151
|
Imura T, Wang X, Noda T, Sofroniew MV, Fushiki S. Adenomatous polyposis coli is essential for both neuronal differentiation and maintenance of adult neural stem cells in subventricular zone and hippocampus. Stem Cells 2011; 28:2053-2064. [PMID: 21089118 DOI: 10.1002/stem.524] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is a multifunctional protein that not only inhibits the Wnt signaling pathway by promoting the degradation of β-catenin but also controls cell polarity, motility, and division. APC is abundantly expressed in the adult central nervous system, but its role in adult neurogenesis remains unknown. Using conditional deletion (or knockout) of APC (APC-CKO) from glial fibrillary acidic protein (GFAP)-expressing cells including adult neural stem cells (NSCs) in the subventricular zone and hippocampal dentate gyrus, we show that APC expression by these cells is a critical component of adult neurogenesis. Loss of APC function resulted in a marked reduction of GFAP-expressing NSC-derived new neurons, leading to the decreased volume of olfactory granule cell layer. Two distinct mechanisms account for impaired neurogenesis in APC-CKO mice. First, APC was highly expressed in migrating neuroblasts and APC deletion disturbed the differentiation from Mash1-expressing transient amplifying cells to neuroblasts with concomitant accumulation of β-catenin. As a result, migrating neuroblasts decreased, whereas Mash1-expressing dividing cells reciprocally increased in the olfactory bulb of APC-CKO mice. Second, APC deletion promoted an exhaustion of the adult germinal zone. Functional NSCs and their progeny progressively depleted with age. These findings demonstrate that APC expression plays a key role in regulating intracellular β-catenin level and neuronal differentiation of newly generated cells, as well as maintaining NSCs in the adult neurogenic niche. STEM CELLS 2010;28:2053-2064.
Collapse
Affiliation(s)
- Tetsuya Imura
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Xiaohong Wang
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tetsuo Noda
- Department of Cell Biology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
152
|
Ikeda M, Hirota Y, Sakaguchi M, Yamada O, Kida YS, Ogura T, Otsuka T, Okano H, Sawamoto K. Expression and proliferation-promoting role of Diversin in the neuronally committed precursor cells migrating in the adult mouse brain. Stem Cells 2011; 28:2017-26. [PMID: 20827749 DOI: 10.1002/stem.516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The subventricular zone (SVZ) is the largest neurogenic region in the adult rodent brain. In the adult SVZ, unlike in the embryonic brain, neuronally committed precursor cells (neuroblasts) maintain their proliferative activity while migrating toward the olfactory bulb (OB), suggesting that they are inhibited from exiting the cell cycle. Little is known about the mechanisms underlying the unique ability of adult neuroblasts to proliferate during migration. Here, we studied the expression and function of Diversin, a component of the Wnt signaling pathways. In the neonatal and adult mouse brain, Diversin expression was observed in neuroblasts and mature neurons in the SVZ and hippocampus. Retrovirus-mediated overexpression of Diversin promoted the proliferation of neuroblasts and increased the number of neuroblasts that reached the OB. Conversely, the knockdown of Diversin decreased the proliferation of neuroblasts. Our results indicate that Diversin plays an important role in the proliferation of neuroblasts in the SVZ of the adult brain.
Collapse
Affiliation(s)
- Makiko Ikeda
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Nestin reporter transgene labels multiple central nervous system precursor cells. Neural Plast 2011; 2010:894374. [PMID: 21527990 PMCID: PMC3080708 DOI: 10.1155/2010/894374] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/18/2010] [Accepted: 12/27/2010] [Indexed: 02/08/2023] Open
Abstract
Embryonic neuroepithelia and adult subventricular zone (SVZ) stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP) specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes.
Collapse
|
154
|
Glia- and neuron-specific functions of TrkB signalling during retinal degeneration and regeneration. Nat Commun 2011; 2:189. [PMID: 21304518 PMCID: PMC3105320 DOI: 10.1038/ncomms1190] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/12/2011] [Indexed: 01/07/2023] Open
Abstract
Glia, the support cells of the central nervous system, have recently attracted considerable attention both as mediators of neural cell survival and as sources of neural regeneration. To further elucidate the role of glial and neural cells in neurodegeneration, we generated TrkBGFAP and TrkBc-kit knockout mice in which TrkB, a receptor for brain-derived neurotrophic factor (BDNF), is deleted in retinal glia or inner retinal neurons, respectively. Here, we show that the extent of glutamate-induced retinal degeneration was similar in these two mutant mice. Furthermore in TrkBGFAP knockout mice, BDNF did not prevent photoreceptor degeneration and failed to stimulate Müller glial cell proliferation and expression of neural markers in the degenerating retina. These results demonstrate that BDNF signalling in glia has important roles in neural protection and regeneration, particularly in conversion of Müller glia to photoreceptors. In addition, our genetic models provide a system in which glia- and neuron-specific gene functions can be tested in central nervous system tissues in vivo. The central nervous system contains glial cells, which have been shown to have an important role in neuronal survival. Harada et al. use transgenic mouse models to show that TrkB, a receptor for the growth factor brain-derived neurotrophic factor, is required for retinal Müller glial cells to provide neuroprotection and regeneration.
Collapse
|
155
|
Bunk EC, Stelzer S, Hermann S, Schäfers M, Schlatt S, Schwamborn JC. Cellular organization of adult neurogenesis in the Common Marmoset. Aging Cell 2011; 10:28-38. [PMID: 21040399 DOI: 10.1111/j.1474-9726.2010.00639.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adult neurogenesis within the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ) of the lateral ventricle (LV) has been most intensely studied within the brains of rodents such as mice and rats. However, little is known about the cell types and processes involved in adult neurogenesis within primates such as the common marmoset (Callithrix jacchus). Moreover, substantial differences seem to exist between the neurogenic niche of the LV between rodents and humans. Here, we set out to use immunohistochemical and autogradiographic analysis to characterize the anatomy of the neurogenic niches and the expression of cell type-specific markers in those niches in the adult common marmoset brain. Moreover, we demonstrate significant differences in the activity of neurogenesis in the adult marmoset brain compared to the adult mouse brain. Finally, we provide evidence for ongoing proliferation of neuroblasts within both the SGZ and SVZ of the adult brain and further show that the age-dependent decline of neurogenesis in the hippocampus is associated with a decrease in neuroblast cells.
Collapse
Affiliation(s)
- Eva C Bunk
- ZMBE, Cell Biology, Stem Cell Biology and Regeneration Group, Germany
| | | | | | | | | | | |
Collapse
|
156
|
Nat R, Dechant G. Milestones of directed differentiation of mouse and human embryonic stem cells into telencephalic neurons based on neural development in vivo. Stem Cells Dev 2011; 20:947-58. [PMID: 21166522 DOI: 10.1089/scd.2010.0417] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the normal development of individual neural subtypes provides an essential framework for the design of rational approaches to embryonic stem cell differentiation for in vitro studies and cell replacement therapies. Of particular interest and a particular challenge are the cells that build-up the telencephalon. Recent research has unraveled key developmental mechanisms contributing to the generation of specific telencephalic cells. We focus on morphogens and transcription factors known to regulate distinct developmental processes. These include early anterior/posterior patterning, dorsal/ventral patterning, and generation of progenitor domains and neuronal specification into major classes of telencephalic cells: glutamatergic projection neurons, different subtypes of γ-aminobutyric acid-ergic interneurons and projection neurons, as well as cholinergic interneurons and projection neurons. Based on a comparison with in vivo telencephalic neurogenesis, we propose that the specific combinations of transcription factors expressed during development can serve as milestones for the in vitro differentiation of embryonic stem cells toward specific telencephalic neurons.
Collapse
Affiliation(s)
- Roxana Nat
- Department of Cellular and Molecular Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania.
| | | |
Collapse
|
157
|
Abstract
Oligodendrocytes and astrocytes are macroglial cells of the vertebrate central nervous system. These cells have diverse roles in the maintenance of neurological function. In the embryo, the genetic mechanisms that underlie the specification of macroglial precursors in vivo appear strikingly similar to those that regulate the development of the diverse neuron types. The switch from producing neuronal to glial subtype-specific precursors can be modelled as an interplay between region-restricted components and temporal regulators that determine neurogenic or gliogenic phases of development, contributing to glial diversity. Gaining insight into the developmental genetics of macroglia has great potential to improve our understanding of a variety of neurological disorders in humans.
