151
|
Kang X, Yang Y, Jiao Y, Song H, Song L, Xiong D, Wu L, Pan Z, Jiao X. HA1-2-fljB Vaccine Induces Immune Responses against Pandemic Swine-Origin H1N1 Influenza Virus in Mice. J Mol Microbiol Biotechnol 2016; 26:422-432. [DOI: 10.1159/000448895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
In 2009, a novel pandemic swine-origin influenza A (H1N1) virus caused a public emergency of international concern. Vaccination is the primary strategy for the control of influenza epidemics. However, the poor immunopotency of many vaccine antigens is a major barrier to the development of effective vaccines against influenza. Flagellin, a Toll-like receptor 5 (TLR5) ligand, has been used as an adjuvant to enhance the immunopotency of vaccines in preclinical studies. Here, we developed a recombinant candidate vaccine, HA1-2-fljB, in which the globular head of the hemagglutinin (HA) antigen (residues 62-284) from H1N1 virus was fused genetically to the N-terminus of <i>Salmonella typhimurium</i> fljB. The recombinant HA1-2-fljB protein was expressed efficiently in<i> Escherichia coli</i>, and the immunogenicity and protective efficacy of recombinant HA1-2-fljB were evaluated in a mouse model. Immunization with HA1-2-fljB elicited robust IgG antibodies and neutralizing antibodies and completely protected the mice against infection by swine-origin influenza A/swine/Jangsu/38/2010 (H1N1). These results suggest that HA antigen placed at the N-terminus of flagellin is also an excellent starting point for creating a fusion HA1-2-fljB protein as a candidate vaccine, and the recombinant HA1-2-fljB protein will contribute to the development of a more effective vaccine against swine-origin influenza virus infection.
Collapse
|
152
|
Rösler B, Herold S. Lung epithelial GM-CSF improves host defense function and epithelial repair in influenza virus pneumonia-a new therapeutic strategy? Mol Cell Pediatr 2016; 3:29. [PMID: 27480877 PMCID: PMC4969252 DOI: 10.1186/s40348-016-0055-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/15/2016] [Indexed: 01/05/2023] Open
Abstract
Influenza viruses (IVs) circulate seasonally and are a common cause of respiratory infections in pediatric and adult patients. Additionally, recurrent pandemics cause massive morbidity and mortality worldwide. Infection may result in rapid progressive viral pneumonia with fatal outcome. Since accurate treatment strategies are still missing, research refocuses attention to lung pathology and cellular crosstalk to develop new therapeutic options. Alveolar epithelial cells (AECs) play an important role in orchestrating the pulmonary antiviral host response. After IV infection they release a cascade of immune mediators, one of which is granulocyte and macrophage colony-stimulating factor (GM-CSF). GM-CSF is known to promote differentiation, activation and mobilization of myeloid cells. In the lung, GM-CSF drives immune functions of alveolar macrophages and dendritic cells (DCs) and also improves epithelial repair processes through direct interaction with AECs. During IV infection, AEC-derived GM-CSF shows a lung-protective effect that is also present after local GM-CSF application. This mini-review provides an overview on GM-CSF-modulated immune responses to IV pneumonia and its therapeutic potential in severe IV pneumonia.
Collapse
Affiliation(s)
- Barbara Rösler
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstrasse 4, 80337, Munich, Germany. .,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Susanne Herold
- Department of Internal Medicine II, Section for Infectious Diseases, University Hospital Giessen and Marburg, Klinikstr. 33, Giessen, 35392, Germany.,Universities Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Department of Internal Medicine II, Section for Infectious Diseases, Universities Giessen and Marburg Lung Center (UGMLC), Klinikstr. 33, 35392, Giessen, Germany
| |
Collapse
|
153
|
Li Y, Lai Y, Wang Y, Liu N, Zhang F, Xu P. 1, 8-Cineol Protect Against Influenza-Virus-Induced Pneumonia in Mice. Inflammation 2016; 39:1582-93. [PMID: 27351430 DOI: 10.1007/s10753-016-0394-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1,8-Cineol is a major monoterpene principally from eucalyptus essential oils and has been shown to exert anti-inflammatory, antiviral, and inhibitory of nuclear factor (NF)-kB effect. In the present study, we evaluated the effect of 1,8-cineol on mice infected with influenza A virus. We found that 1,8-cineol protects against influenza viral infection in mice. Moreover, 1,8-cineol efficiently decreased the level of IL-4, IL-5, IL-10, and MCP-1 in nasal lavage fluids and the level of IL-1β, IL-6, TNF-α, and IFN-γ in lung tissues of mice infected with influenza virus. The results also showed that 1,8-cineol reduced the expression of NF-kB p65, intercellular adhesion molecule (ICAM)-1, and vascular cell adhesion molecule (VCAM)-1 in lung tissues. Thus, 1,8-cineol appears to be able to augment protection against IFV infection in mice via attenuation of pulmonary inflammatory responses.
Collapse
Affiliation(s)
- Yun Li
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China
| | - Yanni Lai
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China
| | - Yao Wang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China
| | - Ni Liu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China
| | - Fengxue Zhang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China
| | - Peiping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China.
| |
Collapse
|
154
|
A Role of Influenza Virus Exposure History in Determining Pandemic Susceptibility and CD8+ T Cell Responses. J Virol 2016; 90:6936-6947. [PMID: 27226365 DOI: 10.1128/jvi.00349-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Novel influenza viruses often cause differential infection patterns across different age groups, an effect that is defined as heterogeneous demographic susceptibility. This occurred during the A/H2N2 pandemic, when children experienced higher influenza attack rates than adults. Since the recognition of conserved epitopes across influenza subtypes by CD8(+) cytotoxic T lymphocytes (CTLs) limit influenza disease, we hypothesized that conservation of CTL antigenic peptides (Ag-p) in viruses circulating before the pH2N2-1957 may have resulted in differential CTL immunity. We compared viruses isolated in the years preceding the pandemic (1941 to 1957) to which children and adults were exposed to viruses circulating decades earlier (1918 to 1940), which could infect adults only. Consistent with phylogenetic models, influenza viruses circulating from 1941 to 1957, which infected children, shared with pH2N2 the majority (∼89%) of the CTL peptides within the most immunogenic nucleoprotein, matrix 1, and polymerase basic 1, thus providing evidence for minimal pH2N2 CTL escape in children. Our study, however, identified potential CTL immune evasion from pH2N2 irrespective of age, within HLA-A*03:01(+) individuals for PB1471-L473V/N476I variants and HLA-B*15:01(+) population for NP404-414-V408I mutant. Further experiments using the murine model of B-cell-deficient mice showed that multiple influenza infections resulted in superior protection from influenza-induced morbidity, coinciding with accumulation of tissue-resident memory CD8(+) T cells in the lung. Our study suggests that protection against H2N2-1957 pandemic influenza was most likely linked to the number of influenza virus infections prior to the pandemic challenge rather than differential preexisting CTL immunity. Thus, the regimen of a CTL-based vaccine/vaccine-component may benefit from periodic boosting to achieve fully protective, asymptomatic influenza infection. IMPORTANCE Due to a lack of cross-reactive neutralizing antibodies, children are particularly susceptible to influenza infections caused by novel viral strains. Preexisting T cell immunity directed at conserved viral regions, however, can provide protection against influenza viruses, promote rapid recovery and better clinical outcomes. When we asked whether high susceptibility of children (compared to adults) to the pandemic H2N2 influenza strain was associated with immune evasion from T-cell immunity, we found high conservation within T-cell antigenic regions in pandemic H2N2. However, the number of influenza infections prior to the challenge was linked to protective, asymptomatic infections and establishment of tissue-resident memory T cells. Our study supports development of vaccines that prime and boost T cells to elicit cross-strain protective T cells, especially tissue-resident memory T cells, for lifelong immunity against distinct influenza viruses.
Collapse
|
155
|
Bracchi-Ricard V, Zha J, Smith A, Lopez-Rodriguez DM, Bethea JR, Andreansky S. Chronic spinal cord injury attenuates influenza virus-specific antiviral immunity. J Neuroinflammation 2016; 13:125. [PMID: 27245318 PMCID: PMC4886448 DOI: 10.1186/s12974-016-0574-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
Background Individuals suffering from spinal cord injury (SCI) are at higher risk for respiratory-related viral infections such as influenza. In a previous study (Zha et al., J Neuroinflammation 11:65, 2014), we demonstrated that chronic spinal cord injury caused impairment in CD8+T cell function with increased expression of the immunosuppressive protein, programmed cell death 1 (PD-1). The present study was undertaken to establish whether chronic SCI-induced immune deficits would affect antiviral immunity directed against primary and secondary infections. Methods Six to seven weeks following a SCI contusion at thoracic level T9, mice were infected intranasally with influenza virus. Virus-specific immunity was analyzed at various time points post-infection and compared to uninjured controls. Results We report that chronic thoracic SCI impairs the ability of the animals to mount an adequate antiviral immune response. While all uninjured control mice cleared the virus from their lungs by day 10 post-infection, a significant number (approximately 70 %) of chronic SCI mice did not clear the virus and succumbed to infection-induced mortality. This was attributed to severe deficits in both virus-specific antibody production and CD8+ T cell response in injured mice after primary infection. We also determined that previously acquired humoral immunity was maintained after spinal cord injury as vaccination against influenza A prior to injury-protected mice from a homologous viral challenge. In contrast, prior immunization did not protect mice from a heterotypic challenge with a different strain of influenza virus. Conclusions Taken together, our data demonstrate that chronic SCI attenuates virus-specific humoral and cellular immunity during the establishment of primary response and impairs the development of memory CD8+ T cells. In contrast, B cell memory acquired through vaccination prior to SCI is preserved after injury which demonstrates that antigen-specific memory cells are refractory following injury. Our study defines important parameters of the deficits of chronic SCI-induced immune depression during a viral respiratory infection. Our objective is to better understand the mechanisms of spinal cord injury-induced immune depression with the goal of developing more effective therapies and reduce mortality due to complications from influenza and other infections. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0574-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valerie Bracchi-Ricard
- The Miami Project to Cure Paralysis, Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Ji Zha
- The Miami Project to Cure Paralysis, Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Annalise Smith
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Darlah M Lopez-Rodriguez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - John R Bethea
- The Miami Project to Cure Paralysis, Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Department of Biology, Drexel University, Philadelphia, PA, 19104, USA.
| | - Samita Andreansky
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
156
|
Basile K, Dwyer DE, Kok J. Fat and flu: fact or fiction? Future Virol 2016. [DOI: 10.2217/fvl-2016-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel risk factors for severe influenza infection were described during the early phases of the influenza pandemic of 2009. Worldwide, the rate of severe influenza in the obese and morbidly obese population was disproportionate to that of the general population. This risk factor has now been recognized presumably due to the increasing prevalence of obesity. The cause behind this trend may extend beyond the known deleterious effects of obesity on respiratory physiology, as emerging evidence in animal models demonstrate A(H1N1)pdm09 itself confers worse outcomes compared with seasonal influenza subtypes. Currently, uncertainty remains regarding the optimal antiviral regimen and vaccination strategies in obese individuals. Therefore, further studies on the effects of obesity on influenza infection need to be prioritized.
