151
|
Corredor M, Carbajo D, Domingo C, Pérez Y, Bujons J, Messeguer A, Alfonso I. Dynamic Covalent Identification of an Efficient Heparin Ligand. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Miriam Corredor
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Daniel Carbajo
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Cecilia Domingo
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR Facility, Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Jordi Bujons
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Angel Messeguer
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| |
Collapse
|
152
|
Corredor M, Carbajo D, Domingo C, Pérez Y, Bujons J, Messeguer A, Alfonso I. Dynamic Covalent Identification of an Efficient Heparin Ligand. Angew Chem Int Ed Engl 2018; 57:11973-11977. [DOI: 10.1002/anie.201806770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Miriam Corredor
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Daniel Carbajo
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Cecilia Domingo
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR Facility, Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Jordi Bujons
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Angel Messeguer
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| |
Collapse
|
153
|
Priegue JM, Lostalé-Seijo I, Crisan D, Granja JR, Fernández-Trillo F, Montenegro J. Different-Length Hydrazone Activated Polymers for Plasmid DNA Condensation and Cellular Transfection. Biomacromolecules 2018; 19:2638-2649. [PMID: 29653048 PMCID: PMC6041776 DOI: 10.1021/acs.biomac.8b00252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/10/2018] [Indexed: 11/29/2022]
Abstract
The recent advances in genetic engineering demand the development of conceptually new methods to prepare and identify efficient vectors for the intracellular delivery of different nucleotide payloads ranging from short single-stranded oligonucleotides to larger plasmid double-stranded circular DNAs. Although many challenges still have to be overcome, polymers hold great potential for intracellular nucleotide delivery and gene therapy. We here develop and apply the postpolymerization modification of polyhydrazide scaffolds, with different degree of polymerization, for the preparation of amphiphilic polymeric vehicles for the intracellular delivery of a circular plasmid DNA. The hydrazone formation reactions with a mixture of cationic and hydrophobic aldehydes proceed in physiologically compatible aqueous conditions, and the resulting amphiphilic polyhydrazones are directly combined with the biological cargo without any purification step. This methodology allowed the preparation of stable polyplexes with a suitable size and zeta potential to achieve an efficient encapsulation and intracellular delivery of the DNA cargo. Simple formulations that performed with efficiencies and cell viabilities comparable to the current gold standard were identified. Furthermore, the internalization mechanism was studied via internalization experiments in the presence of endocytic inhibitors and fluorescence microscopy. The results reported here confirmed that the polyhydrazone functionalization is a suitable strategy for the screening and identification of customized polymeric vehicles for the delivery of different nucleotide cargos.
Collapse
Affiliation(s)
- Juan M. Priegue
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Daniel Crisan
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Juan R. Granja
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | | | - Javier Montenegro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
154
|
Wang S, Yue L, Li Z, Zhang J, Tian H, Willner I. Light‐Induced Reversible Reconfiguration of DNA‐Based Constitutional Dynamic Networks: Application to Switchable Catalysis. Angew Chem Int Ed Engl 2018; 57:8105-8109. [DOI: 10.1002/anie.201803371] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Shan Wang
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Liang Yue
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Zi‐Yuan Li
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Itamar Willner
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
155
|
Wang S, Yue L, Li Z, Zhang J, Tian H, Willner I. Light‐Induced Reversible Reconfiguration of DNA‐Based Constitutional Dynamic Networks: Application to Switchable Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shan Wang
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Liang Yue
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Zi‐Yuan Li
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Itamar Willner
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
156
|
Yue L, Wang S, Lilienthal S, Wulf V, Remacle F, Levine RD, Willner I. Intercommunication of DNA-Based Constitutional Dynamic Networks. J Am Chem Soc 2018; 140:8721-8731. [DOI: 10.1021/jacs.8b03450] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liang Yue
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shan Wang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sivan Lilienthal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Verena Wulf
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Françoise Remacle
- Department of Chemistry, University of Liege, B6c, 4000 Liege, Belgium
| | - R. D. Levine
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
157
|
Löw H, Mena-Osteritz E, von Delius M. Self-assembled orthoester cryptands: orthoester scope, post-functionalization, kinetic locking and tunable degradation kinetics. Chem Sci 2018; 9:4785-4793. [PMID: 29910929 PMCID: PMC5982201 DOI: 10.1039/c8sc01750f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Dynamic adaptability and biodegradability are key features of functional, 21st century host-guest systems. We have recently discovered a class of tripodal supramolecular hosts, in which two orthoesters act as constitutionally dynamic bridgeheads. Having previously demonstrated the adaptive nature of these hosts, we now report the synthesis and characterization - including eight solid state structures - of a diverse set of orthoester cages, which provides evidence for the broad scope of this new host class. With the same set of compounds, we demonstrated that the rates of orthoester exchange and hydrolysis can be tuned over a remarkably wide range, from rapid hydrolysis at pH 8 to nearly inert at pH 1, and that the Taft parameter of the orthoester substituent allows an adequate prediction of the reaction kinetics. Moreover, the synthesis of an alkyne-capped cryptand enabled the post-functionalization of orthoester cryptands by Sonogashira and CuAAC "click" reactions. The methylation of the resulting triazole furnished a cryptate that was kinetically inert towards orthoester exchange and hydrolysis at pH > 1, which is equivalent to the "turnoff" of constitutionally dynamic imines by means of reduction. These findings indicate that orthoester cages may be more broadly useful than anticipated, e.g. as drug delivery agents with precisely tunable biodegradability or, thanks to the kinetic locking strategy, as ion sensors.