Collapse
|
158
|
Kitada M, Kuroda Y, Dezawa M. Lectins as a tool for detecting neural stem/progenitor cells in the adult mouse brain. Anat Rec (Hoboken) 2010; 294:305-21. [PMID: 21235006 DOI: 10.1002/ar.21311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/09/2010] [Indexed: 11/06/2022]
Abstract
Glycoconjugates are biopolymers that are broadly distributed in the central nervous system, including the cell surface of neural stem cells or neural precursor cells (NSCs/NPCs). Glycoconjugates can be recognized by carbohydrate-binding proteins, lectins. Two lectins, Phaseolus vulgaris lectin agglutinin E-form (PHA-E4) and wheat germ agglutinin (WGA) have been reported to be useful in isolating NSCs/NPCs by fluorescence-activated cell sorting (FACS) or immunopanning methods. In this study, we analyzed the lectin-binding properties of NSCs/NPCs in two neurogenic regions of the adult mouse brain to determine whether PHA-E4 and WGA exhibit specific binding patterns on sections and whether there are other lectins presenting the binding pattern similar to those of PHA-E4 and WGA in lectin histochemistry. Among nine types of lectins, peanut agglutinin was localized to the white matter and four lectins bound to cells within the subventricular zone (SVZ) of the lateral ventricle. Lectin histochemistry combined with immunohistochemistry demonstrated that one lectin, Ricinus communis agglutinin, specifically detected type A neuronal precursors and that the remaining three lectins, Agaricus bisporus agglutinin (ABA), PHA-E4, and WGA, recognized type B NSCs and type C transient amplifying cells in the SVZ. These three lectins also recognized type 1 quiescent neural progenitors and type 2a amplifying neural progenitors in the subgranular layer of the dentate gyrus. Lectin histochemistry of the neurosphere culture also yielded similar results. These observations suggest that, in addition to PHA-E4 and WGA, ABA lectin may also be applicable in FACS or immunopanning for the isolation of NSCs/NPCs.
Collapse
Affiliation(s)
- Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | | | |
Collapse
|
159
|
Fournet V, Jany M, Fabre V, Chali F, Orsal D, Schweitzer A, Andrieux A, Messanvi F, Giros B, Hamon M, Lanfumey L, Deloulme JC, Martres MP. The deletion of the microtubule-associated STOP protein affects the serotonergic mouse brain network. J Neurochem 2010; 115:1579-94. [PMID: 20969568 DOI: 10.1111/j.1471-4159.2010.07064.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The deletion of microtubule-associated protein stable tubule only polypeptide (STOP) leads to neuroanatomical, biochemical and severe behavioral alterations in mice, partly alleviated by antipsychotics. Therefore, STOP knockout (KO) mice have been proposed as a model of some schizophrenia-like symptoms. Preliminary data showed decreased brain serotonin (5-HT) tissue levels in STOP KO mice. As literature data demonstrate various interactions between microtubule-associated proteins and 5-HT, we characterized some features of the serotonergic neurotransmission in STOP KO mice. In the brainstem, mutant mice displayed higher tissue 5-HT levels and in vivo synthesis rate, together with marked increases in 5-HT transporter densities and 5-HT1A autoreceptor levels and electrophysiological sensitivity, without modification of the serotonergic soma number. Conversely, in projection areas, STOP KO mice exhibited lower 5-HT levels and in vivo synthesis rate, associated with severe decreases in 5-HT transporter densities, possibly related to reduced serotonergic terminals. Mutant mice also displayed a deficit of adult hippocampal neurogenesis, probably related to both STOP deletion and 5-HT depletion. Finally, STOP KO mice exhibited a reduced anxiety- and, probably, an increased helpness-status, that could be because of the strong imbalance of the serotonin neurotransmission between somas and terminals. Altogether, these data suggested that STOP deletion elicited peculiar 5-HT disconnectivity.
Collapse
Affiliation(s)
- Vincent Fournet
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Prajerova I, Honsa P, Chvatal A, Anderova M. Distinct effects of sonic hedgehog and Wnt-7a on differentiation of neonatal neural stem/progenitor cells in vitro. Neuroscience 2010; 171:693-711. [PMID: 20868729 DOI: 10.1016/j.neuroscience.2010.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/09/2010] [Accepted: 09/14/2010] [Indexed: 01/19/2023]
Abstract
Sonic hedgehog (Shh) and Wnt-7a are morphogens involved in embryonic as well as ongoing adult neurogenesis. Their effects on the differentiation and membrane properties of neonatal neural stem/progenitor cells (NS/PCs) were studied in vitro using NS/PCs transduced with either Shh or Wnt-7a. Eight days after the onset of in vitro differentiation the cells were analyzed for the expression of neuronal and glial markers using immunocytochemical and Western blot analysis, and their membrane properties were characterized using the patch-clamp technique. Our results showed that both Shh and Wnt-7a increased the numbers of cells expressing neuronal markers; however, quantitative immunocytochemical analysis showed that only Wnt-7a enhanced the outgrowth and the development of processes in these cells. In addition, Wnt-7a markedly suppressed gliogenesis. The electrophysiological analysis revealed that Wnt-7a increased, while Shh decreased the incidence of cells displaying a neuron-like current pattern, represented by outwardly rectifying K(+) currents and tetrodotoxin-sensitive Na(+) currents. Additionally, Wnt-7a increased cell proliferation only at the early stages of differentiation, while Shh promoted proliferation within the entire course of differentiation. Thus we can conclude that Shh and Wnt-7a interfere differently with the process of neuronal differentiation and that they promote distinct stages of neuronal differentiation in neonatal NS/PCs.
Collapse
Affiliation(s)
- I Prajerova
- Laboratory of Neurobiology, Department of Cellular Neurophysiology, Institute of Experimental Medicine The Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | |
Collapse
|
161
|
Imamura O, Pagès G, Pouysségur J, Endo S, Takishima K. ERK1 and ERK2 are required for radial glial maintenance and cortical lamination. Genes Cells 2010; 15:1072-88. [PMID: 20825492 DOI: 10.1111/j.1365-2443.2010.01444.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ERK1/2 is involved in a variety of cellular processes during development, but the functions of these isoforms in brain development remain to be determined. Here, we generated double knockout (DKO) mice to study the individual and combined roles of ERK1 and ERK2 during cortical development. Mice deficient in Erk2, and more dramatically in the DKOs, displayed proliferation defects in late radial glial progenitors within the ventricular zone, and a severe disruption of lamination in the cerebral cortex. Immunohistochemical analyses revealed that late-generated cortical neurons were misplaced and failed to migrate the upper cortical layers in DKO mice. Moreover, these mice displayed fewer radial glial fibers, which provide architectural guides for radially migrating neurons. These results suggest that extracellular signal-regulated kinase signaling is essential for the expansion of the radial glial population and for the maintenance of radial glial scaffolding. Tangential migration of interneurons and oligodendrocytes from the ganglionic eminences (GE) to the dorsal cortex was more severely impaired in DKO mice than in mice deficient for Erk2 alone, because of reduced progenitor proliferation in the GE of the ventral telencephalon. These data demonstrate functional overlaps between ERK1 and ERK2 and indicate that extracellular signal-regulated kinase signaling plays a crucial role in cortical development.
Collapse
Affiliation(s)
- Osamu Imamura
- Department of Biochemistry, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | | | | | | | | |
Collapse
|
162
|
A novel classification of quiescent and transit amplifying adult neural stem cells by surface and metabolic markers permits a defined simultaneous isolation. Stem Cell Res 2010; 5:131-43. [DOI: 10.1016/j.scr.2010.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 05/04/2010] [Accepted: 05/11/2010] [Indexed: 11/22/2022] Open
|
163
|
Lacar B, Young SZ, Platel JC, Bordey A. Imaging and recording subventricular zone progenitor cells in live tissue of postnatal mice. Front Neurosci 2010; 4:43. [PMID: 20700392 PMCID: PMC2918349 DOI: 10.3389/fnins.2010.00043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 06/08/2010] [Indexed: 01/30/2023] Open
Abstract
The subventricular zone (SVZ) is one of two regions where neurogenesis persists in the postnatal brain. The SVZ, located along the lateral ventricle, is the largest neurogenic zone in the brain that contains multiple cell populations including astrocyte-like cells and neuroblasts. Neuroblasts migrate in chains to the olfactory bulb where they differentiate into interneurons. Here, we discuss the experimental approaches to record the electrophysiology of these cells and image their migration and calcium activity in acute slices. Although these techniques were in place for studying glial cells and neurons in mature networks, the SVZ raises new challenges due to the unique properties of SVZ cells, the cellular diversity, and the architecture of the region. We emphasize different methods, such as the use of transgenic mice and in vivo electroporation that permit identification of the different SVZ cell populations for patch clamp recording or imaging. Electroporation also permits genetic labeling of cells using fluorescent reporter mice and modification of the system using either RNA interference technology or floxed mice. In this review, we aim to provide conceptual and technical details of the approaches to perform electrophysiological and imaging studies of SVZ cells.