Collapse
Affiliation(s)
- Kerri Basile
- Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases & Biosecurity, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Centre for Research Excellence in Critical Infections, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Dominic E Dwyer
- Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases & Biosecurity, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Centre for Research Excellence in Critical Infections, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Jen Kok
- Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases & Biosecurity, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Centre for Research Excellence in Critical Infections, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
157
|
Kadolsky UD, Yates AJ. How is the effectiveness of immune surveillance impacted by the spatial distribution of spreading infections? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0289. [PMID: 26150655 PMCID: PMC4528487 DOI: 10.1098/rstb.2014.0289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
What effect does the spatial distribution of infected cells have on the efficiency of their removal by immune cells, such as cytotoxic T lymphocytes (CTL)? If infected cells spread in clusters, CTL may initially be slow to locate them but subsequently kill more rapidly than in diffuse infections. We address this question using stochastic, spatially explicit models of CTL interacting with different patterns of infection. Rather than the effector : target ratio, we show that the relevant quantity is the ratio of a CTL's expected time to locate its next target (search time) to the average time it spends conjugated with a target that it is killing (handling time). For inefficient (slow) CTL, when the search time is always limiting, the critical density of CTL (that required to control 50% of infections, C(*)) is independent of the spatial distribution and derives from simple mass-action kinetics. For more efficient CTL such that handling time becomes limiting, mass-action underestimates C(*), and the more clustered an infection the greater is C(*). If CTL migrate chemotactically towards targets the converse holds-C(*) falls, and clustered infections are controlled most efficiently. Real infections are likely to spread patchily; this combined with even weak chemotaxis means that sterilizing immunity may be achieved with substantially lower numbers of CTL than standard models predict.
Collapse
Affiliation(s)
- Ulrich D Kadolsky
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Andrew J Yates
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
158
|
Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses. PLoS One 2016; 11:e0153671. [PMID: 27071061 PMCID: PMC4829244 DOI: 10.1371/journal.pone.0153671] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.
Collapse
|
159
|
Hamilton JR, Sachs D, Lim JK, Langlois RA, Palese P, Heaton NS. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity. Proc Natl Acad Sci U S A 2016; 113:3861-6. [PMID: 27001854 PMCID: PMC4833272 DOI: 10.1073/pnas.1522376113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A brief window of antigen-nonspecific protection has been observed after influenza A virus (IAV) infection. Although this temporary immunity has been assumed to be the result of residual nonspecific inflammation, this period of induced immunity has not been fully studied. Because IAV has long been characterized as a cytopathic virus (based on its ability to rapidly lyse most cell types in culture), it has been a forgone conclusion that directly infected cells could not be contributing to this effect. Using a Cre recombinase-expressing IAV, we have previously shown that club cells can survive direct viral infection. We show here not only that these cells can eliminate all traces of the virus and survive but also that they acquire a heightened antiviral response phenotype after surviving. Moreover, we experimentally demonstrate temporary nonspecific viral immunity after IAV infection and show that surviving cells are required for this phenotype. This work characterizes a virally induced modulation of the innate immune response that may represent a new mechanism to prevent viral diseases.
Collapse
Affiliation(s)
- Jennifer R Hamilton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - David Sachs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ryan A Langlois
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicholas S Heaton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
160
|
Morimoto A, Omachi S, Osada Y, Chambers JK, Uchida K, Sanjoba C, Matsumoto Y, Goto Y. Hemophagocytosis in Experimental Visceral Leishmaniasis by Leishmania donovani. PLoS Negl Trop Dis 2016; 10:e0004505. [PMID: 26942577 PMCID: PMC4778860 DOI: 10.1371/journal.pntd.0004505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/10/2016] [Indexed: 11/17/2022] Open
Abstract
Hemophagocytosis is a phenomenon in which macrophages phagocytose blood cells. There are reports on up-regulated hemophagocytosis in patients with infectious diseases including typhoid fever, tuberculosis, influenza and visceral leishmaniasis (VL). However, mechanisms of infection-associated hemophagocytosis remained elusive due to a lack of appropriate animal models. Here, we have established a mouse model of VL with hemophagocytosis. At 24 weeks after infection with 1 x 107Leishmania donovani promastigotes, BALB/cA mice exhibited splenomegaly with an average tissue weight per body weight of 2.96%. In the tissues, 28.6% of macrophages contained phagocytosed erythrocytes. All of the hemophagocytosing macrophages were parasitized by L. donovani, and higher levels of hemophagocytosis was observed in heavily infected cells. Furthermore, more than half of these hemophagocytes had two or more macrophage-derived nuclei, whereas only 15.0% of splenic macrophages were bi- or multi-nuclear. These results suggest that direct infection by L. donovani causes hyper-activation of host macrophages to engulf blood cells. To our knowledge, this is the first report on hemophagocytosis in experimental Leishmania infections and may be useful for further understanding of the pathogenesis. Anemia is one of the major clinical manifestations during visceral leishmaniasis (VL), whereas mechanisms behind this symptom remain elusive. To get a better understanding of the responsible mechanism(s), we have developed for the first time a mouse model of VL exhibiting anemia. Mice chronically infected with L. donovani had low hematocrit, hemoglobin and erythrocyte counts while having up-regulated erythropoiesis, suggesting hemolytic events due to infection. We propose here that hemophagocytosis is one of the hemolytic events associated with anemia in the infected mice. The spleen is the major place for hemophagocytosis; there, multinucleated giant cells heavily infected with amastigotes are markedly observed and are the major cell type phagocytosing erythrocytes. These results suggest that heavy infection of macrophages with Leishmania parasites triggers phagocytosis of erythrocytes resulting in anemia during murine VL. Because hemophagocytosis has been reported in human VL cases, reproduction of the pathology in mice may facilitate an understanding of the mechanisms leading to anemia during VL.
Collapse
Affiliation(s)
- Ayako Morimoto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoko Omachi
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasutaka Osada
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshitsugu Matsumoto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
161
|
Hofstetter AR, De La Cruz JA, Cao W, Patel J, Belser JA, McCoy J, Liepkalns JS, Amoah S, Cheng G, Ranjan P, Diebold BA, Shieh WJ, Zaki S, Katz JM, Sambhara S, Lambeth JD, Gangappa S. NADPH Oxidase 1 Is Associated with Altered Host Survival and T Cell Phenotypes after Influenza A Virus Infection in Mice. PLoS One 2016; 11:e0149864. [PMID: 26910342 PMCID: PMC4766197 DOI: 10.1371/journal.pone.0149864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
The role of the reactive oxygen species-producing NADPH oxidase family of enzymes in the pathology of influenza A virus infection remains enigmatic. Previous reports implicated NADPH oxidase 2 in influenza A virus-induced inflammation. In contrast, NADPH oxidase 1 (Nox1) was reported to decrease inflammation in mice within 7 days post-influenza A virus infection. However, the effect of NADPH oxidase 1 on lethality and adaptive immunity after influenza A virus challenge has not been explored. Here we report improved survival and decreased morbidity in mice with catalytically inactive NADPH oxidase 1 (Nox1*/Y) compared with controls after challenge with A/PR/8/34 influenza A virus. While changes in lung inflammation were not obvious between Nox1*/Y and control mice, we observed alterations in the T cell response to influenza A virus by day 15 post-infection, including increased interleukin-7 receptor-expressing virus-specific CD8+ T cells in lungs and draining lymph nodes of Nox1*/Y, and increased cytokine-producing T cells in lungs and spleen. Furthermore, a greater percentage of conventional and interstitial dendritic cells from Nox1*/Y draining lymph nodes expressed the co-stimulatory ligand CD40 within 6 days post-infection. Results indicate that NADPH oxidase 1 modulates the innate and adaptive cellular immune response to influenza virus infection, while also playing a role in host survival. Results suggest that NADPH oxidase 1 inhibitors may be beneficial as adjunct therapeutics during acute influenza infection.
Collapse
Affiliation(s)
- Amelia R Hofstetter
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Juan A De La Cruz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Weiping Cao
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jenish Patel
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James McCoy
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Justine S Liepkalns
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Samuel Amoah
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Guangjie Cheng
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Priya Ranjan
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Becky A Diebold
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Wun-Ju Shieh
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sherif Zaki
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - J David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
162
|
Engelmann F, Rivera A, Park B, Messerle-Forbes M, Jensen JT, Messaoudi I. Impact of Estrogen Therapy on Lymphocyte Homeostasis and the Response to Seasonal Influenza Vaccine in Post-Menopausal Women. PLoS One 2016; 11:e0149045. [PMID: 26859566 PMCID: PMC4747494 DOI: 10.1371/journal.pone.0149045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/25/2016] [Indexed: 01/01/2023] Open
Abstract
It is widely recognized that changes in levels of ovarian steroids modulate severity of autoimmune disease and immune function in young adult women. These observations suggest that the loss of ovarian steroids associated with menopause could affect the age-related decline in immune function, known as immune senescence. Therefore, in this study, we determined the impact of menopause and estrogen therapy (ET) on lymphocyte subset frequency as well as the immune response to seasonal influenza vaccine in three different groups: 1) young adult women (regular menstrual cycles, not on hormonal contraception); 2) post-menopausal (at least 2 years) women who are not receiving any form of hormone therapy (HT) and 3) post-menopausal hysterectomized women receiving ET. Although the numbers of circulating CD4 and CD20 B cells were reduced in the post-menopausal group receiving ET, we also detected a better preservation of naïve B cells, decreased CD4 T cell inflammatory cytokine production, and slightly lower circulating levels of the pro-inflammatory cytokine IL-6. Following vaccination, young adult women generated more robust antibody and T cell responses than both post-menopausal groups. Despite similar vaccine responses between the two post-menopausal groups, we observed a direct correlation between plasma 17β estradiol (E2) levels and fold increase in IgG titers within the ET group. These findings suggest that ET affects immune homeostasis and that higher plasma E2 levels may enhance humoral responses in post-menopausal women.