Collapse
Affiliation(s)
- Henrik Löw
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| |
Collapse
|
158
|
Lampel A, Ulijn RV, Tuttle T. Guiding principles for peptide nanotechnology through directed discovery. Chem Soc Rev 2018; 47:3737-3758. [PMID: 29748676 DOI: 10.1039/c8cs00177d] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Life's diverse molecular functions are largely based on only a small number of highly conserved building blocks - the twenty canonical amino acids. These building blocks are chemically simple, but when they are organized in three-dimensional structures of tremendous complexity, new properties emerge. This review explores recent efforts in the directed discovery of functional nanoscale systems and materials based on these same amino acids, but that are not guided by copying or editing biological systems. The review summarises insights obtained using three complementary approaches of searching the sequence space to explore sequence-structure relationships for assembly, reactivity and complexation, namely: (i) strategic editing of short peptide sequences; (ii) computational approaches to predicting and comparing assembly behaviours; (iii) dynamic peptide libraries that explore the free energy landscape. These approaches give rise to guiding principles on controlling order/disorder, complexation and reactivity by peptide sequence design.
Collapse
Affiliation(s)
- A Lampel
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), New York, NY, USA.
| | | | | |
Collapse
|
159
|
Zhao W, Wang H, Wang Y. Coacervation of dynamic covalent surfactants with polyacrylamides: properties and applications. SOFT MATTER 2018; 14:4178-4184. [PMID: 29740650 DOI: 10.1039/c8sm00773j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dynamic covalent surfactants have been prepared from a mixture of 4-formyl-N,N,N-trimethylbenzenaminium iodide (FBA) with heptylamine (C7A) or octylamine (C8A) in alkaline aqueous solutions. The reversible pH-dependent nature of the imine bond is characterized by 1H NMR and fluorescence analysis. The dynamic covalent surfactants self-assemble into micelles under alkaline conditions and exhibit coacervation with 10% hydrolyzed polyacrylamide (PAM) over a wide concentration range. The coacervate phase with a network structure was found to effectively extract the anionic dye Conge Red (CR). When the solution is adjusted to acidity, the imine bond is hydrolyzed, leading to the transition of the coacervates into a homogeneous and clear solution, and the precipitation of CR into purple-black solids due to the protonation of sulfonic groups. Thus, the extraction and release of CR molecules are realized with this dynamic covalent surfactant/PAM system. Moreover the initial components, FBA, amine, and PAM, can be easily regenerated with hydrochloric acid. This method shows potential applications in wastewater treatment.
Collapse
Affiliation(s)
- Weiwei Zhao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | |
Collapse
|
160
|
Ren Y, Svensson PH, Ramström O. A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yansong Ren
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Per H. Svensson
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Research Institutes of Sweden RISE Bioscience and Materials Forskargatan 18 15136 Södertälje Sweden
| | - Olof Ramström
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of Chemistry University of Massachusetts Lowell 1 University Avenue Lowell MA 01854 USA
| |
Collapse
|
161
|
Ren Y, Svensson PH, Ramström O. A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angew Chem Int Ed Engl 2018; 57:6256-6260. [DOI: 10.1002/anie.201802994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Yansong Ren
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Per H. Svensson
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Research Institutes of Sweden RISE Bioscience and Materials Forskargatan 18 15136 Södertälje Sweden
| | - Olof Ramström
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of Chemistry University of Massachusetts Lowell 1 University Avenue Lowell MA 01854 USA
| |
Collapse
|
162
|
Zhan W, Qu Y, Wei T, Hu C, Pan Y, Yu Q, Chen H. Sweet Switch: Sugar-Responsive Bioactive Surfaces Based on Dynamic Covalent Bonding. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10647-10655. [PMID: 29533581 DOI: 10.1021/acsami.7b18166] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Smart bioactive surfaces that can modulate interactions with biological systems are of great interest. In this work, a surface with switchable bioactivity in response to sugars has been developed. It is based on dynamic covalent bonding between phenylboronic acid (PBA) and secondary hydroxyls on the "wide" rim of β-cyclodextrin (β-CD). The system reported consists of gold surface modified with PBA-containing polymer brushes and a series of functional β-CD derivatives conjugated to diverse bioactive ligands (CD-X). CD-X molecules are attached to the surface to give specified bioactivity such as capture of a specific protein or killing of attached bacteria. Subsequent treatment with cis-diol containing biomolecules having high affinity for PBA (e.g. fructose) leads to the release of CD-X together with the captured proteins, killed bacteria, and so forth from the surface. The surface bioactivity is thereby "turned off". Effectively, this constitutes an on-off bioactivity switch in a mild and noninvasive way, which has the potential in the design of dynamic bioactive surfaces for biomedical applications.
Collapse
Affiliation(s)
- Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
163
|
Gu R, Flidrova K, Lehn JM. Dynamic Covalent Metathesis in the C═C/C═N Exchange between Knoevenagel Compounds and Imines. J Am Chem Soc 2018; 140:5560-5568. [DOI: 10.1021/jacs.8b01849] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruirui Gu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Karolina Flidrova
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
164
|
Fu S, Nie Q, Ma Y, Song P, Ren X, Luo C, Shang L, Yin Z. Target-guided screening of fragments (TGSOF) in the discovery of inhibitors against EV-A71 3C protease. Chem Commun (Camb) 2018; 54:2890-2893. [PMID: 29497732 DOI: 10.1039/c8cc00469b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Target-guided screening of fragments (TGSOF) was developed and employed in the identification of EV-A71 3C protease (3Cpro) inhibitors. We identified 4-acetylpyridine and 3-acetylpyridine as effective P3 fragments of an inhibitor and obtained the corresponding irreversible inhibitors 12c and 12fvia this method. Furthermore, based on 12c and 12f, we have obtained reversible inhibitors 17c and 17f. These results demonstrated that TGSOF is a useful strategy for identifying suitable fragments in developing leads in drug discovery.