Collapse
Affiliation(s)
- Benjamin Lacar
- Department of Neurosurgery, Yale University School of MedicineNew Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew Haven, CT, USA
| | - Stephanie Z. Young
- Department of Neurosurgery, Yale University School of MedicineNew Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew Haven, CT, USA
| | - Jean-Claude Platel
- Department of Neurosurgery, Yale University School of MedicineNew Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew Haven, CT, USA
| | - Angélique Bordey
- Department of Neurosurgery, Yale University School of MedicineNew Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
164
|
Huang HS, Kubish GM, Redmond TM, Turner DL, Thompson RC, Murphy GG, Uhler MD. Direct transcriptional induction of Gadd45gamma by Ascl1 during neuronal differentiation. Mol Cell Neurosci 2010; 44:282-96. [PMID: 20382226 PMCID: PMC2905796 DOI: 10.1016/j.mcn.2010.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022] Open
Abstract
The basic helix-loop-helix transcription factor Ascl1 plays a critical role in the intrinsic genetic program responsible for neuronal differentiation. Here, we describe a novel model system of P19 embryonic carcinoma cells with doxycycline-inducible expression of Ascl1. Microarray hybridization and real-time PCR showed that these cells demonstrated increased expression of many neuronal proteins in a time- and concentration-dependent manner. Interestingly, the gene encoding the cell cycle regulator Gadd45gamma was increased earliest and to the greatest extent following Ascl1 induction. Here, we provide the first evidence identifying Gadd45gamma as a direct transcriptional target of Ascl1. Transactivation and chromatin immunoprecipitation assays identified two E-box consensus sites within the Gadd45gamma promoter necessary for Ascl1 regulation, and demonstrated that Ascl1 is bound to this region within the Gadd45gamma promoter. Furthermore, we found that overexpression of Gadd45gamma itself is sufficient to initiate some aspects of neuronal differentiation independent of Ascl1.
Collapse
Affiliation(s)
- Holly S. Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48105
| | - Ginger M. Kubish
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
| | - Tanya M. Redmond
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
| | - David L. Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48105
| | - Robert C. Thompson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48105
| | - Geoffrey G. Murphy
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
| | - Michael D. Uhler
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48105
| |
Collapse
|
165
|
Elmi M, Matsumoto Y, Zeng ZJ, Lakshminarasimhan P, Yang W, Uemura A, Nishikawa SI, Moshiri A, Tajima N, Agren H, Funa K. TLX activates MASH1 for induction of neuronal lineage commitment of adult hippocampal neuroprogenitors. Mol Cell Neurosci 2010; 45:121-31. [PMID: 20599619 DOI: 10.1016/j.mcn.2010.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 06/01/2010] [Accepted: 06/09/2010] [Indexed: 02/06/2023] Open
Abstract
The orphan nuclear receptor TLX has been proposed to act as a repressor of cell cycle inhibitors to maintain the neural stem cells in an undifferentiated state, and prevents commitment into astrocyte lineages. However, little is known about the mechanism of TLX in neuronal lineage commitment and differentiation. A majority of adult rat hippocampus-derived progenitors (AHPs) cultured in the presence of FGF express a high level of TLX and a fraction of these cells also express the proneural gene MASH1. Upon FGF withdrawal, TLX rapidly decreased, while MASH1 was intensely expressed within 1h, decreasing gradually to disappear at 24h. Adenoviral transduction of TLX in AHP cells in the absence of FGF transiently increased cell proliferation, however, later resulted in neuronal differentiation by inducing MASH1, Neurogenin1, DCX, and MAP2ab. Furthermore, TLX directly targets and activates the MASH1 promoter through interaction with Sp1, recruiting co-activators whereas dismissing the co-repressor HDAC4. Conversely, silencing of TLX in AHPs decreased beta-III tubulin and DCX expression and promoted glial differentiation. Our results thus suggest that TLX not only acts as a repressor of cell cycle and glial differentiation but also activates neuronal lineage commitment in AHPs.
Collapse
Affiliation(s)
- Muna Elmi
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Uchida Y. Molecular mechanisms of regeneration in Alzheimer's disease brain. Geriatr Gerontol Int 2010; 10 Suppl 1:S158-68. [DOI: 10.1111/j.1447-0594.2010.00607.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
167
|
Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 2010; 30:3489-98. [PMID: 20203209 DOI: 10.1523/jneurosci.4987-09.2010] [Citation(s) in RCA: 507] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of Notch signaling induces the expression of transcriptional repressor genes such as Hes1, leading to repression of proneural gene expression and maintenance of neural stem/progenitor cells. However, a requirement for Notch signaling in the telencephalon was not clear, because in Hes1;Hes3;Hes5 triple-mutant mice, neural stem/progenitor cells are depleted in most regions of the developing CNS, but not in the telencephalon. Here, we investigated a role for Notch signaling in the telencephalon by generating tamoxifen-inducible conditional knock-out mice that lack Rbpj, an intracellular signal mediator of all Notch receptors. When Rbpj was deleted in the embryonic brain, almost all telencephalic neural stem/progenitor cells prematurely differentiated into neurons and were depleted. When Rbpj was deleted in the adult brain, all neural stem cells differentiated into transit-amplifying cells and neurons. As a result, neurogenesis increased transiently, but 3 months later all neural stem cells were depleted and neurogenesis was totally lost. These results indicated an absolute requirement of Notch signaling for the maintenance of neural stem cells and a proper control of neurogenesis in both embryonic and adult brains.
Collapse
|
168
|
Trotter J, Karram K, Nishiyama A. NG2 cells: Properties, progeny and origin. BRAIN RESEARCH REVIEWS 2010; 63:72-82. [PMID: 20043946 PMCID: PMC2862831 DOI: 10.1016/j.brainresrev.2009.12.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/31/2022]
Abstract
The NG2 proteoglycan is a type 1-transmembrane protein expressed by a range of cell types within and outside the mammalian nervous system. NG2-expressing (NG2) cells are found in grey and white matter tracts of the developing and adult CNS and have previously been assumed to represent oligodendrocyte precursor cells: new work using transgenic mice has shown that NG2 cells generate oligodendrocytes, protoplasmic astrocytes and in some instances neurons in vivo. NG2 cells express GABAA receptors and the AMPA subtype of glutamate receptors. They make intimate contact to neurons prior to myelinating axons and also form electron-dense synaptic specialisations with axons in the cerebellum, cortex and hippocampus and with non-myelinated axons in the corpus callosum. These synaptic NG2 cells respond to neuronal release of glutamate and GABA. This neuron-glia interaction may thus regulate the differentiation and proliferation of NG2 cells. The C-terminal PDZ-binding motif of the NG2 protein binds several PDZ proteins including Mupp1, Syntenin and the Glutamate Receptor Interacting Protein (GRIP). Since GRIP can bind subunits of the AMPA receptors expressed by NG2 cells, the interaction between GRIP and NG2 may orientate the glial AMPA receptors towards sites of neuronal glutamate release. The origin, heterogeneity and function of NG2 cells as modulators of the neuronal network are important incompletely resolved questions.
Collapse
Affiliation(s)
- Jacqueline Trotter
- Molecular Cell Biology, Dept. of Biology, Johannes Gutenberg University of Mainz, Bentzelweg 3, 55128 Mainz
| | - Khalad Karram
- Molecular Cell Biology, Dept. of Biology, Johannes Gutenberg University of Mainz, Bentzelweg 3, 55128 Mainz
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, Storrs, Connecticut 06269-3156, USA
- University of Connecticut Stem Cell Institute, University of Connecticut, 75 North Eagleville Road, Storrs, Connecticut 06269-3156, USA
| |
Collapse
|
169
|
Carrillo-García C, Suh Y, Obernier K, Hölzl-Wenig G, Mandl C, Ciccolini F. Multipotent precursors in the anterior and hippocampal subventricular zone display similar transcription factor signatures but their proliferation and maintenance are differentially regulated. Mol Cell Neurosci 2010; 44:318-29. [PMID: 20417282 DOI: 10.1016/j.mcn.2010.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 03/22/2010] [Accepted: 04/10/2010] [Indexed: 11/18/2022] Open
Abstract
Precursors within the subventricular zone (SVZ) exhibit regional variations in the expression of transcription factors important for the regulation of their proliferation and differentiation. In the anterior SVZ (aSVZ) the homeobox transcription factor distalless (Dlx)2 modulates both processes by promoting neural stem cell (NSC) activation as well as neurogenesis. Activated NSCs and transit-amplifying precursors (TAPs) in the aSVZ both express high levels of epidermal growth factor receptor (EGFR(high)) and form clones in response to exogenous EGF. EGF-responsive cells are also present in the hippocampal subependyma (hSVZ). However, it is not clear whether they represent NSCs or TAPs and whether their proliferation and differentiation are regulated as in the aSVZ. Here we have purified EGFR(high) cells from both the aSVZ and hSVZ at different ages. When isolated from perinatal tissue both populations were enriched in multipotent clonogenic precursors, which generated GABAergic neurons. Although they differed in absolute expression levels, activated NSCs and TAPs in both regions displayed similar signatures of transcription factor expression. However, activated NSCs were less frequent in the hSVZ than in the aSVZ. Furthermore, increasing age had a greater inhibitory effect on NSC proliferation in the hSVZ than in the aSVZ. This suggests that NSC activation is differentially regulated in the two regions. Consistent with this hypothesis, we found that in hippocampal precursors Dlx2 promoted neurogenesis but not NSC activation. Thus, most clonogenic EGFR(high) precursors in the hSVZ represent TAPs and NSC proliferation in the aSVZ and hSVZ is regulated by different mechanisms.