Collapse
Affiliation(s)
- Flora Engelmann
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Andrea Rivera
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Byung Park
- Division of Biostatistics, Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Marci Messerle-Forbes
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jeffrey T. Jensen
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, United States of America
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Ilhem Messaoudi
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
163
|
Stifter SA, Bhattacharyya N, Pillay R, Flórido M, Triccas JA, Britton WJ, Feng CG. Functional Interplay between Type I and II Interferons Is Essential to Limit Influenza A Virus-Induced Tissue Inflammation. PLoS Pathog 2016; 12:e1005378. [PMID: 26731100 PMCID: PMC4701664 DOI: 10.1371/journal.ppat.1005378] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/09/2015] [Indexed: 01/28/2023] Open
Abstract
Host control of influenza A virus (IAV) is associated with exuberant pulmonary inflammation characterized by the influx of myeloid cells and production of proinflammatory cytokines including interferons (IFNs). It is unclear, however, how the immune system clears the virus without causing lethal immunopathology. Here, we demonstrate that in addition to its known anti-viral activity, STAT1 signaling coordinates host inflammation during IAV infection in mice. This regulatory mechanism is dependent on both type I IFN and IFN-γ receptor signaling and, importantly, requires the functional interplay between the two pathways. The protective function of type I IFNs is associated with not only the recruitment of classical inflammatory Ly6Chi monocytes into IAV-infected lungs, but also the prevention of excessive monocyte activation by IFN-γ. Unexpectedly, type I IFNs preferentially regulate IFN-γ signaling in Ly6Clo rather than inflammatory Ly6Chi mononuclear cell populations. In the absence of type I IFN signaling, Ly6Clo monocytes/macrophages, become phenotypically and functionally more proinflammatory than Ly6Chi cells, revealing an unanticipated function of the Ly6Clo mononuclear cell subset in tissue inflammation. In addition, we show that type I IFNs employ distinct mechanisms to regulate monocyte and neutrophil trafficking. Type I IFN signaling is necessary, but not sufficient, for preventing neutrophil recruitment into the lungs of IAV-infected mice. Instead, the cooperation of type I IFNs and lymphocyte-produced IFN-γ is required to regulate the tissue neutrophilic response to IAV. Our study demonstrates that IFN interplay links innate and adaptive anti-viral immunity to orchestrate tissue inflammation and reveals an additional level of complexity for IFN-dependent regulatory mechanisms that function to prevent excessive immunopathology while preserving anti-microbial functions. Influenza A virus (IAV) is a leading cause of respiratory infection and induces a strong acute inflammation manifested by the recruitment of monocytes and neutrophils as well as the production of proinflammatory cytokines in infected lungs. The interferons (IFNs) are strongly induced by IAV and are known to mediate host resistance to the infection. However, in contrast to their well-studied inhibitory effect on viral replication, the effects of IFNs on host inflammatory responses are less well understood. In this manuscript, we demonstrate that anti-viral IFN signaling is also required for the orchestration of a tissue response associated with the protection against IAV infection in mice. Importantly, we identify that type I IFNs cross-regulate and cooperate with IFN-γ to inhibit monocyte activation and neutrophil infiltration, respectively. This study also demonstrates that Ly6Clo monocytes/macrophages can potentially mediate influenza virus-induced inflammation, suggesting that IFNs dictate the homeostasis versus inflammatory function of mononuclear phagocytes in viral infection. Our study reveals a novel IFN-dependent regulatory mechanism designed to prevent the excessive immunopathology while preserving its anti-microbial functions. Moreover, these observations have particular relevance for understanding the mechanisms underlying the strong inflammatory response associated with lethal IAV strains and have implications for the development of new immunotherapies to treat influenza.
Collapse
Affiliation(s)
- Sebastian A. Stifter
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
| | - Nayan Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Roman Pillay
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Manuela Flórido
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
| | - James A. Triccas
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Warwick J. Britton
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Carl G. Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- * E-mail:
| |
Collapse
|
164
|
Abstract
The T cell response is an integral and essential part of the host immune response to acute virus infection. Each viral pathogen has unique, frequently nuanced, aspects to its replication, which affects the host response and as a consequence the capacity of the virus to produce disease. There are, however, common features to the T cell response to viruses, which produce acute limited infection. This is true whether virus replication is restricted to a single site, for example, the respiratory tract (RT), CNS etc., or replication is in multiple sites throughout the body. In describing below the acute T cell response to virus infection, we employ acute virus infection of the RT as a convenient model to explore this process of virus infection and the host response. We divide the process into three phases: the induction (initiation) of the response, the expression of antiviral effector activity resulting in virus elimination, and the resolution of inflammation with restoration of tissue homeostasis.
Collapse
|
165
|
Abstract
Since Isaac's and Lindenmann's seminal experiments over 50 years ago demonstrating a soluble factor generated from heat killed virus-stimulated chicken embryos could inhibit live influenza virus replication, the term interferon has been synonymous with inhibition of virus replication. While the antiviral properties of type 1 interferon (IFN-I) are undeniable, recent studies have reported expanding and somewhat unexpected roles of IFN-I signaling during both acute and persistent viral infections. IFN-I signaling can promote morbidity and mortality through induction of aberrant inflammatory responses and recruitment of inflammatory innate immune cell populations during acute respiratory viral infections. During persistent viral infection, IFN-I signaling promotes containment of early viral replication/dissemination, however, also initiates and maintains immune suppression, lymphoid tissue disorganization, and CD4 T cell dysfunction through modulation of multiple immune cell populations. Finally, new data are emerging illuminating how specific IFN-I species regulate immune pathology and suppression during acute and persistent viral infections, respectively. Systematic characterization of the cellular populations that produce IFN-I, how the timing of IFN-I induction and intricacies of subtype specific IFN-I signaling promote pathology or immune suppression during acute and persistent viral infections should inform the development of treatments and modalities to control viral associated pathologies.
Collapse
|
166
|
Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 2016; 13:3-10. [PMID: 26189369 PMCID: PMC4711683 DOI: 10.1038/cmi.2015.74] [Citation(s) in RCA: 496] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/28/2015] [Accepted: 06/28/2015] [Indexed: 12/25/2022] Open
Abstract
Severe influenza remains unusual in its virulence for humans. Complications or ultimately death arising from these infections are often associated with hyperinduction of proinflammatory cytokine production, which is also known as 'cytokine storm'. For this disease, it has been proposed that immunomodulatory therapy may improve the outcome, with or without the combination of antiviral agents. Here, we review the current literature on how various effectors of the immune system initiate the cytokine storm and exacerbate pathological damage in hosts. We also review some of the current immunomodulatory strategies for the treatment of cytokine storms in severe influenza, including corticosteroids, peroxisome proliferator-activated receptor agonists, sphingosine-1-phosphate receptor 1 agonists, cyclooxygenase-2 inhibitors, antioxidants, anti-tumour-necrosis factor therapy, intravenous immunoglobulin therapy, statins, arbidol, herbs, and other potential therapeutic strategies.
Collapse
Affiliation(s)
- Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang 443000, China
| | - Yuan-hong Zhou
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang 443000, China
| | - Zhan-qiu Yang
- State Key Laboratory of Virology/Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
167
|
Peng XQ, Zhou HF, Lu YY, Chen JK, Wan HT, Zhang YY. Protective effects of Yinhuapinggan granule on mice with influenza viral pneumonia. Int Immunopharmacol 2016; 30:85-93. [DOI: 10.1016/j.intimp.2015.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/15/2015] [Accepted: 11/22/2015] [Indexed: 01/03/2023]
|
168
|
Characterization of the Localized Immune Response in the Respiratory Tract of Ferrets following Infection with Influenza A and B Viruses. J Virol 2015; 90:2838-48. [PMID: 26719259 DOI: 10.1128/jvi.02797-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/20/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The burden of infection with seasonal influenza viruses is significant. Each year is typically characterized by the dominance of one (sub)type or lineage of influenza A or B virus, respectively. The incidence of disease varies annually, and while this may be attributed to a particular virus strain or subtype, the impacts of prior immunity, population differences, and variations in clinical assessment are also important. To improve our understanding of the impacts of seasonal influenza viruses, we directly compared clinical symptoms, virus shedding, and expression of cytokines, chemokines, and immune mediators in the upper respiratory tract (URT) of ferrets infected with contemporary A(H1N1)pdm09, A(H3N2), or influenza B virus. Gene expression in the lower respiratory tract (LRT) was also assessed. Clinical symptoms were minimal. Overall cytokine/chemokine profiles in the URT were consistent in pattern and magnitude between animals infected with influenza A and B viruses, and peak expression levels of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12p40, alpha interferon (IFN-α), IFN-β, and tumor necrosis factor alpha (TNF-α) mRNAs correlated with peak levels of viral shedding. MCP1 and IFN-γ were expressed after the virus peak. Granzymes A and B and IL-10 reached peak expression as the virus was cleared and seroconversion was detected. Cytokine/chemokine gene expression in the LRT following A(H1N1)pdm09 virus infection reflected the observations seen for the URT but was delayed 2 or 3 days, as was virus replication. These data indicate that disease severities and localized immune responses following infection with seasonal influenza A and B viruses are similar, suggesting that other factors are likely to modulate the incidence and impact of seasonal influenza. IMPORTANCE Both influenza A and B viruses cocirculate in the human population, and annual influenza seasons are typically dominated by an influenza A virus subtype or an influenza B virus lineage. Surveillance data indicate that the burden of disease is higher in some seasons, yet it is unclear whether this is due to specific virus strains or to other factors, such as cross-reactive immunity or clinical definitions of influenza. We directly compared disease severities and localized inflammatory responses to different seasonal influenza virus strains, including the 2009 pandemic strain, in healthy naive ferrets. We found that the disease severities and the cytokine and chemokine responses were similar irrespective of the seasonal strain or the location of the infection in the respiratory tract. This suggests that factors other than the immune response to a particular virus (sub)type contribute to the variable impact of influenza virus infection in a population.
Collapse
|
169
|
Lee PHY, Bird N, MacKenzie-Kludas C, Mansell A, Kedzierska K, Brown L, McAuley J. Induction of memory cytotoxic T cells to influenza A virus and subsequent viral clearance is not modulated by PB1-F2-dependent inflammasome activation. Immunol Cell Biol 2015; 94:439-46. [PMID: 26667784 PMCID: PMC4890051 DOI: 10.1038/icb.2015.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
Abstract
Expression of the viral virulence protein PB1-F2 during infection has been linked to NLRP3 inflammasome complex activation in macrophages and induction of early inflammatory events enhancing immunopathology during influenza disease. We sought to determine whether PB1-F2-specific NLRP3 inflammasome activation influenced the magnitude and/or robustness of the CD8+ T-cell responses specific for conserved viral antigens and subsequent virus elimination. Using murine heterosubtypic viral infection models, we showed that mice infected with virus unable to produce PB1-F2 protein showed no deficit in the overall magnitude and functional memory responses of CD8+ T cells established during the effector phase compared with those infected with wild-type PB1-F2-expressing virus and were equally capable of mounting robust recall responses. These data indicate that while expression of PB1-F2 protein can induce inflammatory events, the capacity to generate memory CD8+ T cells specific for immunodominant viral epitopes remains uncompromised.
