151
|
Abstract
PURPOSE OF REVIEW The continued success of bariatric surgery to treat obesity and obesity-associated metabolic conditions creates a need for a strong understanding of clinical nutrition both before and after these procedures. RECENT FINDINGS Surgically induced alteration of gastrointestinal physiology can affect the nutrition of individuals, especially among those who have undergone malabsorptive procedures. While uncommon, a subset of patients may develop protein-calorie malnutrition. In these cases, nutrition support should be tailored to the severity of malnutrition. Among all patients who undergo bariatric surgery, high rates of micronutrient deficiencies have been observed. To mitigate these deficiencies, empiric supplementation with multivitamins, calcium citrate, and vitamin D is generally recommended. Periodic surveillance should be performed for commonly deficient micronutrients, including thiamin (B1), folate (B9), cobalamin (B12), iron, and vitamin D. Following Roux-en-Y gastric bypass, serum levels of copper and zinc should also be monitored. In addition, lipid-soluble vitamins should be monitored following biliopancreatic diversion with/without duodenal switch.
Collapse
Affiliation(s)
- Michael A Via
- Division of Endocrinology, Diabetes, and Bone Disease, Mount Sinai Beth Israel Medical Center, 317 East 17th St., New York, NY, 10003, USA.
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeffrey I Mechanick
- Marie-Josee and Henry R. Kravis Center For Cardiovascular Health, Mount Sinai Heart, New York, NY, USA
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Metabolic Support, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
152
|
Kocot J, Luchowska-Kocot D, Kiełczykowska M, Musik I, Kurzepa J. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders? Nutrients 2017; 9:E659. [PMID: 28654017 PMCID: PMC5537779 DOI: 10.3390/nu9070659] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Vitamin C (Vit C) is considered to be a vital antioxidant molecule in the brain. Intracellular Vit C helps maintain integrity and function of several processes in the central nervous system (CNS), including neuronal maturation and differentiation, myelin formation, synthesis of catecholamine, modulation of neurotransmission and antioxidant protection. The importance of Vit C for CNS function has been proven by the fact that targeted deletion of the sodium-vitamin C co-transporter in mice results in widespread cerebral hemorrhage and death on post-natal day one. Since neurological diseases are characterized by increased free radical generation and the highest concentrations of Vit C in the body are found in the brain and neuroendocrine tissues, it is suggested that Vit C may change the course of neurological diseases and display potential therapeutic roles. The aim of this review is to update the current state of knowledge of the role of vitamin C on neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic sclerosis, as well as psychiatric disorders including depression, anxiety and schizophrenia. The particular attention is attributed to understanding of the mechanisms underlying possible therapeutic properties of ascorbic acid in the presented disorders.
Collapse
Affiliation(s)
- Joanna Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Dorota Luchowska-Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Małgorzata Kiełczykowska
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Irena Musik
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Jacek Kurzepa
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| |
Collapse
|
153
|
Abstract
OBJECTIVES Thiamin deficiency is highly prevalent in patients with sepsis, but the mechanism by which sepsis induces thiamin deficiency is unknown. This study aimed to determine the influence of various severity of sepsis on carrier-mediated intestinal thiamin uptake, level of expressions of thiamin transporters (thiamin transporter-1 and thiamin transporter-2), and mitochondrial thiamin pyrophosphate transporter. DESIGN Randomized controlled study. SETTING Research laboratory at a Veterans Affairs Medical Center. SUBJECTS Twenty-four Sprague-Dawley rats were randomized into controls, mild, moderate, and severe sepsis with equal number of animals in each group. INTERVENTIONS Sepsis was induced by cecal ligation and puncture with the cecum ligated below the cecal valve at 25%, 50%, and 75% of cecal length, defined as severe, moderate, and mild sepsis, respectively. Control animals underwent laparotomy only. MEASUREMENTS AND MAIN RESULTS After 2 days of induced sepsis, carrier-mediated intestinal thiamin uptake was measured using [H]thiamin. Expressions of thiamin transporter-1, thiamin transporter-2, and mitochondrial thiamin pyrophosphate transporter proteins and messenger RNA were measured. Proinflammatory cytokines (interleukin-1β and interleukin-6) and adenosine triphosphate were also measured. Sepsis inhibited [H]thiamin uptake, and the inhibition was a function of sepsis severity. Both cell membrane thiamin transporters and mitochondrial thiamin pyrophosphate transporter expression levels were suppressed; also levels of adenosine triphosphate in the intestine of animals with moderate and severe sepsis were significantly lower than that of sham-operated controls. CONCLUSIONS For the first time, we demonstrated that sepsis inhibited carrier-mediated intestinal thiamin uptake as a function of sepsis severity, suppressed thiamin transporters and mitochondrial thiamin pyrophosphate transporter, leading to adenosine triphosphate depletion.
Collapse
|
154
|
Zhao L, Ni Y, Su M, Li H, Dong F, Chen W, Wei R, Zhang L, Guiraud SP, Martin FP, Rajani C, Xie G, Jia W. High Throughput and Quantitative Measurement of Microbial Metabolome by Gas Chromatography/Mass Spectrometry Using Automated Alkyl Chloroformate Derivatization. Anal Chem 2017; 89:5565-5577. [PMID: 28437060 DOI: 10.1021/acs.analchem.7b00660] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to identify and quantify small molecule metabolites derived from gut microbial-mammalian cometabolism is essential for the understanding of the distinct metabolic functions of the microbiome. To date, analytical protocols that quantitatively measure a complete panel of microbial metabolites in biological samples have not been established but are urgently needed by the microbiome research community. Here, we report an automated high-throughput quantitative method using a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) platform to simultaneously measure over one hundred microbial metabolites in human serum, urine, feces, and Escherichia coli cell samples within 15 min per sample. A reference library was developed consisting of 145 methyl and ethyl chloroformate (MCF and ECF) derivatized compounds with their mass spectral and retention index information for metabolite identification. These compounds encompass different chemical classes including fatty acids, amino acids, carboxylic acids, hydroxylic acids, and phenolic acids as well as benzoyl and phenyl derivatives, indoles, etc., that are involved in a number of important metabolic pathways. Within an optimized range of concentrations and sample volumes, most derivatives of both reference standards and endogenous metabolites in biological samples exhibited satisfactory linearity (R2 > 0.99), good intrabatch reproducibility, and acceptable stability within 6 days (RSD < 20%). This method was further validated by examination of the analytical variability of 76 paired human serum, urine, and fecal samples as well as quality control samples. Our method involved using high-throughput sample preparation, measurement with automated derivatization, and rapid GC/TOFMS analysis. Both techniques are well suited for microbiome metabolomics studies.
Collapse
Affiliation(s)
- Linjing Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China.,College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620, China
| | - Yan Ni
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China.,University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Mingming Su
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China.,University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Hongsen Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620, China
| | - Fangcong Dong
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Wenlian Chen
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Runmin Wei
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Lulu Zhang
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Seu Ping Guiraud
- Nestlé Institute of Health Sciences SA , EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Francois-Pierre Martin
- Nestlé Institute of Health Sciences SA , EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Cynthia Rajani
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Guoxiang Xie
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China.,University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| |
Collapse
|
155
|
Mechanisms Governing Precise Protein Biotinylation. Trends Biochem Sci 2017; 42:383-394. [DOI: 10.1016/j.tibs.2017.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/25/2017] [Accepted: 02/03/2017] [Indexed: 12/26/2022]
|
156
|
Jankowska M, Lichodziejewska-Niemierko M, Rutkowski B, Dębska-Ślizień A, Małgorzewicz S. Water soluble vitamins and peritoneal dialysis - State of the art. Clin Nutr 2016; 36:1483-1489. [PMID: 28089619 DOI: 10.1016/j.clnu.2016.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/19/2023]
Abstract
This review presents the results of a systematic literature search concerning water soluble vitamins and peritoneal dialysis modality. We provide an overview of the data available on vitamin requirements, dietary intake, dialysis related losses, metabolism and the benefits of supplementation. We also summarise the current recommendations concerning the supplementation of vitamins in peritoneal dialysis and discuss the safety of an administration of vitamins in pharmacological doses.
Collapse
Affiliation(s)
- Magdalena Jankowska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Poland
| | | | - Bolesław Rutkowski
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Poland
| | | |
Collapse
|
157
|
Affiliation(s)
- Scott Kinlay
- From Veterans Affairs Boston Healthcare System, MA (S.K.); and Brigham and Women's Hospital and Harvard Medical School, Boston, MA (S.K., T.M., J.A.L.)
| | - Thomas Michel
- From Veterans Affairs Boston Healthcare System, MA (S.K.); and Brigham and Women's Hospital and Harvard Medical School, Boston, MA (S.K., T.M., J.A.L.)
| | - Jane A Leopold
- From Veterans Affairs Boston Healthcare System, MA (S.K.); and Brigham and Women's Hospital and Harvard Medical School, Boston, MA (S.K., T.M., J.A.L.).
