151
|
Dienel GA, Rothman DL, Nordström CH. Microdialysate concentration changes do not provide sufficient information to evaluate metabolic effects of lactate supplementation in brain-injured patients. J Cereb Blood Flow Metab 2016; 36:1844-1864. [PMID: 27604313 PMCID: PMC5094313 DOI: 10.1177/0271678x16666552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Cerebral microdialysis is a widely used clinical tool for monitoring extracellular concentrations of selected metabolites after brain injury and to guide neurocritical care. Extracellular glucose levels and lactate/pyruvate ratios have high diagnostic value because they can detect hypoglycemia and deficits in oxidative metabolism, respectively. In addition, patterns of metabolite concentrations can distinguish between ischemia and mitochondrial dysfunction, and are helpful to choose and evaluate therapy. Increased intracranial pressure can be life-threatening after brain injury, and hypertonic solutions are commonly used for pressure reduction. Recent reports have advocated use of hypertonic sodium lactate, based on claims that it is glucose sparing and provides an oxidative fuel for injured brain. However, changes in extracellular concentrations in microdialysate are not evidence that a rise in extracellular glucose level is beneficial or that lactate is metabolized and improves neuroenergetics. The increase in glucose concentration may reflect inhibition of glycolysis, glycogenolysis, and pentose phosphate shunt pathway fluxes by lactate flooding in patients with mitochondrial dysfunction. In such cases, lactate will not be metabolizable and lactate flooding may be harmful. More rigorous approaches are required to evaluate metabolic and physiological effects of administration of hypertonic sodium lactate to brain-injured patients.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA, and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Carl-Henrik Nordström
- Department of Neurosurgery, Lund University Hospital, Lund, Sweden, and Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
152
|
Neurochemical changes following combined hypoxemia and hemorrhagic shock in a rat model of penetrating ballistic-like brain injury. J Trauma Acute Care Surg 2016; 81:860-867. [DOI: 10.1097/ta.0000000000001206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
153
|
|
154
|
Microdialysis as a Part of Invasive Cerebral Monitoring During Porcine Septic Shock. J Neurosurg Anesthesiol 2016; 28:323-30. [DOI: 10.1097/ana.0000000000000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
155
|
Wolahan SM, Hirt D, Braas D, Glenn TC. Role of Metabolomics in Traumatic Brain Injury Research. Neurosurg Clin N Am 2016; 27:465-72. [PMID: 27637396 DOI: 10.1016/j.nec.2016.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolomics is an important member of the omics community in that it defines which small molecules may be responsible for disease states. This article reviews the essential principles of metabolomics from specimen preparation, chemical analysis, to advanced statistical methods. Metabolomics in traumatic brain injury has so far been underutilized. Future metabolomics-based studies focused on the diagnoses, prognoses, and treatment effects need to be conducted across all types of traumatic brain injury.
Collapse
Affiliation(s)
- Stephanie M Wolahan
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, 300 Stein Plaza, Los Angeles, CA 90095-6901, USA
| | - Daniel Hirt
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, 300 Stein Plaza, Los Angeles, CA 90095-6901, USA
| | - Daniel Braas
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 570 Westwood Plaza, Los Angeles, CA 90095-1735, USA; UCLA Metabolomics and Proteomics Center, 570 Westwood Plaza, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas C Glenn
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, 300 Stein Plaza, Los Angeles, CA 90095-6901, USA.
| |
Collapse
|
156
|
Patet C, Suys T, Carteron L, Oddo M. Cerebral Lactate Metabolism After Traumatic Brain Injury. Curr Neurol Neurosci Rep 2016; 16:31. [PMID: 26898683 DOI: 10.1007/s11910-016-0638-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome.
Collapse
Affiliation(s)
- Camille Patet
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV - Lausanne University Hospital, Rue du Bugnon 46, BH 08.623, 1011, Lausanne, Switzerland
| | - Tamarah Suys
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV - Lausanne University Hospital, Rue du Bugnon 46, BH 08.623, 1011, Lausanne, Switzerland
| | - Laurent Carteron
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV - Lausanne University Hospital, Rue du Bugnon 46, BH 08.623, 1011, Lausanne, Switzerland
| | - Mauro Oddo
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV - Lausanne University Hospital, Rue du Bugnon 46, BH 08.623, 1011, Lausanne, Switzerland.
| |
Collapse
|
157
|
Hill JL, Kobori N, Zhao J, Rozas NS, Hylin MJ, Moore AN, Dash PK. Traumatic brain injury decreases AMP-activated protein kinase activity and pharmacological enhancement of its activity improves cognitive outcome. J Neurochem 2016; 139:106-19. [PMID: 27379837 DOI: 10.1111/jnc.13726] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
Abstract
Prolonged metabolic suppression in the brain is a well-characterized secondary pathology of both experimental and clinical traumatic brain injury (TBI). AMP-activated kinase (AMPK) acts as a cellular energy sensor that, when activated, regulates various metabolic and catabolic pathways to decrease ATP consumption and increase ATP synthesis. As energy availability after TBI is suppressed, we questioned if increasing AMPK activity after TBI would improve cognitive outcome. TBI was delivered using the electromagnetic controlled cortical impact model on male Sprague-Dawley rats (275-300 g) and C57BL/6 mice (20-25 g). AMPK activity within the injured parietal cortex and ipsilateral hippocampus was inferred by western blots using phospho-specific antibodies. The consequences of acute manipulation of AMPK signaling on cognitive function were assessed using the Morris water maze task. We found that AMPK activity is decreased as a result of injury, as indicated by reduced AMPK phosphorylation and corresponding changes in the phosphorylation of its downstream targets: ribosomal protein S6 and Akt Substrate of 160 kDa (AS160). Increasing AMPK activity after injury using the drugs 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide or metformin did not affect spatial learning, but significantly improved spatial memory. Taken together, our results suggest that decreased AMPK activity after TBI may contribute to the cellular energy crisis in the injured brain, and that AMPK activators may have therapeutic utility. Increased phosphorylation of Thr172 activates AMP-activated protein kinase (AMPK) under conditions of low cellular energy availability. This leads to inhibition of energy consuming, while activating energy generating, processes. Hill et al., present data to indicate that TBI decreases Thr172 phosphorylation and that its stimulation by pharmacological agents offers neuroprotection and improves memory. These results suggest that decreased AMPK phosphorylation after TBI incorrectly signals the injured brain that excess energy is available, thereby contributing to the cellular energy crisis and memory impairments.
Collapse
Affiliation(s)
- Julia L Hill
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Nobuhide Kobori
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Natalia S Rozas
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Michael J Hylin
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
158
|
Biochemical indications of cerebral ischaemia and mitochondrial dysfunction in severe brain trauma analysed with regard to type of lesion. Acta Neurochir (Wien) 2016; 158:1231-40. [PMID: 27188288 DOI: 10.1007/s00701-016-2835-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The study focuses on three questions related to the clinical usefulness of microdialysis in severe brain trauma: (1) How frequently is disturbed cerebral energy metabolism observed in various types of lesions? (2) How often does the biochemical pattern indicate cerebral ischaemia and mitochondrial dysfunction? (3) How do these patterns relate to mortality? METHOD The study includes 213 consecutive patients with severe brain trauma (342 intracerebral microdialysis catheters). The patients were classified into four groups according to the type of lesion: extradural haematoma (EDH), acute subdural haematoma (SDH), cerebral haemorrhagic contusion (CHC) and no mass lesion (NML). Altogether about 150,000 biochemical analyses were performed during the initial 96 h after trauma. RESULTS Compromised aerobic metabolism occurred during 38 % of the study period. The biochemical pattern indicating mitochondrial dysfunction was more common than that of ischaemia. In EDH and NML aerobic metabolism was generally close to normal. In SDH or CHC it was often severely compromised. Mortality was increased in SDH with impaired aerobic metabolism, while CHC did not exhibit a similar relation. CONCLUSIONS Compromised energy metabolism is most frequent in patients with SDH and CHC (32 % and 49 % of the study period, respectively). The biochemical pattern of mitochondrial dysfunction is more common than that of ischaemia (32 % and 6 % of the study period, respectively). A correlation between mortality and biochemical data is obtained provided the microdialysis catheter is placed in an area where energy metabolism reflects tissue outcome in a large part of the brain.
Collapse
|
159
|
Abstract
The challenges posed by acute brain injury (ABI) involve the management of the initial insult in addition to downstream inflammation, edema, and ischemia that can result in secondary brain injury (SBI). SBI is often subclinical, but can be detected through physiologic changes. These changes serve as a surrogate for tissue injury/cell death and are captured by parameters measured by various monitors that measure intracranial pressure (ICP), cerebral blood flow (CBF), brain tissue oxygenation (PbtO2), cerebral metabolism, and electrocortical activity. In the ideal setting, multimodality monitoring (MMM) integrates these neurological monitoring parameters with traditional hemodynamic monitoring and the physical exam, presenting the information needed to clinicians who can intervene before irreversible damage occurs. There are now consensus guidelines on the utilization of MMM, and there continue to be new advances and questions regarding its use. In this review, we examine these recommendations, recent evidence for MMM, and future directions for MMM.
