151
|
Abstract
Endocannabinoids are endogenous agonists for the two types of cannabinoid receptors identified to date, the CB1 and CB2 receptors. CB1 receptors and tissue concentrations of endocannabinoids sufficient to activate them are present in the brain structures controlling energy intake (i.e., the hypothalamus, nucleus accumbens and nodose ganglion), as well as in all peripheral organs mostly involved in the regulation of energy homeostasis (i.e., the duodenum, small and large intestine, adipose tissue, skeletal muscle, pancreas and liver). Several peripheral neuropeptides and hormones involved in energy balance, and type of diet, regulate endocannabinoid levels, whereas endocannabinoids, in turn, regulate the expression and release of hypothalamic mediators involved in nutrient intake. Dysregulation of the endocannabinoid system might contribute to the development of eating disorders and explain why CB1 receptor blockers are efficacious at reducing not only food intake but also the metabolic consequences of visceral adiposity and obesity.
Collapse
Affiliation(s)
- Isabel Matias
- a Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy.
| | - Vincenzo Di Marzo
- b Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy.
| |
Collapse
|
152
|
Dickason-Chesterfield AK, Kidd SR, Moore SA, Schaus JM, Liu B, Nomikos GG, Felder CC. Pharmacological Characterization of Endocannabinoid Transport and Fatty Acid Amide Hydrolase Inhibitors. Cell Mol Neurobiol 2006; 26:407-23. [PMID: 16736384 DOI: 10.1007/s10571-006-9072-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 04/05/2006] [Indexed: 11/26/2022]
Abstract
: 1. The mechanism of anandamide uptake and disposal has been an issue of considerable debate in the cannabinoid field. Several compounds have been reported to inhibit anandamide uptake or fatty acid amide hydrolase (FAAH; the primary catabolic enzyme of anandamide) activity with varying degrees of potency and selectivity. We recently reported the first evidence of a binding site involved in the uptake of endocannabinoids that is independent from FAAH. There are no direct comparisons of purported selective inhibitory compounds in common assay conditions measuring anandamide uptake, FAAH activity and binding activity. 2. A subset of compounds reported in the literature were tested in our laboratory under common assay conditions to measure their ability to (a) inhibit [(14)C]-anandamide uptake in cells containing (RBL-2H3) or cells lacking (HeLa) FAAH, (b) inhibit purified FAAH hydrolytic activity, and (c) inhibit binding to a putative binding site involved in endocannabinoid transport in both RBL and HeLa cell membranes. 3. Under these conditions, nearly all compounds tested inhibited (a) uptake of [(14)C]-anandamide, (b) enzyme activity in purified FAAH preparations, and (c) radioligand binding of [(3)H]-LY2183240 in RBL and HeLa plasma membrane preparations. General rank order potency was preserved within the three assays. However, concentration response curves were right-shifted for functional [(14)C]-anandamide uptake in HeLa (FAAH(-/-)) cells. 4. A more direct comparison of multiple inhibitors could be made in these three assay systems performed in the same laboratory, revealing more information about the selectivity of these compounds and the relationship between the putative endocannabinoid transport protein and FAAH. At least two separate proteins appear to be involved in uptake and degradation of anandamide. The most potent inhibitory compounds were right-shifted when transport was measured in HeLa (FAAH(-/-)) cells suggesting a requirement for a direct interaction with the FAAH protein to maintain high affinity binding of anandamide or inhibitors to the putative anandamide transport protein.