| |
Collapse
|
158
|
Kopp M, Dürr K, Steigleder M, Clavel T, Rychlik M. Development of stable isotope dilution assays for the quantitation of intra- and extracellular folate patterns of Bifidobacterium adolescentis. J Chromatogr A 2016; 1469:48-59. [PMID: 27692648 DOI: 10.1016/j.chroma.2016.09.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022]
Abstract
Folate-producing bifidobacteria have been studied extensively but appropriate methods for detailed quantitation of intra- and extracellular pteroylmono- and pteroylpolyglutamate patterns are lacking. Therefore, B. adolescentis DSM 20083T was cultivated in folate-free medium (FFM) for 24h to develop and validate stable isotope dilution assays (SIDAs) coupled with LC-MS/MS for the determination of 5-formyltetrahydrofolic acid (5-HCO-H4folate), 10-formylfolic acid (10-HCO-PteGlu), tetrahydrofolic acid (H4folate), folic acid (PteGlu) and 5-methyltetrahydrofolic acid (5-CH3-H4folate) including its di-, tri-, and tetraglutamic vitamers (5-CH3-H4PteGlu2-4). The respective monoglutamylated isotopologues labelled with deuterium were used as internal standards for quantitation. Limits of detection and quantitation (LOD/LOQ) were sufficiently low to quantify 48.2nmol L-1 5-CH3-H4folate (5.7/17nmolL-1) and 71.0nmolL-1 5-HCO-H4folate (10/30nmolL-1) as major folate vitamers extracellularly and 124nmolL-1 5-CH3-H4folate (3.4/10nmolL-1), 213nmolL-1 5-HCO-H4folate (4.8/14nmolL-1), and 61.4nmolL-1 H4folate (2.3/7.0nmolL-1) intracellularly after deconjugation. The major portion of native 5-CH3-H4folate vitamer was ascribed to its tetraglutamate ( > 95%). Concentrations of mono-, di-, tri-, and pentaglutamylated folates were below LOD or LOQ. Intra-assay precision coefficients of variation (CVs) ranged from 7% (at a concentration of 53.9nmolL-1 for 5-CH3-H4PteGlu4), 15% (25.5nmolL-1 5-CH3-H4folate) to 18% (78.5nmolL-1 5-HCO-H4folate), extracellularly, and from 6% (60.7nmolL-1 5-CH3-H4PteGlu4), 7% (202nmolL-1 5-HCO-H4folate), 10% (67.1nmolL-1 H4folate) to 11% (127nmolL-1 5-CH3-H4folate), intracellularly. Inter-assay precision CVs ranged from 2% (54.7nmolL-1 5-CH3-H4PteGlu4), 3% (71nmolL-1 5-HCO-H4folate) to 11% (48.2nmolL-1 5-CH3-H4folate), extracellularly, and from 1% (61.4nmolL-1 H4folate), 5% (213nmolL-1 5-HCO-H4folate), 6% (63.5nmolL-1 5-CH3-H4PteGlu4) to 10% (124nmolL-1 5-CH3-H4folate), intracellularly, thus showing excellent reproducibility. Recoveries for all analytes under study ranged between 81 and 113%. These newly developed methods enable reproducible, precise and sensitive quantitation of eight bacterially synthesized folate vitamers in two totally different matrices, including both monoglutamates and polyglutamates. Furthermore, we here present the first assay using solely monoglutamylated [2H4]-5-CH3-H4folate to quantify native polyglutamate patterns of this vitamer in bacteria which might replace time-consuming determination of monoglutamates in the future.
Collapse
Affiliation(s)
- Markus Kopp
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D-85354, Freising, Germany; ZIEL Institute for Food and Health, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Kerstin Dürr
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D-85354, Freising, Germany
| | - Matthias Steigleder
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D-85354, Freising, Germany
| | - Thomas Clavel
- ZIEL Institute for Food and Health, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D-85354, Freising, Germany.
| |
Collapse
|
159
|
Yildirim A, Zhang J, Manzetti S, van der Spoel D. Binding of Pollutants to Biomolecules: A Simulation Study. Chem Res Toxicol 2016; 29:1679-1688. [PMID: 27603112 DOI: 10.1021/acs.chemrestox.6b00189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of cases around the world have been reported where animals were found dead or dying with symptoms resembling a thiamine (vitamin B) deficiency, and for some of these, a link to pollutants has been suggested. Here, we investigate whether biomolecules involved in thiamin binding and transport could be blocked by a range of different pollutants. We used in silico docking of five compound classes (25 compounds in total) to each of five targets (prion protein, ECF-type ABC transporter, thi-box riboswitch receptor, thiamin pyrophosphokinase, and YKoF protein) and subsequently performed molecular dynamics (MD) simulations to assess the stability of the complexes. The compound classes were thiamin analogues (control), pesticides, veterinary medicines, polychlorinated biphenyls, and dioxins, all of which are prevalent in the environment to some extent. A few anthropogenic compounds were found to bind the ECF-type ABC transporter, but none binds stably to prion protein. For the riboswitch, most compounds remained in their binding pockets during 50 ns of MD simulation, indicating that RNA provides a promiscuous binding site. In both YKoF and thiamin pyrophosphokinase (TPK), most compounds remain tightly bound. However, TPK biomolecules undergo pollutant-induced conformational changes. Although most compounds are found to bind to some of these targets, a larger data set is needed along with more quantitative methods like free energy perturbation calculations before firm conclusions can be drawn. This study is in part a test bed for large-scale quantitative computational screening of interactions between biological entities and pollutant molecules.
Collapse
Affiliation(s)
- Ahmet Yildirim
- Department of Physics, Faculty of Science and Art, Siirt University , 56100 Siirt, Turkey.,Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| | - Jin Zhang
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden.,Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Sergio Manzetti
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| | - David van der Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
160
|
Sabui S, Bohl JA, Kapadia R, Cogburn K, Ghosal A, Lambrecht NW, Said HM. Role of the sodium-dependent multivitamin transporter (SMVT) in the maintenance of intestinal mucosal integrity. Am J Physiol Gastrointest Liver Physiol 2016; 311:G561-70. [PMID: 27492331 PMCID: PMC5076003 DOI: 10.1152/ajpgi.00240.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023]
Abstract
Utilizing a conditional (intestinal-specific) knockout (cKO) mouse model, we have recently shown that the sodium-dependent multivitamin transporter (SMVT) (SLC5A6) is the only biotin uptake system that operates in the gut and that its deletion leads to biotin deficiency. Unexpectedly, we also observed that all SMVT-cKO mice develop chronic active inflammation, especially in the cecum. Our aim here was to examine the role of SMVT in the maintenance of intestinal mucosal integrity [permeability and expression of tight junction (TJ) proteins]. Our results showed that knocking out the mouse intestinal SMVT is associated with a significant increase in gut permeability and with changes in the level of expression of TJ proteins. To determine whether these changes are related to the state of biotin deficiency that develops in SMVT-cKO mice, we induced (by dietary means) biotin deficiency in wild-type mice and examined its effect on the above-mentioned parameters. The results showed that dietary-induced biotin deficiency leads to a similar development of chronic active inflammation in the cecum with an increase in the level of expression of proinflammatory cytokines, as well as an increase in intestinal permeability and changes in the level of expression of TJ proteins. We also examined the effect of chronic biotin deficiency on permeability and expression of TJ proteins in confluent intestinal epithelial Caco-2 monolayers but observed no changes in these parameters. These results show that the intestinal SMVT plays an important role in the maintenance of normal mucosal integrity, most likely via its role in providing biotin to different cells of the gut mucosa.
Collapse
Affiliation(s)
- Subrata Sabui
- 1Department of Medical Research, VA Medical Center, Long Beach, California; ,2Departments of Medicine, University of California, Irvine, California; ,3Department of Physiology/Biophysics, University of California, Irvine, California
| | - Jennifer Ann Bohl
- 1Department of Medical Research, VA Medical Center, Long Beach, California; ,2Departments of Medicine, University of California, Irvine, California; ,3Department of Physiology/Biophysics, University of California, Irvine, California
| | - Rubina Kapadia
- 1Department of Medical Research, VA Medical Center, Long Beach, California; ,2Departments of Medicine, University of California, Irvine, California; ,3Department of Physiology/Biophysics, University of California, Irvine, California
| | - Kyle Cogburn
- 1Department of Medical Research, VA Medical Center, Long Beach, California; ,2Departments of Medicine, University of California, Irvine, California; ,3Department of Physiology/Biophysics, University of California, Irvine, California
| | - Abhisek Ghosal
- 1Department of Medical Research, VA Medical Center, Long Beach, California; ,2Departments of Medicine, University of California, Irvine, California; ,3Department of Physiology/Biophysics, University of California, Irvine, California
| | - Nils W. Lambrecht
- 1Department of Medical Research, VA Medical Center, Long Beach, California; ,2Departments of Medicine, University of California, Irvine, California; ,3Department of Physiology/Biophysics, University of California, Irvine, California
| | - Hamid M. Said
- 1Department of Medical Research, VA Medical Center, Long Beach, California; ,2Departments of Medicine, University of California, Irvine, California; ,3Department of Physiology/Biophysics, University of California, Irvine, California
| |
Collapse
|
161
|
Moradi H, Said HM. Functional thiamine deficiency in end-stage renal disease: malnutrition despite ample nutrients. Kidney Int 2016; 90:252-254. [PMID: 27418090 PMCID: PMC5518601 DOI: 10.1016/j.kint.2016.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
Zhang et al. found that plasma concentrations of the thiamine antimetabolite oxythiamine are significantly increased in patients with end-stage renal disease. These investigators discuss the potential sources of oxythiamine and the consequences of its plasma elevation. This commentary addresses the significance of these findings and expands on the potential role of gut microbiome in the generation of this antithiamine metabolite.