Collapse
Affiliation(s)
- David Roh
- Department of Neurology and Neurocritical Care, Columbia University, 177 Fort Washington Ave, New York, NY 10032, USA
| | - Soojin Park
- Department of Neurology and Neurocritical Care, Columbia University, 177 Fort Washington Ave, New York, NY 10032, USA
| |
Collapse
|
160
|
Litofsky NS, Martin S, Diaz J, Ge B, Petroski G, Miller DC, Barnes SL. The Negative Impact of Anemia in Outcome from Traumatic Brain Injury. World Neurosurg 2016; 90:82-90. [DOI: 10.1016/j.wneu.2016.02.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 11/28/2022]
|
161
|
Vonder Haar C, Peterson TC, Martens KM, Hoane MR. Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies. Brain Res 2016; 1640:114-129. [PMID: 26723564 PMCID: PMC4870112 DOI: 10.1016/j.brainres.2015.12.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more researchers have become interested in combination therapies. This is largely due to the multimodal nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, neuroinflammation and cell death. Polydrug treatments have the potential to target multiple aspects of the secondary injury cascade, while many previous therapies focused on one particular aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement other therapies. Many of these have low toxicity, are already FDA approved and have minimal interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has increased and indeed many vitamins and nutrients now have a considerable body of the literature backing their use. Here, we review several of the prominent therapies in the category of nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, B9, C, D, E), herbs and traditional medicines (ginseng, Gingko biloba), flavonoids, and other nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be done, several of these have strong potential for clinical therapies, particularly with regard to polydrug regimens. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
162
|
Papadimitriou KI, Wang C, Rogers ML, Gowers SAN, Leong CL, Boutelle MG, Drakakis EM. High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring. Front Hum Neurosci 2016; 10:212. [PMID: 27242477 PMCID: PMC4871864 DOI: 10.3389/fnhum.2016.00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/25/2016] [Indexed: 01/18/2023] Open
Abstract
Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30-40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation.
Collapse
Affiliation(s)
- Konstantinos I. Papadimitriou
- Department of Bioengineering, Imperial College LondonLondon, UK
- Bioinspired VLSI Circuits and Systems GroupLondon, UK
| | - Chu Wang
- Department of Bioengineering, Imperial College LondonLondon, UK
- Biomedical Sensors GroupLondon, UK
| | - Michelle L. Rogers
- Department of Bioengineering, Imperial College LondonLondon, UK
- Biomedical Sensors GroupLondon, UK
| | - Sally A. N. Gowers
- Department of Bioengineering, Imperial College LondonLondon, UK
- Biomedical Sensors GroupLondon, UK
| | - Chi L. Leong
- Department of Bioengineering, Imperial College LondonLondon, UK
- Biomedical Sensors GroupLondon, UK
| | - Martyn G. Boutelle
- Department of Bioengineering, Imperial College LondonLondon, UK
- Biomedical Sensors GroupLondon, UK
| | - Emmanuel M. Drakakis
- Department of Bioengineering, Imperial College LondonLondon, UK
- Bioinspired VLSI Circuits and Systems GroupLondon, UK
| |
Collapse
|
163
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
164
|
|
165
|
Agrawal R, Noble E, Vergnes L, Ying Z, Reue K, Gomez-Pinilla F. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. J Cereb Blood Flow Metab 2016; 36:941-53. [PMID: 26661172 PMCID: PMC4853835 DOI: 10.1177/0271678x15606719] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/19/2015] [Indexed: 12/23/2022]
Abstract
Fructose consumption has been on the rise for the last two decades and is starting to be recognized as being responsible for metabolic diseases. Metabolic disorders pose a particular threat for brain conditions characterized by energy dysfunction, such as traumatic brain injury. Traumatic brain injury patients experience sudden abnormalities in the control of brain metabolism and cognitive function, which may worsen the prospect of brain plasticity and function. The mechanisms involved are poorly understood. Here we report that fructose consumption disrupts hippocampal energy homeostasis as evidenced by a decline in functional mitochondria bioenergetics (oxygen consumption rate and cytochrome C oxidase activity) and an aggravation of the effects of traumatic brain injury on molecular systems engaged in cell energy homeostasis (sirtuin 1, peroxisome proliferator-activated receptor gamma coactivator-1alpha) and synaptic plasticity (brain-derived neurotrophic factor, tropomyosin receptor kinase B, cyclic adenosine monophosphate response element binding, synaptophysin signaling). Fructose also worsened the effects of traumatic brain injury on spatial memory, which disruption was associated with a decrease in hippocampal insulin receptor signaling. Additionally, fructose consumption and traumatic brain injury promoted plasma membrane lipid peroxidation, measured by elevated protein and phenotypic expression of 4-hydroxynonenal. These data imply that high fructose consumption exacerbates the pathology of brain trauma by further disrupting energy metabolism and brain plasticity, highlighting the impact of diet on the resilience to neurological disorders.
Collapse
Affiliation(s)
- Rahul Agrawal
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA
| | - Emily Noble
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Zhe Ying
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, USA
| |
Collapse
|
166
|
Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637:34-55. [PMID: 26883165 PMCID: PMC4821765 DOI: 10.1016/j.brainres.2016.02.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.
Collapse
Affiliation(s)
- Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Oman
| | - Ghazi Daradkeh
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Lubna Mahmood
- Department of Nutritional Sciences, Qatar University, Qatar
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
167
|
Frontera J, Ziai W, O'Phelan K, Leroux PD, Kirkpatrick PJ, Diringer MN, Suarez JI. Regional brain monitoring in the neurocritical care unit. Neurocrit Care 2016; 22:348-59. [PMID: 25832349 DOI: 10.1007/s12028-015-0133-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regional multimodality monitoring has evolved over the last several years as a tool to understand the mechanisms of brain injury and brain function at the cellular level. Multimodality monitoring offers an important augmentation to the clinical exam and is especially useful in comatose neurocritical care patients. Cerebral microdialysis, brain tissue oxygen monitoring, and cerebral blood flow monitoring all offer insight into permutations in brain chemistry and function that occur in the context of brain injury. These tools may allow for development of individual therapeutic strategies that are mechanistically driven and goal-directed. We present a summary of the discussions that took place during the Second Neurocritical Care Research Conference regarding regional brain monitoring.
Collapse
Affiliation(s)
- Jennifer Frontera
- Cerebrovascular Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland Clinic Mail Code S80, Cleveland, OH, 44195, USA,
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Bartek J, Thelin EP, Ghatan PH, Glimaker M, Bellander BM. Neuron-Specific Enolase Is Correlated to Compromised Cerebral Metabolism in Patients Suffering from Acute Bacterial Meningitis; An Observational Cohort Study. PLoS One 2016; 11:e0152268. [PMID: 27019200 PMCID: PMC4809596 DOI: 10.1371/journal.pone.0152268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/13/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction Patients suffering from acute bacterial meningitis (ABM) with a decreased level of consciousness have been shown to have an improved clinical outcome if treated with an intracranial pressure (ICP) guided therapy. By using intracranial microdialysis (MD) to monitor cerebral metabolism in combination with serum samples of biomarkers indicating brain tissue injury, S100B and Neuron Specific Enolase (NSE), additional information might be provided. The aim of this study was to evaluate biomarkers in serum and MD parameters in patients with ABM. Methods From a prior study on patients (n = 52) with a confirmed ABM and impaired consciousness (GCS ≤ 9, or GCS = 10 combined with lumbar spinal opening pressure > 400 mmH2O), a subgroup of patients (n = 21) monitored with intracerebral MD and biomarkers was included in the present study. All patients were treated in the NICU with intracranial pressure (ICP) guided therapy. Serum biomarkers were obtained at admission and every 12 hours. The MD parameters glucose, lactate, pyruvate and glycerol were analyzed. Outcome was assessed at 12–55 months after discharge from hospital. Mann-Whitney U-Test and Wilcoxon matched-pairs signed rank test were applied. Results The included patients had a mean GCS of 8 (range, 3–10) on admission and increased ICP (>20 mmHg) was observed in 62% (n = 13/21) of the patients. Patients with a lactate:pyruvate ratio (LPR) >40 (n = 9/21, 43%) had significantly higher peak levels of serum NSE (p = 0.03), with similar, although non-significant observations made in patients with high levels of glycerol (>500 μmol/L, p = 0.11) and those with a metabolic crisis (Glucose <0.8 mmol/L, LPR >25, p = 0.09). No associations between serum S100B and MD parameters were found. Furthermore, median MD glucose levels decreased significantly between day 1 (0–24h) and day 3 (48–72h) after admission to the NICU (p = 0.0001). No correlation between MD parameters or biomarkers and outcome was found. Conclusion In this observational cohort study, we were able to show that cerebral metabolism is frequently affected in patients with ABM. Furthermore, patients with high LPR (LPR>40) had significantly higher levels of NSE, suggesting ongoing deterioration in compromised cerebral tissue. However, the potential clinical impact of MD and biomarker monitoring in ABM patients will need to be further elaborated in larger clinical trials.