Collapse
Affiliation(s)
- Carmen Carrillo-García
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
170
|
Neurotransmitter signaling in postnatal neurogenesis: The first leg. ACTA ACUST UNITED AC 2010; 63:60-71. [PMID: 20188124 DOI: 10.1016/j.brainresrev.2010.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 12/27/2022]
Abstract
Like the liver or other peripheral organs, two regions of the adult brain possess the ability of self-renewal through a process called neurogenesis. This raises tremendous hope for repairing the damaged brain, and it has stimulated research on identifying signals controlling neurogenesis. Neurogenesis involves several stages from fate determination to synaptic integration via proliferation, migration, and maturation. While fate determination primarily depends on a genetic signature, other stages are controlled by the interplay between genes and microenvironmental signals. Here, we propose that neurotransmitters are master regulators of the different stages of neurogenesis. In favor of this idea, a description of selective neurotransmitter signaling and their functions in the largest neurogenic zone, the subventricular zone (SVZ), is provided. In particular, we emphasize the interactions between neuroblasts and astrocyte-like cells that release gamma-aminobutyric acid (GABA) and glutamate, respectively. However, we also raise several limitations to our knowledge on neurotransmitters in neurogenesis. The function of neurotransmitters in vivo remains largely unexplored. Neurotransmitter signaling has been viewed as uniform, which dramatically contrasts with the cellular and molecular mosaic nature of the SVZ. How neurotransmitters are integrated with other well-conserved molecules, such as sonic hedgehog, is poorly understood. In an effort to reconcile these differences, we discuss how specificity of neurotransmitter functions can be provided through their multitude of receptors and intracellular pathways in different cell types and their possible interactions with sonic hedgehog.
Collapse
|
171
|
Sanalkumar R, Vidyanand S, Lalitha Indulekha C, James J. Neuronal vs. glial fate of embryonic stem cell-derived neural progenitors (ES-NPs) is determined by FGF2/EGF during proliferation. J Mol Neurosci 2010; 42:17-27. [PMID: 20155332 DOI: 10.1007/s12031-010-9335-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 01/18/2010] [Indexed: 01/25/2023]
Abstract
Fate-specific differentiation of neural progenitors attracts keen interest in modern medicine due to its application in cell replacement therapy. Though various signaling pathways are involved in maintenance and differentiation of neural progenitors, the mechanism of development of lineage-restricted progenitors from embryonic stem (ES) cells is not clearly understood. Here, we have demonstrated that neuronal vs. glial differentiation potential of ES cell-derived neural progenitors (ES-NPs) are governed by the growth factors, exposed during their proliferation/expansion phase and cannot be significantly altered during differentiation phase. Exposure of ES-NPs to fibroblast growth factor-2 (FGF2) during proliferation triggered the expression of pro-neural genes that are required for neuronal lineage commitment, and upon differentiation, predominantly generated neurons. On the other hand, epidermal growth factor (EGF)-exposed ES-NPs are not committed to neuronal fate due to decreased expression of pro-neural genes. These ES-NPs further generate more glial cells due to expression of glial-restricted factors. Exposure of ES-NPs to the same growth factors during proliferation/expansion and differentiation phase augments the robust differentiation of neurons or glial subtypes. We also demonstrate that, during differentiation, exposure to growth factors other than that in which the ES-NPs were expanded does not significantly alter the fate of ES-NPs. Thus, we conclude that FGF2 and EGF determine the neural vs. glial fate of ES-NPs during proliferation and augment it during differentiation. Further modification of these protocols would help in generating fate-specified neurons for various regenerative therapies.
Collapse
Affiliation(s)
- Rajendran Sanalkumar
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | | | | | | |
Collapse
|
172
|
Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO J 2010; 28:3799-807. [PMID: 19851284 PMCID: PMC2770102 DOI: 10.1038/emboj.2009.309] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/14/2009] [Indexed: 11/30/2022] Open
Abstract
Neural stem cells must strike a balance between self-renewal and multipotency, and differentiation. Identification of the transcriptional networks regulating stem cell division is an essential step in understanding how this balance is achieved. We have shown that the homeodomain transcription factor, Prospero, acts to repress self-renewal and promote differentiation. Among its targets are three neural stem cell transcription factors, Asense, Deadpan and Snail, of which Asense and Deadpan are repressed by Prospero. Here, we identify the targets of these three factors throughout the genome. We find a large overlap in their target genes, and indeed with the targets of Prospero, with 245 genomic loci bound by all factors. Many of the genes have been implicated in vertebrate stem cell self-renewal, suggesting that this core set of genes is crucial in the switch between self-renewal and differentiation. We also show that multiply bound loci are enriched for genes previously linked to nervous system phenotypes, thereby providing a shortcut to identifying genes important for nervous system development.
Collapse
|
173
|
Kim Y, Comte I, Szabo G, Hockberger P, Szele FG. Adult mouse subventricular zone stem and progenitor cells are sessile and epidermal growth factor receptor negatively regulates neuroblast migration. PLoS One 2009; 4:e8122. [PMID: 19956583 PMCID: PMC2780296 DOI: 10.1371/journal.pone.0008122] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/08/2009] [Indexed: 01/10/2023] Open
Abstract
Background The adult subventricular zone (SVZ) contains stem and progenitor cells that generate neuroblasts throughout life. Although it is well accepted that SVZ neuroblasts are migratory, recent evidence suggests their progenitor cells may also exhibit motility. Since stem and progenitor cells are proliferative and multipotential, if they were also able to move would have important implications for SVZ neurogenesis and its potential for repair. Methodology/Principal Findings We studied whether SVZ stem and/or progenitor cells are motile in transgenic GFP+ slices with two photon time lapse microscopy and post hoc immunohistochemistry. We found that stem and progenitor cells; mGFAP-GFP+ cells, bright nestin-GFP+ cells and Mash1+ cells were stationary in the SVZ and rostral migratory stream (RMS). In our search for motile progenitor cells, we uncovered a population of motile βIII-tubulin+ neuroblasts that expressed low levels of epidermal growth factor receptor (EGFr). This was intriguing since EGFr drives proliferation in the SVZ and affects migration in other systems. Thus we examined the potential role of EGFr in modulating SVZ migration. Interestingly, EGFrlow neuroblasts moved slower and in more tortuous patterns than EGFr-negative neuroblasts. We next questioned whether EGFr stimulation affects SVZ cell migration by imaging Gad65-GFP+ neuroblasts in the presence of transforming growth factor alpha (TGF-α), an EGFr-selective agonist. Indeed, acute exposure to TGF-α decreased the percentage of motile cells by approximately 40%. Conclusions/Significance In summary, the present study directly shows that SVZ stem and progenitor cells are static, that EGFr is retained on some neuroblasts, and that EGFr stimulation negatively regulates migration. This result suggests an additional role for EGFr signaling in the SVZ.