Collapse
Affiliation(s)
- Patricia Hoi Yee Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nicola Bird
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Charley MacKenzie-Kludas
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ashley Mansell
- Pattern Recognition Receptors and Inflammation Group, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lorena Brown
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Julie McAuley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
170
|
Vidic J, Richard CA, Péchoux C, Da Costa B, Bertho N, Mazerat S, Delmas B, Chevalier C. Amyloid Assemblies of Influenza A Virus PB1-F2 Protein Damage Membrane and Induce Cytotoxicity. J Biol Chem 2015; 291:739-51. [PMID: 26601953 DOI: 10.1074/jbc.m115.652917] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 01/10/2023] Open
Abstract
PB1-F2 is a small accessory protein encoded by an alternative open reading frame in PB1 segments of most influenza A virus. PB1-F2 is involved in virulence by inducing mitochondria-mediated immune cells apoptosis, increasing inflammation, and enhancing predisposition to secondary bacterial infections. Using biophysical approaches we characterized membrane disruptive activity of the full-length PB1-F2 (90 amino acids), its N-terminal domain (52 amino acids), expressed by currently circulating H1N1 viruses, and its C-terminal domain (38 amino acids). Both full-length and N-terminal domain of PB1-F2 are soluble at pH values ≤6, whereas the C-terminal fragment was found soluble only at pH ≤ 3. All three peptides are intrinsically disordered. At pH ≥ 7, the C-terminal part of PB1-F2 spontaneously switches to amyloid oligomers, whereas full-length and the N-terminal domain of PB1-F2 aggregate to amorphous structures. When incubated with anionic liposomes at pH 5, full-length and the C-terminal part of PB1-F2 assemble into amyloid structures and disrupt membrane at nanomolar concentrations. PB1-F2 and its C-terminal exhibit no significant antimicrobial activity. When added in the culture medium of mammalian cells, PB1-F2 amorphous aggregates show no cytotoxicity, whereas PB1-F2 pre-assembled into amyloid oligomers or fragmented nanoscaled fibrils was highly cytotoxic. Furthermore, the formation of PB1-F2 amyloid oligomers in infected cells was directly reflected by membrane disruption and cell death as observed in U937 and A549 cells. Altogether our results demonstrate that membrane-lytic activity of PB1-F2 is closely linked to supramolecular organization of the protein.
Collapse
Affiliation(s)
- Jasmina Vidic
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas,
| | - Charles-Adrien Richard
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas
| | - Christine Péchoux
- the Génétique Animale et Biologie Intégrative, INRA, UMR1313, Domaine de Vilvert, 78350 Jouy en Josas, and
| | - Bruno Da Costa
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas
| | - Nicolas Bertho
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas
| | - Sandra Mazerat
- the Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Sud, CNRS, UMR 8182, 91400 Orsay, France
| | - Bernard Delmas
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas
| | - Christophe Chevalier
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas
| |
Collapse
|
171
|
Fernandez MV, Miller E, Krammer F, Gopal R, Greenbaum BD, Bhardwaj N. Ion efflux and influenza infection trigger NLRP3 inflammasome signaling in human dendritic cells. J Leukoc Biol 2015; 99:723-34. [PMID: 26574023 DOI: 10.1189/jlb.3a0614-313rrr] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/28/2015] [Indexed: 12/20/2022] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome, a multiprotein complex, is an essential intracellular mediator of antiviral immunity. In murine dendritic cells, this complex responds to a wide array of signals, including ion efflux and influenza A virus infection, to activate caspase-1-mediated proteolysis of IL-1β and IL-18 into biologically active cytokines. However, the presence and function of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in human dendritic cells, in response to various triggers, including viral infection, has not been defined clearly. Here, we delineate the contribution of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome to the secretion of IL-1β, IL-18, and IL-1α by human dendritic cells (monocyte-derived and primary conventional dendritic cells). Activation of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in human dendritic cells by various synthetic activators resulted in the secretion of bioactive IL-1β, IL-18, and IL-1α and induction of pyroptotic cell death. Cellular IL-1β release depended on potassium efflux and the activity of proteins nucleotide-binding oligomerization domain-like receptor protein 3 and caspase-1. Likewise, influenza A virus infection of dendritic cells resulted in priming and activation of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome and secretion of IL-1β and IL-18 in an M2- and nucleotide-binding oligomerization domain-like receptor protein 3-dependent manner. The magnitude of priming by influenza A virus varied among different strains and inversely corresponded to type I IFN production. To our knowledge, this is the first report describing the existence and function of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in human dendritic cells and the ability of influenza A virus to prime and activate this pathway in human dendritic cells, with important implications for antiviral immunity and pathogenesis.
Collapse
Affiliation(s)
| | - Elizabeth Miller
- Division of Infectious Diseases, Department of Medicine, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ramya Gopal
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin D Greenbaum
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
172
|
Li Y, Xie P, Sun M, Xiang B, Kang Y, Gao P, Zhu W, Ning Z, Ren T. S1PR1 expression correlates with inflammatory responses to Newcastle disease virus infection. INFECTION GENETICS AND EVOLUTION 2015; 37:37-42. [PMID: 26597451 DOI: 10.1016/j.meegid.2015.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 12/29/2022]
Abstract
Newcastle disease virus (NDV) is the causative agent of Newcastle disease, which is characterized by inflammatory pathological changes in the organs of chickens. The inflammatory response to this disease has not been well characterized. Previous reports showed that the sphingosine-1-phosphate-1 receptor (S1PR1), a G protein-coupled receptor, is important to the activation of inflammatory responses. To understand better the viral pathogenesis and host inflammatory response, we analyzed S1PR1 expression during NDV infection. We observed a direct correlation between chicken embryo fibroblast (CEF) cellular inflammatory responses and S1PR1 expression. Virulent NDV-infected CEF cells also had elevated levels of pro-inflammatory cytokines (IL-1β, IL-6 and IL-18). When S1PR1 was inhibited by using the specific antagonist W146, pro-inflammatory cytokine production declined. Overexpression of S1PR1 resulted in increased virus-induced IL-1β production. S1PR1 expression levels did not impact significantly NDV replication. These findings highlight the important role of S1PR1 in inflammatory responses in NDV infection.
Collapse
Affiliation(s)
- Yaling Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Peng Xie
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Minhua Sun
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Bin Xiang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yinfeng Kang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Pei Gao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Wenxian Zhu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Zhangyong Ning
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| | - Tao Ren
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
173
|
Peng XQ, Zhou HF, Zhang YY, Yang JH, Wan HT, He Y. Antiviral effects of Yinhuapinggan granule against influenza virus infection in the ICR mice model. J Nat Med 2015; 70:75-88. [PMID: 26439479 DOI: 10.1007/s11418-015-0939-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/09/2015] [Indexed: 01/12/2023]
Abstract
Yinhuapinggan granule (YHPG), a Chinese medicine granule based on Ma-Huang-Tang (Ephedra Decoction) and the clinical experience of Professor Wan Haitong, is used in traditional Chinese medicine (TCM) for the treatment of colds, influenza, fever, inflammation and cough. This study investigated the antiviral effects of YHPG on the production of inflammatory cytokines in influenza virus (IFV)-infected mice and evaluated the effect of YHPG on the expression of NF-κB p65 and the level of key signaling molecules in the TLR4 signaling pathway. ICR mice were orally administrated YHPG at doses of 7.5, 15 and 30 g kg(-1) day(-1) for 2 or 6 days after IFV infection. On days 3 and 7 after infection, YHPG (15 g/kg and 30 g/kg) significantly increased levels of interleukin (IL)-2 and interferon gamma and decreased levels of IL-4, IL-5 and tumor necrosis factor (TNF) in serum compared with the IFV control group. Furthermore, the expression of TLR4, MyD88, TRAF6 and NF-κB p65 at the mRNA and protein level was significantly lower in the YHPG (15 and 30 g/kg) treatment groups than in the IFV control group. These results suggest that YHPG has antiviral effects in IFV-infected mice, which is associated with the inhibition of the TLR4-MyD88-TRAF6 signaling pathway and the expression of NF-κB p65.
Collapse
Affiliation(s)
- Xue-qian Peng
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui-fen Zhou
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu-yan Zhang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie-hong Yang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-tong Wan
- Institute of Cardio-Cerebrovascular Diseases, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China.
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China.
| |
Collapse
|
174
|
Kim EH, Choi YK, Kim CJ, Sung MH, Poo H. Intranasal administration of poly-gamma glutamate induced antiviral activity and protective immune responses against H1N1 influenza A virus infection. Virol J 2015; 12:160. [PMID: 26437715 PMCID: PMC4595321 DOI: 10.1186/s12985-015-0387-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The global outbreak of a novel swine-origin strain of the 2009 H1N1 influenza A virus and the sudden, worldwide increase in oseltamivir-resistant H1N1 influenza A viruses highlight the urgent need for novel antiviral therapy. METHODS Here, we investigated the antiviral efficacy of poly-gamma glutamate (γ-PGA), a safe and edible biomaterial that is naturally synthesized by Bacillus subtilis, against A/Puerto Rico/8/1934 (PR8) and A/California/04/2009 (CA04) H1N1 influenza A virus infections in C57BL/6 mice. RESULTS Intranasal administration of γ-PGA for 5 days post-infection improved survival, increased production of antiviral cytokines including interferon-beta (IFN-β) and interleukin-12 (IL-12), and enhanced activation of natural killer (NK) cells and influenza antigen-specific cytotoxic T lymphocytes (CTL) activity. CONCLUSIONS These results suggest that γ-PGA protects mice against H1N1 influenza A virus by enhancing antiviral immune responses.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Viral Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea. .,College of Medicine, Chungbuk National University, Chengju, Republic of Korea.
| | - Young-Ki Choi
- College of Medicine, Chungbuk National University, Chengju, Republic of Korea.
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Moon-Hee Sung
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea.
| | - Haryoung Poo
- Viral Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea. .,Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea.
| |
Collapse
|
175
|
Terajima M, Co MDT, Cruz J, Ennis FA. High Antibody-Dependent Cellular Cytotoxicity Antibody Titers to H5N1 and H7N9 Avian Influenza A Viruses in Healthy US Adults and Older Children. J Infect Dis 2015; 212:1052-60. [PMID: 25795791 PMCID: PMC4668882 DOI: 10.1093/infdis/jiv181] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/10/2015] [Indexed: 11/12/2022] Open
Abstract
Human influenza is a highly contagious acute respiratory illness that is responsible for significant morbidity and excess mortality worldwide. In addition to neutralizing antibodies, there are antibodies that bind to influenza virus-infected cells and mediate lysis of the infected cells by natural killer (NK) cells (antibody-dependent cellular cytotoxicity [ADCC]) or complement (complement-dependent lysis [CDL]). We analyzed sera obtained from 16 healthy adults (18-63 years of age), 52 children (2-17 years of age), and 10 infants (0.75-1 year of age) in the United States, who were unlikely to have been exposed to the avian H7N9 subtype of influenza A virus, by ADCC and CDL assays. As expected, none of these sera had detectable levels of hemagglutination-inhibiting antibodies against the H7N9 virus, but we unexpectedly found high titers of ADCC antibodies to the H7N9 subtype virus in all sera from adults and children aged ≥8 years.