Collapse
Affiliation(s)
- Jiri Bartek
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Per Hamid Ghatan
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Glimaker
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
169
|
de Lima Oliveira M, Bor-Seng-Shu E, Simm RF, Vilas Boas T, Pires Aguiar PH. Commentary: Systemic, Local, and Imaging Biomarkers of Brain Injury: More Needed, and Better Use of Those Already Established? Front Neurol 2016; 7:34. [PMID: 27047442 PMCID: PMC4800171 DOI: 10.3389/fneur.2016.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/29/2016] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marcelo de Lima Oliveira
- Neurology Department, Hospital Santa Paula, São Paulo, Brazil
- *Correspondence: Marcelo de Lima Oliveira,
| | | | | | | | | |
Collapse
|
170
|
Hinzman JM, Wilson JA, Mazzeo AT, Bullock MR, Hartings JA. Excitotoxicity and Metabolic Crisis Are Associated with Spreading Depolarizations in Severe Traumatic Brain Injury Patients. J Neurotrauma 2016; 33:1775-1783. [PMID: 26586606 DOI: 10.1089/neu.2015.4226] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cerebral microdialysis has enabled the clinical characterization of excitotoxicity (glutamate >10 μM) and non-ischemic metabolic crisis (lactate/pyruvate ratio [LPR] >40) as important components of secondary damage in severe traumatic brain injury (TBI). Spreading depolarizations (SD) are pathological waves that occur in many patients in the days following TBI and, in animal models, cause elevations in extracellular glutamate, increased anaerobic metabolism, and energy substrate depletion. Here, we examined the association of SD with changes in cerebral neurochemistry by placing a microdialysis probe alongside a subdural electrode strip in peri-lesional cortex of 16 TBI patients requiring neurosurgery. In 107 h (median; range: 76-117 h) of monitoring, 135 SDs were recorded in six patients. Glutamate (50 μmol/L) and lactate (3.7 mmol/L) were significantly elevated on day 0 in patients with SD compared with subsequent days and with patients without SD, whereas pyruvate was decreased in the latter group on days 0 and 1 (two-way analysis of variance [ANOVA], p values <0.05). In patients with SD, both glutamate and LPR increased in a dose-dependent manner with the number of SDs in the microdialysis sampling period (0, 1, ≥2 SD) [glutamate: 2.1→7.0→52.3 μmol/L; LPR: 27.8→29.9→45.0, p values <0.05]. In these patients, there was a 10% probability of SD occurring when glutamate and LPR were in normal ranges, but a 60% probability when both variables were abnormal (>10 μmol/L and >40 μmol/L, respectively). Taken together with previous studies, these preliminary clinical results suggest SDs are a key pathophysiological process of secondary brain injury associated with non-ischemic glutamate excitotoxicity and severe metabolic crisis in severe TBI patients.
Collapse
Affiliation(s)
- Jason M Hinzman
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio
| | - J Adam Wilson
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio
| | - Anna Teresa Mazzeo
- 2 Division of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia.,3 Department Anesthesia and Intensive Care, University of Torino , Torino, Italy
| | - M Ross Bullock
- 2 Division of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia.,4 Department of Neurosurgery, University of Miami , Miami, Florida
| | - Jed A Hartings
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio.,5 Neurotrauma Center, UC Neuroscience Institute , Cincinnati, Ohio.,6 Mayfield Clinic , Cincinnati, Ohio
| |
Collapse
|
171
|
Millet A, Bouzat P, Trouve-Buisson T, Batandier C, Pernet-Gallay K, Gaide-Chevronnay L, Barbier EL, Debillon T, Fontaine E, Payen JF. Erythropoietin and Its Derivates Modulate Mitochondrial Dysfunction after Diffuse Traumatic Brain Injury. J Neurotrauma 2016; 33:1625-33. [PMID: 26530102 DOI: 10.1089/neu.2015.4160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Inhibiting the opening of mitochondrial permeability transition pore (mPTP), thereby maintaining the mitochondrial membrane potential and calcium homeostasis, could reduce the induction of cell death. Although recombinant human erythropoietin (rhEpo) and carbamylated erythropoietin (Cepo) were shown to prevent apoptosis after traumatic brain injury (TBI), their impact on mPTP is yet unknown. Thirty minutes after diffuse TBI (impact-acceleration model), rats were intravenously administered a saline solution (TBI-saline), 5000 UI/kg rhEpo (TBI-rhEpo) or 50 μg/kg Cepo (TBI-Cepo). A fourth group received no TBI insult (sham-operated) (n = 11 rats per group). Post-traumatic brain edema was measured using magnetic resonance imaging. A first series of experiments was conducted 2 h after TBI (or equivalent) to investigate the mitochondrial function with the determination of thresholds for mPTP opening and ultrastructural mitochondrial changes. In addition, the intramitochondrial calcium content [Caim] was measured. In a second series of experiments, brain cell apoptosis was assessed at 24 h post-injury. TBI-rhEpo and TBI-Cepo groups had a reduced brain edema compared with TBI-saline. They had higher threshold for mPTP opening with succinate as substrate: 120 (120-150) (median, interquartiles) and 100 (100-120) versus 80 (60-90) nmol calcium/mg protein in TBI-saline, respectively (p < 0.05). Similar findings were shown with glutamate-malate as substrate. TBI-rhEpo and Cepo groups had less morphological mitochondrial disruption in astrocytes. The elevation in [Caim] after TBI was not changed by rhEpo and Cepo treatment. Finally, rhEpo and Cepo reduced caspase-3 expression at 24 h post-injury. These results indicate that rhEpo and Cepo could modulate mitochondrial dysfunction after TBI. The mechanisms involved are discussed.
Collapse
Affiliation(s)
- Anne Millet
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France .,3 Département de Réanimation Pédiatrique et Néonatale, Hôpital Couple Enfant , Grenoble, France
| | - Pierre Bouzat
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France .,4 Pôle d'Anesthésie Réanimation, CHU Grenoble Alpes , Grenoble, France
| | - Thibaut Trouve-Buisson
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France .,4 Pôle d'Anesthésie Réanimation, CHU Grenoble Alpes , Grenoble, France
| | - Cécile Batandier
- 5 INSERM, U1055, Laboratoire de Biologie Fondamentale et Appliquée, Université Joseph Fourier , Grenoble, France
| | - Karin Pernet-Gallay
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France
| | - Lucie Gaide-Chevronnay
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France .,4 Pôle d'Anesthésie Réanimation, CHU Grenoble Alpes , Grenoble, France
| | | | - Thierry Debillon
- 3 Département de Réanimation Pédiatrique et Néonatale, Hôpital Couple Enfant , Grenoble, France
| | - Eric Fontaine
- 5 INSERM, U1055, Laboratoire de Biologie Fondamentale et Appliquée, Université Joseph Fourier , Grenoble, France .,6 Unité de Nutrition Parentérale, Pôle de médecin Aigue Spécialisée, CHU Grenoble Alpes , Grenoble, France
| | - Jean-François Payen
- 1 INSERM , U1216, Grenoble, France .,2 Grenoble Institut des Neurosciences, Université Grenoble Alpes , Grenoble, France .,4 Pôle d'Anesthésie Réanimation, CHU Grenoble Alpes , Grenoble, France
| |
Collapse
|
172
|
Vespa P, Tubi M, Claassen J, Buitrago-Blanco M, McArthur D, Velazquez AG, Tu B, Prins M, Nuwer M. Metabolic crisis occurs with seizures and periodic discharges after brain trauma. Ann Neurol 2016; 79:579-90. [PMID: 26814699 DOI: 10.1002/ana.24606] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/05/2016] [Accepted: 01/10/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) results in persistent disruption of brain metabolism that has yet to be mechanistically defined. Early post-traumatic seizures are one potential mechanism for metabolic crisis and hence could be a therapeutic target. We hypothesized that seizures and pseudoperiodic discharges (PDs) may be mechanistically linked to metabolic crisis as measured by cerebral microdialysis. METHODS A prospective multicenter study of surface and intracortical depth electroencephalography (EEG) was performed in conjunction with cerebral microdialysis in a cohort of severe TBI patients with time-locked analysis of the neurochemical response to seizures and pseudoperiodic discharges. RESULTS Seizures or PDs occurred in 61% of 34 subjects, with 42.9% of these seizures noted only on intracortical depth EEG and in some cases lasting for many hours. Metabolic crisis as measured by elevated cerebral microdialysis lactate/pyruvate ratio occurred during seizures or PDs but not during electrically nonepileptic epochs. INTERPRETATION In TBI patients, seizures and periodic discharges are one mechanism for metabolic crisis, and hence represent a therapeutic target for future study.