Collapse
Affiliation(s)
- Hamid Moradi
- Long Beach VA Healthcare System, Long Beach, California; Division of Nephrology, University of California, Irvine, Irvine, California, USA
| | - Hamid M Said
- Long Beach VA Healthcare System, Long Beach, California; Division of Nephrology, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|
162
|
Gominak SC. Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a "pro-inflammatory" state associated with atherosclerosis and autoimmunity. Med Hypotheses 2016; 94:103-7. [PMID: 27515213 DOI: 10.1016/j.mehy.2016.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 07/02/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
STUDY OBJECTIVES Vitamin D blood levels of 60-80ng/ml promote normal sleep. The present study was undertaken to explore why this beneficial effect waned after 2years as arthritic pain increased. Pantothenic acid becomes coenzyme A, a cofactor necessary for cortisol and acetylcholine production. 1950s experiments suggested a connection between pantothenic acid deficiency, autoimmune arthritis and insomnia. The B vitamins have been shown to have an intestinal bacterial source and a food source, suggesting that the normal intestinal microbiome may have always been the primary source of B vitamins. Review of the scientific literature shows that pantothenic acid does not have a natural food source, it is supplied by the normal intestinal bacteria. In order to test the hypothesis that vitamin D replacement slowly induced a secondary pantothenic acid deficiency, B100 (100mg of all B vitamins except 100mcg of B12 and biotin and 400mcg of folate) was added to vitamin D supplementation. METHODS Vitamin D and B100 were recommended to over 1000 neurology patients. Sleep characteristics, pain levels, neurologic symptoms, and bowel complaints were recorded by the author at routine appointments. RESULTS Three months of vitamin D plus B100 resulted in improved sleep, reduced pain and unexpected resolution of bowel symptoms. These results suggest that the combination of vitamin D plus B100 creates an intestinal environment that favors the return of the four specific species, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria that make up the normal human microbiome. HYPOTHESES 1) Seasonal fluctuations in vitamin D levels have normally produced changes in the intestinal microbiome that promoted weight gain in winter. Years of vitamin D deficiency, however, results in a permanently altered intestinal environment that no longer favors the "healthy foursome". 2) Humans have always had a commensal relationship with their intestinal microbiome. We supplied them vitamin D, they supplied us B vitamins. 3) The four species that make up the normal microbiome are also commensal, each excretes at least one B vitamin that the other three need but cannot make. 4) Improved sleep and more cellular repairs eventually depletes body stores of pantothenic acid, causing reduced cortisol production, increased arthritic pain and widespread "pro-inflammatory" effects on the immune system. 5) Pantothenic acid deficiency also decreases available acetylcholine, the neurotransmitter used by the parasympathetic nervous system. Unopposed, increased sympathetic tone then produces hypertension, tachycardia, atrial arrhythmias and a "hyper-adrenergic" state known to predispose to heart disease and stroke.
Collapse
Affiliation(s)
- S C Gominak
- 1635 NE Fremont St., Portland, OR 97212, United States.
| |
Collapse
|
163
|
Barile M, Giancaspero TA, Leone P, Galluccio M, Indiveri C. Riboflavin transport and metabolism in humans. J Inherit Metab Dis 2016; 39:545-57. [PMID: 27271694 DOI: 10.1007/s10545-016-9950-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022]
Abstract
Recent studies elucidated how riboflavin transporters and FAD forming enzymes work in humans and create a coordinated flavin network ensuring the maintenance of cellular flavoproteome. Alteration of this network may be causative of severe metabolic disorders such as multiple acyl-CoA dehydrogenase deficiency (MADD) or Brown-Vialetto-van Laere syndrome. A crucial step in the maintenance of FAD homeostasis is riboflavin uptake by plasma and mitochondrial membranes. Therefore, studies on recently identified human plasma membrane riboflavin transporters are presented, together with those in which still unidentified mitochondrial riboflavin transporter(s) have been described. A main goal of future research is to fill the gaps still existing as for some transcriptional, functional and structural details of human FAD synthases (FADS) encoded by FLAD1 gene, a novel "redox sensing" enzyme. In the frame of the hypothesis that FADS, acting as a "FAD chaperone", could play a crucial role in the biogenesis of mitochondrial flavo-proteome, several basic functional aspects of flavin cofactor delivery to cognate apo-flavoenzyme are also briefly dealt with. The establishment of model organisms performing altered FAD homeostasis will improve the molecular description of human pathologies. The molecular and functional studies of transporters and enzymes herereported, provide guidelines for improving therapies which may have beneficial effects on the altered metabolism.
Collapse
Affiliation(s)
- Maria Barile
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy.
| | - Teresa Anna Giancaspero
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy
| | - Piero Leone
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy
| | - Michele Galluccio
- Dipartimento DiBEST (Biologia, Ecologia, Scienze della Terra), Unità di Biochimica e Biotecnologie Molecolari, Università della Calabria, via Bucci 4c, I-87036, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Dipartimento DiBEST (Biologia, Ecologia, Scienze della Terra), Unità di Biochimica e Biotecnologie Molecolari, Università della Calabria, via Bucci 4c, I-87036, Arcavacata di Rende, Italy
| |
Collapse
|
164
|
Jurnak F. The Pivotal Role of Aldehyde Toxicity in Autism Spectrum Disorder: The Therapeutic Potential of Micronutrient Supplementation. Nutr Metab Insights 2016; 8:57-77. [PMID: 27330305 PMCID: PMC4910734 DOI: 10.4137/nmi.s29531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/20/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social and communication impairments as well as by restricted, repetitive patterns of behavior and interests. Genomic studies have not revealed dominant genetic errors common to all forms of ASD. So ASD is assumed to be a complex disorder due to mutations in hundreds of common variants. Other theories argue that spontaneous DNA mutations and/or environmental factors contribute to as much as 50% of ASD. In reviewing potential genetic linkages between autism and alcoholism, it became apparent that all theories of ASD are consistent with aldehyde toxicity, in which endogenous and exogenous aldehydes accumulate as a consequence of mutations in key enzymes. Aldehyde toxicity is characterized by cell-localized, micronutrient deficiencies in sulfur-containing antioxidants, thiamine (B1), pyridoxine (B6), folate, Zn2+, possibly Mg2+, and retinoic acid, causing oxidative stress and a cascade of metabolic disturbances. Aldehydes also react with selective cytosolic and membrane proteins in the cell of origin; then some types migrate to damage neighboring cells. Reactive aldehydes also form adducts with DNA, selectively mutating bases and inducing strand breakage. This article reviews the relevant genomic, biochemical, and nutritional literature, which supports the central hypothesis that most ASD symptoms are consistent with symptoms of aldehyde toxicity. The hypothesis represents a paradigm shift in thinking and has profound implications for clinical detection, treatment, and even prevention of ASD. Insight is offered as to which neurologically afflicted children might successfully be treated with micronutrients and which children are unlikely to be helped. The aldehyde toxicity hypothesis likely applies to other neurological disorders.
Collapse
Affiliation(s)
- Frances Jurnak
- Emerita Professor, Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
165
|
The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat Rev Rheumatol 2016; 12:446-55. [PMID: 27256713 DOI: 10.1038/nrrheum.2016.68] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of the gut microbiome in animal models of inflammatory and autoimmune disease is now well established. The human gut microbiome is currently being studied as a potential modulator of the immune response in rheumatic disorders. However, the vastness and complexity of this host-microorganism interaction is likely to go well beyond taxonomic, correlative observations. In fact, most advances in the field relate to the functional and metabolic capabilities of these microorganisms and their influence on mucosal immunity and systemic inflammation. An intricate relationship between the microbiome and the diet of the host is now fully recognized, with the microbiota having an important role in the degradation of polysaccharides into active metabolites. This Review summarizes the current knowledge on the metabolic role of the microbiota in health and rheumatic disease, including the advances in pharmacomicrobiomics and its potential use in diagnostics, therapeutics and personalized medicine.
Collapse
|
166
|
Nikou T, Ioannidis A, Zoga M, Tzavellas E, Paparrigopoulos T, Magana M, Pliatsika P, Nikolaou C, Chatzipanagiotou S. Alteration in the concentrations of Interleukin-7 (IL-7), Interleukin-10 (IL-10) and Granulocyte Colony Stimulating Factor (G-CSF) in alcohol-dependent individuals without liver disease, during detoxification therapy. Drug Alcohol Depend 2016; 163:77-83. [PMID: 27068251 DOI: 10.1016/j.drugalcdep.2016.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND The course of Interleukin-7 (IL-7), Interleukin-10 (IL-10) and Granulocyte Colony Stimulating Factor (G-CSF) was investigated in alcohol-dependent individuals without liver disease in order to ascertain the use of these cytokines as markers for the follow-up testing and the outcome of the detoxification treatment. METHODS Forty-eight alcohol-dependent individuals were admitted for alcohol detoxification. Blood was obtained upon admission, two weeks later and after the completion of the detoxification period (4-5 weeks). Serum IL-7, IL-10 and G-CSF were measured with a commercially available sandwich enzyme immunoassay. RESULTS IL-7 concentration was steadily high from admission up to two weeks later and then showed a fall, yet still remaining significantly higher than in the control group at the end of the detoxification treatment. IL-10 concentration was significantly low on admission, presenting a linear increase during therapy and remained insignificantly low at the end. G-CSF was significantly elevated on admission and presented a linear fall ending up in almost normal values at the end of the detoxification therapy. CONCLUSIONS The alterations in the concentration of IL-7, IL-10 and G-CSF and their trend to normalization during the detoxification therapy are indicative of the generalized immune system disorder, caused by alcohol abuse. Further studies will help in further elucidating the pathophysiology of the immune system function in alcohol abuse, while immunological parameters might serve as biological markers and diagnostic tools for the assessment of the course and the outcome of the detoxification therapy.