Collapse
Affiliation(s)
| | | | - John Cruz
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Francis A. Ennis
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester
| |
Collapse
|
176
|
Zhu L, Yuan C, Ma Y, Ding X, Zhu G, Zhu Q. Anti-inflammatory activities of phospholipase C inhibitor U73122: Inhibition of monocyte-to-macrophage transformation and LPS-induced pro-inflammatory cytokine expression. Int Immunopharmacol 2015; 29:622-627. [PMID: 26428848 DOI: 10.1016/j.intimp.2015.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/13/2015] [Accepted: 09/23/2015] [Indexed: 11/16/2022]
Abstract
A wide range of biological processes are controlled by phospholipase C (PLC)/Ca(2+) signaling, which could be blocked by PLC-specific inhibitor U73122. Whether inhibition of PLC with chemical inhibitor U73122 affects the inflammatory response in monocytes/macrophages is currently unknown. In this study, we demonstrated that U73122 inhibited PMA-induced in vitro differentiation of human promonocytic U937 cells into macrophages as reflected by the reduction of cell adherence and the decreased expression of macrophage specific marker CD163. It is possible that U73122 blocked PMA-induced adhesion of U937 cells partially by down regulation and inactivation of both Pyk2 and paxillin signaling. Furthermore, the expression of LPS-induced pro-inflammatory cytokines TNF-α and IL-1β was significantly blocked by U73122 in both dU937 cells and mouse primary peritoneal macrophages. These results suggest that PLC is involved in the sophisticated inflammatory response by monocytes/macrophages, and thereby chemical antagonists of PLC may be potential agents for the suppression of inflammatory response.
Collapse
Affiliation(s)
- Liqian Zhu
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Chen Yuan
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Yan Ma
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Xiuyan Ding
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Qiyun Zhu
- The State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Chengguan District, Lanzhou 730046, Gansu, China.
| |
Collapse
|
177
|
McAuley JL, Kedzierska K, Brown LE, Shanks GD. Host Immunological Factors Enhancing Mortality of Young Adults during the 1918 Influenza Pandemic. Front Immunol 2015; 6:419. [PMID: 26347742 PMCID: PMC4541073 DOI: 10.3389/fimmu.2015.00419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/01/2015] [Indexed: 11/13/2022] Open
Abstract
During the 1918 influenza pandemic, healthy young adults unusually succumbed to infection and were considered more vulnerable than young children and the elderly. The pathogenesis of this pandemic in the young adult population remains poorly understood. As this population is normally the least likely to die during seasonal influenza outbreaks, thought to be due to their appropriate pre-existing and robust immune responses protecting them from infection, we sought to review existing literature for immunological reasons for excessive mortality during the 1918 pandemic. We propose the novelty of the H1N1 pandemic virus to an H1N1 naïve immune system, the virulence of this virus, and dysfunctional host inflammatory and immunological responses, shaped by past influenza infections could have each contributed to their overall susceptibility. Additionally, in the young adult population, pre-exposure to past influenza infection of different subtypes, such as a H3N8 virus, during their infancy in 1889-1892, may have shaped immunological responses and enhanced vulnerability via humoral immunity effects with cross-reactive or non-neutralizing antibodies; excessive and/or ineffective cellular immunity from memory T lymphocytes; and innate dysfunctional inflammation. Multiple mechanisms likely contributed to the increased young adult mortality in 1918 and are the focus of this review.
Collapse
Affiliation(s)
- Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Melbourne, VIC , Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Melbourne, VIC , Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Melbourne, VIC , Australia
| | - G Dennis Shanks
- Australian Army Malaria Institute , Enoggera, QLD , Australia ; School of Population Health, University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
178
|
Oral Fluids as a Live-Animal Sample Source for Evaluating Cross-Reactivity and Cross-Protection following Intranasal Influenza A Virus Vaccination in Pigs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1109-20. [PMID: 26291090 DOI: 10.1128/cvi.00358-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022]
Abstract
In North American swine, there are numerous antigenically distinct H1 influenza A virus (IAV) variants currently circulating, making vaccine development difficult due to the inability to formulate a vaccine that provides broad cross-protection. Experimentally, live-attenuated influenza virus (LAIV) vaccines demonstrate increased cross-protection compared to inactivated vaccines. However, there is no standardized assay to predict cross-protection following LAIV vaccination. Hemagglutination-inhibiting (HI) antibody in serum is the gold standard correlate of protection following IAV vaccination. LAIV vaccination does not induce a robust serum HI antibody titer; however, a local mucosal antibody response is elicited. Thus, a live-animal sample source that could be used to evaluate LAIV immunogenicity and cross-protection is needed. Here, we evaluated the use of oral fluids (OF) and nasal wash (NW) collected after IAV inoculation as a live-animal sample source in an enzyme-linked immunosorbent assay (ELISA) to predict cross-protection in comparison to traditional serology. Both live-virus exposure and LAIV vaccination provided heterologous protection, though protection was greatest against more closely phylogenetically related viruses. IAV-specific IgA was detected in NW and OF samples and was cross-reactive to representative IAV from each H1 cluster. Endpoint titers of cross-reactive IgA in OF from pigs exposed to live virus was associated with heterologous protection. While LAIV vaccination provided significant protection, LAIV immunogenicity was reduced compared to live-virus exposure. These data suggest that OF from pigs inoculated with wild-type IAV, with surface genes that match the LAIV seed strain, could be used in an ELISA to assess cross-protection and the antigenic relatedness of circulating and emerging IAV in swine.
Collapse
|
179
|
Awogbindin IO, Olaleye DO, Farombi EO. Kolaviron Improves Morbidity and Suppresses Mortality by Mitigating Oxido-Inflammation in BALB/c Mice Infected with Influenza Virus. Viral Immunol 2015. [PMID: 26200137 DOI: 10.1089/vim.2015.0013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza A viruses (IAV) induce cytokine storm and host's intracellular redox imbalance to ensure continuous replication and survival, leading to severe immunopathology and death. The unpredictability of broad-spectrum vaccines, the emergence of drug-resistant and/or more virulent strains, the prevalence of the amantadane-resistant IAV, and the prohibitive cost of available drugs especially in resource-poor countries necessitate exploring drugs with novel action mechanisms as anti-influenza agents. This study presents the protective role of kolaviron (KV), a natural antioxidant and anti-inflammatory agent from Garcinia kola seeds, on BALB/c mice challenged with influenza A/Perth/H3N2/16/09 (Pr/H3N2) virus. KV at 400 mg/kg was administered orally to groups of BALB/c mice for 3 days, 3 h, and 1 h prior to infection with 1LD50 or 3LD50 (14-day study) and 5LD50 (6-day study) Pr/H3N2. Pr/H3N2 in the lungs was detected by hemagglutination assay, while oxidative stress and inflammatory biomarkers were assayed in both lungs and liver. Infected mice treated with KV progressively increased in weight with minimal mortality. Single-dose administration of KV at 1 h or 3 h before viral challenge and 3 days pretreatment improved lung aeration and reduced lung consolidation as well as inflammatory cells infiltration in a way that had minimal impact on viral clearance, but attenuated myeloperoxidase activity and nitric oxide production via priming of reduced glutathione levels, thus enhancing the preservation of function in the lungs and liver. This study suggests that KV may be effective for delaying the development of clinical symptoms of influenza virus, and this may be through a mechanism unrelated to those deployed by the existing anti-influenza drugs but closely associated to its antioxidant and immunomodulatory properties.
Collapse
Affiliation(s)
| | - David O Olaleye
- 2 Department of Virology, College of Medicine, University of Ibadan , Ibadan, Nigeria
| | | |
Collapse
|
180
|
Morán J, Ramírez-Martínez G, Jiménez-Alvarez L, Cruz A, Pérez-Patrigeon S, Hidalgo A, Orozco L, Martínez A, Padilla-Noriega L, Avila-Moreno F, Cabello C, Granados J, Ortíz-Quintero B, Ramírez-Venegas A, Ruíz-Palacios GM, Zlotnik A, Merino E, Zúñiga J. Circulating levels of miR-150 are associated with poorer outcomes of A/H1N1 infection. Exp Mol Pathol 2015; 99:253-61. [PMID: 26148929 DOI: 10.1016/j.yexmp.2015.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/02/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Overproduction of pro-inflammatory cytokines and chemokines is frequently associated with severe clinical manifestations in patients infected with influenza A/H1N1 virus. Micro-RNAs (miRNAs) are highly conserved small non-coding RNA molecules that post-transcriptionally regulate gene expression and are potential biomarkers and therapeutic targets in different inflammatory conditions. METHODS We studied the circulating and miRNA profiles in critically ill A/H1N1 patients, A/H1N1 patients with milder disease, asymptomatic housemates and healthy controls. Cytokine, chemokine and growth factors that were potential targets of differentially expressed miRNAs were assessed. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and interactome analysis of these miRNAs were also performed. RESULTS Critically ill patients exhibited a significant over-expression of circulating miR-150 (p<0.005) when compared to patients with milder disease. miR-29c, miR-145 and miR-22 were differentially expressed in patients with severe A/H1N1 disease whereas miR-210, miR-126 and miR-222 were downregulated in individuals exposed to the A/H1N1 virus. Significant correlations (p<0.05) between circulating levels of miR-150 with IL-1ra, IL-2, IL-6, CXCL8, IFN-γ, CXCL10 and G-CSF were detected, particularly in critically ill patients. CONCLUSION The up-regulation of miR-150 is associated with poorer outcomes of A/H1N1 infection. The differential expression of miRNAs related with immune processes in severe A/H1N1 disease supports the potential role of these miRNAs as biomarkers of disease progression.
Collapse
Affiliation(s)
- Juan Morán
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Luis Jiménez-Alvarez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfredo Cruz
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Santiago Pérez-Patrigeon
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Alfredo Hidalgo
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Luis Padilla-Noriega
- Department of Microbiology and Parasitology, Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico
| | - Federico Avila-Moreno
- FES-Iztacala, Unidad de Biomedicina, UBIMED, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Cabello
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Julio Granados
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Blanca Ortíz-Quintero
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Guillermo M Ruíz-Palacios
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Albert Zlotnik
- Department of Biophysics and Physiology, University of California Irvine, CA, USA
| | - Enrique Merino
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca City, Mexico
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.
| |
Collapse
|
181
|
Bird NL, Olson MR, Hurt AC, Oshansky CM, Oh DY, Reading PC, Chua BY, Sun Y, Tang L, Handel A, Jackson DC, Turner SJ, Thomas PG, Kedzierska K. Oseltamivir Prophylaxis Reduces Inflammation and Facilitates Establishment of Cross-Strain Protective T Cell Memory to Influenza Viruses. PLoS One 2015; 10:e0129768. [PMID: 26086392 PMCID: PMC4473273 DOI: 10.1371/journal.pone.0129768] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023] Open
Abstract
CD8(+) T cells directed against conserved viral regions elicit broad immunity against distinct influenza viruses, promote rapid virus elimination and enhanced host recovery. The influenza neuraminidase inhibitor, oseltamivir, is prescribed for therapy and prophylaxis, although it remains unclear how the drug impacts disease severity and establishment of effector and memory CD8(+) T cell immunity. We dissected the effects of oseltamivir on viral replication, inflammation, acute CD8(+) T cell responses and the establishment of immunological CD8(+) T cell memory. In mice, ferrets and humans, the effect of osteltamivir on viral titre was relatively modest. However, prophylactic oseltamivir treatment in mice markedly reduced morbidity, innate responses, inflammation and, ultimately, the magnitude of effector CD8(+) T cell responses. Importantly, functional memory CD8(+) T cells established during the drug-reduced effector phase were capable of mounting robust recall responses. Moreover, influenza-specific memory CD4(+) T cells could be also recalled after the secondary challenge, while the antibody levels were unaffected. This provides evidence that long-term memory T cells can be generated during an oseltamivir-interrupted infection. The anti-inflammatory effect of oseltamivir was verified in H1N1-infected patients. Thus, in the case of an unpredicted influenza pandemic, while prophylactic oseltamivir treatment can reduce disease severity, the capacity to generate memory CD8(+) T cells specific for the newly emerged virus is uncompromised. This could prove especially important for any new influenza pandemic which often occurs in separate waves.