Collapse
Affiliation(s)
- Paul Vespa
- UCLA Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA
| | - Meral Tubi
- UCLA Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA
| | | | | | - David McArthur
- UCLA Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA
| | | | - Bin Tu
- Columbia University, New York, NY
| | - Mayumi Prins
- UCLA Department of Neurosurgery, UCLA, Los Angeles, CA
| | - Marc Nuwer
- UCLA Department of Neurology, UCLA, Los Angeles, CA
| |
Collapse
|
173
|
Agrawal S, Branco RG. Neuroprotective measures in children with traumatic brain injury. World J Crit Care Med 2016; 5:36-46. [PMID: 26855892 PMCID: PMC4733454 DOI: 10.5492/wjccm.v5.i1.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in children. Severe TBI is a leading cause of death and often leads to life changing disabilities in survivors. The modern management of severe TBI in children on intensive care unit focuses on preventing secondary brain injury to improve outcome. Standard neuroprotective measures are based on management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) to optimize the cerebral blood flow and oxygenation, with the intention to avoid and minimise secondary brain injury. In this article, we review the current trends in management of severe TBI in children, detailing the general and specific measures followed to achieve the desired ICP and CPP goals. We discuss the often limited evidence for these therapeutic interventions in children, extrapolation of data from adults, and current recommendation from paediatric guidelines. We also review the recent advances in understanding the intracranial physiology and neuroprotective therapies, the current research focus on advanced and multi-modal neuromonitoring, and potential new therapeutic and prognostic targets.
Collapse
|
174
|
Amorini AM, Lazzarino G, Di Pietro V, Signoretti S, Lazzarino G, Belli A, Tavazzi B. Metabolic, enzymatic and gene involvement in cerebral glucose dysmetabolism after traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2016; 1862:679-687. [PMID: 26844378 DOI: 10.1016/j.bbadis.2016.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
Abstract
In this study, the metabolic, enzymatic and gene changes causing cerebral glucose dysmetabolism following graded diffuse traumatic brain injury (TBI) were evaluated. TBI was induced in rats by dropping 450g from 1 (mild TBI; mTBI) or 2m height (severe TBI; sTBI). After 6, 12, 24, 48, and 120h gene expressions and enzymatic activities of glycolysis and pentose phosphate pathway (PPP) enzymes, and levels of lactate, ATP, ADP, ATP/ADP (indexing mitochondrial phosphorylating capacity), NADP(+), NADPH and GSH were determined in whole brain extracts (n=9 rats at each time for both TBI levels). Sham-operated animals (n=9) were used as controls. Results demonstrated that mTBI caused a late increase (48-120h post injury) of glycolytic gene expression and enzymatic activities, concomitantly with mitochondrial functional recovery (ATP and ATP/ADP normalization). No changes in lactate and PPP genes and enzymes, were accompanied by transient decrease in GSH, NADP(+), NADPH and NADPH/NADP(+). Animals following sTBI showed early increase (6-24h post injury) of glycolytic gene expression and enzymatic activities, occurring during mitochondrial malfunctioning (50% decrease in ATP and ATP/ADP). Higher lactate and lower GSH, NADP(+), NADPH, NADPH/NADP(+) than controls were recorded at anytime post injury (p<0.01). Both TBI levels caused metabolic and gene changes affecting glucose metabolism. Following mTBI, increased glucose flux through glycolysis is coupled to mitochondrial glucose oxidation. "True" hyperglycolysis occurs only after sTBI, where metabolic changes, caused by depressed mitochondrial phosphorylating capacity, act on genes causing net glycolytic flux increase uncoupled from mitochondrial glucose oxidation.
Collapse
Affiliation(s)
- Angela Maria Amorini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
| | - Valentina Di Pietro
- Neurobiology, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK.
| | - Stefano Signoretti
- Division of Neurosurgery, Department of Neurosciences Head and Neck Surgery, S. Camillo Hospital, Circonvallazione Gianicolense 87, 00152 Rome, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonio Belli
- Neurobiology, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK; National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, B15 2TH Birmingham, UK.
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
| |
Collapse
|
175
|
Jakobsen R, Halfeld Nielsen T, Granfeldt A, Toft P, Nordström CH. A technique for continuous bedside monitoring of global cerebral energy state. Intensive Care Med Exp 2016; 4:3. [PMID: 26791144 PMCID: PMC4720625 DOI: 10.1186/s40635-016-0077-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 01/11/2016] [Indexed: 12/14/2022] Open
Abstract
Background Cerebral cytoplasmatic redox state is a sensitive indicator of cerebral oxidative metabolism and is conventionally evaluated from the extracellular lactate/pyruvate (LP) ratio. In the present experimental study of global cerebral ischemia induced by hemorrhagic shock, we investigate whether the LP ratio obtained from microdialysis of cerebral venous blood may be used as a surrogate marker of global cerebral energy state. Methods Six female pigs were anesthetized and vital parameters were recorded. Microdialysis catheters were placed in the left parietal lobe, the superior sagittal sinus, and the femoral artery. Hemorrhagic shock was achieved by bleeding the animals to a mean arterial pressure (MAP) of approximately 40 mmHg and kept at a MAP of about 30–40 mmHg for 90 min. The animals were resuscitated with autologous whole blood followed by 3 h of observation. Results The LP ratio obtained from the intracerebral and intravenous catheters immediately increased during the period of hemorrhagic shock while the LP ratio in the arterial blood remained close to normal levels. At the end of the experiment, median LP ratio (interquartile range) obtained from the intracerebral, intravenous, and intra-arterial microdialysis catheters were 846 (243–1990), 309 (103–488), and 27 (21–31), respectively. There was a significant difference in the LP ratio obtained from the intravenous location and the intra-arterial location (P < 0.001). Conclusions During cerebral ischemia induced by severe hemorrhagic shock, intravascular microdialysis of the draining venous blood will exhibit changes of the LP ratio revealing the deterioration of global cerebral oxidative energy metabolism. In neurocritical care, this technique might be used to give information regarding global cerebral energy metabolism in addition to the regional information obtained from intracerebral microdialysis catheters. The technique might also be used to evaluate cerebral energy state in various critical care conditions when insertion of an intracerebral microdialysis catheter may be contraindicated, e.g., resuscitation after cardiac standstill, open-heart surgery, and multi-trauma.
Collapse
Affiliation(s)
- Rasmus Jakobsen
- Department of Anaesthesia and Intensive care, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark.
| | - Troels Halfeld Nielsen
- Department of Neurosurgery, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark.
| | - Asger Granfeldt
- Department of Anesthesiology, Regional Hospital of Randers, Skovlyvej 1, 8930, Randers NØ, Denmark.
| | - Palle Toft
- Department of Anaesthesia and Intensive care, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark.
| | - Carl-Henrik Nordström
- Department of Neurosurgery, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark.
| |
Collapse
|
176
|
Zhou BC, Liu LJ, Liu B. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure. Neural Regen Res 2016; 11:1445-1449. [PMID: 27857747 PMCID: PMC5090846 DOI: 10.4103/1673-5374.191218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO2) and oxygen partial pressure (PaO2). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO2 were measured. The controls were also examined for rSO2 and PaO2, but received no treatment. rSO2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.
Collapse
Affiliation(s)
- Bao-Chun Zhou
- Department of Emergency and Intensive Care Unit, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li-Jun Liu
- Department of Emergency and Intensive Care Unit, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Bing Liu
- Department of Neurosurgery, High-tech District Branch of the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
177
|
Quintard H, Patet C, Zerlauth JB, Suys T, Bouzat P, Pellerin L, Meuli R, Magistretti PJ, Oddo M. Improvement of Neuroenergetics by Hypertonic Lactate Therapy in Patients with Traumatic Brain Injury Is Dependent on Baseline Cerebral Lactate/Pyruvate Ratio. J Neurotrauma 2015; 33:681-7. [PMID: 26421521 PMCID: PMC4827289 DOI: 10.1089/neu.2015.4057] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Energy dysfunction is associated with worse prognosis after traumatic brain injury (TBI). Recent data suggest that hypertonic sodium lactate infusion (HL) improves energy metabolism after TBI. Here, we specifically examined whether the efficacy of HL (3h infusion, 30–40 μmol/kg/min) in improving brain energetics (using cerebral microdialysis [CMD] glucose as a main therapeutic end-point) was dependent on baseline cerebral metabolic state (assessed by CMD lactate/pyruvate ratio [LPR]) and cerebral blood flow (CBF, measured with perfusion computed tomography [PCT]). Using a prospective cohort of 24 severe TBI patients, we found CMD glucose increase during HL was significant only in the subgroup of patients with elevated CMD LPR >25 (n = 13; +0.13 [95% confidence interval (CI) 0.08–0.19] mmol/L, p < 0.001; vs. +0.04 [–0.05–0.13] in those with normal LPR, p = 0.33, mixed-effects model). In contrast, CMD glucose increase was independent from baseline CBF (coefficient +0.13 [0.04–0.21] mmol/L when global CBF was <32.5 mL/100 g/min vs. +0.09 [0.04–0.14] mmol/L at normal CBF, both p < 0.005) and systemic glucose. Our data suggest that improvement of brain energetics upon HL seems predominantly dependent on baseline cerebral metabolic state and support the concept that CMD LPR – rather than CBF – could be used as a diagnostic indication for systemic lactate supplementation following TBI.