Collapse
Affiliation(s)
- Thomas Nikou
- Athens Medical School, Aeginition Hospital, Department of Psychiatry, National and Kapodistrian University of Athens, Greece
| | - Anastasios Ioannidis
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece; Athens Medical School, Aeginition Hospital, Department of Biopathology and Clinical Microbiology, National and Kapodistrian University of Athens, Greece
| | - Margarita Zoga
- Athens Medical School, Aeginition Hospital, Department of Biopathology and Clinical Microbiology, National and Kapodistrian University of Athens, Greece
| | - Elias Tzavellas
- Athens Medical School, Aeginition Hospital, Department of Psychiatry, National and Kapodistrian University of Athens, Greece
| | - Thomas Paparrigopoulos
- Athens Medical School, Aeginition Hospital, Department of Psychiatry, National and Kapodistrian University of Athens, Greece
| | - Maria Magana
- Athens Medical School, Aeginition Hospital, Department of Biopathology and Clinical Microbiology, National and Kapodistrian University of Athens, Greece
| | - Paraskevi Pliatsika
- Athens Medical School, Aeginition Hospital, Department of Biopathology and Clinical Microbiology, National and Kapodistrian University of Athens, Greece
| | - Chryssoula Nikolaou
- Athens Medical School, Aeginition Hospital, Department of Biopathology and Clinical Microbiology, National and Kapodistrian University of Athens, Greece
| | - Stylianos Chatzipanagiotou
- Athens Medical School, Aeginition Hospital, Department of Biopathology and Clinical Microbiology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
167
|
Grützner N, Knabe D, Lawhorn BD, Dominguez B, Kauffold J, Suchodolski JS, Steiner JM. Analytic validation of commercially available immunoassays for the measurement of serum cobalamin and folate concentrations in pigs. Vet Clin Pathol 2016; 45:311-9. [DOI: 10.1111/vcp.12361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Niels Grützner
- Gastrointestinal Laboratory; Department of Small Animal Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| | - Darrel Knabe
- Department of Animal Science; Texas A&M University; College Station TX USA
| | - Bruce D. Lawhorn
- Department of Veterinary Large Animal Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| | - Brandon Dominguez
- Department of Veterinary Large Animal Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| | - Johannes Kauffold
- New Bolton Center; School of Veterinary Medicine; University of Pennsylvania; Kennett Square PA USA
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory; Department of Small Animal Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| | - Jörg M. Steiner
- Gastrointestinal Laboratory; Department of Small Animal Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| |
Collapse
|
168
|
Sechi G, Sechi E, Fois C, Kumar N. Advances in clinical determinants and neurological manifestations of B vitamin deficiency in adults. Nutr Rev 2016; 74:281-300. [PMID: 27034475 DOI: 10.1093/nutrit/nuv107] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
B vitamin deficiency is a leading cause of neurological impairment and disability throughout the world. Multiple B vitamin deficiencies often coexist, and thus an understanding of the complex relationships between the different biochemical pathways regulated in the brain by these vitamins may facilitate prompter diagnosis and improved treatment. Particular populations at risk for multiple B vitamin deficiencies include the elderly, people with alcoholism, patients with heart failure, patients with recent obesity surgery, and vegetarians/vegans. Recently, new clinical settings that predispose individuals to B vitamin deficiency have been highlighted. Moreover, other data indicate a possible pathogenetic role of subclinical chronic B vitamin deficiency in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In light of these findings, this review examines the clinical manifestations of B vitamin deficiency and the effect of B vitamin deficiency on the adult nervous system. The interrelationships of multiple B vitamin deficiencies are emphasized, along with the clinical phenotypes related to B vitamin deficiencies. Recent advances in the clinical determinants and diagnostic clues of B vitamin deficiency, as well as the suggested therapies for B vitamin disorders, are described.
Collapse
Affiliation(s)
- GianPietro Sechi
- G.P. Sechi, E. Sechi, and C. Fois are with the Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy. N. Kumar is with the Mayo Clinic, Rochester, Minnesota, USA.
| | - Elia Sechi
- G.P. Sechi, E. Sechi, and C. Fois are with the Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy. N. Kumar is with the Mayo Clinic, Rochester, Minnesota, USA
| | - Chiara Fois
- G.P. Sechi, E. Sechi, and C. Fois are with the Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy. N. Kumar is with the Mayo Clinic, Rochester, Minnesota, USA
| | - Neeraj Kumar
- G.P. Sechi, E. Sechi, and C. Fois are with the Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy. N. Kumar is with the Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
169
|
No major effects of vitamin D3 (1,25 dihydroxyvitamin D3) on absorption and pharmacokinetics of folic acid and fexofenadine in healthy volunteers. Eur J Clin Pharmacol 2016; 72:797-805. [PMID: 27023466 PMCID: PMC4909797 DOI: 10.1007/s00228-016-2050-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/16/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE In Caco-2 cells, folate uptake via the proton-coupled folate transporter (PCFT) increases significantly by a 3-day treatment with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Additionally, mRNA content and protein expression of the transporter OATP1A2 were increased up to ninefold with 1,25(OH)2D3. We investigated whether these in vitro findings can be confirmed in humans in vivo. METHODS Ten healthy volunteers (six women) received 5 mg folic acid orally once before and once together with the last intake of a 10-day course of 0.5 μg 1,25(OH)2D3 orally. One hundred twenty milligrams fexofenadine, an OATP1A2 substrate, was taken in 1 day before the first folic acid intake, and again on the ninth day of 1,25(OH)2D3 intake. Duodenal biopsies were taken for transporter mRNA assessments once before and once on the ninth or tenth day of the vitamin D3 course. Serum folic acid and fexofenadine concentrations were quantified with a chemiluminescence immunoassay and LC-MS/MS, respectively. Pharmacokinetics were compared between periods with standard bioequivalence approaches. RESULTS While geometric mean folic acid AUC0-2h, which mainly reflects absorption, was 0.403 and 0.414 mg/L·h before and after the vitamin D3 course (geometric mean ratio (GMR), 1.027; 90 % confidence interval (90 % CI), 0.788-1.340), the geometric mean fexofenadine AUC0-2h was 1.932 and 2.761 mg/L·h, respectively (GMR, 1.429; 90 % CI, 0.890-2.294). PCFT- and OATP1A2-mRNA expressions in duodenal biopsies were essentially unchanged. CONCLUSIONS No significant changes in folic acid and fexofenadine absorption were observed after a 10-day course of 1,25(OH)2D3 in humans in vivo. This study underlines the importance of confirming in vitro findings in vivo in humans.
Collapse
|
170
|
Nabokina SM, Ramos MB, Said HM. Mechanism(S) Involved in the Colon-Specific Expression of the Thiamine Pyrophosphate (Tpp) Transporter. PLoS One 2016; 11:e0149255. [PMID: 26901654 PMCID: PMC4764741 DOI: 10.1371/journal.pone.0149255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/30/2016] [Indexed: 12/16/2022] Open
Abstract
Microbiota of the large intestine synthesizes considerable amount of vitamin B1 (thiamine) in the form of thiamine pyrophosphate (TPP). We have recently demonstrated the existence of an efficient and specific carrier-mediated uptake process for TPP in human colonocytes, identified the TPP transporter (TPPT) involved (product of the SLC44A4 gene), and shown that expression of TPPT along the gastrointestinal (GI) tract is restricted to the colon. Our aim in this study was to determine the molecular basis of the colon-specific expression of TPPT focusing on a possible epigenetic mechanism. Our results showed that the CpG island predicted in the SLC44A4 promoter is non-methylated in the human colonic epithelial NCM460 cells, but is hyper-methylated in the human duodenal epithelial HuTu80 cells (as well as in the human retinal pigment epithelial ARPE19 cells). In the mouse (where TPPT expression in the GI tract is also restricted to the colon), the CpG island predicted in the Slc44a4 promoter is non-methylated in both the jejunum and colon, thus arguing against possible contribution of DNA methylation in the colon-specific expression of TPPT. A role for histone modifications in the tissue-specific pattern of Slc44a4 expression, however, was suggested by the findings that in mouse colon, histone H3 in the 5’-regulatory region of Slc44a4 is tri-methylated at lysine 4 and acetylated at lysine 9, whereas the tri-methylation at lysine 27 modification was negligible. In contrast, in the mouse jejunum, histone H3 is hyper-trimethylated at lysine 27 (repressor mark). Similarly, possible involvement of miRNA(s) in the tissue-specific expression of TPPT was also suggested by the findings that the 3’-UTR of SLC44A4 is targeted by specific miRNAs/RNA binding proteins in non-colonic, but not in colonic, epithelial cells. These studies show, for the first time, epigenetic mechanisms (histone modifications) play a role in determining the tissue-specific pattern of expression of TPPT in the GI tract.
Collapse
Affiliation(s)
- Svetlana M. Nabokina
- Departments of Medicine, Physiology/Biophysics, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Mel Brendan Ramos
- Departments of Medicine, Physiology/Biophysics, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Hamid M. Said
- Departments of Medicine, Physiology/Biophysics, University of California Irvine, Irvine, CA, 92697, United States of America
- Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, United States of America
- * E-mail:
| |
Collapse
|
171
|
Beztsinna N, Solé M, Taib N, Bestel I. Bioengineered riboflavin in nanotechnology. Biomaterials 2016; 80:121-133. [DOI: 10.1016/j.biomaterials.2015.11.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/16/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
|
172
|
Nabokina SM, Subramanian VS, Said HM. The human colonic thiamine pyrophosphate transporter (hTPPT) is a glycoprotein and N-linked glycosylation is important for its function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:866-71. [PMID: 26828122 DOI: 10.1016/j.bbamem.2016.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/14/2016] [Accepted: 01/24/2016] [Indexed: 12/16/2022]
Abstract
The recently identified human thiamine pyrophosphate transporter (hTPPT; product of the SLC44A4 gene) is responsible for absorption of the microbiota-generated TPP in the large intestine. The hTPPT is highly expressed in the colon, but not in other regions of the intestinal tract and is localized exclusively at the apical membrane domain of epithelia. The hTPPT protein is predicted to have multiple TM domains with a number of putative N-glycosylation sites, but it is not known if the protein is actually glycosylated, and if so at which site, and their role in the functionality of the transporter. Using several approaches including inhibiting de novo N-glycosylation in human colonic epithelial NCM460 cells with tunicamycin as well as enzymatic de-glycosylation, we show that the hTPPT protein is, indeed, a glycoprotein. Glycosylation of hTPPT was shown, by mean of site-directed mutagenesis, to occur at Asn(69), Asn(155), Asn(197), Asn(393), and Asn(416). However, only N-glycosylation at Asn(69), Asn(155), and Asn(393) appeared to be important for transporter functionality possibly through an effect on protein conformation and/or interaction with its ligand (but not through changes in expression at the cell membrane as determined by live cell confocal imaging). Results of this study showed, for the first time, that the hTPPT is glycosylated and that N-linked glycosylation occurs at multiple sites with some of them being important for function. The results also provide an indirect support for a membrane topology for hTPPT with 10 transmembrane domains as predicted by the TMHMM transmembrane helixes prediction program.