Collapse
Affiliation(s)
- Nicola L. Bird
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Matthew R. Olson
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine M. Oshansky
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
- Federation University, School of Applied Sciences and Biomedical Sciences, Gippsland Victoria 3842, Australia
| | - Patrick C. Reading
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Brendon Y. Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Yilun Sun
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Li Tang
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602, United States of America
| | - David C. Jackson
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Stephen J. Turner
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Paul G. Thomas
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| |
Collapse
|
182
|
Kedzierski L, Clemens EB, Bird NL, Kile BT, Belz GT, Nicola NA, Kedzierska K, Nicholson SE. SOCS4 is dispensable for an efficient recall response to influenza despite being required for primary immunity. Immunol Cell Biol 2015; 93:909-13. [DOI: 10.1038/icb.2015.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 05/01/2015] [Accepted: 05/11/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Lukasz Kedzierski
- Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology, The University of Melbourne Parkville Victoria Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity Parkville Victoria Australia
| | - Nicola L Bird
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity Parkville Victoria Australia
| | - Benjamin T Kile
- Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology, The University of Melbourne Parkville Victoria Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology, The University of Melbourne Parkville Victoria Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology, The University of Melbourne Parkville Victoria Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity Parkville Victoria Australia
| | - Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology, The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
183
|
Rajao DS, Vincent AL. Swine as a Model for Influenza A Virus Infection and Immunity. ILAR J 2015; 56:44-52. [DOI: 10.1093/ilar/ilv002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
184
|
The Modified JiuWei QiangHuo Decoction Alleviated Severe Lung Injury Induced by H1N1 Influenza Virus by Regulating the NF- κ B Pathway in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:790739. [PMID: 26089947 PMCID: PMC4451524 DOI: 10.1155/2015/790739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 01/02/2023]
Abstract
A new approach to treat infections of highly pathogenic influenza virus is to inhibit excessive innate immune response. JiuWei QiangHuo decoction has been used for centuries for the treatment of pulmonary disorders in China. In this study, we evaluated the anti-inflammatory activities of the modified JiuWei QiangHuo (MJWQH) decoction in the treatment of influenza A (H1N1) virus-induced severe pneumonia in mice. The results showed that MJWQH significantly increased the survival rate of H1N1-infected mice and suppressed the production of TNF-α, IL-1, IL-6, MCP-1, RANTES, and IFN-α on day 4 after infection. Moreover, oral administration of MJWQH efficiently inhibited virus replication and alleviated the severity of lung injuries. The results also showed that MJWQH may have potential therapeutic effect on severe lung injury induced by H1N1 virus by regulating the NF-κB pathway. Our study suggested that MJWQH might be an alternative therapy for the treatment of viral pneumonia.
Collapse
|
185
|
Shah PD, Zhong Q, Lendermon EA, Pipeling MR, McDyer JF. Hyperexpansion of Functional Viral-Specific CD8+ T Cells in Lymphopenia-Associated MCMV Pneumonitis. Viral Immunol 2015; 28:255-64. [PMID: 26046830 DOI: 10.1089/vim.2015.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) is a significant cause of morbidity and mortality in immunocompromised hosts, many of whom undergo significant periods of lymphopenia. However, the impact of lymphopenia and subsequent immune reconstitution on T cell responses and pulmonary pathology are poorly understood. Using a model of primary murine CMV infection in mice treated with cyclophosphamide (CY), the relationship of CD8+ T cell reconstitution to pneumonitis pathology was studied. Female BALB/c mice were infected with murine CMV (MCMV) with/without CY on day 1 post-infection. Lung pathology and viral specific T cell responses were assessed on days 7-28. T cell lymphocyte subsets, effector responses, and MCMV specificity were assessed at baseline and after in vitro stimulation of cells with immediate-early peptide pp89. CY treatment of MCMV-infected mice resulted in interstitial pneumonitis not seen with MCMV alone. Compared to MCMV alone, on day 14, MCMV/CY mice had greater number of CD8+ T cells, a fourfold increase in absolute number of pp89 tetramer-specific CD8+ cells, and an eightfold increase in MCMV specific T cell effector responses (IFN-γ; p<0.001). This expansion was preceded by transient lymphopenia, increased viral titers, and, most strikingly, a 10-fold increased proliferative capacity in MCMV/CY mice. In the setting of CY-associated lymphopenia, concurrent MCMV infection alters immune reconstitution toward a hyperexpanded MCMV-specific CD8+ effector T cell pool that correlates with significant lung immunopathology.
Collapse
Affiliation(s)
- Pali D Shah
- 1Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qiong Zhong
- 1Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth A Lendermon
- 2Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R Pipeling
- 2Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John F McDyer
- 2Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
186
|
Huang MT, Chen ST, Wu HY, Chen YJ, Chou TY, Hsieh SL. DcR3 suppresses influenza virus-induced macrophage activation and attenuates pulmonary inflammation and lethality. J Mol Med (Berl) 2015; 93:1131-43. [PMID: 25940317 DOI: 10.1007/s00109-015-1291-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/19/2015] [Accepted: 04/24/2015] [Indexed: 12/28/2022]
Abstract
UNLABELLED Influenza A virus (IAV) infects macrophages and stimulates innate immunity receptors and sensors to produce proinflammatory cytokines and chemokines, which are responsible for IAV-induced pulmonary inflammation and injury. Decoy receptor 3 (DcR3) is a soluble protein belonging to the tumor necrosis factor receptor superfamily (TNFRSF), and is able to skew macrophage differentiation into an M2 phenotype. We demonstrated that DcR3 attenuated IAV-induced secretion of proinflammatory cytokines and chemokine from macrophages, and mitigated pulmonary infiltration and reduce lethality. Proteome-wide phosphoproteomic mapping revealed that DcR3 not only activated STK10, a negative regulator of cell migration, but also inactivated PKC-α, which are crucial for the activation of ERK and JNK in human macrophages. Furthermore, less pulmonary infiltration with lower levels of proinflammatory cytokines and chemokine in bronchoalveolar lavage fluid (BALF) were observed in DcR3-transgenic mice. Moreover, recombinant DcR3.Fc and heparan sulfate proteoglycan binding domain of DcR3.Fc (HBD.Fc) fusion proteins attenuated weight loss and protected mice from IAV-induced lethality. Thus, DcR3-mediated protection is not only via suppression of proinflammatory cytokine and chemokine release, but also via activation of STK10 to inhibit cell infiltration. DcR3 fusion proteins may become therapeutic agents to protect host from IAV-induced lethality in the future. KEY MESSAGE • DcR3 suppresses IAV-induced cytokine secretion.• DcR3 inhibits IAV-induced JNK and ERK activation in human macrophages.• DcR3 downregulates TLR3 and 7 expressions in human macrophages.• DcR3 protects mice from IAV-induced lethality.
Collapse
Affiliation(s)
- Ming-Ting Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Szu-Ting Chen
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
187
|
Wang W, Mu X, Zhao L, Wang J, Chu Y, Feng X, Feng B, Wang X, Zhang J, Qiao J. Transcriptional response of human umbilical vein endothelial cell to H9N2 influenza virus infection. Virology 2015; 482:117-27. [PMID: 25863179 DOI: 10.1016/j.virol.2015.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 11/25/2022]
Abstract
Endothelial cells are believed to play an important role in response to virus infection. Here, we used a microarray technology to study the gene expression profile in human umbilical vein endothelial cells at 24h postinfection with H9N2 viruses or inactivated H9N2 viral particles. The results showed that H9N2 virus infection induced an abundance of differential expressed genes, exhibiting a transcriptional signature of viral infection. High levels of chemokine gene expressions were detected following treatment. Surprisingly, the most significantly up-regulated genes were mainly interferon-stimulated genes (ISGs), although there was no change in interferon gene expression and interferon protein level. We also found that viral particles were more potent than viruses in inducing ISGs expression. These results suggest that induction of expression of ISGs is mainly dependent on the interaction between viral particles and endothelial cells. Our data offer further insight into the interaction between endothelial cells and H9N2 influenza viruses.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People׳s Republic of China
| | - Xiang Mu
- Department of Animal Science and Technology, Beijing Agricultural College, Beijing 102206, People׳s Republic of China
| | - Lihong Zhao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People׳s Republic of China
| | - Jianfang Wang
- Department of Animal Science and Technology, Beijing Agricultural College, Beijing 102206, People׳s Republic of China
| | - Yaocheng Chu
- Department of Veterinary Medicine, College of Animal Science, Hebei North University, Zhangjiakou 075131, Hebei Province, People׳s Republic of China
| | - Xuejian Feng
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People׳s Republic of China
| | - Bo Feng
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People׳s Republic of China
| | - Xiaohong Wang
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People׳s Republic of China
| | - Jianjun Zhang
- Department of Animal Science and Technology, Beijing Agricultural College, Beijing 102206, People׳s Republic of China
| | - Jian Qiao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People׳s Republic of China.
| |
Collapse
|
188
|
Baharom F, Thomas S, Bieder A, Hellmér M, Volz J, Sandgren KJ, McInerney GM, Karlsson Hedestam GB, Mellman I, Smed-Sörensen A. Protection of human myeloid dendritic cell subsets against influenza A virus infection is differentially regulated upon TLR stimulation. THE JOURNAL OF IMMUNOLOGY 2015; 194:4422-30. [PMID: 25801434 DOI: 10.4049/jimmunol.1402671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/18/2015] [Indexed: 12/24/2022]
Abstract
The proinflammatory microenvironment in the respiratory airway induces maturation of both resident and infiltrating dendritic cells (DCs) upon influenza A virus (IAV) infection. This results in upregulation of antiviral pathways as well as modulation of endocytic processes, which affect the susceptibility of DCs to IAV infection. Therefore, it is highly relevant to understand how IAV interacts with and infects mature DCs. To investigate how different subsets of human myeloid DCs (MDCs) involved in tissue inflammation are affected by inflammatory stimulation during IAV infection, we stimulated primary blood MDCs and inflammatory monocyte-derived DCs (MDDCs) with TLR ligands, resulting in maturation. Interestingly, MDDCs but not MDCs were protected against IAV infection after LPS (TLR4) stimulation. In contrast, stimulation with TLR7/8 ligand protected MDCs but not MDDCs from IAV infection. The reduced susceptibility to IAV infection correlated with induction of type I IFNs. We found that differential expression of TLR4, TRIF, and MyD88 in the two MDC subsets regulated the ability of the cells to enter an antiviral state upon maturation. This difference was functionally confirmed using small interfering RNA and inhibitors. Our data show that different human MDC subsets may play distinct roles during IAV infection, as their capacity to induce type I IFNs is dependent on TLR-specific maturation, resulting in differential susceptibility to IAV infection.