Collapse
Affiliation(s)
- Hervé Quintard
- 1 Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital , Lausanne, Switzerland .,2 Department of Anesthesia and Intensive Care, Nice University Hospital , Nice, France
| | - Camille Patet
- 1 Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital , Lausanne, Switzerland
| | - Jean-Baptiste Zerlauth
- 3 Department of Medical Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital , Lausanne, Switzerland
| | - Tamarah Suys
- 1 Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital , Lausanne, Switzerland
| | - Pierre Bouzat
- 1 Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital , Lausanne, Switzerland .,4 Department of Anesthesia and Intensive Care, Grenoble University Hospital , Grenoble, France
| | - Luc Pellerin
- 5 Institute of Physiology, University of Lausanne , Lausanne, Switzerland
| | - Reto Meuli
- 3 Department of Medical Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital , Lausanne, Switzerland
| | - Pierre J Magistretti
- 6 Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST) , Thuwal, Kingdom of Saudi Arabia .,7 Centre de Neurosciences Psychiatriques, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital , Lausanne, Switzerland .,8 Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute , Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mauro Oddo
- 1 Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital , Lausanne, Switzerland
| |
Collapse
|
178
|
Hosmann A, Schober A, Gruber A, Sterz F, Testori C, Warenits A, Weihs W, Högler S, Scherer T, Janata A, Laggner A, Zeitlinger M. Cerebral and Peripheral Metabolism to Predict Successful Reperfusion After Cardiac Arrest in Rats: A Microdialysis Study. Neurocrit Care 2015; 24:283-93. [DOI: 10.1007/s12028-015-0214-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
179
|
Amyot F, Arciniegas DB, Brazaitis MP, Curley KC, Diaz-Arrastia R, Gandjbakhche A, Herscovitch P, Hinds SR, Manley GT, Pacifico A, Razumovsky A, Riley J, Salzer W, Shih R, Smirniotopoulos JG, Stocker D. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury. J Neurotrauma 2015; 32:1693-721. [PMID: 26176603 PMCID: PMC4651019 DOI: 10.1089/neu.2013.3306] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) in the United States was 3.5 million cases in 2009, according to the Centers for Disease Control and Prevention. It is a contributing factor in 30.5% of injury-related deaths among civilians. Additionally, since 2000, more than 260,000 service members were diagnosed with TBI, with the vast majority classified as mild or concussive (76%). The objective assessment of TBI via imaging is a critical research gap, both in the military and civilian communities. In 2011, the Department of Defense (DoD) prepared a congressional report summarizing the effectiveness of seven neuroimaging modalities (computed tomography [CT], magnetic resonance imaging [MRI], transcranial Doppler [TCD], positron emission tomography, single photon emission computed tomography, electrophysiologic techniques [magnetoencephalography and electroencephalography], and functional near-infrared spectroscopy) to assess the spectrum of TBI from concussion to coma. For this report, neuroimaging experts identified the most relevant peer-reviewed publications and assessed the quality of the literature for each of these imaging technique in the clinical and research settings. Although CT, MRI, and TCD were determined to be the most useful modalities in the clinical setting, no single imaging modality proved sufficient for all patients due to the heterogeneity of TBI. All imaging modalities reviewed demonstrated the potential to emerge as part of future clinical care. This paper describes and updates the results of the DoD report and also expands on the use of angiography in patients with TBI.
Collapse
Affiliation(s)
- Franck Amyot
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David B. Arciniegas
- Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Houston, Texas
- Brain Injury Research, TIRR Memorial Hermann, Houston, Texas
| | | | - Kenneth C. Curley
- Combat Casualty Care Directorate (RAD2), U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amir Gandjbakhche
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Sidney R. Hinds
- Defense and Veterans Brain Injury Center, Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury Silver Spring, Maryland
| | - Geoffrey T. Manley
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Anthony Pacifico
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | | | - Jason Riley
- Queens University, Kingston, Ontario, Canada
- ArcheOptix Inc., Picton, Ontario, Canada
| | - Wanda Salzer
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | - Robert Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James G. Smirniotopoulos
- Department of Radiology, Neurology, and Biomedical Informatics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Derek Stocker
- Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
180
|
Brain tissue oxygen evaluation by wireless near-infrared spectroscopy. J Surg Res 2015; 200:669-75. [PMID: 26521677 DOI: 10.1016/j.jss.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/14/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Monitoring the partial pressure of oxygen in brain tissue (PbtO2) is an important tool for traumatic brain injury (TBI) but is invasive and inconvenient for real time monitoring. Near-infrared spectroscopy (NIRS), which can monitor hemoglobin parameters in the brain tissue, has been used widely as a noninvasive tool for assessing cerebral ischemia and hypoxia. Therefore, it may have the potential as a noninvasive tool for estimating the change of PbtO2. In this study, a novel wireless NIRS system was designed to monitor hemoglobin parameters of rat brains under different impact strengths and was used to estimate the change of PbtO2 noninvasively in TBI. MATERIALS AND METHODS The proposed wireless NIRS system and a PbtO2 monitoring system were used to monitor the oxygenation of rat brains under different impact strengths. Rats were randomly assigned to four different impact strength groups (sham, 1.6 atm, 2.0 atm, and 2.4 atm; n = 6 per group), and the relationships of concentration changes in oxyhemoglobin (HbO2), deoxyhemoglobin (HbR), and total hemoglobin (HbT), and PbtO2 during and after TBI with different impact strengths were investigated. Triphenyltetrazolium chloride (TTC) staining was also used to evaluate infarction volume. RESULTS Concentration changes in HbO2, HbR, and HbT dropped immediately after the impact, increased gradually, and then became stable. Changes in PbtO2 had a similar tendency with the hemoglobin parameters. There was significant correlation between changes in PbtO2 and HbO2 (correlation = 0.76) but not with changes in HbR (correlation = 0.06). In triphenyltetrazolium chloride staining, the infarction volume was highly but negatively associated with oxygen-related parameters like PbtO2 and HbO2. CONCLUSIONS Changes in HbO2 under TBI was highly and positively correlated with changes in PbtO2. By using the relative changes in HbO2 as a reference parameter, the proposed wireless NIRS system may be developed as a noninvasive tool for estimating the change of PbtO2 in brain tissue after TBI.
Collapse
|
181
|
Patet C, Quintard H, Suys T, Bloch J, Daniel RT, Pellerin L, Magistretti PJ, Oddo M. Neuroenergetic Response to Prolonged Cerebral Glucose Depletion after Severe Brain Injury and the Role of Lactate. J Neurotrauma 2015; 32:1560-6. [DOI: 10.1089/neu.2014.3781] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Camille Patet
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Hervé Quintard
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Tamarah Suys
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Jocelyne Bloch
- Department of Clinical Neurosciences, University of Lausanne, Switzerland
| | - Roy T. Daniel
- Department of Clinical Neurosciences, University of Lausanne, Switzerland
| | - Luc Pellerin
- Departement of Physiology, University of Lausanne, Switzerland
| | - Pierre J. Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mauro Oddo
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| |
Collapse
|
182
|
Magnoni S, Mac Donald CL, Esparza TJ, Conte V, Sorrell J, Macrì M, Bertani G, Biffi R, Costa A, Sammons B, Snyder AZ, Shimony JS, Triulzi F, Stocchetti N, Brody DL. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI. Brain 2015; 138:2263-77. [PMID: 26084657 DOI: 10.1093/brain/awv152] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/09/2015] [Indexed: 11/14/2022] Open
Abstract
Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-β proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman's r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter regions. We interpret this result to mean that both microdialysis and diffusion tensor magnetic resonance imaging accurately reflect the same pathophysiological process: traumatic axonal injury. This cross-validation increases confidence in both methods for the clinical assessment of axonal injury. However, neither microdialysis nor diffusion tensor magnetic resonance imaging have been validated versus post-mortem histology in humans. Furthermore, future work will be required to determine the prognostic significance of these assessments of traumatic axonal injury when combined with other clinical and radiological measures.