Collapse
Affiliation(s)
- Svetlana M Nabokina
- Department of Medicine, University of California, Irvine, CA 92697, United States; Department of Physiology/Biophysics, University of California, Irvine, CA 92697, United States; Department of Veterans Affairs Medical Center, Long Beach, CA 90822, United States
| | - Veedamali S Subramanian
- Department of Medicine, University of California, Irvine, CA 92697, United States; Department of Physiology/Biophysics, University of California, Irvine, CA 92697, United States; Department of Veterans Affairs Medical Center, Long Beach, CA 90822, United States
| | - Hamid M Said
- Department of Medicine, University of California, Irvine, CA 92697, United States; Department of Physiology/Biophysics, University of California, Irvine, CA 92697, United States; Department of Veterans Affairs Medical Center, Long Beach, CA 90822, United States.
| |
Collapse
|
173
|
Liang X, Chien HC, Yee SW, Giacomini MM, Chen EC, Piao M, Hao J, Twelves J, Lepist EI, Ray AS, Giacomini KM. Metformin Is a Substrate and Inhibitor of the Human Thiamine Transporter, THTR-2 (SLC19A3). Mol Pharm 2015; 12:4301-10. [PMID: 26528626 DOI: 10.1021/acs.molpharmaceut.5b00501] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The biguanide metformin is widely used as first-line therapy for the treatment of type 2 diabetes. Predominately a cation at physiological pH's, metformin is transported by membrane transporters, which play major roles in its absorption and disposition. Recently, our laboratory demonstrated that organic cation transporter 1, OCT1, the major hepatic uptake transporter for metformin, was also the primary hepatic uptake transporter for thiamine, vitamin B1. In this study, we tested the reverse, i.e., that metformin is a substrate of thiamine transporters (THTR-1, SLC19A2, and THTR-2, SLC19A3). Our study demonstrated that human THTR-2 (hTHTR-2), SLC19A3, which is highly expressed in the small intestine, but not hTHTR-1, transports metformin (Km = 1.15 ± 0.2 mM) and other cationic compounds (MPP(+) and famotidine). The uptake mechanism for hTHTR-2 was pH and electrochemical gradient sensitive. Furthermore, metformin as well as other drugs including phenformin, chloroquine, verapamil, famotidine, and amprolium inhibited hTHTR-2 mediated uptake of both thiamine and metformin. Species differences in the substrate specificity of THTR-2 between human and mouse orthologues were observed. Taken together, our data suggest that hTHTR-2 may play a role in the intestinal absorption and tissue distribution of metformin and other organic cations and that the transporter may be a target for drug-drug and drug-nutrient interactions.
Collapse
Affiliation(s)
- Xiaomin Liang
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States
| | - Marilyn M Giacomini
- Department of Drug Metabolism, Gilead Sciences, Inc. , Foster City, California 94404, United States
| | - Eugene C Chen
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States
| | - Meiling Piao
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States.,Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University , Beijing 100084, China
| | - Jia Hao
- Department of Drug Metabolism, Gilead Sciences, Inc. , Foster City, California 94404, United States
| | - Jolyn Twelves
- Department of Drug Metabolism, Gilead Sciences, Inc. , Foster City, California 94404, United States
| | - Eve-Irene Lepist
- Department of Drug Metabolism, Gilead Sciences, Inc. , Foster City, California 94404, United States
| | - Adrian S Ray
- Department of Drug Metabolism, Gilead Sciences, Inc. , Foster City, California 94404, United States
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States
| |
Collapse
|
174
|
Usami M, Miyoshi M, Yamashita H. Gut microbiota and host metabolism in liver cirrhosis. World J Gastroenterol 2015; 21:11597-11608. [PMID: 26556989 PMCID: PMC4631963 DOI: 10.3748/wjg.v21.i41.11597] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/06/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota has the capacity to produce a diverse range of compounds that play a major role in regulating the activity of distal organs and the liver is strategically positioned downstream of the gut. Gut microbiota linked compounds such as short chain fatty acids, bile acids, choline metabolites, indole derivatives, vitamins, polyamines, lipids, neurotransmitters and neuroactive compounds, and hypothalamic-pituitary-adrenal axis hormones have many biological functions. This review focuses on the gut microbiota and host metabolism in liver cirrhosis. Dysbiosis in liver cirrhosis causes serious complications, such as bacteremia and hepatic encephalopathy, accompanied by small intestinal bacterial overgrowth and increased intestinal permeability. Gut dysbiosis in cirrhosis and intervention with probiotics and synbiotics in a clinical setting is reviewed and evaluated. Recent studies have revealed the relationship between gut microbiota and host metabolism in chronic metabolic liver disease, especially, non-alcoholic fatty liver disease, alcoholic liver disease, and with the gut microbiota metabolic interactions in dysbiosis related metabolic diseases such as diabetes and obesity. Recently, our understanding of the relationship between the gut and liver and how this regulates systemic metabolic changes in liver cirrhosis has increased. The serum lipid levels of phospholipids, free fatty acids, polyunsaturated fatty acids, especially, eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid have significant correlations with specific fecal flora in liver cirrhosis. Many clinical and experimental reports support the relationship between fatty acid metabolism and gut-microbiota. Various blood metabolome such as cytokines, amino acids, and vitamins are correlated with gut microbiota in probiotics-treated liver cirrhosis patients. The future evaluation of the gut-microbiota-liver metabolic network and the intervention of these relationships using probiotics, synbiotics, and prebiotics, with sufficient nutrition could aid the development of treatments and prevention for liver cirrhosis patients.
Collapse
|
175
|
Manios Y, Moschonis G, Dekkers R, Mavrogianni C, Grammatikaki E, van den Heuvel E. Vitamin B 2, vitamin B 12 and total homocysteine status in children and their associations with dietary intake of B-vitamins from different food groups: the Healthy Growth Study. Eur J Nutr 2015; 56:321-331. [PMID: 26514562 DOI: 10.1007/s00394-015-1082-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/09/2015] [Indexed: 01/28/2023]
Abstract
PURPOSE To examine the associations between the dietary intakes of certain B-vitamins from different food sources with the relevant plasma status indices in children. METHODS A representative subsample of 600 children aged 9-13 years from the Healthy Growth Study was selected. Dietary intakes of vitamins B2, B12, B6 and folate derived from different food sources were estimated. Plasma levels of vitamin B2 (or riboflavin), methylmalonic acid (MMA) and total homocysteine (tHcy) were also measured. RESULTS Plasma concentrations of vitamin B2 below 3 μg/L were found in 22.8 % of the children. Children in the lower quartile of dietary vitamin B2 intake were found to have the lowest plasma vitamin B2 levels compared to children in the upper three quartiles (5.06 ± 7.63 vs. 6.48 ± 7.88, 6.34 ± 7.63 and 6.05 ± 4.94 μg/L respectively; P = 0.003). Regarding vitamin B12 children in the lower quartile of dietary intake had higher mean plasma tHcy levels compared to children in the upper two quartiles, respectively (6.00 ± 1.79 vs. 5.41 ± 1.43 and 5.46 ± 1.64 μmol/L; P = 0.012). Positive linear associations were observed between plasma vitamin B2 levels and dietary vitamin B2 derived from milk and fruits (β = 0.133; P = 0.001 and β = 0.086; P = 0.037). Additionally, nonlinear associations were also observed between plasma vitamin B2 levels and vitamin B2 derived from red meat, as well as between tHcy levels and vitamins B12 and B6 derived from milk; vitamins B12, B6 and folate derived from cereal products and folate derived from fruits. CONCLUSION A considerably high prevalence of poor plasma vitamin B2 status was observed in children. The intake of milk, fruits and cereals was associated with more favorable tHcy levels, while the intake of milk and fruits with more favorable plasma B2 levels. However, these findings need to be further confirmed from controlled dietary intervention studies examining the modulation of biomarkers of B-vitamins.
Collapse
Affiliation(s)
- Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University of Athens, 70 El. Venizelou Avenue, 17671, Kallithea, Athens, Greece.
| | - George Moschonis
- Department of Nutrition and Dietetics, Harokopio University of Athens, 70 El. Venizelou Avenue, 17671, Kallithea, Athens, Greece.,EnviNHealth S.A., Amarysias Artemidos 36, 151 24, Marousi, Athens, Greece
| | - Renske Dekkers
- FrieslandCampina, P.O. Box 238, 6700 AE, Wageningen, The Netherlands
| | - Christina Mavrogianni
- Department of Nutrition and Dietetics, Harokopio University of Athens, 70 El. Venizelou Avenue, 17671, Kallithea, Athens, Greece
| | - Eva Grammatikaki
- Department of Nutrition and Dietetics, Harokopio University of Athens, 70 El. Venizelou Avenue, 17671, Kallithea, Athens, Greece
| | | |
Collapse
|
176
|
Winglee K, Fodor AA. Intrinsic association between diet and the gut microbiome: current evidence. NUTRITION AND DIETARY SUPPLEMENTS 2015; 7:69-76. [PMID: 28690398 DOI: 10.2147/nds.s62362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gut microbiome performs many crucial functions for the human host, but the molecular mechanisms by which host, microbe and diet interact to mediate health and disease are only starting to be revealed. Here we review the literature on how changes in the diet affect the microbiome. A number of studies have shown that within a geographic region, different diets (such as vegan vs. omnivore) are associated with differences in a modest number of taxa but do not reliably produce radical differences within the gut microbial community. In contrast, studies that look across continents consistently find profoundly different microbial communities between Westernized and traditional populations, although it remains unclear to what extent diet or other differences in lifestyle drive these distinct microbial community structures. Furthermore, studies that place subjects on controlled short term experimental diets have found the resulting alterations to the gut microbial community to generally be small in scope, with changes that do not overcome initial individual differences in microbial community structure. These results emphasize that the human gut microbial community is relatively stable over time. In contrast, short term changes in diet can cause large changes in metabolite profiles, including metabolites processed by the gut microbial community. These results suggest that commensal gut microbes have a great deal of genetic plasticity and can activate different metabolic pathways independent of changes to microbial community composition. Thus, future studies of the how diet impacts host health via the microbiome may wish to focus on functional assays such as transcriptomics and metabolomics, in addition to 16S rRNA and whole-genome metagenome shotgun analyses of DNA. Taken together, the literature is most consistent with a model in which the composition of the adult gut microbial community undergoes modest compositional changes in response to altered diet but can nonetheless respond very rapidly to dietary changes via up- or down-regulation of metabolic pathways that can have profound and immediate consequences for host health.