Collapse
|
153
|
Yeh JH, Cheng HH, Huang CJ, Chung HM, Chiu HF, Yang YL, Yeh MY, Chen WC, Kao CH, Chou CT, Jan CR. Effect of Anandamide on Cytosolic Ca2+ Levels and Proliferation in Canine Renal Tubular Cells. Basic Clin Pharmacol Toxicol 2006; 98:416-22. [PMID: 16623868 DOI: 10.1111/j.1742-7843.2006.pto_350.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of the endogenous cannabinoid anandamide on cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and proliferation is largely unknown. This study examined whether anandamide altered Ca(2+) levels and caused Ca(2+)-dependent cell death in Madin-Darby canine kidney (MDCK) cells. [Ca(2+)](i) and cell death were measured using the fluorescent dyes fura-2 and WST-1 respectively. Anandamide at concentrations above 5 muM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced by 78% by removing extracellular Ca(2+). The anandamide-induced Ca(2+) influx was insensitive to L-type Ca(2+) channel blockers and the cannabinoid receptor antagonist AM 251, but was inhibited differently by aristolochic acid, WIN 55,212-2 (a cannabinoid receptor agonist), phorbol ester, GF 109203X and forskolin. After pretreatment with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), anandamide-induced Ca(2+) release was inhibited. Inhibition of phospholipase C with U73122 did not change anandamide-induced Ca(2+) release. At concentrations of 100 muM and 200 muM, anandamide killed 50% and 95% cells, respectively. The cytotoxic effect of 100 muM anandamide was completely reversed by pre-chelating cytosolic Ca(2+) with BAPTA. Collectively, in MDCK cells, anandamide induced [Ca(2+)](i) rises by causing Ca(2+) release from endoplasmic reticulum and Ca(2+) influx from extracellular space. Furthermore, anandamide can cause Ca(2+)-dependent cytotoxicity in a concentration-dependent manner.
Collapse
Affiliation(s)
- Jeng-Hsien Yeh
- Pathology and Laboratory Medicine Department, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 813
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Rose TM, Prestwich GD. Fluorogenic phospholipids as head group-selective reporters of phospholipase A activity. ACS Chem Biol 2006; 1:83-91. [PMID: 17163648 DOI: 10.1021/cb5000014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PLA (phospholipases A) are important mediators of cell signaling, generating bioactive fatty acids and LPLs (lysophospholipids). PLA products having different head groups can initiate vastly different types of signaling. Fluorogenic analogues of the PLs (phospholipids) PA (phosphatidic acid), PC (phosphatidylcholine), PE (phosphatidylethanolamine), and PG (phosphatidylglycerol) were synthesized as PLA substrates for rapidly determining in real time the influence of head group modifications on cell signaling both in vitro and in cells. Enzyme-assisted remodeling of the sn-2 position of the diacylglyceryl moiety with cobra venom PLA 2 and transphosphatidylation with a particular PLD (phospholipase D) were central steps in the preparation of these enzymatic probes. The resulting fluorogenic Dabcyl- and BODIPY-containing PL analogues, DBPA, DBPC, DBPE, and DBPG, were used in mixed micelle assays to determine PLA 2 kinetics. Next, the assays were used to determine the X i (50) value of a common PLA 2 inhibitor. Finally, the head group selectivities of a series of commercially available PLA 2 enzymes were readily established using the DBPLs (Dabcyl-BODIPY PLs) as substrates.
Collapse
Affiliation(s)
- Tyler M Rose
- Department of Medicinal Chemistry and Center for Cell Signaling, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108, USA
| | | |
Collapse
|
155
|
Wang J, Okamoto Y, Morishita J, Tsuboi K, Miyatake A, Ueda N. Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-beta-lactamase family. J Biol Chem 2006; 281:12325-35. [PMID: 16527816 DOI: 10.1074/jbc.m512359200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In animal tissues, bioactive N-acylethanolamines including the endocannabinoid anandamide are formed from their corresponding N-acylphosphatidylethanolamines (NAPEs) by the catalysis of a specific phospholipase D (NAPE-PLD) that belongs to the metallo-beta-lactamase family. Despite its potential physiological importance, NAPE-PLD has not yet been characterized with a purified enzyme preparation. In the present study we expressed a recombinant NAPE-PLD in Escherichia coli and highly purified it. The purified enzyme was remarkably activated in a dose-dependent manner by millimolar concentrations of Mg2+ as well as Ca2+ and, hence, appeared to be constitutively active. The enzyme showed extremely high specificity for NAPEs among various glycerophospholipids but did not reveal obvious selectivity for different long chain or medium chain N-acyl species of NAPEs. These results suggested the ability of NAPE-PLD to degrade different NAPEs without damaging other membrane