Collapse
Affiliation(s)
- Faezzah Baharom
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Saskia Thomas
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Andrea Bieder
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Maria Hellmér
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Julia Volz
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Kerrie J Sandgren
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | | | - Ira Mellman
- Genentech, Inc., South San Francisco, CA 94080
| | - Anna Smed-Sörensen
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| |
Collapse
|
189
|
A new mechanism of vitamin C effects on A/FM/1/47(H1N1) virus-induced pneumonia in restraint-stressed mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:675149. [PMID: 25710018 PMCID: PMC4331320 DOI: 10.1155/2015/675149] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/25/2014] [Accepted: 10/15/2014] [Indexed: 01/24/2023]
Abstract
It is well known that vitamin C could protect against influenza infection, but little is known about the mechanisms. This study aimed to investigate the influence and possible mechanisms of vitamin C on pneumonia induced by influenza virus in stressed mice. Results showed that restraint stress significantly increased the mortality and the severity of pneumonia in mice caused by A/FM/1/47(H1N1) virus infection, which was attenuated by oral administration of vitamin C (125 and 250 mg/kg). Moreover, vitamin C administration significantly decreased expression of susceptibility genes, including mitochondrial antiviral signaling (MAVS) and interferon regulatory factor 3 (IRF3), and increased expression of NF-κB. These work in conjunction to induce type I interferons (IFNs) and elicit innate antiviral response as key factors in RIG-I-mediated signal transduction pathway. The above effects of vitamin C were further found to relate with inhibition of excess CORT synthesis by regulating steroid hydroxylating enzymes in adrenal gland. In conclusion, the protective effects of vitamin C on influenza virus-caused pneumonia might be related to its inhibition of CORT synthesis, which reduces the susceptibility to influenza viral infection in restraint-stressed mice. These findings provide a new mechanism for the effects of vitamin C on influenza virus-induced pneumonia in restraint-stressed mice.
Collapse
|
190
|
Yu M, Wang Y, Tian L, Wang Y, Wang X, Liang W, Yang J, Yu D, Ma T, Fang X. Safflomin A inhibits neuraminidase activity and influenza virus replication. RSC Adv 2015. [DOI: 10.1039/c5ra17336a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neuraminidase (NA) is a glycoprotein on the surface of the influenza virus that plays an important role in the early processes of virus infection and viral release from the infected cells.
Collapse
|
191
|
Qiangzhi decoction protects mice from influenza A pneumonia through inhibition of inflammatory cytokine storm. Chin J Integr Med 2014; 21:376-83. [PMID: 25519444 PMCID: PMC7088648 DOI: 10.1007/s11655-014-2020-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Indexed: 12/24/2022]
Abstract
Objective To investigate the preventive effects of Qiangzhi Decoction (羌跖汤, QZD) on influenza A pneumonia through inhibition of inflammatory cytokine storm in vivo and in vitro. Methods One hundred ICR mice were randomly divided into the virus control, the Tamiflu control and the QZD high-, medium-, and low-dose groups. Mice were infected intranasally with influenza virus (H1N1) at 10 median lethal dose (LD50). QZD and Tamiflu were administered intragastrically twice daily from day 0 to day 7 after infection. The virus control group was treated with distilled water alone under the same condition. The number of surviving mice was recorded daily for 14 days after viral infection. The histological damage and viral replication and the expression of inflammatory cytokines were monitored. Additionally, the suppression capacity on the secretion of regulated on activation normal T cells expressed and secreted (RANTES) and tumor necrosis factor-α (TNF-α) in epithelial and macrophage cell-lines were evaluated. Results Compared with the virus control group, the survival rate of the QZD groups signifificantly improved in a dose-dependent manner (P<0.05), the viral titers in lung tissue was inhibited (P<0.05), and the production of inflammatory cytokines interferon-γ (IFN-γ), interleukin-6 (IL-6), TNF-α, and intercellular adhesion molecule-1 (ICAM-1) were suppressed (P<0.05). Meanwhile, the secretion of RANTETS and TNF-α by epithelial and macrophage cell-lines was inhibited with the treatment of QZD respectively in vitro (p<0.05) Conclusions The preventive effects of QZD on influenza virus infection might be due to its unique cytokine inhibition mechanism. QZD may have significant therapeutic potential in combination with antiviral drugs.
Collapse
|
192
|
Sun K, Salmon S, Yajjala VK, Bauer C, Metzger DW. Expression of suppressor of cytokine signaling 1 (SOCS1) impairs viral clearance and exacerbates lung injury during influenza infection. PLoS Pathog 2014; 10:e1004560. [PMID: 25500584 PMCID: PMC4263766 DOI: 10.1371/journal.ppat.1004560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins are inducible feedback inhibitors of cytokine signaling. SOCS1−/− mice die within three weeks postnatally due to IFN-γ-induced hyperinflammation. Since it is well established that IFN-γ is dispensable for protection against influenza infection, we generated SOCS1−/−IFN-γ−/− mice to determine whether SOCS1 regulates antiviral immunity in vivo. Here we show that SOCS1−/−IFN-γ−/− mice exhibited significantly enhanced resistance to influenza infection, as evidenced by improved viral clearance, attenuated acute lung damage, and consequently increased survival rates compared to either IFN-γ−/− or WT animals. Enhanced viral clearance in SOCS1−/−IFN-γ−/− mice coincided with a rapid onset of adaptive immune responses during acute infection, while their reduced lung injury was associated with decreased inflammatory cell infiltration at the resolution phase of infection. We further determined the contribution of SOCS1-deficient T cells to antiviral immunity. Anti-CD4 antibody treatment of SOCS1−/−IFN-γ−/− mice had no significant effect on their enhanced resistance to influenza infection, while CD8+ splenocytes from SOCS1−/−IFN-γ−/− mice were sufficient to rescue RAG1−/− animals from an otherwise lethal infection. Surprisingly, despite their markedly reduced viral burdens, RAG1−/− mice reconstituted with SOCS1−/−IFN-γ−/− adaptive immune cells failed to ameliorate influenza-induced lung injury. In conclusion, in the absence of IFN-γ, the cytoplasmic protein SOCS1 not only inhibits adaptive antiviral immune responses but also exacerbates inflammatory lung damage. Importantly, these detrimental effects of SOCS1 are conveyed through discrete cell populations. Specifically, while SOCS1 expression in adaptive immune cells is sufficient to inhibit antiviral immunity, SOCS1 in innate/stromal cells is responsible for aggravated lung injury. Cytokines are critical in regulating the balance between protective immunity and detrimental inflammation during influenza infection. Suppressor of cytokine signaling (SOCS) proteins are inducible feedback inhibitors of cytokine signaling. Using gene-deficient and infectious animal models, we determined how SOCS1 regulates immune defense against influenza infection. We show that the intracellular protein SOCS1 not only inhibits adaptive antiviral immune responses but also exacerbates inflammatory lung damage. These detrimental effects of SOCS1 are conveyed through discrete cell populations. Specifically, while SOCS1 expression in adaptive immune cells is sufficient to inhibit antiviral immunity, SOCS1 in innate/stromal cells is responsible for aggravated lung injury. To our knowledge, there is no report showing the regulatory role of SOCS1 during the course of influenza infection, and importantly, no evidence directly linking SOCS1 with excessive inflammation in other infectious disease models. The distinct and non-competing detrimental roles of SOCS1, as revealed in this study, make it an appealing target in the design of effective immunotherapies for combating influenza infection.
Collapse
Affiliation(s)
- Keer Sun
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| | - Sharon Salmon
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Vijaya Kumar Yajjala
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Christopher Bauer
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dennis W. Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
193
|
Berendam SJ, Fallert Junecko BA, Murphey-Corb MA, Fuller DH, Reinhart TA. Isolation, characterization, and functional analysis of ferret lymphatic endothelial cells. Vet Immunol Immunopathol 2014; 163:134-45. [PMID: 25540877 DOI: 10.1016/j.vetimm.2014.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/18/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022]
Abstract
The lymphatic endothelium (LE) serves as a conduit for transport of immune cells and soluble antigens from peripheral tissues to draining lymph nodes (LNs), contributing to development of host immune responses and possibly dissemination of microbes. Lymphatic endothelial cells (LECs) are major constituents of the lymphatic endothelium. These specialized cells could play important roles in initiation of host innate immune responses through sensing of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), including toll-like receptors (TLRs). LECs secrete pro-inflammatory cytokines and chemokines to create local inflammatory conditions for recruitment of naïve antigen presenting cells (APCs) such as dendritic cells (DCs) to sites of infection and/or vaccine administration. In this study, we examined the innate immune potential of primary LEC populations derived from multiple tissues of an animal model for human infectious diseases - the ferret. We generated a total of six primary LEC populations from lung, tracheal, and mesenteric LN tissues from three different ferrets. Standard RT-PCR characterization of these primary LECs showed that they varied in their expression of LEC markers. The ferret LECs were examined for their ability to respond to poly I:C (TLR3 and RIG-I ligand) and other known TLR ligands as measured by production of proinflammatory cytokine (IFNα, IL6, IL10, Mx1, and TNFα) and chemokine (CCL5, CCL20, and CXCL10) mRNAs using real time RT-PCR. Poly I:C exposure induced robust proinflammatory responses by all of the primary ferret LECs. Chemotaxis was performed to determine the functional activity of CCL20 produced by the primary lung LECs and showed that the LEC-derived CCL20 was abundant and functional. Taken together, our results continue to reveal the innate immune potential of primary LECs during pathogen-host interactions and expand our understanding of the roles LECs might play in health and disease in animal models.
Collapse
Affiliation(s)
- Stella J Berendam
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Beth A Fallert Junecko
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael A Murphey-Corb
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Deborah H Fuller
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Todd A Reinhart
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
194
|
Novel mode of ISG15-mediated protection against influenza A virus and Sendai virus in mice. J Virol 2014; 89:337-49. [PMID: 25320315 DOI: 10.1128/jvi.02110-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED ISG15 is a diubiquitin-like modifier and one of the most rapidly induced genes upon type I interferon stimulation. Hundreds of host proteins and a number of viral proteins have been shown to be ISGylated, and understanding how these modifications affect the interferon response and virus replication has been of considerable interest. ISG15(-/-) mice exhibit increased susceptibility to viral infection, and in the case of influenza B virus and vaccinia virus, ISG15 conjugation has been shown to restrict virus replication in vivo. A number of studies have also found that ISG15 is capable of antagonizing replication of some viruses in tissue culture. However, recent findings have demonstrated that ISG15 can protect mice from Chikungunya virus infection without affecting the virus burden. In order to better understand the function of ISG15 in vivo, we characterized the pathogenesis of influenza A virus and Sendai virus in ISG15(-/-) mice. We found that ISG15 protects mice from virus induced lethality by a conjugation-dependent mechanism in both of these models. However, surprisingly, we found that ISG15 had minimal effect on virus replication and did not have an obvious role in the modulation of the acute immune response to infection. Instead, we observed an increase in the number of diseased small airways in mice lacking ISG15. This ability of ISG15 to protect mice in a conjugation-dependent, but nonantiviral, manner from respiratory virus infection represents a previously undescribed role for ISG15 and demonstrates the importance of further characterization of ISG15 in vivo. IMPORTANCE It has previously been demonstrated that ISG15(-/-) mice are more susceptible to a number of viral infections. Since ISG15 is one of the most strongly induced genes after type I interferon stimulation, analysis of ISG15 function has largely focused on its role as an antiviral molecule during acute infection. Although a number of studies have shown that ISG15 does have a small effect on virus replication in tissue culture, few studies have confirmed this mechanism of protection in vivo. In these studies we have found that while ISG15(-/-) mice are more susceptible to influenza A virus and Sendai virus infections, ISGylation does not appear to mediate this protection through the direct inhibition of virus replication or the modulation of the acute immune response. Thus, in addition to showing a novel mode of ISG15 mediated protection from virus infection, this study demonstrates the importance of studying the role of ISG15 in vivo.