Collapse
Affiliation(s)
- Sandra Magnoni
- 1 Department of Anaesthesiology and Intensive Care, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Christine L Mac Donald
- 2 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas J Esparza
- 3 Department of Neurology, Washington University, St Louis, MO, USA
| | - Valeria Conte
- 1 Department of Anaesthesiology and Intensive Care, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - James Sorrell
- 3 Department of Neurology, Washington University, St Louis, MO, USA
| | | | - Giulio Bertani
- 5 Department of Neurosurgery, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Riccardo Biffi
- 6 Department of Neuroradiology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Antonella Costa
- 6 Department of Neuroradiology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Brian Sammons
- 3 Department of Neurology, Washington University, St Louis, MO, USA
| | - Abraham Z Snyder
- 7 Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Joshua S Shimony
- 7 Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Fabio Triulzi
- 6 Department of Neuroradiology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Nino Stocchetti
- 1 Department of Anaesthesiology and Intensive Care, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy 4 Milan University, Milano, Italy
| | - David L Brody
- 3 Department of Neurology, Washington University, St Louis, MO, USA 8 Hope Centre for Neurological Disorders, Washington University, St Louis, MO, USA
| |
Collapse
|
183
|
Roussakis E, Li Z, Nichols AJ, Evans CL. Sauerstoffmessung in der Biomedizin - von der Makro- zur Mikroebene. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
184
|
Roussakis E, Li Z, Nichols AJ, Evans CL. Oxygen-Sensing Methods in Biomedicine from the Macroscale to the Microscale. Angew Chem Int Ed Engl 2015; 54:8340-62. [DOI: 10.1002/anie.201410646] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/05/2015] [Indexed: 12/15/2022]
|
185
|
Lazaridis C, Andrews CM. Brain tissue oxygenation, lactate-pyruvate ratio, and cerebrovascular pressure reactivity monitoring in severe traumatic brain injury: systematic review and viewpoint. Neurocrit Care 2015; 21:345-55. [PMID: 24993955 DOI: 10.1007/s12028-014-0007-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Prevention and detection of secondary brain insults via multimodality neuromonitoring is a major goal in patients with severe traumatic brain injury (TBI). OBJECTIVE Explore the underlying pathophysiology and clinical outcome correlates as it pertains to combined monitoring of ≥2 from the following variables: partial brain tissue oxygen tension (PbtO(2)), pressure reactivity index (PRx), and lactate pyruvate ratio (LPR). METHODS Data sources included Medline, EMBASE, and evidence-based databases (Cochrane DSR, ACP Journal Club, DARE, and the Cochrane Controlled Trials Register). The PRISMA recommendations were followed. Two authors independently selected articles meeting inclusion criteria. Studies enrolled adults who required critical care and monitoring in the setting of TBI. Included studies reported on correlations between the monitored variables and/or reported on correlations of the variables with clinical outcomes. RESULTS Thirty-four reports were included (32 observational studies and 2 randomized controlled trials) with a mean sample size of 34 patients (range 6-223), and a total of 1,161 patient-observations. Overall methodological quality was moderate. Due to inter-study heterogeneity in outcomes of interest, study design, and in both number and type of covariates included in multivariable analyses, quantitative synthesis of study results was not undertaken. CONCLUSION Several literature limitations were identified including small number of subjects, lack of clinical outcome correlations, inconsistent probe location, and overall moderate quality among the included studies. These limitations preclude any firm conclusions; nevertheless we suggest that the status of cerebrovascular reactivity is not only important for cerebral perfusion pressure optimization but should also inform interpretation and interventions targeted on PbtO(2) and LPR. Assessment of reactivity can be the first step in approaching the relations among cerebral blood flow, oxygen delivery, demand, and cellular metabolism.
Collapse
Affiliation(s)
- Christos Lazaridis
- Division of Neurocritical Care, Department of Neurology, Baylor College of Medicine, 6501 Fannin Street, MS: NB 320, Houston, TX, 77030, USA,
| | | |
Collapse
|
186
|
Abstract
The mass transport or flux of neurochemicals in the brain and how this flux affects chemical measurements and their interpretation is reviewed. For all endogenous neurochemicals found in the brain, the flux of each of these neurochemicals exists between sources that produce them and the sites that consume them all within μm distances. Principles of convective-diffusion are reviewed with a significant emphasis on the tortuous paths and discrete point sources and sinks. The fundamentals of the primary methods of detection, microelectrodes and microdialysis sampling of brain neurochemicals are included in the review. Special attention is paid to the change in the natural flux of the neurochemicals caused by implantation and consumption at microelectrodes and uptake by microdialysis. The detection of oxygen, nitric oxide, glucose, lactate, and glutamate, and catecholamines by both methods are examined and where possible the two techniques (electrochemical vs. microdialysis) are compared. Non-invasive imaging methods: magnetic resonance, isotopic fluorine MRI, electron paramagnetic resonance, and positron emission tomography are also used for different measurements of the above-mentioned solutes and these are briefly reviewed. Although more sophisticated, the imaging techniques are unable to track neurochemical flux on short time scales, and lack spatial resolution. Where possible, determinations of flux using imaging are compared to the more classical techniques of microdialysis and microelectrodes.
Collapse
Affiliation(s)
- David W Paul
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
187
|
Pérez-Bárcena J, Romay E, Llompart-Pou JA, Ibáñez J, Brell M, Llinás P, González E, Merenda A, Ince C, Bullock R. Direct observation during surgery shows preservation of cerebral microcirculation in patients with traumatic brain injury. J Neurol Sci 2015; 353:38-43. [DOI: 10.1016/j.jns.2015.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/22/2015] [Accepted: 03/27/2015] [Indexed: 11/25/2022]
|
188
|
Jalloh I, Carpenter KLH, Helmy A, Carpenter TA, Menon DK, Hutchinson PJ. Glucose metabolism following human traumatic brain injury: methods of assessment and pathophysiological findings. Metab Brain Dis 2015; 30:615-32. [PMID: 25413449 PMCID: PMC4555200 DOI: 10.1007/s11011-014-9628-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/03/2014] [Indexed: 02/02/2023]
Abstract
The pathophysiology of traumatic brain (TBI) injury involves changes to glucose uptake into the brain and its subsequent metabolism. We review the methods used to study cerebral glucose metabolism with a focus on those used in clinical TBI studies. Arterio-venous measurements provide a global measure of glucose uptake into the brain. Microdialysis allows the in vivo sampling of brain extracellular fluid and is well suited to the longitudinal assessment of metabolism after TBI in the clinical setting. A recent novel development is the use of microdialysis to deliver glucose and other energy substrates labelled with carbon-13, which allows the metabolism of glucose and other substrates to be tracked. Positron emission tomography and magnetic resonance spectroscopy allow regional differences in metabolism to be assessed. We summarise the data published from these techniques and review their potential uses in the clinical setting.
Collapse
Affiliation(s)
- Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167 Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK,
| | | | | | | | | | | |
Collapse
|
189
|
Kilbaugh TJ, Karlsson M, Byro M, Bebee A, Ralston J, Sullivan S, Duhaime AC, Hansson MJ, Elmér E, Margulies SS. Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain. Exp Neurol 2015; 271:136-44. [PMID: 26028309 DOI: 10.1016/j.expneurol.2015.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death in children worldwide. Emerging evidence suggests that alterations in mitochondrial function are critical components of secondary injury cascade initiated by TBI that propogates neurodegeneration and limits neuroregeneration. Unfortunately, there is very little known about the cerebral mitochondrial bioenergetic response from the immature brain triggered by traumatic biomechanical forces. Therefore, the objective of this study was to perform a detailed evaluation of mitochondrial bioenergetics using high-resolution respirometry in a high-fidelity large animal model of focal controlled cortical impact injury (CCI) 24h post-injury. This novel approach is directed at analyzing dysfunction in electron transport, ADP phosphorylation and leak respiration to provide insight into potential mechanisms and possible interventions for mitochondrial dysfunction in the immature brain in focal TBI by delineating targets within the electron transport system (ETS). Development and application of these methodologies have several advantages, and adds to the interpretation of previously reported techniques, by having the added benefit that any toxins or neurometabolites present in the ex-vivo samples are not removed during the mitochondrial isolation process, and simulates the in situ tricarboxylic acid (TCA) cycle by maximizing key substrates for convergent flow of electrons through both complexes I and II. To investigate alterations in mitochondrial function after CCI, ipsilateral tissue near the focal impact site and tissue from the corresponding contralateral side were examined. Respiration per mg of tissue was also related to citrate synthase activity (CS) and calculated flux control ratios (FCR), as an attempt to control for variability in mitochondrial content. Our biochemical analysis of complex interdependent pathways of electron flow through the electron transport system, by most measures, reveals a bilateral decrease in complex I-driven respiration and an increase in complex II-driven respiration 24h after focal TBI. These alterations in convergent electron flow though both complex I and II-driven respiration resulted in significantly lower maximal coupled and uncoupled respiration in the ipsilateral tissue compared to the contralateral side, for all measures. Surprisingly, increases in complex II and complex IV activities were most pronounced in the contralateral side of the brain from the focal injury, and where oxidative phosphorylation was increased significantly compared to sham values. We conclude that 24h after focal TBI in the immature brain, there are significant alterations in cerebral mitochondrial bioenergetics, with pronounced increases in complex II and complex IV respiration in the contralateral hemisphere. These alterations in mitochondrial bioenergetics present multiple targets for therapeutic intervention to limit secondary brain injury and support recovery.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- Perelman School of Medicine at the University of Pennsylvania, Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 34th & Civic Center Blvd., Philadelphia, PA 19104, USA.