Collapse
Affiliation(s)
- Kathryn Winglee
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
177
|
Can folic acid have a role in mitochondrial disorders? Drug Discov Today 2015; 20:1349-54. [PMID: 26183769 DOI: 10.1016/j.drudis.2015.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/16/2015] [Accepted: 07/06/2015] [Indexed: 12/17/2022]
Abstract
Cellular folate metabolism is highly compartmentalized, with mitochondria folate transport and metabolism being distinct from the well-known cytosolic folate metabolism. There is evidence supporting the association between low folate status and mitochondrial DNA (mtDNA) instability, and cerebral folate deficiency is relatively frequent in mitochondrial disorders. Furthermore, folinic acid supplementation has been reported to be beneficial not only in some patients with mitochondrial disease, but also in patients with relatively common diseases where folate deficiency might be an important pathophysiological factor. In this review, we focus on the evidence that supports the potential involvement of impaired folate metabolism in the pathophysiology of mitochondrial disorders.
Collapse
|
178
|
Manzardo AM, Pendleton T, Poje A, Penick EC, Butler MG. Change in psychiatric symptomatology after benfotiamine treatment in males is related to lifetime alcoholism severity. Drug Alcohol Depend 2015; 152:257-63. [PMID: 25908323 PMCID: PMC4550087 DOI: 10.1016/j.drugalcdep.2015.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/19/2015] [Accepted: 03/26/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Severe alcoholism can be associated with significant nutritional and vitamin deficiency, especially vitamin B1 (thiamine) which is associated with neurological deficits impacting mood and cognition. Alcohol consumption was reduced among female but not male alcoholics after supplementation with the high potency thiamine analog benfotiamine (BF). We examined the relationship between lifetime alcoholism severity, psychiatric symptoms and response to BF among the alcohol dependent men from this cohort. METHODS Eighty-five adult men (mean age=48±8 years) meeting DSM-IV-TR criteria for a current alcohol use disorder who were abstinent <30days participated in a randomized, double-blind, placebo-controlled trial of 600mg BF vs placebo (PL) for 6 months. Psychometric testing included a derived Lifetime Alcoholism Severity Score (AS), Symptom Checklist 90R (SCL-90R), and the Barratt Impulsivity Scale (BIS) at baseline and at 6 months. RESULTS Baseline SCL-90-R scale scores for men with high alcoholism severity (AS≥24; N=46 HAS) were significantly greater than for men with low alcoholism severity (AS<24; N=39 LAS), but BIS scores did not differ. MANOVA modeling at follow-up (N=50 completed subjects) identified a significant treatment effect (F=2.5, df=10, p<0.03) and treatment×alcoholism severity level interaction (F=2.5, dfnum=10, dfden=30, p<0.03) indicating reduced SCL-90-R scores among BF treated, HAS males. Above normal plasma thiamine levels at follow-up predicted reduced depression scores in a BF-treated subset (F=3.2, p<0.09, N=26). CONCLUSION BF appears to reduce psychiatric distress and may facilitate recovery in severely affected males with a lifetime alcohol use disorder and should be considered for adjuvant therapy in alcohol rehabilitation. TRIAL REGISTRATION #NCT00680121 High Dose Vitamin B1 to Reduce Abusive Alcohol Use.
Collapse
|
179
|
Subramanian VS, Ghosal A, Kapadia R, Nabokina SM, Said HM. Molecular Mechanisms Mediating the Adaptive Regulation of Intestinal Riboflavin Uptake Process. PLoS One 2015; 10:e0131698. [PMID: 26121134 PMCID: PMC4484800 DOI: 10.1371/journal.pone.0131698] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022] Open
Abstract
The intestinal absorption process of vitamin B2 (riboflavin, RF) is carrier-mediated, and all three known human RF transporters, i.e., hRFVT-1, -2, and -3 (products of the SLC52A1, 2 & 3 genes, respectively) are expressed in the gut. We have previously shown that the intestinal RF uptake process is adaptively regulated by substrate level, but little is known about the molecular mechanism(s) involved. Using human intestinal epithelial NCM460 cells maintained under RF deficient and over-supplemented (OS) conditions, we now show that the induction in RF uptake in RF deficiency is associated with an increase in expression of the hRFVT-2 & -3 (but not hRFVT-1) at the protein and mRNA levels. Focusing on hRFVT-3, the predominant transporter in the intestine, we also observed an increase in the level of expression of its hnRNA and activity of its promoter in the RF deficiency state. An increase in the level of expression of the nuclear factor Sp1 (which is important for activity of the SLC52A3 promoter) was observed in RF deficiency, while mutating the Sp1/GC site in the SLC52A3 promoter drastically decreased the level of induction in SLC52A3 promoter activity in RF deficiency. We also observed specific epigenetic changes in the SLC52A3 promoter in RF deficiency. Finally, an increase in hRFVT-3 protein expression at the cell surface was observed in RF deficiency. Results of these investigations show, for the first time, that transcriptional and post-transcriptional mechanisms are involved in the adaptive regulation of intestinal RF uptake by the prevailing substrate level.
Collapse
Affiliation(s)
- Veedamali S. Subramanian
- Department of Medicine, University of California, Irvine, California, United States of America
- VAMC, Long Beach, California, United States of America
| | - Abhisek Ghosal
- Department of Medicine, University of California, Irvine, California, United States of America
- VAMC, Long Beach, California, United States of America
| | - Rubina Kapadia
- Department of Medicine, University of California, Irvine, California, United States of America
- VAMC, Long Beach, California, United States of America
| | - Svetlana M. Nabokina
- Department of Medicine, University of California, Irvine, California, United States of America
- VAMC, Long Beach, California, United States of America
| | - Hamid M. Said
- Department of Medicine, University of California, Irvine, California, United States of America
- Department of Physiology/Biophysics, University of California, Irvine, California, United States of America
- VAMC, Long Beach, California, United States of America
- * E-mail:
| |
Collapse
|
180
|
Molero-Luis M, Serrano M, O’Callaghan MM, Sierra C, Pérez-Dueñas B, García-Cazorla A, Artuch R. Clinical, etiological and therapeutic aspects of cerebral folate deficiency. Expert Rev Neurother 2015; 15:793-802. [DOI: 10.1586/14737175.2015.1055322] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
181
|
Wlodarska M, Kostic AD, Xavier RJ. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe 2015; 17:577-91. [PMID: 25974300 PMCID: PMC4498258 DOI: 10.1016/j.chom.2015.04.008] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota, which is composed of bacteria, viruses, and micro-eukaryotes, acts as an accessory organ system with distinct functions along the intestinal tract that are critical for health. This review focuses on how the microbiota drives intestinal disease through alterations in microbial community architecture, disruption of the mucosal barrier, modulation of innate and adaptive immunity, and dysfunction of the enteric nervous system. Inflammatory bowel disease is used as a model system to understand these microbial-driven pathologies, but the knowledge gained in this space is extended to less-well-studied intestinal diseases that may also have an important microbial component, including environmental enteropathy and chronic colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Marta Wlodarska
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Aleksandar D Kostic
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
182
|
Revisiting the evidence for neuropathy caused by pyridoxine deficiency and excess. J Clin Neuromuscul Dis 2015; 16:25-31. [PMID: 25137514 DOI: 10.1097/cnd.0000000000000049] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pyridoxine deficiency and excess have been implicated as a cause for peripheral neuropathy. As a result, unrelated neuropathies are often treated with pyridoxine based on questionable evidence. However, neurological practitioners frequently discourage patients from taking pyridoxine in excess of 50 mg/d given concerns around the development of a toxic sensory neuronopathy. There is no systematic review to support either of the 2 practices. To address this gap in knowledge, we reviewed the available literature on neuropathy attributed to pyridoxine deficiency and excess. Based on the current limited data, it can be concluded that very low doses of daily pyridoxine are required to prevent peripheral neuropathy. There is inadequate evidence to support routine pyridoxine supplementation in patients with disorders of peripheral nervous system. Supplementation with pyridoxine at doses greater than 50 mg/d for extended duration may be harmful and should be discouraged.