phospholipids. Metal analysis revealed the presence of catalytically important zinc in NAPE-PLD. In addition, site-directed mutagenesis studies were addressed to several histidine and aspartic acid residues of NAPE-PLD that are highly conserved within the metallo-beta-lactamase family. Single mutations of Asp-147, His-185, His-187, Asp-189, His-190, His-253, Asp-284, and His-321 caused abolishment or remarkable reduction of the catalytic activity. Moreover, when six cysteine residues were individually mutated to serine, only C224S showed a considerably reduced activity. The activities of L207F and H380R found as single nucleotide polymorphisms were also low. Thus, NAPE-PLD appeared to function through a mechanism similar to those of the well characterized members of this family but play a unique role in the lipid metabolism of animal tissues.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biochemistry, School of Medicine, Kagawa University, Miki, Japan
| | | | | | | | | | | |
Collapse
|
156
|
McPartland JM, Matias I, Di Marzo V, Glass M. Evolutionary origins of the endocannabinoid system. Gene 2006; 370:64-74. [PMID: 16434153 DOI: 10.1016/j.gene.2005.11.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/04/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
Endocannabinoid system evolution was estimated by searching for functional orthologs in the genomes of twelve phylogenetically diverse organisms: Homo sapiens, Mus musculus, Takifugu rubripes, Ciona intestinalis, Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae, Arabidopsis thaliana, Plasmodium falciparum, Tetrahymena thermophila, Archaeoglobus fulgidus, and Mycobacterium tuberculosis. Sequences similar to human endocannabinoid exon sequences were derived from filtered BLAST searches, and subjected to phylogenetic testing with ClustalX and tree building programs. Monophyletic clades that agreed with broader phylogenetic evidence (i.e., gene trees displaying topographical congruence with species trees) were considered orthologs. The capacity of orthologs to function as endocannabinoid proteins was predicted with pattern profilers (Pfam, Prosite, TMHMM, and pSORT), and by examining queried sequences for amino acid motifs known to serve critical roles in endocannabinoid protein function (obtained from a database of site-directed mutagenesis studies). This novel transfer of functional information onto gene trees enabled us to better predict the functional origins of the endocannabinoid system. Within this limited number of twelve organisms, the endocannabinoid genes exhibited heterogeneous evolutionary trajectories, with functional orthologs limited to mammals (TRPV1 and GPR55), or vertebrates (CB2 and DAGLbeta), or chordates (MAGL and COX2), or animals (DAGLalpha and CB1-like receptors), or opisthokonta (animals and fungi, NAPE-PLD), or eukaryotes (FAAH). Our methods identified fewer orthologs than did automated annotation systems, such as HomoloGene. Phylogenetic profiles, nonorthologous gene displacement, functional convergence, and coevolution are discussed.
Collapse
Affiliation(s)
- John M McPartland
- GW Pharmaceuticals, 53 Washington Street Ext., Middlebury, VT 05753, USA.
| | | | | | | |
Collapse
|
157
|
Hill MN, Gorzalka BB. Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav Pharmacol 2006; 16:333-52. [PMID: 16148438 DOI: 10.1097/00008877-200509000-00006] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
With advances in basic and clinical neuroscience, many gaps have appeared in the traditional monoamine theory of depression that have led to reformulation of the hypotheses concerning the neurobiology of depression. The more recent hypotheses suggest that melancholic depression is characterized by central glucocorticoid resistance that results in hypercortisolemia, which in turn leads to down-regulation of neurotrophins and subsequent neurodegeneration. Examining the neurobiology of depression from this perspective suggests that the endocannabinoid system may play a role in the etiology of melancholic depression. Specifically, pharmacological and genetic blockade of the cannabinoid CB1 receptor induces a phenotypic state that is analogous to melancholic depression, including symptoms such as reduced food intake, heightened anxiety, increased arousal and wakefulness, deficits in extinction of aversive memories and supersensitivity to stress. These similarities between melancholic depression and an endocannabinoid deficiency become more interesting in light of recent findings that endocannabinoid activity is down-regulated by chronic stress and possibly increased by some antidepressant regimens. We propose that an endocannabinoid deficiency may underlie some of the symptoms of melancholic depression, and that enhancement of this system may ultimately be a novel form of pharmacotherapy for treatment-resistant depression.