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Melissa Byro
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Ashley Bebee
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Jill Ralston
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Sarah Sullivan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Ann-Christine Duhaime
- Department of Neurosurgery, Massachusetts General Hospital, 15 Parkman Street, Boston, MA 02114, USA.
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Susan S Margulies
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
190
|
Caldwell M, Hapuarachchi T, Highton D, Elwell C, Smith M, Tachtsidis I. BrainSignals Revisited: Simplifying a Computational Model of Cerebral Physiology. PLoS One 2015; 10:e0126695. [PMID: 25961297 PMCID: PMC4427507 DOI: 10.1371/journal.pone.0126695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Multimodal monitoring of brain state is important both for the investigation of healthy cerebral physiology and to inform clinical decision making in conditions of injury and disease. Near-infrared spectroscopy is an instrument modality that allows non-invasive measurement of several physiological variables of clinical interest, notably haemoglobin oxygenation and the redox state of the metabolic enzyme cytochrome c oxidase. Interpreting such measurements requires the integration of multiple signals from different sources to try to understand the physiological states giving rise to them. We have previously published several computational models to assist with such interpretation. Like many models in the realm of Systems Biology, these are complex and dependent on many parameters that can be difficult or impossible to measure precisely. Taking one such model, BrainSignals, as a starting point, we have developed several variant models in which specific regions of complexity are substituted with much simpler linear approximations. We demonstrate that model behaviour can be maintained whilst achieving a significant reduction in complexity, provided that the linearity assumptions hold. The simplified models have been tested for applicability with simulated data and experimental data from healthy adults undergoing a hypercapnia challenge, but relevance to different physiological and pathophysiological conditions will require specific testing. In conditions where the simplified models are applicable, their greater efficiency has potential to allow their use at the bedside to help interpret clinical data in near real-time.
Collapse
Affiliation(s)
- Matthew Caldwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tharindi Hapuarachchi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - David Highton
- Neurocritical Care Unit, University College Hospitals, London, UK
| | - Clare Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Martin Smith
- Neurocritical Care Unit, University College Hospitals, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
191
|
Glucose administration after traumatic brain injury exerts some benefits and no adverse effects on behavioral and histological outcomes. Brain Res 2015; 1614:94-104. [PMID: 25911580 DOI: 10.1016/j.brainres.2015.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 11/22/2022]
Abstract
The impact of hyperglycemia after traumatic brain injury (TBI), and even the administration of glucose-containing solutions to head injured patients, remains controversial. In the current study adult male Sprague-Dawley rats were tested on behavioral tasks and then underwent surgery to induce sham injury or unilateral controlled cortical impact (CCI) injury followed by injections (i.p.) with either a 50% glucose solution (Glc; 2g/kg) or an equivalent volume of either 0.9% or 8% saline (Sal) at 0, 1, 3 and 6h post-injury. The type of saline treatment did not significantly affect any outcome measures, so these data were combined. Rats with CCI had significant deficits in beam-walking traversal time and rating scores (p's < 0.001 versus sham) that recovered over test sessions from 1 to 13 days post-injury (p's < 0.001), but these beam-walking deficits were not affected by Glc versus Sal treatments. Persistent post-CCI deficits in forelimb contraflexion scores and forelimb tactile placing ability were also not differentially affected by Glc or Sal treatments. However, deficits in latency to retract the right hind limb after limb extension were significantly attenuated in the CCI-Glc group (p < 0.05 versus CCI-Sal). Both CCI groups were significantly impaired in a plus maze test of spatial working memory on days 4, 9 and 14 post-surgery (p < 0.001 versus sham), and there was no effect of Glc versus Sal on this cognitive outcome measure. At 15 days post-surgery the loss of cortical tissue volume (p < 0.001 versus sham) was significantly less in the CCI-Glc group (30.0%; p < 0.05) compared to the CCI-Sal group (35.7%). Counts of surviving hippocampal hilar neurons revealed a significant (~40%) loss ipsilateral to CCI (p < 0.001 versus sham), but neuronal loss in the hippocampus was not different in the CCI-Sal and CCI-Glc groups. Taken together, these results indicate that an early elevation of blood glucose may improve some neurological outcomes and, importantly, the induction of hyperglycemia after isolated TBI did not adversely affect any sensorimotor, cognitive or histological outcomes.
Collapse
|
192
|
Schiefecker AJ, Beer R, Broessner G, Kofler M, Schmutzhard E, Helbok R. Can Therapeutic Hypothermia Be Guided by Advanced Neuromonitoring in Neurocritical Care Patients? A Review. Ther Hypothermia Temp Manag 2015; 5:126-34. [PMID: 25875898 DOI: 10.1089/ther.2014.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The impact of therapeutic hypothermia (TH) on long-term neurological outcome is still controversial. Data on the effects of TH on brain homeostasis are mostly derived from experimental research. Invasive multimodal neuromonitoring techniques may provide additional insight into pathophysiological changes associated with primary or secondary brain injury in humans. In this study we describe the principles of multimodal neuromonitoring and its potential in the clinical setting of TH. We call for more research using multimodal neuromonitoring techniques in patients undergoing TH to optimize cooling and rewarming strategies.
Collapse
Affiliation(s)
- Alois Josef Schiefecker
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Ronny Beer
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Gregor Broessner
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Mario Kofler
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Erich Schmutzhard
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Raimund Helbok
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| |
Collapse
|
193
|
Carpenter KLH, Jalloh I, Hutchinson PJ. Glycolysis and the significance of lactate in traumatic brain injury. Front Neurosci 2015; 9:112. [PMID: 25904838 PMCID: PMC4389375 DOI: 10.3389/fnins.2015.00112] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/16/2015] [Indexed: 01/19/2023] Open
Abstract
In traumatic brain injury (TBI) patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well-recognized, and are associated statistically with unfavorable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolized via glycolysis (Embden-Meyerhof-Parnas pathway) to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate's association with unfavorable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilize lactate by feeding into the tricarboxylic acid (TCA) cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilization of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of (13)C-labeled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with (13)C NMR analysis, revealed (13)C labeling in glutamine consistent with lactate utilization via the TCA cycle. This suggests that where neurons are too damaged to utilize the lactate produced from glucose by astrocytes, i.e., uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining the association between high lactate and poor outcome. Recently, an intravenous exogenous lactate supplementation study in TBI patients revealed evidence for a beneficial effect judged by surrogate endpoints. Here we review the current state of knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better clinical outcome.
Collapse
Affiliation(s)
- Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK ; Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK ; Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| |
Collapse
|
194
|
Bedside diagnosis of mitochondrial dysfunction after malignant middle cerebral artery infarction. Neurocrit Care 2015; 21:35-42. [PMID: 23860668 DOI: 10.1007/s12028-013-9875-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The study explores whether the cerebral biochemical pattern in patients treated with hemicraniectomy after large middle cerebral artery infarcts reflects ongoing ischemia or non-ischemic mitochondrial dysfunction. METHODS The study includes 44 patients treated with decompressive hemicraniectomy (DCH) due to malignant middle cerebral artery infarctions. Chemical variables related to energy metabolism obtained by microdialysis were analyzed in the infarcted tissue and in the contralateral hemisphere from the time of DCH until 96 h after DCH. RESULTS Reperfusion of the infarcted tissue was documented in a previous report. Cerebral lactate/pyruvate ratio (L/P) and lactate were significantly elevated in the infarcted tissue compared to the non-infarcted hemisphere (p < 0.05). From 12 to 96 h after DCH the pyruvate level was significantly higher in the infarcted tissue than in the non-infarcted hemisphere (p < 0.05). CONCLUSION After a prolonged period of ischemia and subsequent reperfusion, cerebral tissue shows signs of protracted mitochondrial dysfunction, characterized by a marked increase in cerebral lactate level with a normal or increased cerebral pyruvate level resulting in an increased LP-ratio. This biochemical pattern contrasts to cerebral ischemia, which is characterized by a marked decrease in cerebral pyruvate. The study supports the hypothesis that it is possible to diagnose cerebral mitochondrial dysfunction and to separate it from cerebral ischemia by microdialysis and bed-side biochemical analysis.
Collapse
|
195
|
Cerebral ischemia-induced mitochondrial changes in a global ischemic rat model by AFM. Biomed Pharmacother 2015; 71:15-20. [DOI: 10.1016/j.biopha.2015.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 01/14/2023] Open
|
196
|
de Lima Oliveira M, Kairalla AC, Fonoff ET, Martinez RCR, Teixeira MJ, Bor-Seng-Shu E. Cerebral microdialysis in traumatic brain injury and subarachnoid hemorrhage: state of the art. Neurocrit Care 2015; 21:152-62. [PMID: 24072457 DOI: 10.1007/s12028-013-9884-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cerebral microdialysis (CMD) is a laboratory tool that provides on-line analysis of brain biochemistry via a thin, fenestrated, double-lumen dialysis catheter that is inserted into the interstitium of the brain. A solute is slowly infused into the catheter at a constant velocity. The fenestrated membranes at the tip of the catheter permit free diffusion of molecules between the brain interstitium and the perfusate, which is subsequently collected for laboratory analysis. The major molecules studied using this method are glucose, lactate, pyruvate, glutamate, and glycerol. The collected substances provide insight into the neurochemical features of secondary injury following traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) and valuable information about changes in brain metabolism within a short time frame. In this review, the authors detail the CMD technique and its associated markers and then describe pertinent findings from the literature about the clinical application of CMD in TBI and SAH.