Collapse
|
183
|
Nabokina SM, Ramos MB, Valle JE, Said HM. Regulation of basal promoter activity of the human thiamine pyrophosphate transporter SLC44A4 in human intestinal epithelial cells. Am J Physiol Cell Physiol 2015; 308:C750-7. [PMID: 25715703 DOI: 10.1152/ajpcell.00381.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
Microbiota of the large intestine synthesize considerable amount of vitamin B1 in the form of thiamine pyrophosphate (TPP). There is a specific high-affinity regulated carrier-mediated uptake system for TPP in human colonocytes (product of the SLC44A4 gene). The mechanisms of regulation of SLC44A4 gene expression are currently unknown. In this study, we characterized the SLC44A4 minimal promoter region and identified transcription factors important for basal promoter activity in colonic epithelial cells. The 5'-regulatory region of the SLC44A4 gene (1,022 bp) was cloned and showed promoter activity upon transient transfection into human colonic epithelial NCM460 cells. With the use of a series of 5'- and 3'-deletion luciferase reporter constructs, the minimal genomic region that required basal transcription of the SLC44A4 gene expression was mapped between nucleotides -178 and +88 (using the distal transcriptional start site as +1). Mutational analysis performed on putative cis-regulatory elements established the involvement of ETS/ELF3 [E26 transformation-specific sequence (ETS) proteins], cAMP-responsive element (CRE), and SP1/GC-box sequence motifs in basal SLC44A4 promoter activity. By means of EMSA, binding of ELF3 and CRE-binding protein-1 (CREB-1) transcription factors to the SLC44A4 minimal promoter was shown. Contribution of CREB into SLC44A4 promoter activity was confirmed using NCM460 cells overexpressing CREB. We also found high expression of ELF3 and CREB-1 in colonic (NCM460) compared with noncolonic (ARPE19) cells, suggesting their possible contribution to colon-specific pattern of SLC44A4 expression. This study represents the first characterization of the SLC44A4 promoter and reports the importance of both ELF3 and CREB-1 transcription factors in the maintenance of basal promoter activity in colonic epithelial cells.
Collapse
Affiliation(s)
- Svetlana M Nabokina
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Mel Brendan Ramos
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Judith E Valle
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
184
|
Abstract
Two observations stimulated the interest in vitamin B-6 and alkaline phosphatase in brain: the marked increase in plasma pyridoxal phosphate and the occurrence of pyridoxine responsive seizures in hypophosphatasia. The increase in plasma pyridoxal phosphate indicates the importance of tissue non-specific alkaline phosphatase (TNAP) in transferring vitamin B-6 into the tissues. Vitamin B-6 is involved in the biosynthesis of most of the neurotransmitters. Decreased gamma-aminobutyrate (GABA) appears to be most directly related to the development of seizures in vitamin B-6 deficiency. Cytosolic pyridoxal phosphatase/chronophin may interact with vitamin B-6 metabolism and neuronal development and function. Ethanolaminephosphate phospholyase interacts with phosphoethanolamine metabolism. Extracellular pyridoxal phosphate may interact with purinoceptors and calcium channels. In conclusion, TNAP clearly influences extracellular and intracellular metabolism of vitamin B-6 in brain, particularly during developmental stages. While effects on GABA metabolism appear to be the major contributor to seizures, multiple other intra- and extra-cellular metabolic systems may be affected directly and/or indirectly by altered vitamin B-6 hydrolysis and uptake resulting from variations in alkaline phosphatase activity.
Collapse
|
185
|
Abstract
Alcoholic liver disease is a leading cause of morbidity and liver-related death worldwide. Intestinal bacterial overgrowth and dysbiosis induced by ethanol ingestion play an important role in the pathogenesis of alcoholic liver disease. After exposure to alcohol in the lumen, enteric bacteria alter their metabolism and thereby disturb intestinal homeostasis. Disruption of the mucosal barrier results in the translocation of microbial products that contribute to liver disease by inducing hepatic inflammation. In this review, we will discuss the effects of alcohol on the intestinal microbiome, and in particular, its effects on bacterial metabolism, bacterial translocation and ecological balance. A better understanding of the interactions among alcohol, the host and the microbiome will reveal new targets for therapy and lead to new treatments.
Collapse
Affiliation(s)
- Peng Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
186
|
Grützner N, Gebhart CJ, Lawhorn BD, Suchodolski JS, Steiner JM. Serum folate, cobalamin, homocysteine and methylmalonic acid concentrations in pigs with acute, chronic or subclinical Lawsonia intracellularis infection. Vet J 2014; 203:320-5. [PMID: 25618855 DOI: 10.1016/j.tvjl.2014.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 10/02/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
Abstract
Lawsonia intracellularis is the causative agent of porcine proliferative enteropathy. The clinical presentation can be acute (i.e. proliferative hemorrhagic enteropathy, PHE), chronic (i.e. porcine intestinal adenomatosis, PIA) or subclinical. In humans with chronic enteropathies, low serum folate (vitamin B(9)) and cobalamin (vitamin B(12)) concentrations have been associated with increased serum concentrations of homocysteine and methylmalonic acid (MMA), which reflect the availability of both vitamins at the cellular level. The aim of this study was to evaluate serum folate, cobalamin, homocysteine and MMA concentrations in serum samples from pigs with PHE, PIA or subclinical L. intracellularis infection, and in negative controls. Serum folate, cobalamin, homocysteine and MMA concentrations differed significantly among pigs in the PHE, PIA, subclinical and negative control groups. Serum folate concentrations in the PHE and PIA groups were lower than in the subclinical and negative control groups, while serum cobalamin concentrations were lower in the PIA group than in other groups. Serum concentrations of homocysteine were higher in the PHE, PIA and subclinical groups than in the negative control group. Serum concentrations of MMA were higher in the subclinical and PIA groups than in the control group. These data suggest that pigs infected with L. intracellularis have altered serum cobalamin, folate, homocysteine and MMA concentrations.
Collapse
Affiliation(s)
- Niels Grützner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Connie J Gebhart
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Bruce D Lawhorn
- Veterinary Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
187
|
Hutcheon DA. Malnutrition-induced Wernicke's encephalopathy following a water-only fasting diet. Nutr Clin Pract 2014; 30:92-9. [PMID: 25524882 DOI: 10.1177/0884533614561793] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Wernicke's encephalopathy is a critical condition of neurological dysfunction resulting from a deficiency in thiamine. Chronic alcoholism is recognized as the most common cause of Wernicke's encephalopathy, but other causes, including fasting/starvation and malnutrition, have been documented within the scientific literature. These causes may not be readily recognized by healthcare professionals and may lead to Wernicke's encephalopathy being overlooked as a diagnosis when a nonalcoholic patient presents with classic signs and symptoms of the disorder. MATERIALS AND METHODS A narrative review of thiamine and its relationship to the development, diagnosis, and treatment of Wernicke's encephalopathy is presented based on a review of evidence-based guidelines and published research. To heighten awareness of the development of Wernicke's encephalopathy in fasted/starved and malnourished patients and to contribute to the scientific body of knowledge for the identification and management of Wernicke's encephalopathy in these patients, the clinical course and treatment of an adult woman who developed Wernicke's encephalopathy following a 40-day water-only fasting diet is outlined. RESULTS Clinical suspicion was required to identify the patient's condition and initiate immediate intervention through parenteral thiamine administration. Oral thiamine supplementation of 100 to 800 mg per day for 6 months was required to aid recovery. OUTCOMES The patient's clinical course and response to treatment illustrate the necessity for clinical awareness and suspicion of Wernicke's encephalopathy among healthcare professionals, timely and adequate parenteral thiamine administration, and oral thiamine supplementation at therapeutic doses to correct the nutrient deficiency, halt the progression of Wernicke's encephalopathy, and promote recovery.
Collapse
Affiliation(s)
- Deborah A Hutcheon
- School of Health Related Professions, Department of Nutritional Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey Department of Food, Nutrition, and Packaging Sciences, Clemson, University, Clemson, South Carolina
| |
Collapse
|
188
|
Dahlgren D, Roos C, Sjögren E, Lennernäs H. Direct In Vivo Human Intestinal Permeability (Peff ) Determined with Different Clinical Perfusion and Intubation Methods. J Pharm Sci 2014; 104:2702-26. [PMID: 25410736 DOI: 10.1002/jps.24258] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022]
Abstract
Regional in vivo human intestinal effective permeability (Peff ) is calculated by measuring the disappearance rate of substances during intestinal perfusion. Peff is the most relevant parameter in the prediction of rate and extent of drug absorption from all parts of the intestine. Today, human intestinal perfusions are not performed on a routine basis in drug development. Therefore, it would be beneficial to increase the accuracy of the in vitro and in silico tools used to evaluate the intestinal Peff of novel drugs. This review compiles historical Peff data from 273 individual measurements of 80 substances from 61 studies performed in all parts of the human intestinal tract. These substances include: drugs, monosaccharaides, amino acids, dipeptides, vitamins, steroids, bile acids, ions, fatty acids, and water. The review also discusses the determination and prediction of Peff using in vitro and in silico methods such as quantitative structure-activity relationship, Caco-2, Ussing chamber, animal intestinal perfusion, and physiologically based pharmacokinetic (PBPK) modeling. Finally, we briefly outline how to acquire accurate human intestinal Peff data by deconvolution of plasma concentration-time profiles following regional intestinal bolus dosing.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Carl Roos
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
189
|
Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK. Specialized metabolites from the microbiome in health and disease. Cell Metab 2014; 20:719-730. [PMID: 25440054 PMCID: PMC4337795 DOI: 10.1016/j.cmet.2014.10.016] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The microbiota, and the genes that comprise its microbiome, play key roles in human health. Host-microbe interactions affect immunity, metabolism, development, and behavior, and dysbiosis of gut bacteria contributes to disease. Despite advances in correlating changes in the microbiota with various conditions, specific mechanisms of host-microbiota signaling remain largely elusive. We discuss the synthesis of microbial metabolites, their absorption, and potential physiological effects on the host. We propose that the effects of specialized metabolites may explain present knowledge gaps in linking the gut microbiota to biological host mechanisms during initial colonization, and in health and disease.