Collapse
Affiliation(s)
- M N Hill
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
158
|
Ueda N, Okamoto Y, Morishita J. N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: a novel enzyme of the beta-lactamase fold family releasing anandamide and other N-acylethanolamines. Life Sci 2006; 77:1750-8. [PMID: 15949819 DOI: 10.1016/j.lfs.2005.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-acylethanolamines (NAEs) are a lipid class present in brain and other animal tissues and contains anandamide (an endocannabinoid) and other bioactive substances. NAEs are formed from N-acylphosphatidylethanolamines (NAPEs) by a phospholipase D (PLD)-type enzyme abbreviated to NAPE-PLD. Although this enzyme has been recognized for more than 20 years, its molecular cloning has only recently been achieved by us. We highly purified NAPE-PLD from the particulate fraction of rat heart, and on the basis of peptide sequences with the purified enzyme cloned its cDNA from mouse, rat and human. The deduced primary structures revealed no homology with any PLDs so far reported, but was suggested to belong to the beta-lactamase fold family. When overexpressed in COS-7 cells, the NAPE-PLD activity increased about 1000-fold in comparison with the endogenous activity. The recombinant enzyme generated various long-chain NAEs including anandamide from their corresponding NAPEs at similar rates. However, the enzyme was inactive with phosphatidylethanolamine and phosphatidylcholine and did not catalyze transphosphatidylation, a reaction characteristic of PLD. The enzyme was widely expressed in murine organs with higher levels in brain, testis and kidney. The existence of NAPE-PLD specifically hydrolyzing NAPEs to NAEs emphasizes physiological significance of NAEs including anandamide in brain and other tissues.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | | | | |
Collapse
|
159
|
LoVerme J, La Rana G, Russo R, Calignano A, Piomelli D. The search for the palmitoylethanolamide receptor. Life Sci 2006; 77:1685-98. [PMID: 15963531 DOI: 10.1016/j.lfs.2005.05.012] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Palmitoylethanolamide (PEA), the naturally occurring amide of ethanolamine and palmitic acid, is an endogenous lipid that modulates pain and inflammation. Although the anti-inflammatory effects of PEA were first characterized nearly 50 years ago, the identity of the receptor mediating these actions has long remained elusive. We recently identified the ligand-activated transcription factor, peroxisome proliferator-activated receptor-alpha (PPAR-alpha), as the receptor mediating the anti-inflammatory actions of this lipid amide. Here we outline the history of PEA, starting with its initial discovery in the 1950s, and discuss the pharmacological properties of this compound, particularly in regards to its ability to activate PPAR-alpha.
Collapse
Affiliation(s)
- Jesse LoVerme
- Center for Drug Discovery, University of California, Irvine, CA 92697-4260, USA
| | | | | | | | | |
Collapse
|
160
|
Dalle Carbonare M, Tonidandel L, Berto F, Luise D, Mardegan A, Giordano G, Da Dalt L, Guiotto A, Battistin L, Leon A, Traldi P. Identification of an unusual naturally occurring apolar fatty acid amide in mammalian brain and a method for its quantitative determination. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:353-60. [PMID: 16372384 DOI: 10.1002/rcm.2313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fatty acid amides (FAAs), such as the N-acylamides, N-acylethanolamides, N-acyldopamines and N-acylamino acids, are now emerging as an important new class of lipid-signalling molecules. This paper provides evidence, based on high-performance liquid chromatography/electrospray ionisation mass spectrometry (HPLC/ESI-MS/MS), gas chromatography/mass spectrometry (GC/MS) and 1H-NMR, of the occurrence in mouse and bovine brain extracts of a compound characterised by a mass spectrum attributable to a FAA not previously described, namely, the isopropyl-amide of stearic acid (SIPA). A highly sensitive GC/MS method was developed for quantification of naturally occurring SIPA and, also, for purposes of comparison, that of palmitoylethanolamide (PEA), a structurally related compound commonly determined in animal tissues. The results obtained show that SIPA levels in mouse brain are 8-10-fold higher than those of PEA. Moreover, SIPA was found in human neuroblastoma cell (SHSY-5Y) extracts, at significantly higher levels following exposure of the cells to the mitochondrial inhibitor rotenone. All this evidence not only shows surprisingly that SIPA may be found naturally in mammalian biological extracts despite the unusual functional group (i.e. isopropylamide) implicated, but also raises many important questions concerning its biological origin.