Collapse
|
195
|
Vlahos R, Selemidis S. NADPH Oxidases as Novel Pharmacologic Targets against Influenza A Virus Infection. Mol Pharmacol 2014; 86:747-59. [DOI: 10.1124/mol.114.095216] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
196
|
Obesity and pro-inflammatory mediators are associated with acute kidney injury in patients with A/H1N1 influenza and acute respiratory distress syndrome. Exp Mol Pathol 2014; 97:453-7. [PMID: 25305354 DOI: 10.1016/j.yexmp.2014.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND The obesity has been shown to increase the severity of A/H1N1 infection and the development of acute respiratory distress syndrome (ARDS) and organ involvement. METHODS Circulating levels of C-peptide, insulin, glucagon, leptin, acute phase reactants (procalcitonin, C-reactive protein, tissue plasminogen activator, and serum amyloids A and P), were measured in samples from 32 critically ill patients with A/H1N1 virus infection, 17 of whom had ARDS complicated by acute kidney injury (AKI) and 15 of whom had ARDS but did not develop AKI. RESULTS Patients with ARDS and AKI (ARDS/AKI) had higher BMI and higher levels of C-peptide, insulin, leptin, procalcitonin and serum amyloid A compared to those ARDS patient who did not develop AKI. Adjusting for confounding variables using logistic regression analysis, higher levels of C-peptide (>0.75 ng/mL) (OR=64.8, 95% CI = 2.1-1980, p = 0.0006) and BMI>30 Kg/m(2) (OR = 42.0, 95% CI = 1.2-1478, p = 0.04) were significantly associated with the development of AKI in ARDS patients. CONCLUSION High levels of C-peptide and BMI>30 kg/m(2) were associated with the development of AKI in ARDS patients due to A/H1N1 infection. These metabolic/obesity indicators, together with the profiles of pro-inflammatory acute phase proteins, may be important links between obesity and poor outcomes in A/H1N1 09 infection.
Collapse
|
197
|
Lukens S, DePasse J, Rosenfeld R, Ghedin E, Mochan E, Brown ST, Grefenstette J, Burke DS, Swigon D, Clermont G. A large-scale immuno-epidemiological simulation of influenza A epidemics. BMC Public Health 2014; 14:1019. [PMID: 25266818 PMCID: PMC4194421 DOI: 10.1186/1471-2458-14-1019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/18/2014] [Indexed: 01/02/2023] Open
Abstract
Background Agent based models (ABM) are useful to explore population-level scenarios of disease spread and containment, but typically characterize infected individuals using simplified models of infection and symptoms dynamics. Adding more realistic models of individual infections and symptoms may help to create more realistic population level epidemic dynamics. Methods Using an equation-based, host-level mathematical model of influenza A virus infection, we develop a function that expresses the dependence of infectivity and symptoms of an infected individual on initial viral load, age, and viral strain phenotype. We incorporate this response function in a population-scale agent-based model of influenza A epidemic to create a hybrid multiscale modeling framework that reflects both population dynamics and individualized host response to infection. Results At the host level, we estimate parameter ranges using experimental data of H1N1 viral titers and symptoms measured in humans. By linearization of symptoms responses of the host-level model we obtain a map of the parameters of the model that characterizes clinical phenotypes of influenza infection and immune response variability over the population. At the population-level model, we analyze the effect of individualizing viral response in agent-based model by simulating epidemics across Allegheny County, Pennsylvania under both age-specific and age-independent severity assumptions. Conclusions We present a framework for multi-scale simulations of influenza epidemics that enables the study of population-level effects of individual differences in infections and symptoms, with minimal additional computational cost compared to the existing population-level simulations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2458-14-1019) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Lukens
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Ely KH, Matsuoka M, DeBerge MP, Ruby JA, Liu J, Schneider MJ, Wang Y, Hahn YS, Enelow RI. Tissue-protective effects of NKG2A in immune-mediated clearance of virus infection. PLoS One 2014; 9:e108385. [PMID: 25251060 PMCID: PMC4177548 DOI: 10.1371/journal.pone.0108385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/20/2014] [Indexed: 12/20/2022] Open
Abstract
Virus infection triggers a CD8+ T cell response that aids in virus clearance, but also expresses effector functions that may result in tissue injury. CD8+ T cells express a variety of activating and inhibiting ligands, though regulation of the expression of inhibitory receptors is not well understood. The ligand for the inhibitory receptor, NKG2A, is the non-classical MHC-I molecule Qa1b, which may also serve as a putative restricting element for the T cell receptors of purported regulatory CD8+ T cells. We have previously shown that Qa1b-null mice suffer considerably enhanced immunopathologic lung injury in the context of CD8+ T cell-mediated clearance of influenza infection, as well as evidence in a non-viral system that failure to ligate NKG2A on CD8+ effector T cells may represent an important component of this process. In this report, we examine the requirements for induction of NKG2A expression, and show that NKG2A expression by CD8+ T cells occurs as a result of migration from the MLN to the inflammatory lung environment, irrespective of peripheral antigen recognition. Further, we confirmed that NKG2A is a mediator in limiting immunopathology in virus infection using mice with a targeted deletion of NKG2A, and infecting the mutants with two different viruses, influenza and adenovirus. In neither infection is virus clearance altered. In influenza infection, the enhanced lung injury was associated with increased chemoattractant production, increased infiltration of inflammatory cells, and significantly enhanced alveolar hemorrhage. The primary mechanism of enhanced injury was the loss of negative regulation of CD8+ T cell effector function. A similar effect was observed in the livers of mutant mice infected intravenously with adenovirus. These results demonstrate the immunoregulatory role of CD8+ NKG2A expression in virus infection, which negatively regulates T cell effector functions and contributes to protection of tissue integrity during virus clearance.
Collapse
Affiliation(s)
- Kenneth H. Ely
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail: (KHE); (MM)
| | - Mitsuo Matsuoka
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail: (KHE); (MM)
| | - Matthew P. DeBerge
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Jessica A. Ruby
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Jun Liu
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mark J. Schneider
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Yan Wang
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Richard I. Enelow
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Microbiology/Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
199
|
Vidaña B, Martínez J, Martínez-Orellana P, García Migura L, Montoya M, Martorell J, Majó N. Heterogeneous pathological outcomes after experimental pH1N1 influenza infection in ferrets correlate with viral replication and host immune responses in the lung. Vet Res 2014; 45:85. [PMID: 25163545 PMCID: PMC4161856 DOI: 10.1186/s13567-014-0085-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/31/2014] [Indexed: 01/13/2023] Open
Abstract
The swine-origin pandemic (p) H1N1 influenza A virus causes mild upper-respiratory tract disease in most human patients. However, some patients developed severe lower-respiratory tract infections with fatal consequences, and the cause of these infections remain unknown. Recently, it has been suggested that different populations have different degrees of susceptibility to pH1N1 strains due to host genetic variations that are associated with inappropriate immune responses against viral genetic characteristics. Here, we tested whether the pathologic patterns of influenza strains that produce different disease outcomes in humans could be reproduced in a ferret model. Our results revealed that the severities of infection did not correspond to particular viral isolate and were not associated with the clinical phenotypes of the corresponding patients. Severe pathological outcomes were associated with higher viral replication, especially in alveolar areas, and with an exacerbated innate cellular immune response that was characterised by substantial phagocytic and cytotoxic cell migration into the lungs. Moreover, detrimental innate cellular responses were linked to the up-regulation of several proinflammatory cytokines and chemokines and the down-regulation of IFNα in the lungs. Additionally, severe lung lesions were associated with greater up-regulations of pro-apoptotic markers and higher levels of apoptotic neutrophils and macrophages. In conclusion, this study confirmed that the clinicopathological outcomes of pH1N1 infection in ferrets were not only due to viral replication abilities but also depended on the hosts’ capacities to mount efficient immune responses to control viral infection of the lung.
Collapse
Affiliation(s)
- Beatriz Vidaña
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Jorge Martínez
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Pamela Martínez-Orellana
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Lourdes García Migura
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - María Montoya
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Institut de Recerca i Tecnologia Agroalimentaria (IRTA), Barcelona, Spain
| | - Jaime Martorell
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Natàlia Majó
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| |
Collapse
|
200
|
Trujillo JA, Croft NP, Dudek NL, Channappanavar R, Theodossis A, Webb AI, Dunstone MA, Illing PT, Butler NS, Fett C, Tscharke DC, Rossjohn J, Perlman S, Purcell AW. The cellular redox environment alters antigen presentation. J Biol Chem 2014; 289:27979-91. [PMID: 25135637 DOI: 10.1074/jbc.m114.573402] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cysteine-containing peptides represent an important class of T cell epitopes, yet their prevalence remains underestimated. We have established and interrogated a database of around 70,000 naturally processed MHC-bound peptides and demonstrate that cysteine-containing peptides are presented on the surface of cells in an MHC allomorph-dependent manner and comprise on average 5-10% of the immunopeptidome. A significant proportion of these peptides are oxidatively modified, most commonly through covalent linkage with the antioxidant glutathione. Unlike some of the previously reported cysteine-based modifications, this represents a true physiological alteration of cysteine residues. Furthermore, our results suggest that alterations in the cellular redox state induced by viral infection are communicated to the immune system through the presentation of S-glutathionylated viral peptides, resulting in altered T cell recognition. Our data provide a structural basis for how the glutathione modification alters recognition by virus-specific T cells. Collectively, these results suggest that oxidative stress represents a mechanism for modulating the virus-specific T cell response.
Collapse
Affiliation(s)
- Jonathan A Trujillo
- From the Department of Microbiology and the Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa 52242
| | - Nathan P Croft
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia, the Department of Biochemistry and Molecular Biology and
| | - Nadine L Dudek
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia, the Department of Biochemistry and Molecular Biology and
| | | | | | - Andrew I Webb
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Patricia T Illing
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Noah S Butler
- From the Department of Microbiology and the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia, and
| | | | - David C Tscharke
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- the Department of Biochemistry and Molecular Biology and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, the Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Stanley Perlman
- From the Department of Microbiology and the Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa 52242,
| | - Anthony W Purcell
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia, the Department of Biochemistry and Molecular Biology and
| |
Collapse
|