Collapse
Affiliation(s)
- Yongsoo Kim
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, Illinois, United States of America
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Isabelle Comte
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Gabor Szabo
- Department of Gene Technology and Developmental Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Philip Hockberger
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Francis G. Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
174
|
Her6 regulates the neurogenetic gradient and neuronal identity in the thalamus. Proc Natl Acad Sci U S A 2009; 106:19895-900. [PMID: 19903880 DOI: 10.1073/pnas.0910894106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During vertebrate brain development, the onset of neuronal differentiation is under strict temporal control. In the mammalian thalamus and other brain regions, neurogenesis is regulated also in a spatially progressive manner referred to as a neurogenetic gradient, the underlying mechanism of which is unknown. Here we describe the existence of a neurogenetic gradient in the zebrafish thalamus and show that the progression of neurogenesis is controlled by dynamic expression of the bHLH repressor her6. Members of the Hes/Her family are known to regulate proneural genes, such as Neurogenin and Ascl. Here we find that Her6 determines not only the onset of neurogenesis but also the identity of thalamic neurons, marked by proneural and neurotransmitter gene expression: loss of Her6 leads to premature Neurogenin1-mediated genesis of glutamatergic (excitatory) neurons, whereas maintenance of Her6 leads to Ascl1-mediated production of GABAergic (inhibitory) neurons. Thus, the presence or absence of a single upstream regulator of proneural gene expression, Her6, leads to the establishment of discrete neuronal domains in the thalamus.
Collapse
|
175
|
Seuntjens E, Umans L, Zwijsen A, Sampaolesi M, Verfaillie CM, Huylebroeck D. Transforming Growth Factor type beta and Smad family signaling in stem cell function. Cytokine Growth Factor Rev 2009; 20:449-58. [PMID: 19892581 DOI: 10.1016/j.cytogfr.2009.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ligands of the Transforming Growth Factor type beta (TGFbeta) family exert multiple and sometimes opposite effects on most cell types in vivo depending on cellular context, which mainly includes the stage of the target cell, the local environment of this cell or niche, and the identity and the dosage of the ligand. Significant progress has been made in the molecular dissection of the regulation of the activity of the ligands and their intracellular signal transduction pathways, including via the canonical Smad pathway where Smads interact with many transcription factors. This knowledge together with results from functional studies within the embryology and stem cell research fields is giving us insight in the role of individual ligands and other components of this signaling system and where and how it regulates many properties of embryonic and adult stem/progenitor cells, which is anticipated to contribute to successful cell-based therapy in the future. We review and discuss recent progress on the effects of Nodal/Activin and Bone Morphogenetic Proteins (BMPs) and their canonical signaling in cells with stem cell properties. We focus on embryonic stem cells and their maintenance and pluripotency, and conversion into selected cell types of neuroectoderm, mesoderm and endoderm, on induced pluripotent cells and on neurogenic cells in the adult brain.
Collapse
Affiliation(s)
- Eve Seuntjens
- Laboratory of Molecular Biology (Celgen) of the Center for Human Genetics, University of Leuven, Flanders Institute of Biotechnology (VIB), Campus Gasthuisberg, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
176
|
Brill MS, Ninkovic J, Winpenny E, Hodge RD, Ozen I, Yang R, Lepier A, Gascón S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner RF, Raineteau O, Götz M. Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 2009; 12:1524-33. [PMID: 19881504 PMCID: PMC2787799 DOI: 10.1038/nn.2416] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/08/2009] [Indexed: 11/29/2022]
Abstract
The adult mouse subependymal zone (SEZ) harbours neural stem cells that are thought to generate exclusively GABAergic interneurons of the olfactory bulb. Here we describe the adult generation of glutamatergic juxtaglomerular neurons, with dendritic arborizations that project into adjacent glomeruli identifying them as short-axon cells. Fate mapping revealed that these originate from Neurogenin2- and Tbr2-expressing progenitors located in the dorsal region of the SEZ. Progenitors of these glutamatergic interneurons recapitulate the sequential expression of transcription factors that hallmark glutamatergic neurogenesis in the developing cerebral cortex and adult hippocampus. Indeed, the molecular specification of these SEZ progenitors allows for their recruitment into the cerebral cortex upon lesion. Taken together, our data show that SEZ progenitors not only produce a novel population of adult-born glutamatergic juxtaglomerular neurons, but may also provide a new source of progenitors for endogenous repair.
Collapse
Affiliation(s)
- Monika S Brill
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Glial cells were long considered end products of neural differentiation, specialized supportive cells with an origin very different from that of neurons. New studies have shown that some glial cells--radial glia (RG) in development and specific subpopulations of astrocytes in adult mammals--function as primary progenitors or neural stem cells (NSCs). This is a fundamental departure from classical views separating neuronal and glial lineages early in development. Direct visualization of the behavior of NSCs and lineage-tracing studies reveal how neuronal lineages emerge. In development and in the adult brain, many neurons and glial cells are not the direct progeny of NSCs, but instead originate from transit amplifying, or intermediate, progenitor cells (IPCs). Within NSCs and IPCs, genetic programs unfold for generating the extraordinary diversity of cell types in the central nervous system. The timing in development and location of NSCs, a property tightly linked to their neuroepithelial origin, appear to be the key determinants of the types of neurons generated. Identification of NSCs and IPCs is critical to understand brain development and adult neurogenesis and to develop new strategies for brain repair.
Collapse
Affiliation(s)
- Arnold Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Neurology, University of California, San Francisco, California 94143-0525, USA.
| | | |
Collapse
|
178
|
Abstract
Neural cell adhesion molecule (NCAM) plays an important role during neural development and in the adult brain, whereby most functions of NCAM have been ascribed to its unique polysialic acid (PSA) modification. Recently we presented evidence suggesting that expression of NCAM in vivo interferes with the maintenance of forebrain neuronal stem cells. We here aimed at investigating the fate of cells generated from NCAM-overexpressing stem cells in postnatal mouse brain and at elucidating the functional domains of NCAM mediating this effect. We show that ectopic expression of the NCAM140 isoform in radial glia and type C cells induces an increase in cell proliferation and consequently the presence of additional neuronal type A cells in the rostral migratory stream. A mutant NCAM protein comprising only fibronectin type III repeats and immunoglobulin-like domain 5 was sufficient to induce this effect. Furthermore, we show that the neurogenic effect is independent of PSA, as transgenic NCAM is not polysialylated in radial glia and type C cells. These results suggest that heterophilic interactions of NCAM with other components of the cell membrane must be involved.
Collapse
Affiliation(s)
- Camille Boutin
- Institut de Biologie du Développement de Marseille-Luminy, UMR 6216, CNRS/Université de la Méditeranée, Campus de Luminy-case 907, Marseille cedex 9, France
| | | | | | | |
Collapse
|
179
|
Roybon L, Mastracci TL, Ribeiro D, Sussel L, Brundin P, Li JY. GABAergic differentiation induced by Mash1 is compromised by the bHLH proteins Neurogenin2, NeuroD1, and NeuroD2. ACTA ACUST UNITED AC 2009; 20:1234-44. [PMID: 19767311 DOI: 10.1093/cercor/bhp187] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During forebrain development, Mash1 directs gamma-aminobutyric acid (GABA)ergic neuron differentiation ventrally in the ganglionic eminences. Repression of Mash1 in the cortex is necessary to prevent the formation of GABAergic interneurons. Negative regulation of Mash1 has been attributed to members of the Neurogenin family; the genetic ablation of Neurogenin2 (Ngn2) leads to the derepression of Mash1 and the formation of ectopic GABAergic neurons in the cortex. We have developed an in vitro system to clarify the importance of NeuroD proteins in the Mash1 regulatory pathway. Using a neurosphere culture system, we show that the downstream effectors of the Ngn2 pathway NeuroD1 and NeuroD2 can abrogate GABAergic differentiation directed by Mash1. The ectopic expression of either of these genes in Mash1-expressing cells derived from the lateral ganglionic eminence, independently downregulate Mash1 expression without affecting expression of distal less homeodomain genes. This results in a complete loss of the GABAergic phenotype. Moreover, we demonstrate that ectopic expression of Mash1 in cortical progenitors is sufficient to phenocopy the loss of Ngn2 and strongly enhances ectopic GABAergic differentiation. Collectively, our results define the compensatory and cross-regulatory mechanisms that exist among basic helix-loop-helix transcription factors during neuronal fate specification.
Collapse
Affiliation(s)
- Laurent Roybon
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, 221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
180
|
Li H, He Y, Richardson WD, Casaccia P. Two-tier transcriptional control of oligodendrocyte differentiation. Curr Opin Neurobiol 2009; 19:479-85. [PMID: 19740649 DOI: 10.1016/j.conb.2009.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/19/2009] [Indexed: 01/06/2023]
Abstract
Oligodendrocytes (OLs) are the myelin-forming cells of the central nervous system (CNS). They differentiate from proliferative OL precursor cells that migrate from the embryonic neuroepithelium throughout the developing CNS before associating with axons and elaborating myelin. Recent research into the regulation of OL differentiation has uncovered a two-stage mechanism of transcriptional control that combines epigenetic repression of transcriptional inhibitors with direct transcriptional activation of myelin genes. This 'two-pronged' approach creates a fail-safe system of genetic control to ensure orderly and unambiguous expression of the myelination program during development and during repair of demyelinated lesions.