Collapse
|
161
|
|
162
|
Thakur GA, Duclos RI, Makriyannis A. Natural cannabinoids: templates for drug discovery. Life Sci 2005; 78:454-66. [PMID: 16242157 DOI: 10.1016/j.lfs.2005.09.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Indexed: 01/09/2023]
Abstract
Recent studies have elucidated the biosynthetic pathway of cannabinoids and have highlighted the preference for a C-3 n-pentyl side chain in the most prominently represented cannabinoids from Cannabis sativa and their medicinally important decarboxylation products. The corresponding C-3 n-propyl side chain containing cannabinoids are also found, although in lesser quantities. Structure-activity relationship (SAR) studies performed on Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the key psychoactive ingredient of Cannabis, and its synthetic analogues have identified the C-3 side chain as the key pharmacophore for ligand affinity and selectivity for the known cannabinoid receptors and for pharmacological potency. Interestingly, the terminal n-pentyl saturated hydrocarbon side chain of endocannabinoids also plays a corresponding crucial role in conferring similar properties. This review briefly summarizes the biosynthesis of cannabinoids and endocannabinoids and focuses on their side chain SAR.
Collapse
Affiliation(s)
- Ganesh A Thakur
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, 116 Mugar Life Sciences Building, Boston, MA 02115, USA
| | | | | |
Collapse
|
163
|
Movahed P, Jönsson BAG, Birnir B, Wingstrand JA, Jørgensen TD, Ermund A, Sterner O, Zygmunt PM, Högestätt ED. Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. J Biol Chem 2005; 280:38496-504. [PMID: 16081411 DOI: 10.1074/jbc.m507429200] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endogenous C18 N-acylethanolamines (NAEs) N-linolenoylethanolamine (18:3 NAE), N-linoleoylethanolamine (18:2 NAE), N-oleoylethanolamine (18:1 NAE), and N-stearoylethanolamine (18:0 NAE) are structurally related to the endocannabinoid anandamide (20:4 NAE), but these lipids are poor ligands at cannabinoid CB(1) receptors. Anandamide is also an activator of the transient receptor potential (TRP) vanilloid 1 (TRPV(1)) on primary sensory neurons. Here we show that C18 NAEs are present in rat sensory ganglia and vascular tissue. With the exception of 18:3 NAE in rat sensory ganglia, the levels of C18 NAEs are equal to or substantially exceed those of anandamide. At submicromolar concentrations, 18:3 NAE, 18:2 NAE, and 18:1 NAE, but not 18:0 NAE and oleic acid, activate native rTRPV(1) on perivascular sensory nerves. 18:1 NAE does not activate these nerves in TRPV(1) gene knock-out mice. Only the unsaturated C18 NAEs elicit whole cell currents and fluorometric calcium responses in HEK293 cells expressing hTRPV(1). Molecular modeling revealed a low energy cluster of U-shaped unsaturated NAE conformers, sharing several pharmacophoric elements with capsaicin. Furthermore, one of the two major low energy conformational families of anandamide also overlaps with the cannabinoid CB(1) receptor ligand HU210, which is in line with anandamide being a dual activator of TRPV(1) and the cannabinoid CB(1) receptor. This study shows that several endogenous non-cannabinoid NAEs, many of which are more abundant than anandamide in rat tissues, activate TRPV(1) and thus may play a role as endogenous TRPV(1) modulators.