Collapse
Affiliation(s)
- Shengjun Fu
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Kosikova T, Philp D. Exploring the emergence of complexity using synthetic replicators. Chem Soc Rev 2018; 46:7274-7305. [PMID: 29099123 DOI: 10.1039/c7cs00123a] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A significant number of synthetic systems capable of replicating themselves or entities that are complementary to themselves have appeared in the last 30 years. Building on an understanding of the operation of synthetic replicators in isolation, this field has progressed to examples where catalytic relationships between replicators within the same network and the extant reaction conditions play a role in driving phenomena at the level of the whole system. Systems chemistry has played a pivotal role in the attempts to understand the origin of biological complexity by exploiting the power of synthetic chemistry, in conjunction with the molecular recognition toolkit pioneered by the field of supramolecular chemistry, thereby permitting the bottom-up engineering of increasingly complex reaction networks from simple building blocks. This review describes the advances facilitated by the systems chemistry approach in relating the expression of complex and emergent behaviour in networks of replicators with the connectivity and catalytic relationships inherent within them. These systems, examined within well-stirred batch reactors, represent conceptual and practical frameworks that can then be translated to conditions that permit replicating systems to overcome the fundamental limits imposed on selection processes in networks operating under closed conditions. This shift away from traditional spatially homogeneous reactors towards dynamic and non-equilibrium conditions, such as those provided by reaction-diffusion reaction formats, constitutes a key change that mimics environments within cellular systems, which possess obvious compartmentalisation and inhomogeneity.
Collapse
Affiliation(s)
- Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | |
Collapse
|
166
|
Janica I, Patroniak V, Samorì P, Ciesielski A. Imine-Based Architectures at Surfaces and Interfaces: From Self-Assembly to Dynamic Covalent Chemistry in 2D. Chem Asian J 2018; 13:465-481. [DOI: 10.1002/asia.201701629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Iwona Janica
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c 61-614 Poznań Poland
| | - Violetta Patroniak
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
| | - Paolo Samorì
- CNRS, ISIS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Artur Ciesielski
- CNRS, ISIS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
167
|
Li S, Yi J, Yu X, Shi H, Zhu J, Wang L. Preparation and Characterization of Acid Resistant Double Cross-Linked Hydrogel for Potential Biomedical Applications. ACS Biomater Sci Eng 2018; 4:872-883. [DOI: 10.1021/acsbiomaterials.7b00818] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shubin Li
- Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, P.R. China
| | - Juanjuan Yi
- Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, P.R. China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Xuemei Yu
- Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, P.R. China
| | - Huijie Shi
- The First Affiliated Hospital of Harbin Medical University, 23 Post Road, Nangang District, Harbin 150001, P.R. China
| | - Jiang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Lu Wang
- Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, P.R. China
| |
Collapse
|
168
|
Ni C, Zha D, Ye H, Hai Y, Zhou Y, Anslyn EV, You L. Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711602] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cailing Ni
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Daijun Zha
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 China
| | - Yuntao Zhou
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 China
| | - Eric V. Anslyn
- Department of Chemistry; The University of Texas at Austin; Austin TX 78712 USA
| | - Lei You
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
169
|
Ni C, Zha D, Ye H, Hai Y, Zhou Y, Anslyn EV, You L. Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System. Angew Chem Int Ed Engl 2018; 57:1300-1305. [PMID: 29239090 DOI: 10.1002/anie.201711602] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Indexed: 11/10/2022]
Abstract
Axial chirality is a prevalent and important phenomenon in chemistry. Herein we report a combination of dynamic covalent chemistry and axial chirality for the development of a versatile platform for the binding and chirality sensing of multiple classes of mononucleophiles. An equilibrium between an open aldehyde and its cyclic hemiaminal within biphenyl derivatives enabled the dynamic incorporation of a broad range of alcohols, thiols, primary amines, and secondary amines with high efficiency. Selectivity toward different classes of nucleophiles was also achieved by regulating the distinct reactivity of the system with external stimuli. Through induced helicity as a result of central-to-axial chirality transfer, the handedness and ee values of chiral monoalcohol and monoamine analytes were reported by circular dichroism. The strategies introduced herein should find application in many contexts, including assembly, sensing, and labeling.
Collapse
Affiliation(s)
- Cailing Ni
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daijun Zha
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yuntao Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
170
|
Schaufelberger F, Timmer BJJ, Ramström O. Resolving a Reactive Organometallic Intermediate from Dynamic Directing Group Systems by Selective C-H Activation. Chemistry 2018; 24:101-104. [PMID: 29149517 PMCID: PMC5836886 DOI: 10.1002/chem.201705273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/12/2022]
Abstract
Catalyst discovery from systems of potential precursors is a challenging endeavor. Herein, a new strategy applying dynamic chemistry to the identification of catalyst precursors from C-H activation of imines is proposed and evaluated. Using hydroacylation of imines as a model reaction, the selection of an organometallic reactive intermediate from a dynamic imine system, involving many potential directing group/metal entities, is demonstrated. The identity of the amplified reaction intermediate with the best directing group could be resolved in situ by ESI-MS, and coupling of the procedure to an iterative deconvolution protocol generated a system with high screening efficiency.
