioblastoma (GBM) is the most common and aggressive primary intracranial tumor of the central nervous system, and the prognosis of GBM remains a challenge using the standard methods of treatment—TMZ, radiation, and surgical resection. Traditional Chinese medicine (TCM) is a helpful complementary and alternative medicine. However, there are relatively few studies on TCM for GBM. Purpose: We aimed to find the connection between TCM and anti-GBM. Study design: Network pharmacology and inflammatory microenvironment strategy were used to predict Siraitia grosvenorii (Luo Han Guo) target for treating glioblastoma. Methods: We mainly used network pharmacology and bioinformatics. Results: CCL5 was significantly highly expressed in GBM with poor prognostics. Uni-cox and randomForest were used to determine that CCL5 was especially a biomarker in GBM. CCL5 was also the target for SG and TMZ. The active ingredient of Luo Han Guo — squalene and CCL5 —showed high binding efficiency. CCL5, a chemotactic ligand, was enriched and positively correlated in eosinophils. CCL5 was also the target of Luo Han Guo, and its effective active integrate compound –— squalene — might act on CCL5. Conclusion: SG might be a new complementary therapy of the same medicine and food, working on the target CCL5 and playing an anti-GBM effect. CCL5 might affect the immune microenvironment of GBM.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - De Bi
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Xin Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yunpeng Cao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
198
|
Yearley AG, Iorgulescu JB, Chiocca EA, Peruzzi PP, Smith TR, Reardon DA, Mooney MA. The current state of glioma data registries. Neurooncol Adv 2022; 4:vdac099. [PMID: 36196363 PMCID: PMC9521197 DOI: 10.1093/noajnl/vdac099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Background The landscape of glioma research has evolved in the past 20 years to include numerous large, multi-institutional, database efforts compiling either clinical data on glioma patients, molecular data on glioma specimens, or a combination of both. While these strategies can provide a wealth of information for glioma research, obtaining information regarding data availability and access specifications can be challenging. Methods We reviewed the literature for ongoing clinical, molecular, and combined database efforts related to glioma research to provide researchers with a curated overview of the current state of glioma database resources. Results We identified and reviewed a total of 20 databases with data collection spanning from 1975 to 2022. Surveyed databases included both low- and high-grade gliomas, and data elements included over 100 clinical variables and 12 molecular data types. Select database strengths included large sample sizes and a wide variety of variables available, while limitations of some databases included complex data access requirements and a lack of glioma-specific variables. Conclusions This review highlights current databases and registries and their potential utility in clinical and genomic glioma research. While many high-quality resources exist, the fluid nature of glioma taxonomy makes it difficult to isolate a large cohort of patients with a pathologically confirmed diagnosis. Large, well-defined, and publicly available glioma datasets have the potential to expand the reach of glioma research and drive the field forward.
Collapse
Affiliation(s)
- Alexander G Yearley
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian Bryan Iorgulescu
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ennio Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy R Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael A Mooney
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
199
|
Krolicki L, Kunikowska J, Bruchertseifer F, Koziara H, Morgenstern A, Krolicki B, Rosiak E, Pawlak D, Merlo A. Nuclear medicine therapy of CNS tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
200
|
Engineered cells as glioblastoma therapeutics. Cancer Gene Ther 2022; 29:156-166. [PMID: 33753869 PMCID: PMC8850190 DOI: 10.1038/s41417-021-00320-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
In spite of significant recent advances in our understanding of the genetics and cell biology of glioblastoma, to date, this has not led to improved treatments for this cancer. In addition to small molecule, antibody, and engineered virus approaches, engineered cells are also being explored as glioblastoma therapeutics. This includes CAR-T cells, CAR-NK cells, as well as engineered neural stem cells and mesenchymal stem cells. Here we review the state of this field, starting with clinical trial studies. These have established the feasibility and safety of engineered cell therapies for glioblastoma and show some evidence for activity. Next, we review the preclinical literature and compare the strengths and weaknesses of various starting cell types for engineered cell therapies. Finally, we discuss future directions for this nascent but promising modality for glioblastoma therapy.
Collapse
|