Collapse
Affiliation(s)
- Huiliang Li
- Wolfson Institute for Biomedical Research, and Research Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
181
|
von Maltzahn J, Kreuzberg MM, Matern G, Euwens C, Höher T, Wörsdörfer P, Willecke K. C-terminal tagging with eGFP yields new insights into expression of connexin45 but prevents rescue of embryonic lethal connexin45-deficient mice. Eur J Cell Biol 2009; 88:481-94. [DOI: 10.1016/j.ejcb.2009.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 04/09/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022] Open
|
182
|
Furmanski O, Gajavelli S, Lee JW, Collado ME, Jergova S, Sagen J. Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: an in vitro and in vivo analysis. J Comp Neurol 2009; 515:56-71. [PMID: 19399893 DOI: 10.1002/cne.22027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Numerous central nervous system (CNS) disorders share a common pathology in dysregulation of gamma-aminobutyric acid (GABA) inhibitory signaling. Transplantation of GABA-releasing cells at the site of disinhibition holds promise for alleviating disease symptoms with fewer side effects than traditional drug therapies. We manipulated fibroblast growth factor (FGF)-2 deprivation and mammalian achaete-scute homolog (MASH)1 transcription factor levels in an attempt to amplify the default GABAergic neuronal fate in cultured rat embryonic neural precursor cells (NPCs) for use in transplantation studies. Naïve and MASH1 lentivirus-transduced NPCs were maintained in FGF-2 or deprived of FGF-2 for varying lengths of time. Immunostaining and quantitative analysis showed that GABA- and beta-III-tubulin-immunoreactive cells generally decreased through successive passages, suggesting a loss of neurogenic potential in rat neurospheres expanded in vitro. However, FGF-2 deprivation resulted in a small, but significantly increased population of GABAergic cells derived from passaged neurospheres. In contrast to naïve and GFP lentivirus-transduced clones, MASH1 transduction resulted in increased bromodeoxyuridine (BrdU) incorporation and clonal colony size. Western blotting showed that MASH1 overexpression and FGF-2 deprivation additively increased beta-III-tubulin and decreased cyclic nucleotide phosphodiesterase (CNPase) expression, whereas FGF-2 deprivation alone attenuated glial fibrillary acidic protein (GFAP) expression. These results suggest that low FGF-2 signaling and MASH1 activity can operate in concert to enrich NPC cultures for a GABA neuronal phenotype. When transplanted into the adult rat spinal cord, this combination also yielded GABAergic neurons. These findings indicate that, even for successful utilization of the default GABAergic neuronal precursor fate, a combination of both extrinsic and intrinsic manipulations will likely be necessary to realize the full potential of NSC grafts in restoring function.
Collapse
Affiliation(s)
- Orion Furmanski
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
183
|
Early postnatal proteolipid promoter-expressing progenitors produce multilineage cells in vivo. J Neurosci 2009; 29:7256-70. [PMID: 19494148 DOI: 10.1523/jneurosci.5653-08.2009] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proteolipid promoter (plp promoter) activity in the newborn mouse CNS is restricted to NG2-expressing oligodendroglial progenitor cells and oligodendrocytes. There are two populations of NG2 progenitors based on their plp promoter expression. Whereas the general population of NG2 progenitors has been shown to be multipotent in vitro and after transplantation, it is not known whether the subpopulation of plp promoter-expressing NG2 progenitors [i.e., plp promoter-expressing NG2 progenitors (PPEPs)] has the potential to generate multilineage cells during normal development in vivo. We addressed this issue by fate mapping Plp-Cre-ER(T2)/Rosa26-EYFP (PCE/R) double-transgenic mice, which carried an inducible Cre gene under the control of the plp promoter. Expression of the enhanced yellow fluorescent protein (EYFP) reporter gene in PPEPs was elicited by administering tamoxifen to postnatal day 7 PCE/R mice. We have demonstrated that early postnatal PPEPs, which had been thought to be restricted to the oligodendroglial lineage, also unexpectedly gave rise to a subset of immature, postmitotic, protoplasmic astrocytes in the gray matter of the spinal cord and ventral forebrain, but not in white matter. Furthermore, these PPEPs also gave rise to small numbers of immature, DCX (doublecortin)-negative neurons in the ventral forebrain, dorsal cerebral cortex, and hippocampus. EYFP-labeled representatives of each of these lineages survived to adulthood. These findings indicate that there are regional differences in the fates of neonatal PPEPs, which are multipotent in vivo, giving rise to oligodendrocytes, astrocytes, and neurons.
Collapse
|
184
|
Roybon L, Deierborg T, Brundin P, Li JY. Involvement of Ngn2, Tbr and NeuroD proteins during postnatal olfactory bulb neurogenesis. Eur J Neurosci 2009; 29:232-43. [PMID: 19200230 DOI: 10.1111/j.1460-9568.2008.06595.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Postnatal neurogenesis takes place in two brain regions, the hippocampus and the subventricular zone (SVZ). The transcriptional cascade controlling hippocampal neurogenesis has been described in detail; however, the transcriptional control of olfactory bulb neurogenesis is still not well mapped. In this study, we provide insights into the molecular events controlling postnatal olfactory bulb neurogenesis. We first show the existence of diverse neural stem cell/progenitor populations along the SVZ-rostral migratory stream (RMS) axis, focusing on those expressing the basic helix-loop-helix (bHLH) transcription factor Mash1. We provide evidence that Mash1-derived progenies generate oligodendrocytic and neuronal precursors through the transient expression of the bHLH transcription factors Olig2 and neurogenin2 (Ngn2), respectively. Furthermore, we reveal that Ngn2-positive progenies express the T-box transcription factors Tbr2 and Tbr1, which are usually present during cortical and hippocampal glutamatergic neuronal differentiation. We also highlight a cell population expressing another bHLH transcription factor, neuroD1 (ND1). The ND1-positive cells are located in the SVZ-RMS axis and also co-express Tbr2, Tbr1 and neuroD2. The observations that these cells incorporate bromodeoxyuridine and express both doublecortin and polysialylated form of neural cell adhesion molecule suggest that they are newborn neurons. Finally, using an in vitro assay, we demonstrate that Ngn2 and ND1 equally and exclusively direct differentiation of Mash1-expressing precursors into calbindin-expressing and calretinin-expressing neurons, which are both neuronal subtypes normally found in the olfactory bulb. Taken together, our data illustrate that Ngn2, neuroD and Tbr transcription factors are involved in postnatal neurogenesis in the olfactory bulb.
Collapse
Affiliation(s)
- Laurent Roybon
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A10, 22184 Lund, Sweden.
| | | | | | | |
Collapse
|
185
|
Fujimoto M, Takagi Y, Muraki K, Nozaki K, Yamamoto N, Tsuji M, Hashimoto N, Honjo T, Tanigaki K. RBP-J promotes neuronal differentiation and inhibits oligodendroglial development in adult neurogenesis. Dev Biol 2009; 332:339-50. [PMID: 19501584 DOI: 10.1016/j.ydbio.2009.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 06/01/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
Abstract
Neurogenesis persists in restricted regions of the adult vertebrate brain. However, the molecular mechanisms supporting adult neurogenesis are not fully understood. Here we demonstrated that C cell-specific deletion of RBP-J in the adult subventricular zones (SVZs) caused reduction in numbers of mature granule cells in the olfactory bulbs (OBs) with concomitant increase in Olig2(+) oligodendroglial progenitors, although generation of immature neurons was enhanced in the SVZs. Adenovirus-mediated Cre introduction to the SVZs of RBP-J-floxed mice indicated that Olig2(+) cells in the OBs can be generated from RBP-J-deficient SVZs, although no oligodendroglial cells in the OBs are derived from the normal SVZs. This preferential differentiation to oligodendroglial progenitor cells and reduction in differentiation of mature neurons were also confirmed by in vitro culture of RBP-J-deficient SVZ-derived neural progenitor cells, in addition to defects in the maintenance of adult neural stem cell population. The defects in maturation of RBP-J-deficient neurons could be partly rescued by knockdown of Olig2 in vivo. Our findings suggest that RBP-J might regulate neuronal maturation at least in part through transcriptional repression of Olig2.