Collapse
Affiliation(s)
- Fredrik Schaufelberger
- Department of ChemistryKTH–Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Brian J. J. Timmer
- Department of ChemistryKTH–Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Olof Ramström
- Department of ChemistryKTH–Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
- Department of ChemistryUniversity of Massachusetts Lowell1 University Ave.LowellMA01854USA
| |
Collapse
|
171
|
Wang C, An X, Pang M, Zhang Z, Zhu X, Zhu J, Du Prez FE, Pan X. Dynamic diselenide-containing polyesters from alcoholysis/oxidation of γ-butyroselenolactone. Polym Chem 2018. [DOI: 10.1039/c8py00736e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile protocol for the synthesis of a variety of multiresponsive diselenide-containing polyesters was investigated.
Collapse
Affiliation(s)
- Can Wang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaowei An
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Minglun Pang
- Department of Chemistry
- Xi'an Jiaotong-Liverpool University
- Suzhou 215123
- P.R. China
| | - Zhengbiao Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Filip E. Du Prez
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Xiangqiang Pan
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
172
|
Ekström AG, Wang JT, Bella J, Campopiano DJ. Non-invasive 19F NMR analysis of a protein-templated N-acylhydrazone dynamic combinatorial library. Org Biomol Chem 2018; 16:8144-8149. [DOI: 10.1039/c8ob01918e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dynamic combinatorial chemistry (DCC) is a powerful tool to identify ligands for biological targets.
Collapse
Affiliation(s)
| | | | - Juraj Bella
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
| | | |
Collapse
|
173
|
Worrell BT, Mavila S, Wang C, Kontour TM, Lim CH, McBride MK, Musgrave CB, Shoemaker R, Bowman CN. A user's guide to the thiol-thioester exchange in organic media: scope, limitations, and applications in material science. Polym Chem 2018. [DOI: 10.1039/c8py01031e] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The dynamic exchange of thiols and thioesters in organic media was explored, leading to room temperature plasticity in crosslinked polymers.
Collapse
Affiliation(s)
- Brady T. Worrell
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Chen Wang
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Taylor M. Kontour
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Chern-Hooi Lim
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Matthew K. McBride
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Charles B. Musgrave
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Richard Shoemaker
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
- Material Science and Engineering Program
| |
Collapse
|
174
|
Kaabel S, Aav R. Templating Effects in the Dynamic Chemistry of Cucurbiturils and Hemicucurbiturils. Isr J Chem 2017. [DOI: 10.1002/ijch.201700106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sandra Kaabel
- Department of Chemistry and Biotechnology, School of Science; Tallinn University of Technology; Akadeemia tee 15 12618 Tallinn Estonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, School of Science; Tallinn University of Technology; Akadeemia tee 15 12618 Tallinn Estonia
| |
Collapse
|
175
|
Ghisu L, Melis N, Secci F, Caboni P, Arca M, Guillot R, Boddaert T, Aitken DJ, Frongia A. Synthesis of 2,2-bis(pyridin-2-yl amino)cyclobutanols and their conversion into 5-(pyridin-2-ylamino)dihydrofuran-2(3H)-ones. Org Biomol Chem 2017; 15:9779-9784. [PMID: 29135013 DOI: 10.1039/c7ob02567j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step protocol is presented for the preparation of 5-(pyridin-2-ylamino)dihydrofuran-2(3H)-ones from 2-hydroxycyclobutanone and some 2-aminopyridines via a catalyst-free synthesis of 2,2-bis(pyridin-2-ylamino)cyclobutanols followed by Dess-Martin periodinane mediated ring expansion.
Collapse
Affiliation(s)
- Lorenza Ghisu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Drożdż W, Bouillon C, Kotras C, Richeter S, Barboiu M, Clément S, Stefankiewicz AR, Ulrich S. Generation of Multicomponent Molecular Cages using Simultaneous Dynamic Covalent Reactions. Chemistry 2017; 23:18010-18018. [DOI: 10.1002/chem.201703868] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Wojciech Drożdż
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c, 6 1-614 Poznań Poland
| | - Camille Bouillon
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM; Ecole Nationale Supérieure de Chimie de Montpellier; 240 Avenue du Professeur Emile Jeanbrau 34296 Montpellier cedex 5 France
| | - Clément Kotras
- Institut Charles Gerhardt (ICGM), UMR 5253; Université de Montpellier, CNRS, ENSCM; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Sébastien Richeter
- Institut Charles Gerhardt (ICGM), UMR 5253; Université de Montpellier, CNRS, ENSCM; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Mihail Barboiu
- Institut Européen des Membranes (IEM), UMR 5635; Université de Montpellier, ENSCM, CNRS, Adaptive Supramolecular Nanosystems Group; Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Sébastien Clément
- Institut Charles Gerhardt (ICGM), UMR 5253; Université de Montpellier, CNRS, ENSCM; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Artur R. Stefankiewicz
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c, 6 1-614 Poznań Poland
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM; Ecole Nationale Supérieure de Chimie de Montpellier; 240 Avenue du Professeur Emile Jeanbrau 34296 Montpellier cedex 5 France
| |
Collapse
|
177
|
Liu Y, Stuart MCA, Witte MD, Buhler E, Hirsch AKH. Saccharide-Containing Dynamic Proteoids. Chemistry 2017; 23:16162-16166. [PMID: 28981987 PMCID: PMC5708278 DOI: 10.1002/chem.201703584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 11/06/2022]
Abstract
Dynamic proteoids are dynamic covalent analogues of proteins, which can be used as new adaptive biomaterials. We designed and synthesized a range of sugar-containing dynamic proteoid biodynamers based on the polycondensation of different types of amino acid and dipeptide hydrazides with a biological aliphatic dialdehyde and a nonbiological aromatic dialdehyde. By using the saccharide-based dialdehyde, the biocompatibility of biodynamers should be enhanced compared to previously reported biodynamers.