Collapse
Affiliation(s)
- Marcelo de Lima Oliveira
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of São Paulo, Rua Loefgreen, 1.272 - Vila Clementino, São Paulo, SP, 04040-001, Brazil
| | | | | | | | | | | |
Collapse
|
197
|
Accuracy of brain multimodal monitoring to detect cerebral hypoperfusion after traumatic brain injury*. Crit Care Med 2015; 43:445-52. [PMID: 25393700 DOI: 10.1097/ccm.0000000000000720] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To examine the accuracy of brain multimodal monitoring-consisting of intracranial pressure, brain tissue PO2, and cerebral microdialysis--in detecting cerebral hypoperfusion in patients with severe traumatic brain injury. DESIGN Prospective single-center study. PATIENTS Patients with severe traumatic brain injury. SETTING Medico-surgical ICU, university hospital. INTERVENTION Intracranial pressure, brain tissue PO2, and cerebral microdialysis monitoring (right frontal lobe, apparently normal tissue) combined with cerebral blood flow measurements using perfusion CT. MEASUREMENTS AND MAIN RESULTS Cerebral blood flow was measured using perfusion CT in tissue area around intracranial monitoring (regional cerebral blood flow) and in bilateral supra-ventricular brain areas (global cerebral blood flow) and was matched to cerebral physiologic variables. The accuracy of intracranial monitoring to predict cerebral hypoperfusion (defined as an oligemic regional cerebral blood flow < 35 mL/100 g/min) was examined using area under the receiver-operating characteristic curves. Thirty perfusion CT scans (median, 27 hr [interquartile range, 20-45] after traumatic brain injury) were performed on 27 patients (age, 39 yr [24-54 yr]; Glasgow Coma Scale, 7 [6-8]; 24/27 [89%] with diffuse injury). Regional cerebral blood flow correlated significantly with global cerebral blood flow (Pearson r = 0.70, p < 0.01). Compared with normal regional cerebral blood flow (n = 16), low regional cerebral blood flow (n = 14) measurements had a higher proportion of samples with intracranial pressure more than 20 mm Hg (13% vs 30%), brain tissue PO2 less than 20 mm Hg (9% vs 20%), cerebral microdialysis glucose less than 1 mmol/L (22% vs 57%), and lactate/pyruvate ratio more than 40 (4% vs 14%; all p < 0.05). Compared with intracranial pressure monitoring alone (area under the receiver-operating characteristic curve, 0.74 [95% CI, 0.61-0.87]), monitoring intracranial pressure + brain tissue PO2 (area under the receiver-operating characteristic curve, 0.84 [0.74-0.93]) or intracranial pressure + brain tissue PO2+ cerebral microdialysis (area under the receiver-operating characteristic curve, 0.88 [0.79-0.96]) was significantly more accurate in predicting low regional cerebral blood flow (both p < 0.05). CONCLUSION Brain multimodal monitoring-including intracranial pressure, brain tissue PO2, and cerebral microdialysis--is more accurate than intracranial pressure monitoring alone in detecting cerebral hypoperfusion at the bedside in patients with severe traumatic brain injury and predominantly diffuse injury.
Collapse
|
198
|
Chi CL, Shen DF, Wang PJ, Li HL, Zhang L. Effect of ginkgolide B on brain metabolism and tissue oxygenation in severe haemorrhagic stroke. Int J Clin Exp Med 2015; 8:3522-3529. [PMID: 26064244 PMCID: PMC4443078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
Ginkgolide B, a diterpene, is an herbal constituent isolated from the leaves of Ginkgo biloba tree. The present study demonstrates the effect of ginkgolide B in osmotherapy on brain metabolism and tissue oxygenation. Multimodality monitoring including intracranial pressure (ICP), cerebral perfusion pressure (CPP), partial pressure of brain tissue oxygen (PbtO2), lactate/pyruvate ratio (LPR) and microdialysis were employed to study the effect of ginkgolide B osmotherapy. The results demonstrated that administration of 15% solution of ginkgolide B to the comatose patients with raised ICP (> 20 mm Hg) and resistant to standard therapy led to a significant decrease in ICP. The cerebral microdialysis was used to compare mean arterial blood pressure (MAP), ICP, CPP, PbtO2, brain lactate, pyruvate and glucose level after hourly intervals starting 3 h before and up to 4 h after hyperosmolar therapy. There was a decrease in ICP in 45 min from 23 ± 14 mm Hg (P < 0.001) to 18 ± 24 mm Hg and increase in CPP after 1 h of gingkolide B infusion from 74 ± 18 to 85 ± 22 mm Hg (P < 0.002). However there was no significant effect on MAP but PbtO2 was maintained in the range of 22-26. The peak lactate/pyruvate ratio was recorded at the time of initiation of osmotherapy (44 ± 20) with an 18% decrease over 2 h following gingkolide B therapy. Also the brain glucose remained unaffected.
Collapse
Affiliation(s)
- Chun-Ling Chi
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Dong-Fang Shen
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Peng-Jun Wang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Hu-Lun Li
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, Harbin Medical UniversityHarbin 150081, Heilongjiang, China
| | - Li Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| |
Collapse
|
199
|
Medina-Torres CE, Underwood C, Pollitt CC, Castro-Olivera EM, Hodson MP, Richardson DW, van Eps AW. Microdialysis measurements of lamellar perfusion and energy metabolism during the development of laminitis in the oligofructose model. Equine Vet J 2015; 48:246-52. [DOI: 10.1111/evj.12417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/02/2015] [Indexed: 12/31/2022]
Affiliation(s)
- C. E. Medina-Torres
- Australian Equine Laminitis Research Unit, School of Veterinary Science; The University of Queensland; Gatton Queensland Australia
| | - C. Underwood
- Australian Equine Laminitis Research Unit, School of Veterinary Science; The University of Queensland; Gatton Queensland Australia
| | - C. C. Pollitt
- Australian Equine Laminitis Research Unit, School of Veterinary Science; The University of Queensland; Gatton Queensland Australia
| | - E. M. Castro-Olivera
- Australian Equine Laminitis Research Unit, School of Veterinary Science; The University of Queensland; Gatton Queensland Australia
| | - M. P. Hodson
- Metabolomics Australia - Queensland Node, Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Queensland Australia
| | - D. W. Richardson
- New Bolton Center, Department of Clinical Studies, School of Veterinary Medicine; University of Pennsylvania; Kennett Square Philadelphia USA
| | - A. W. van Eps
- Australian Equine Laminitis Research Unit, School of Veterinary Science; The University of Queensland; Gatton Queensland Australia
| |
Collapse
|
200
|
Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB. Lactate is always the end product of glycolysis. Front Neurosci 2015; 9:22. [PMID: 25774123 PMCID: PMC4343186 DOI: 10.3389/fnins.2015.00022] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/13/2015] [Indexed: 12/22/2022] Open
Abstract
Through much of the history of metabolism, lactate (La−) has been considered merely a dead-end waste product during periods of dysoxia. Congruently, the end product of glycolysis has been viewed dichotomously: pyruvate in the presence of adequate oxygenation, La− in the absence of adequate oxygenation. In contrast, given the near-equilibrium nature of the lactate dehydrogenase (LDH) reaction and that LDH has a much higher activity than the putative regulatory enzymes of the glycolytic and oxidative pathways, we contend that La− is always the end product of glycolysis. Cellular La− accumulation, as opposed to flux, is dependent on (1) the rate of glycolysis, (2) oxidative enzyme activity, (3) cellular O2 level, and (4) the net rate of La− transport into (influx) or out of (efflux) the cell. For intracellular metabolism, we reintroduce the Cytosol-to-Mitochondria Lactate Shuttle. Our proposition, analogous to the phosphocreatine shuttle, purports that pyruvate, NAD+, NADH, and La− are held uniformly near equilibrium throughout the cell cytosol due to the high activity of LDH. La− is always the end product of glycolysis and represents the primary diffusing species capable of spatially linking glycolysis to oxidative phosphorylation.
Collapse
Affiliation(s)
- Matthew J Rogatzki
- Department of Health and Human Performance, University of Wisconsin-Platteville Platteville, WI, USA
| | - Brian S Ferguson
- Department of Biomedical Sciences, University of Missouri Columbia, MO, USA
| | - Matthew L Goodwin
- Department of Orthopaedics, and Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | | |
Collapse
|