Collapse
Affiliation(s)
- Pouya Movahed
- Department of Laboratory Medicine Lund University, SE-22185 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Morishita J, Okamoto Y, Tsuboi K, Ueno M, Sakamoto H, Maekawa N, Ueda N. Regional distribution and age-dependent expression of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D in rat brain. J Neurochem 2005; 94:753-62. [PMID: 15992380 DOI: 10.1111/j.1471-4159.2005.03234.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The endocannabinoid anandamide (N-arachidonoylethanolamine) and other bioactive long-chain N-acylethanolamines are thought to be formed from their corresponding N-acylphosphatidylethanolamines by a specific phospholipase D (NAPE-PLD) in the brain as well as other tissues. However, regional distribution of NAPE-PLD in the brain has not been examined. In the present study, we investigated the expression levels of NAPE-PLD in nine different regions of rat brain by enzyme assay, western blotting and real-time PCR. The NAPE-PLD activity was detected in all the tested brain regions with the highest activity in thalamus. Similar distribution patterns of NAPE-PLD were observed at protein and mRNA levels. We also found a remarkable increase in the expression levels of protein and mRNA of the brain NAPE-PLD with development, which was in good agreement with the increase in the activity. The age-dependent increase was also seen with several brain regions and other NAPE-PLD-enriched organs (heart and testis). p-Chloromercuribenzoic acid and cetyltrimethylammonium chloride, which inhibited recombinant NAPE-PLD dose-dependently, strongly inhibited the enzyme of all the brain regions. These results demonstrated wide distribution of NAPE-PLD in various brain regions and its age-dependent expression, suggesting the central role of this enzyme in the formation of anandamide and other N-acylethanolamines in the brain.
Collapse
Affiliation(s)
- Jun Morishita
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
165
|
Bazinet RP, Lee HJ, Felder CC, Porter AC, Rapoport SI, Rosenberger TA. Rapid High-Energy Microwave Fixation is Required to Determine the Anandamide (N-arachidonoylethanolamine) Concentration of Rat Brain. Neurochem Res 2005; 30:597-601. [PMID: 16176062 DOI: 10.1007/s11064-005-2746-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Anandamide (N-arachidonoylethanolamine, AEA) is the putative endogenous ligand for the CB1 receptor. Despite being regulated enzymatically, brain AEA concentrations are quite variable and have been reported to increase in response to ischemia and post-mortem delay. Because these observations are similar to the effects of decapitation on brain concentrations of unesterified arachidonic acid and several of its metabolites, we propose that brain AEA concentrations also increase with decapitation and that immediate head-focused microwave irradiation is necessary to quantify basal brain AEA levels correctly. To test this hypothesis, we measured brain AEA levels in rats that were subjected to head-focused microwave irradiation 5 min. following decapitation (5.5 kW, 3.4 s) (ischemic) and prior to decapitation (controls). Brain AEA concentrations were quantified by LC/MS/MS. AEA concentrations from ischemic animals (10.01 +/- 4.41 pmol/g, mean +/- SD) were significantly higher and more variable than control concentrations (2.45 +/- 0.39 pmol/g). Thus, the basal concentration of AEA in the brain is lower than previously thought and future studies attempting to quantify brain AEA should consider using head-focused microwave fixation to prevent anomalous results.
Collapse
Affiliation(s)
- Richard P Bazinet
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bldg S 128, Bethesda, Maryland, 20892, USA.
| | | | | | | | | | | |
Collapse
|
166
|
Matias I, McPartland JM, Di Marzo V. Occurrence and possible biological role of the endocannabinoid system in the sea squirt Ciona intestinalis. J Neurochem 2005; 93:1141-56. [PMID: 15934935 DOI: 10.1111/j.1471-4159.2005.03103.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cannabinoid receptor orthologue (CiCBR) has been described in the sea squirt Ciona intestinalis. Here we report that CiCBR mRNA expression is highest in cerebral ganglion, branchial pharynx, heart and testis of C. intestinalis, and that this organism also contains cannabinoid receptor ligands and some of the enzymes for ligand biosynthesis and inactivation. Using liquid chromatography-mass spectrometry, the endocannabinoid anandamide was found in all tissues analysed (0.063-5.423 pmol/mg of lipid extract), with the highest concentrations being found in brain and heart. The endocannabinoid 2-arachidonoylglycerol (2-AG) was fivefold more abundant than anandamide, and was most abundant in stomach and intestine and least abundant in heart and ovaries (2.677-50.607 pmol/mg of lipid extract). Using phylogenomic analysis, we identified orthologues of several endocannabinoid synthesizing and degrading enzymes. In particular, we identified and partly sequenced a fatty acid amide hydrolase (FAAH) orthologue, showing 44% identity with human FAAH and containing nearly all the amino acids necessary for a functional FAAH enzyme. Ciona intestinalis also contained specific binding sites for cannabinoid receptor ligands, and an amidase enzyme with pH-dependency and subcellular/tissue distribution similar to mammalian FAAHs. Finally, a typical C. intestinalis behavioural response, siphon reopening after closure induced by mechanical stimulation, was inhibited by the cannabinoid receptor agonist HU-210, and this effect was significantly attenuated by mammalian cannabinoid receptor antagonists.