Collapse
Affiliation(s)
- Yun Liu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Marc C A Stuart
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,Department of Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Martin D Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Eric Buhler
- Laboratoire Matière et Systèmes Complexes (MSC) UMR 7057, Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205, Paris cedex 13, France
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123, Saarbrücken, Germany.,Department of Pharmacy, Medicinal Chemistry, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
178
|
Lerond M, Bélanger D, Skene WG. Surface immobilized azomethine for multiple component exchange. SOFT MATTER 2017; 13:6639-6646. [PMID: 28926070 DOI: 10.1039/c7sm01456b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diazonium chemistry concomitant with in situ electrochemical reduction was used to graft an aryl aldehyde to indium-tin oxide (ITO) coated glass substrates. This served as an anchor for preparing electroactive azomethines that were covalently bonded to the transparent electrode. The immobilized azomethines could undergo multiple step-wise component exchanges with different arylamines. The write-erase-write sequences were electrochemically confirmed. The azomethines could also be reversibly hydrolyzed. This was exploited for multiple azomethine-hydrolysis cycles resulting in discrete electroactive immobilized azomethines. The erase-rewrite sequences were also electrochemically confirmed.
Collapse
Affiliation(s)
- Michael Lerond
- Laboratoire de caractérisation photophysique des matériaux conjugués, Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | | | | |
Collapse
|
179
|
Zhang Y, Xie S, Yan M, Ramström O. Dynamic Covalent Chemistry of Aldehyde Enamines: Bi III - and Sc III -Catalysis of Amine-Enamine Exchange. Chemistry 2017; 23:11908-11912. [PMID: 28722305 PMCID: PMC5656824 DOI: 10.1002/chem.201702363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 01/09/2023]
Abstract
The dynamic exchange of enamines from secondary amines and enolizable aldehydes has been demonstrated in organic solvents. The enamine exchange with amines was efficiently catalyzed by Bi(OTf)3 and Sc(OTf)3 (2 mol %) and the equilibria (60 mm) could be attained within hours at room temperature. The formed dynamic covalent systems displayed high stabilities in basic environment with <2 % by-product formation within one week after complete equilibration. This study expands the scope of dynamic C-N bonds from imine chemistry to enamines, enabling further dynamic methodologies in exploration of this important class of structures in systems chemistry.
Collapse
Affiliation(s)
- Yang Zhang
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Sheng Xie
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Mingdi Yan
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
- Department of ChemistryUniversity of Massachusetts Lowell1 University Ave.LowellMA01854USA
| | - Olof Ramström
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| |
Collapse
|
180
|
Meghani NM, Amin HH, Lee BJ. Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discov Today 2017; 22:1604-1619. [PMID: 28754291 DOI: 10.1016/j.drudis.2017.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/18/2017] [Accepted: 07/17/2017] [Indexed: 01/30/2023]
Abstract
The concept of click chemistry (CC), first introduced by K.B. Sharpless, has been widely adopted for use in drug discovery, novel drug delivery systems (DDS), polymer chemistry, and material sciences. In this review, we outline novel aspects of CC related to drug discovery and drug delivery, with a brief overview of molecular mechanisms underlying each click reaction commonly used by researchers, and the main patents that paved the way for further diverse medicinal applications. We also describe recent progress in drug discovery and polymeric and carbon material-based drug delivery for potential pharmaceutical applications and advancements based on the CC approach, and discuss some intrinsic limitations of this popular conjugation reaction. The use of CC is likely to significantly advance drug discovery and bioconjugation development.
Collapse
Affiliation(s)
- Nilesh M Meghani
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hardik H Amin
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
181
|
Li W, McManus D, Liu H, Casiraghi C, Webb SJ. Aqueous dispersions of nanostructures formed through the self-assembly of iminolipids with exchangeable hydrophobic termini. Phys Chem Chem Phys 2017. [PMID: 28642943 DOI: 10.1039/c7cp02868g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The addition of amines to an aldehyde surfactant, which was designed to be analogous to didodecyldimethylammonium bromide, gave exchangeable "iminolipids" that self-assembled to give stable aqueous dispersions of nano-sized vesicles. For example, sonication of suspensions of the n-hexylamine-derived iminolipid gave vesicles 50 to 200 nm in diameter that could encapsulate a water-soluble dye. The iminolipids could undergo dynamic exchange with added amines, and the resulting equilibrium constants (Krel) were quantified by 1H NMR spectroscopy. In the absence of lipid self-assembly, in CDCl3, the assayed primary amines gave very similar Krel values. However in D2O the value of Krel generally increased with increasing amine hydrophobicity, consistent with partitioning into a self-assembled bilayer. Amines with aromatic groups showed significantly higher values of Krel in D2O compared to similarly hydrophobic alkylamines, suggesting that π-π interactions favor lipid self-assembly. Given this synergistic relationship, π-rich pyrenyliminolipids were created and used to exfoliate graphite, leading to aqueous dispersions of graphene flakes that were stable over several months.