Collapse
Affiliation(s)
- Motoaki Fujimoto
- Research Institute, Shiga Medical Center, Moriyama, Shiga, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Zhang ZG, Chopp M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 2009; 8:491-500. [PMID: 19375666 PMCID: PMC2727708 DOI: 10.1016/s1474-4422(09)70061-4] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Restorative cell-based and pharmacological therapies for experimental stroke substantially improve functional outcome. These therapies target several types of parenchymal cells (including neural stem cells, cerebral endothelial cells, astrocytes, oligodendrocytes, and neurons), leading to enhancement of endogenous neurogenesis, angiogenesis, axonal sprouting, and synaptogenesis in the ischaemic brain. Interaction between these restorative events probably underpins the improvement in functional outcome. This Review provides examples of cell-based and pharmacological restorative treatments for stroke that stimulate brain plasticity and functional recovery. The molecular pathways activated by these therapies, which induce remodelling of the injured brain via angiogenesis, neurogenesis, and axonal and dendritic plasticity, are discussed. The ease of treating intact brain tissue to stimulate functional benefit in restorative therapy compared with treating injured brain tissue in neuroprotective therapy might more readily help with translation of restorative therapy from the laboratory to the clinic.
Collapse
Affiliation(s)
- Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | |
Collapse
|
187
|
Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci U S A 2009; 106:6387-92. [PMID: 19332781 DOI: 10.1073/pnas.0810407106] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to prospectively isolate adult neural stem cells and their progeny is crucial to study their biology and therapeutic potential. Stem cells in adult mammalian neurogenic niches are a subset of astrocytes. A major limitation in the field has been the inability to distinguish stem cell astrocytes from niche astrocytes. Here, we show that epidermal growth factor receptor (EGFR)-positive subventricular-zone (SVZ) astrocytes are activated stem cells that are eliminated by antimitotic treatment. We developed a simple strategy to simultaneously purify cells at different stages of the adult SVZ stem cell lineage by using FACS. This method combines the use of fluorescent EGF ligand, CD24, and GFP expression in GFAP::GFP transgenic mice and allows the simultaneous purification of activated stem cell astrocytes (GFP(+)EGFR(+)CD24(-)), niche astrocytes (GFP(+)EGFR(-)CD24(-)), transit amplifying cells (GFP(-)EGFR(+)CD24(-)), and neuroblasts (GFP(-)EGFR(-)CD24(low)). One in three EGFR(+) astrocytes gives rise to neurospheres in vitro, a 20-fold enrichment over unsorted cells. Importantly, these cells constitute the neurosphere-forming population among SVZ astrocytes. This approach will be of great utility for future functional and molecular studies of the SVZ stem cell lineage.
Collapse
|
188
|
Roybon L, Hjalt T, Stott S, Guillemot F, Li JY, Brundin P. Neurogenin2 directs granule neuroblast production and amplification while NeuroD1 specifies neuronal fate during hippocampal neurogenesis. PLoS One 2009; 4:e4779. [PMID: 19274100 PMCID: PMC2652712 DOI: 10.1371/journal.pone.0004779] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 01/14/2009] [Indexed: 01/18/2023] Open
Abstract
The specification and differentiation of dentate gyrus granule neurons in the hippocampus require temporally and spatially coordinated actions of both intrinsic and extrinsic molecules. The basic helix-loop-helix transcription factor Neurogenin2 (Ngn2) and NeuroD1 are key regulators in these processes. Based on existing classification, we analyzed the molecular events occurring during hippocampal neurogenesis, primarily focusing on juvenile animals. We found that Ngn2 is transiently expressed by late type-2a amplifying progenitors. The Ngn2 progenies mature into hippocampal granule neurons. Interestingly, the loss of Ngn2 at early stages of development leads to a robust reduction in neurogenesis, but does not disturb granule neuron maturation per se. We found that the role of Ngn2 is to maintain progenitors in an undifferentiated state, allowing them to amplify prior to their maturation into granule neurons upon NeuroD1 induction. When we overexpressed Ngn2 and NeuroD1 in vivo, we found NeuroD1 to exhibit a more pronounced neuron-inductive effect, leading to granule neuron commitment, than that displayed by Ngn2. Finally, we observed that all markers expressed during the transcriptional control of hippocampal neurogenesis in rodents are also present in the human hippocampus. Taken together, we demonstrate a critical role of for Ngn2 and NeuroD1 in controlling neuronal commitment and hippocampal granule neuroblast formation, both during embryonic development and in post-natal hippocampal granule neurogenesis.
Collapse
Affiliation(s)
- Laurent Roybon
- Department of Experimental Medical Science, Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
189
|
Imayoshi I, Sakamoto M, Ohtsuka T, Kageyama R. Continuous neurogenesis in the adult brain. Dev Growth Differ 2009; 51:379-86. [DOI: 10.1111/j.1440-169x.2009.01094.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
190
|
Grimaldi P, Parras C, Guillemot F, Rossi F, Wassef M. Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum. Dev Biol 2009; 328:422-33. [PMID: 19217896 DOI: 10.1016/j.ydbio.2009.02.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/08/2009] [Accepted: 02/01/2009] [Indexed: 11/17/2022]
Abstract
Cerebellar GABAergic interneurons and glia originate from progenitors that delaminate from the ventricular neuroepithelium and proliferate in the prospective white matter. Even though this population of progenitor cells is multipotent as a whole, clonal analysis indicates that different lineages are already separated during postnatal development and little is known about the mechanisms that regulate the specification and differentiation of these cerebellar types at earlier stages. Here, we investigate the role of Ascl1 in the development of inhibitory interneurons and glial cells in the cerebellum. This gene is expressed by maturing oligodendrocytes and GABAergic interneurons and is required for the production of appropriate quantities of these cells, which are severely reduced in Ascl1(-/-) mouse cerebella. Nevertheless, the two lineages are not related and the majority of oligodendrocytes populating the developing cerebellum actually derive from extracerebellar sources. Targeted electroporation of Ascl1-expression vectors to ventricular neuroepithelium progenitors enhances the production of interneurons and completely suppresses astrocytic differentiation, whereas loss of Ascl1 function has opposite effects on both cell types. Our results indicate that Ascl1 directs ventricular neuroepithelium progenitors towards inhibitory interneuron fate and restricts their ability to differentiate along the astroglial lineage.
Collapse
Affiliation(s)
- Piercesare Grimaldi
- CNRS UMR 8542, Biology Department, Ecole Normale Supérieure, 46 Rue d'Ulm, 75005 Paris, France
| | | | | | | | | |
Collapse
|
191
|
Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 2009; 458:529-33. [PMID: 19212323 DOI: 10.1038/nature07726] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 12/15/2008] [Indexed: 01/30/2023]
Abstract
Epigenetic mechanisms that maintain neurogenesis throughout adult life remain poorly understood. Trithorax group (trxG) and Polycomb group (PcG) gene products are part of an evolutionarily conserved chromatin remodelling system that activate or silence gene expression, respectively. Although PcG member Bmi1 has been shown to be required for postnatal neural stem cell self-renewal, the role of trxG genes remains unknown. Here we show that the trxG member Mll1 (mixed-lineage leukaemia 1) is required for neurogenesis in the mouse postnatal brain. Mll1-deficient subventricular zone neural stem cells survive, proliferate and efficiently differentiate into glial lineages; however, neuronal differentiation is severely impaired. In Mll1-deficient cells, early proneural Mash1 (also known as Ascl1) and gliogenic Olig2 expression are preserved, but Dlx2, a key downstream regulator of subventricular zone neurogenesis, is not expressed. Overexpression of Dlx2 can rescue neurogenesis in Mll1-deficient cells. Chromatin immunoprecipitation demonstrates that Dlx2 is a direct target of MLL in subventricular zone cells. In differentiating wild-type subventricular zone cells, Mash1, Olig2 and Dlx2 loci have high levels of histone 3 trimethylated at lysine 4 (H3K4me3), consistent with their transcription. In contrast, in Mll1-deficient subventricular zone cells, chromatin at Dlx2 is bivalently marked by both H3K4me3 and histone 3 trimethylated at lysine 27 (H3K27me3), and the Dlx2 gene fails to properly activate. These data support a model in which Mll1 is required to resolve key silenced bivalent loci in postnatal neural precursors to the actively transcribed state for the induction of neurogenesis, but not for gliogenesis.