Collapse
Affiliation(s)
- Isabel Matias
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (Napoli), Italy
| | | | | |
Collapse
|
167
|
Fezza F, Gasperi V, Mazzei C, Maccarrone M. Radiochromatographic assay of N-acyl-phosphatidylethanolamine-specific phospholipase D activity. Anal Biochem 2005; 339:113-20. [PMID: 15766717 DOI: 10.1016/j.ab.2004.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Indexed: 10/26/2022]
Abstract
A radiochromatographic method has been set up to assay the activity of N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), based on reversed-phase high-performance liquid chromatography (HPLC) and online scintillation counting. The anandamide (N-arachidonoylethanolamine, AEA), product released by NAPE-PLD from the N-arachidonoyl-phosphatidylethanolamine (NArPE) substrate, was separated using a C18 column eluted with methanol-water-acetic acid and was quantified with an external standard method. Baseline separation of AEA and NArPE was completed in less than 15 min, with a detection limit of 0.5 fmol AEA at a signal-to-noise ratio of 4:1. The sensitivity and accuracy of the radiochromatographic procedure allowed detection and characterization of NAPE-PLD activity in very tiny tissue samples or in samples where the enzymatic activity is very low. With this method, we could determine the kinetic constants (i.e., apparent Michaelis-Menten constant (Km) of 40.0+/-5.6 microM and maximum velocity (Vmax) of 22.2+/-3.5 pmol/min per milligram protein toward NArPE) and the distribution of NAPE-PLD activity in brain areas and peripheral tissues of mouse. In addition, we could collect unprecedented evidence that compounds widely used in studies of the endocannabinoid system (e.g., AEA and congeners, receptor a(nta)gonists and inhibitors of AEA degradation) can also affect NAPE-PLD activity.
Collapse
Affiliation(s)
- Filomena Fezza
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | | | | | | |
Collapse
|
168
|
Di Marzo V, De Petrocellis L, Bisogno T. The biosynthesis, fate and pharmacological properties of endocannabinoids. Handb Exp Pharmacol 2005:147-85. [PMID: 16596774 DOI: 10.1007/3-540-26573-2_5] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The finding of endogenous ligands for cannabinoid receptors, the endocannabinoids, opened a new era in cannabinoid research. It meant that the biological role of cannabinoid signalling could be finally studied by investigating not only the pharmacological actions subsequent to stimulation of cannabinoid receptors by their agonists, but also how the activity of these receptors was regulated under physiological and pathological conditions by varying levels of the endocannabinoids. This in turn meant that the enzymes catalysing endocannabinoid biosynthesis and inactivation had to be identified and characterized, and that selective inhibitors of these enzymes had to be developed to be used as (1) probes to confirm endocannabinoid involvement in health and disease, and (2) templates for the design of new therapeutic drugs. This chapter summarizes the progress achieved in this direction during the 12 years following the discovery of the first endocannabinoid.
Collapse
Affiliation(s)
- V Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, Comprensorio Olivetti, Fabbricato 70, 80078 Pozzuoli (Napoli), Italy.
| | | | | |
Collapse
|
169
|
Zambonelli C, Roberts MF. Non-HKD Phospholipase D Enzymes: New Players in Phosphatidic Acid Signaling? ACTA ACUST UNITED AC 2005; 79:133-81. [PMID: 16096028 DOI: 10.1016/s0079-6603(04)79003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Carlo Zambonelli
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|