Collapse
Affiliation(s)
- Wen Li
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | | | | | | |
Collapse
|
182
|
Wang S, Yue L, Shpilt Z, Cecconello A, Kahn JS, Lehn JM, Willner I. Controlling the Catalytic Functions of DNAzymes within Constitutional Dynamic Networks of DNA Nanostructures. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b04531] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shan Wang
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Liang Yue
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zohar Shpilt
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alessandro Cecconello
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jason S. Kahn
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jean-Marie Lehn
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), University of Strasbourg, 8 Rue Gaspard Monge, Strasbourg 67000, France
| | - Itamar Willner
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
183
|
Ulatowski F, Jurczak J. Oligocarboxylates as useful templates in dynamic combinatorial chemistry. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Dynamic combinatorial chemistry deals with systems (libraries) of multiple compounds formed by reversible reactions. Interactions of all library components with introduced template molecule are reflected in modification of library composition and are analysed simultaneously. In our studies we investigated a single-substrate dynamic combinatorial library of macrocycles, based on dipicolinic acid diamide, with disulphide bond exchange as the reversible reaction. The library components equipped with hydrogen bond donors interact with anionic guests – carboxylates which act as templates inducing amplification of selected library members. We proved that quantitative analysis of interactions with templates is possible, which led us to a novel method of analysis of association constants of static receptors introduced to the system. With a large set of carboxylates differing in number of anionic groups, size, shape, and flexibility of the linker, we proved that the library is very sensitive to structural parameters of the template. We also showed that with mediation of a photoswitchable azobenzene-based template it is possible to change the library composition by light stimulus. Similarly, with mediation of EDTA the library is sensitive to introduction of metal cations.
Collapse
|
184
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Proteintemplat-gesteuerte Fragmentligationen - von der molekularen Erkennung zur Wirkstofffindung. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 129:7464-7485. [PMID: 32313319 PMCID: PMC7159557 DOI: 10.1002/ange.201610372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/28/2022]
Abstract
AbstractProteintemplat‐gesteuerte Fragmentligationen sind ein neuartiges Konzept zur Unterstützung der Wirkstofffindung und können dazu beitragen, die Wirksamkeit von Proteinliganden zu verbessern. Es handelt sich dabei um chemische Reaktionen zwischen niedermolekularen Verbindungen (“Fragmenten”), die die Oberfläche eines Proteins als Reaktionsgefäß verwenden, um die Bildung eines Proteinliganden mit erhöhter Bindungsaffinität zu katalysieren. Die Methode nutzt die molekulare Erkennung kleiner reaktiver Fragmente durch die Proteine sowohl zur Assemblierung der Liganden als auch zur Identifizierung bioaktiver Fragmentkombinationen. Chemische Synthese und Bioassay werden dabei in einem Schritt vereint. Dieser Aufsatz diskutiert die biophysikalischen Grundlagen der reversiblen und irreversiblen Fragmentligationen und gibt einen Überblick über die Methoden, mit denen die durch das Proteintemplat gebildeten Ligationsprodukte detektiert werden können. Der chemische Reaktionsraum und aktuelle Anwendungen wie auch die Bedeutung dieses Konzeptes für die Wirkstofffindung werden erörtert.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| |
Collapse
|
185
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery. Angew Chem Int Ed Engl 2017; 56:7358-7378. [PMID: 28117936 PMCID: PMC7159684 DOI: 10.1002/anie.201610372] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| |
Collapse
|
186
|
El Bouakher A, Tasserie J, Le Goff R, Lhoste J, Martel A, Comesse S. Chemo-, Regio-, and Stereoselective Synthesis of Polysusbtituted Oxazolo[3,2-d][1,4]oxazepin-5(3H)ones via a Domino oxa-Michael/aza-Michael/Williamson Cycloetherification Sequence. J Org Chem 2017; 82:5798-5809. [PMID: 28467063 DOI: 10.1021/acs.joc.7b00629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jordan Tasserie
- FR
3032 CNRS, URCOM EA 3221, Normandie Univ, UNIHAVRE, 76600 Le Havre, France
| | - Ronan Le Goff
- FR
3032 CNRS, URCOM EA 3221, Normandie Univ, UNIHAVRE, 76600 Le Havre, France
| | - Jérôme Lhoste
- IMMM,
UMR 6283 CNRS, Université du Maine, 72088 Le Mans, France
| | - Arnaud Martel
- IMMM,
UMR 6283 CNRS, Université du Maine, 72088 Le Mans, France
| | - Sébastien Comesse
- FR
3032 CNRS, URCOM EA 3221, Normandie Univ, UNIHAVRE, 76600 Le Havre, France
| |
Collapse
|
187
|
Matysiak BM, Nowak P, Cvrtila I, Pappas CG, Liu B, Komáromy D, Otto S. Antiparallel Dynamic Covalent Chemistries. J Am Chem Soc 2017; 139:6744-6751. [PMID: 28440073 PMCID: PMC5438195 DOI: 10.1021/jacs.7b02575] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we introduce the concept of antiparallel chemistries, in which the same functional group can be channeled into one of two reversible chemistries depending on a controllable parameter. Such systems allow both for achieving complexity, by combinatorial chemistry, and addressing it, by switching from one chemistry to another by controlling an external parameter. In our design the two antiparallel chemistries are thiol-disulfide exchange and thio-Michael addition, sharing the thiol as the common building block. By means of oxidation and reduction the system can be reversibly switched from predominantly thio-Michael chemistry to predominantly disulfide chemistry, as well as to any intermediate state. Both chemistries operate in water, at room temperature, and at mildly basic pH, which makes them a suitable platform for further development of systems chemistry.