Collapse
|
192
|
Wang B, Waclaw RR, Allen ZJ, Guillemot F, Campbell K. Ascl1 is a required downstream effector of Gsx gene function in the embryonic mouse telencephalon. Neural Dev 2009; 4:5. [PMID: 19208224 PMCID: PMC2644683 DOI: 10.1186/1749-8104-4-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 02/10/2009] [Indexed: 11/10/2022] Open
Abstract
Background The homeobox gene Gsx2 (formerly Gsh2) is known to regulate patterning in the lateral ganglionic eminence (LGE) of the embryonic telencephalon. In its absence, the closely related gene Gsx1 (previously known as Gsh1) can partially compensate in the patterning and differentiation of ventral telencephalic structures, such as the striatum. However, the cellular and molecular mechanisms underlying this compensation remain unclear. Results We show here that in the Gsx2 mutants Gsx1 is expressed in only a subset of the ventral telencephalic progenitors that normally express Gsx2. Based on the similarities in the expression of Gsx1 and Ascl1 (Mash1) within the Gsx2 mutant LGE, we examined whether Ascl1 plays an integral part in the Gsx1-based recovery. Ascl1 mutants show only modest alterations in striatal development; however, in Gsx2;Ascl1 double mutants, striatal development is severely affected, similar to that seen in the Gsx1;Gsx2 double mutants. This is despite the fact that Gsx1 is expressed, and even expands, in the Gsx2;Ascl1 mutant LGE, comparable to that seen in the Gsx2 mutant. Finally, Notch signaling has recently been suggested to be required for normal striatal development. In spite of the fact that Notch signaling is severely disrupted in Ascl1 mutants, it actually appears to be improved in the Gsx2;Ascl1 double mutants. Conclusion These results, therefore, reveal a non-proneural requirement of Ascl1 that together with Gsx1 compensates for the loss of Gsx2 in a subset of LGE progenitors.
Collapse
Affiliation(s)
- Bei Wang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati OH 45229, USA.
| | | | | | | | | |
Collapse
|
193
|
Long JE, Swan C, Liang WS, Cobos I, Potter GB, Rubenstein JLR. Dlx1&2 and Mash1 transcription factors control striatal patterning and differentiation through parallel and overlapping pathways. J Comp Neurol 2009; 512:556-72. [PMID: 19030180 DOI: 10.1002/cne.21854] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here we define the expression of approximately 100 transcription factors in progenitors and neurons of the developing basal ganglia. We have begun to elucidate the transcriptional hierarchy of these genes with respect to the Dlx homeodomain genes, which are essential for differentiation of most GABAergic projection neurons of the basal ganglia. This analysis identified Dlx-dependent and Dlx-independent pathways. The Dlx-independent pathway depends in part on the function of the Mash1 b-HLH transcription factor. These analyses define core transcriptional components that differentially specify the identity and differentiation of the striatum, nucleus accumbens, and septum.
Collapse
Affiliation(s)
- Jason E Long
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California 94158-2324, USA
| | | | | | | | | | | |
Collapse
|
194
|
Abstract
In human most cortical gamma-aminobutyric acidergic (GABAergic) neurons are produced in the proliferative zones of the dorsal telencephalon in contrast to rodents. We report that in cynomolgus monkey fetuses cortical GABAergic neurons are generated in the proliferative zones of the dorsal telencephalon, in addition to the proliferative region of the ventral telencephalon, the ganglionic eminence (GE), however, with a temporal delay. GABAergic neuron progenitors labeled for Mash1 and GAD65 were present mainly in the GE at embryonic days (E) 47-55, and in the entire dorsal telencephalon at E64-75. These progenitors within the dorsal telencephalon are generated locally rather than in the GE. The ventral and dorsal lineages of cortical GABAergic neurons display different laminar distribution. Early generated GABAergic neurons from the GE mostly populate the marginal zone and subplate, whereas cortical plate GABAergic neurons originate from both ventral and dorsal telencephalon. A differential regulation of the two GABA synthesizing enzymes (GAD65 and GAD67) parallels GABAergic neuron differentiation. GAD65 is preferentially expressed in GABAergic progenitors and migrating neurons, GAD67 in morphologically differentiated neurons. Therefore, the dorsal telencephalic origin of cortical GABAergic neurons is not human-specific but appears as a former event in the ascent of evolution that could provide GABAergic neurons to an expending neocortex.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Institut National de la Santé et de la Recherche Médicale U29, INMED, Marseille, F-13009 France
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Brigitte Berger
- CNRS, UMR8189, Université Paris Descartes, Laboratoire de Psychologie et Neurosciences Cognitives, Institut de Psychologie, Boulogne Billancourt F-92774, France
| | - Monique Esclapez
- Institut National de la Santé et de la Recherche Médicale U29, INMED, Marseille, F-13009 France
| |
Collapse
|
195
|
Geoffroy CG, Critchley JA, Castro DS, Ramelli S, Barraclough C, Descombes P, Guillemot F, Raineteau O. Engineering of Dominant Active Basic Helix-Loop-Helix Proteins That Are Resistant to Negative Regulation by Postnatal Central Nervous System Antineurogenic Cues. Stem Cells 2009; 27:847-56. [DOI: 10.1002/stem.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
196
|
Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. J Neurosci 2009; 28:13368-83. [PMID: 19074010 DOI: 10.1523/jneurosci.2918-08.2008] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In rodents, the adult subventricular zone (SVZ) generates neuroblasts which migrate to the olfactory bulb (OB) and differentiate into interneurons. Recent work suggests that the neurotrophin Brain-Derived Neurotrophic Factor (BDNF) can enhance adult SVZ neurogenesis, but the mechanism by which it acts is unknown. Here, we analyzed the role of BDNF and its receptor TrkB in adult SVZ neurogenesis. We found that TrkB is the most prominent neurotrophin receptor in the mouse SVZ, but only the truncated, kinase-negative isoform (TrkB-TR) was detected. TrkB-TR is expressed in SVZ astrocytes and ependymal cells, but not in neuroblasts. TrkB mutants have reduced SVZ proliferation and survival and fewer new OB neurons. To test whether this effect is cell-autonomous, we grafted SVZ cells from TrkB knock-out mice (TrkB-KO) into the SVZ of wild-type mice (WT). Grafted progenitors generated neuroblasts that migrated to the OB in the absence of TrkB. The survival and differentiation of granular interneurons and Calbindin(+) periglomerular interneurons seemed unaffected by the loss of TrkB, whereas dopaminergic periglomerular neurons were reduced. Intra-ventricular infusion of BDNF yielded different results depending on the animal species, having no effect on neuron production from mouse SVZ, while decreasing it in rats. Interestingly, mice and rats also differ in their expression of the neurotrophin receptor p75. Our results indicate that TrkB is not essential for adult SVZ neurogenesis and do not support the current view that delivering BDNF to the SVZ can enhance adult neurogenesis.
Collapse
|
197
|
Peru RL, Mandrycky N, Nait-Oumesmar B, Lu QR. Paving the axonal highway: from stem cells to myelin repair. ACTA ACUST UNITED AC 2009; 4:304-18. [PMID: 18759012 DOI: 10.1007/s12015-008-9043-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS), a demyelinating disorder of the central nervous system (CNS), remains among the most prominent and devastating diseases in contemporary neurology. Despite remarkable advances in anti-inflammatory therapies, the inefficiency or failure of myelin-forming oligodendrocytes to remyelinate axons and preserve axonal integrity remains a major impediment for the repair of MS lesions. To this end, the enhancement of remyelination through endogenous and exogenous repair mechanisms and the prevention of axonal degeneration are critical objectives for myelin repair therapies. Thus, recent advances in uncovering myelinating cell sources and the intrinsic and extrinsic factors that govern neural progenitor differentiation and myelination may pave a way to novel strategies for myelin regeneration. The scope of this review is to discuss the potential sources of stem/progenitor cells for CNS remyelination and the molecular mechanisms underlying oligodendrocyte myelination.
Collapse
Affiliation(s)
- Raniero L Peru
- Department of Developmental Biology and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | | | | | | |
Collapse
|
198
|
Puverel S, Nakatani H, Parras C, Soussi-Yanicostas N. Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice. J Comp Neurol 2009; 512:232-42. [DOI: 10.1002/cne.21888] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
199
|
Fate plasticity of adult hippocampal progenitors: biological relevance and therapeutic use. Trends Pharmacol Sci 2009; 30:61-5. [PMID: 19135265 DOI: 10.1016/j.tips.2008.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 12/27/2022]
Abstract
Adult hippocampal stem/progenitor cells (AHPs) continuously give rise to new neurons throughout life, which might be an important determinant of hippocampus-dependent function. Strikingly, the fate potential of AHPs is not restricted to the neuronal lineage because AHPs can be genetically induced to generate oligodendrocytes within their in vivo niche by AHP-specific ectopic expression of the basic-helix-loop-helix (bHLH) transcription factor achaete-scute complex-like 1 (ASCL1). Fate plasticity of AHPs is controlled by cell-autonomous and also niche-dependent mechanisms. Here, we discuss the biological importance and potential therapeutic applications of retained fate plasticity of AHPs in the adult mammalian brain in addition to the future scientific inquiries indicated by this finding.
Collapse
|
200
|
Cave JW, Baker H. Dopamine Systems in the Forebrain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:15-35. [DOI: 10.1007/978-1-4419-0322-8_2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|