Collapse
Affiliation(s)
- Bartosz M Matysiak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Faculty of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Piotr Nowak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ivica Cvrtila
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Charalampos G Pappas
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bin Liu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dávid Komáromy
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
188
|
Albano S, Olivo G, Mandolini L, Massera C, Ugozzoli F, Di Stefano S. Formation of Imidazo[1,5-a]pyridine Derivatives Due to the Action of Fe 2+ on Dynamic Libraries of Imines. J Org Chem 2017; 82:3820-3825. [PMID: 28322557 DOI: 10.1021/acs.joc.7b00381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An imidazo[1,5-a]pyridine derivative was unexpectedly obtained through the action of Fe2+ on a dynamic library of imines generated in situ via condensation of benzaldehyde and 2-picolylamine. The reaction product was easily isolated as the only nitrogen-containing product eluted from the chromatographic column. A reaction mechanism is proposed, in which combined kinetic and thermodynamic effects exerted by Fe2+ on the various steps of the complex reaction sequence are discussed. The Fe2+ nature of the added metal cation was found to be pivotal for the achievement of the imidazo[1,5-a]pyridine derivative as well as its amount in the reaction mixture. When the electronic effects were evaluated, gratifying yields were obtained only in the presence of moderately electron-releasing or moderately electron-withdrawing groups on the aldehyde reactant. No traces of imidazo[1,5-a]pyridine derivatives were obtained for p-OCH3 and p-NO2 benzaldehyde.
Collapse
Affiliation(s)
- Simone Albano
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" , Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giorgio Olivo
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" , Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luigi Mandolini
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" , Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Massera
- Dipartimento di Chimica, Università di Parma , Viale delle Scienze 17/a, 43124 Parma, Italy
| | - Franco Ugozzoli
- Dipartimento di Chimica, Università di Parma , Viale delle Scienze 17/a, 43124 Parma, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" , Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
189
|
Xiong D, Yao N, Gu H, Wang J, Zhang L. Stimuli-responsive shell cross-linked micelles from amphiphilic four-arm star copolymers as potential nanocarriers for “pH/redox-triggered” anticancer drug release. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
190
|
Bartus É, Hegedüs Z, Wéber E, Csipak B, Szakonyi G, Martinek TA. De Novo Modular Development of a Foldameric Protein-Protein Interaction Inhibitor for Separate Hot Spots: A Dynamic Covalent Assembly Approach. ChemistryOpen 2017; 6:236-241. [PMID: 28413758 PMCID: PMC5390796 DOI: 10.1002/open.201700012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 01/27/2023] Open
Abstract
Protein-protein interactions stabilized by multiple separate hot spots are highly challenging targets for synthetic scaffolds. Surface-mimetic foldamers bearing multiple recognition segments are promising candidate inhibitors. In this work, a modular bottom-up approach is implemented by identifying short foldameric recognition segments that interact with the independent hot spots, and connecting them through dynamic covalent library (DCL) optimization. The independent hot spots of a model target (calmodulin) are mapped with hexameric β-peptide helices using a pull-down assay. Recognition segment hits are subjected to a target-templated DCL ligation through thiol-disulfide exchange. The most potent derivative displays low nanomolar affinity towards calmodulin and effectively inhibits the calmodulin-TRPV1 interaction. The DCL assembly of the folded segments offers an efficient approach towards the de novo development of a high-affinity inhibitor of protein-protein interactions.
Collapse
Affiliation(s)
- Éva Bartus
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| | - Zsófia Hegedüs
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| | - Edit Wéber
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| | - Brigitta Csipak
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| | - Gerda Szakonyi
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| | - Tamás A. Martinek
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| |
Collapse
|
191
|
Orrillo AG, Escalante AM, Furlan RLE. Host Amplification in a Dithioacetal-Based Dynamic Covalent Library. Org Lett 2017; 19:1446-1449. [DOI: 10.1021/acs.orglett.7b00401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Gastón Orrillo
- Instituto de Investigaciones
para el Descubrimiento de Fármacos de Rosario (UNR-CONICET), Ocampo y Esmeralda, Rosario (2000), Argentina
| | - Andrea. M. Escalante
- Instituto de Investigaciones
para el Descubrimiento de Fármacos de Rosario (UNR-CONICET), Ocampo y Esmeralda, Rosario (2000), Argentina
| | - Ricardo L. E. Furlan
- Instituto de Investigaciones
para el Descubrimiento de Fármacos de Rosario (UNR-CONICET), Ocampo y Esmeralda, Rosario (2000), Argentina
- Farmacognosia,
Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (2000), Argentina
| |
Collapse
|
192
|
Liu Y, Lehn JM, Hirsch AKH. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers. Acc Chem Res 2017; 50:376-386. [PMID: 28169527 PMCID: PMC5332124 DOI: 10.1021/acs.accounts.6b00594] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Indexed: 12/18/2022]
Abstract
Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment.
Collapse
Affiliation(s)
- Yun Liu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jean-Marie Lehn
- Laboratoire
de Chimie Supramoléculaire, Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), Université
de Strasbourg, 8 allée
Gaspard Monge, Strasbourg 67000, France
| | - Anna K. H. Hirsch
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
193
|
Ye H, Hai Y, Ren Y, You L. Versatile Dynamic Covalent Assemblies for Probing π-Stacking and Chirality Induction from Homotopic Faces. Chemistry 2017; 23:3804-3809. [DOI: 10.1002/chem.201606040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Hebo Ye
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
- College of Material Science and Engineering; Fujian Normal University; Fuzhou 350007 P.R. China
| | - Yulong Ren
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Lei You
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| |
Collapse
|
194
|
Linden L, Goss KU, Endo S. 3D-QSAR predictions for α-cyclodextrin binding constants using quantum mechanically based descriptors. CHEMOSPHERE 2017; 169:693-699. [PMID: 27914354 DOI: 10.1016/j.chemosphere.2016.11.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 05/08/2023]
Abstract
Binding of organic chemicals to α-cyclodextrin (αCD) is a typical example for host-guest complexation that is influenced by the 3D-structure of both the binding site (host) and the solute (guest). Prediction of the binding constant is challenging and requires a successful representation of the binding site-solute interactions in the 3D-space. In this study, we tested if a 3D quantitative structure activity relationship (3D-QSAR) model with quantum mechanically based local sigma profiles (LSPs) derived from the COSMOsar3D method is capable of predicting αCD binding constants from the most recent literature and how the model performs in comparison to a standard comparative molecular field analysis and to a reference 2D-QSAR. The results showed that the new 3D-QSAR model was more predictive than both reference models (RMSE 0.45 vs 0.53/0.52, R2 0.70 vs 0.53/0.68). Furthermore, only the new model captured the differences in the binding constants between structural isomers of aliphatic alcohols and allowed an extrapolation of the prediction to another literature data set. The high performance of the 3D-QSAR model with LSPs tested in this study and its theoretical robustness suggest that this modeling approach should be applicable to other binding processes including protein binding.
Collapse
Affiliation(s)
- Lukas Linden
- Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Kai-Uwe Goss
- Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, D-04318 Leipzig, Germany; University of Halle-Wittenberg, Institute of Chemistry, Kurt Mothes Str. 2, D-06120 Halle, Germany
| | - Satoshi Endo
- Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, D-04318 Leipzig, Germany; Osaka City University, Urban Research Plaza & Graduate School of Engineering, Sugimoto 3-3-138, Sumiyoshi-ku, 558-8585 Osaka, Japan.
| |
Collapse
|
195
|
Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
196
|
Men G, Lehn JM. Higher Order Constitutional Dynamic Networks: [2×3] and [3×3] Networks Displaying Multiple, Synergistic and Competitive Hierarchical Adaptation. J Am Chem Soc 2017; 139:2474-2483. [DOI: 10.1021/jacs.6b13072] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guangwen Men
- Laboratoire
de Chimie Supramoléculaire, Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
- State
Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China
| | - Jean-Marie Lehn
- Laboratoire
de Chimie Supramoléculaire, Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
197
|
Wei T, Furgal JC, Jung JH, Scott TF. Long, self-assembled molecular ladders by cooperative dynamic covalent reactions. Polym Chem 2017. [DOI: 10.1039/c6py01951j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dynamic covalent self-assembly of peptoid-based oligomers bearing n complementary functional groups yields molecular ladders with n covalent rungs.
Collapse
Affiliation(s)
- Tao Wei
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Joseph C. Furgal
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Jae Hwan Jung
- Macromolecular Science and Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Timothy F. Scott
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
- Macromolecular Science and Engineering
| |
Collapse
|
198
|
van der Vlag R, Hirsch A. Analytical Methods in Protein-Templated Dynamic Combinatorial Chemistry. COMPREHENSIVE SUPRAMOLECULAR CHEMISTRY II 2017. [PMCID: PMC7150222 DOI: 10.1016/b978-0-12-409547-2.12559-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
199
|
Busschaert N, Thompson S, Hamilton AD. An α-helical peptidomimetic scaffold for dynamic combinatorial library formation. Chem Commun (Camb) 2017; 53:313-316. [DOI: 10.1039/c6cc07787k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel oligobenzamide-based α-helix mimetic was designed and synthesised with either imine or hydrazone functionalities that serve both to pre-organise the side-chain vectors to mimic the i, i + 4 and i + 7 residues of an α-helix, and to allow for the facile creation of dynamic libraries.
Collapse
Affiliation(s)
- Nathalie Busschaert
- Department of Chemistry
- New York University
- New York
- USA
- Chemistry Research Laboratory
| | - Sam Thompson
- Chemistry Research Laboratory
- University of Oxford
- UK
- Chemistry
- University of Southampton
| | - Andrew D. Hamilton
- Department of Chemistry
- New York University
- New York
- USA
- Chemistry Research Laboratory
| |
Collapse
|
200
|
Fu J, Fu H, Dieu M, Halloum I, Kremer L, Xia Y, Pan W, Vincent SP. Identification of inhibitors targeting Mycobacterium tuberculosis cell wall biosynthesis via dynamic combinatorial chemistry. Chem Commun (Camb) 2017; 53:10632-10635. [DOI: 10.1039/c7cc05251k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, we report a dynamic combinatorial approach along with highly efficient in situ screening to identify inhibitors of UDP-galactopyranose mutase (UGM), an essential enzyme involved in mycobacterial cell wall biosynthesis.
Collapse
Affiliation(s)
- Jian Fu
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- University of Namur (FUNDP)
- Namur B-5000
- Belgium
| | - Huixiao Fu
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- University of Namur (FUNDP)
- Namur B-5000
- Belgium
| | - Marc Dieu
- MaSUN
- Mass Spectrometry Facility
- University of Namur
- 5000 Namur
- Belgium
| | - Iman Halloum
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques
- CNRS UMR 5235
- Université de Montpellier
- France
| | - Laurent Kremer
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques
- CNRS UMR 5235
- Université de Montpellier
- France
| | - Yufen Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants
- Guizhou Medical University
- Guiyang 550014
- China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants
- Guizhou Medical University
- Guiyang 550014
- China
| | - Stéphane P. Vincent
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- University of Namur (FUNDP)
- Namur B-5000
- Belgium
| |
Collapse
|