Collapse
Affiliation(s)
- Gil Sharon
- Division of Biology and Biological Engineering, California institute of Technology, Pasadena, CA 91125, USA
| | - Neha Garg
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Justine Debelius
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Boulder, CO 80309, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
190
|
O'Connor IA, Veltman K, Huijbregts MAJ, Ragas AMJ, Russel FGM, Hendriks AJ. Including carrier-mediated transport in oral uptake prediction of nutrients and pharmaceuticals in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:938-947. [PMID: 25461554 DOI: 10.1016/j.etap.2014.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/28/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
Most toxicokinetic models consider passive diffusion as the only mechanism when modeling the oral uptake of chemicals. However, the overall uptake of nutrients and xenobiotics, such as pharmaceuticals and environmental pollutants, can be increased by influx transport proteins. We incorporated carrier-mediated transport into a one-compartment toxicokinetic model originally developed for passive diffusion only. The predictions were compared with measured oral uptake efficiencies of nutrients and pharmaceuticals, i.e. the fraction of the chemical reaching systemic circulation. Including carrier-mediated uptake improved model predictions for hydrophilic nutrients (RMSE=10% vs. 56%, Coefficient of Efficiency CoE=0.5 vs. -9.6) and for pharmaceuticals (RMSE=21% vs. 28% and CoE=-0.4 vs. -1.1). However, the negative CoE for pharmaceuticals indicates that further improvements are needed. Most important in this respect is a more accurate estimation of vMAX and KM as well as the determination of the amount of expressed and functional transport proteins both in vivo and in vitro.
Collapse
Affiliation(s)
- Isabel A O'Connor
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, PO Box 9010, NL-6500 GL Nijmegen, The Netherlands.
| | - Karin Veltman
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, PO Box 9010, NL-6500 GL Nijmegen, The Netherlands
| | - Mark A J Huijbregts
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, PO Box 9010, NL-6500 GL Nijmegen, The Netherlands
| | - Ad M J Ragas
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, PO Box 9010, NL-6500 GL Nijmegen, The Netherlands; Open University, School of Science, PO Box 2960, NL-6401 DL Heerlen, The Netherlands
| | - Frans G M Russel
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Pharmacology and Toxicology (149), PO Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | - A Jan Hendriks
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, PO Box 9010, NL-6500 GL Nijmegen, The Netherlands
| |
Collapse
|
191
|
Sabui S, Ghosal A, Said HM. Identification and characterization of 5'-flanking region of the human riboflavin transporter 1 gene (SLC52A1). Gene 2014; 553:49-56. [PMID: 25284511 DOI: 10.1016/j.gene.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/16/2022]
Abstract
The human SLC52A1 gene encodes the riboflavin transporter-1 (RFVT-1), a plasma membrane protein that transports vitamin B2 (riboflavin, RF) into cells, and thus, plays a role in controlling cellular homeostasis of RF in those tissues that express the carrier protein (e.g. placenta and intestine). Currently, there is nothing known about transcriptional regulation of the SLC52A1 gene, therefore, we aimed to clone and characterize its 5'-flanking region. Using rapid amplification of the cDNA ends (5'-RACE), we identified one transcription start site (TSS). A 579 bp segment of the 5'-flanking region of this gene was cloned which exhibited robust promoter activity upon transfection in human intestinal epithelial cells. Deletion analysis revealed that the core promoter activity to be embedded in a region between -234 and -23 that lacked TATA element, was GC-rich, and harbored several putative cis-regulatory sites including KLFs, AP-2, EGRF and Sp-1. Mutating each of these sites led to a significant decrease in promoter activity (which was highest for the Sp-1 site), suggesting their possible involvement in regulating SLC52A1 transcription. Focusing on the Sp-1 site, EMSA, super-shift and ChIP analysis was performed that established the interaction of the Sp-1 transcription factor with the SLC52A1 promoter; also, co-transfection of the minimal SLC52A1 promoter with an Sp-1 containing vector in Drosophila SL-2 cells led to significant promoter activation. These results are the first to reveal the identity of the minimal SLC52A1 promoter and to establish an important role for Sp-1 in its activity.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | - Abhisek Ghosal
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | - Hamid M Said
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA.
| |
Collapse
|
192
|
Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA. The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 155:652-64. [DOI: 10.1002/ajpa.22621] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Katherine R. Amato
- Program in Ecology, Evolution, and Conservation Biology; University of Illinois; Urbana IL 61801
- Department of Anthropology; University of Colorado; Boulder CO 80309
| | - Steven R. Leigh
- Department of Anthropology; University of Colorado; Boulder CO 80309
| | - Angela Kent
- Department of Natural Resources and Environmental Sciences; University of Illinois; Urbana IL 61801
| | - Roderick I. Mackie
- Department of Animal Sciences; University of Illinois; Urbana IL 61801
- Institute for Genomic Biology, University of Illinois; Urbana IL 61801
| | - Carl J. Yeoman
- Department of Animal and Range Sciences; Montana State University; Bozeman MT 59717
| | - Rebecca M. Stumpf
- Institute for Genomic Biology, University of Illinois; Urbana IL 61801
- Department of Anthropology; University of Illinois; Urbana IL 80301
| | - Brenda A. Wilson
- Institute for Genomic Biology, University of Illinois; Urbana IL 61801
- Department of Microbiology; University of Illinois; Urbana IL 61801
| | | | - Bryan A. White
- Department of Animal Sciences; University of Illinois; Urbana IL 61801
- Institute for Genomic Biology, University of Illinois; Urbana IL 61801
| | - Paul A. Garber
- Department of Anthropology; University of Illinois; Urbana IL 80301
| |
Collapse
|
193
|
Miyake K, Akimoto T, Kusakabe M, Sato W, Yamada A, Yamawaki H, Kodaka Y, Shinpuku M, Nagoya H, Shindo T, Ueki N, Kusunoki M, Kawagoe T, Futagami S, Tsukui T, Sakamoto C. Water-soluble vitamin deficiencies in complicated peptic ulcer patients soon after ulcer onset in Japan. J Nutr Sci Vitaminol (Tokyo) 2014; 59:503-8. [PMID: 24477246 DOI: 10.3177/jnsv.59.503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated over time whether contemporary Japanese patients with complicated peptic ulcers have any water-soluble vitamin deficiencies soon after the onset of the complicated peptic ulcers. In this prospective cohort study, fasting serum levels of water-soluble vitamins (vitamins B1, B2, B6, B12, C, and folic acid) and homocysteine were measured at 3 time points (at admission, hospital discharge, and 3 mo after hospital discharge). Among the 20 patients who were enrolled in the study, 10 consecutive patients who completed measurements at all 3 time points were analyzed. The proportion of patients in whom any of the serum water-soluble vitamins that we examined were deficient was as high as 80% at admission, and remained at 70% at discharge. The proportion of patients with vitamin B6 deficiency was significantly higher at admission and discharge (50% and 60%, respectively, p<0.05) than at 3 mo after discharge (10%). In conclusion, most patients with complicated peptic ulcers may have a deficiency of one or more water-soluble vitamins in the early phase of the disease after the onset of ulcer complications, even in a contemporary Japanese population.
Collapse
|
194
|
Abstract
A healthy gut microbiota plays many crucial functions in the host, being involved in the correct development and functioning of the immune system, assisting in the digestion of certain foods and in the production of health-beneficial bioactive metabolites or 'pharmabiotics'. These include bioactive lipids (including SCFA and conjugated linoleic acid) antimicrobials and exopolysaccharides in addition to nutrients, including vitamins B and K. Alterations in the composition of the gut microbiota and reductions in microbial diversity are highlighted in many disease states, possibly rendering the host susceptible to infection and consequently negatively affecting innate immune function. Evidence is also emerging of microbially produced molecules with neuroactive functions that can have influences across the brain-gut axis. For example, γ-aminobutyric acid, serotonin, catecholamines and acetylcholine may modulate neural signalling within the enteric nervous system, when released in the intestinal lumen and consequently signal brain function and behaviour. Dietary supplementation with probiotics and prebiotics are the most widely used dietary adjuncts to modulate the gut microbiota. Furthermore, evidence is emerging of the interactions between administered microbes and dietary substrates, leading to the production of pharmabiotics, which may directly or indirectly positively influence human health.
Collapse
|
195
|
Stein J, Stier C, Raab H, Weiner R. Review article: The nutritional and pharmacological consequences of obesity surgery. Aliment Pharmacol Ther 2014; 40:582-609. [PMID: 25078533 DOI: 10.1111/apt.12872] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/22/2013] [Accepted: 06/21/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity surgery is acknowledged as a highly effective therapy for morbidly obese patients. Beneficial short-term effects on common comorbidities are practically undisputed, but a growing data pool from long-term follow-up reveals increasing evidence of potentially severe nutritional and pharmacological consequences. AIMS To assess the prevalence, causes and symptoms of complications after obesity surgery, to elucidate and compare therapy recommendations for macro- and micronutrient deficiencies, and to explore surgically-induced effects on drug absorption and bioavailability, discussing ramifications for long-term therapy and prophylaxis. METHODS PubMed, Embase and MEDLINE were searched using terms including, but not limited to, bariatric surgery, gastric bypass, obesity surgery and Roux-en-Y, coupled with secondary search terms, e.g. anaemia, micronutrients, vitamin deficiency, bacterial overgrowth, drug absorption, pharmacokinetics, undernutrition. All studies in English, French or German published January 1980 through March 2014 were included. RESULTS Macro- and micronutrient deficiencies are common after obesity surgery. The most critical, depending on surgical technique, are hypoalbuminemia (3-18%) and deficiencies of vitamins B1 (≤49%), B12 (19-35%) and D (25-73%), iron (17-45%) and zinc (12-91%). Many drugs commonly administered to obese patients (e.g. anti-depressants, anti-microbials, metformin) are subject to post-operative and/or PPI-associated changes affecting bioavailability and absorption. CONCLUSIONS Complications are associated with pre-operative and/or post-operative malnutrition or procedure-related changes in intake, absorption and drug bioavailability. The high prevalence of nutrient deficiencies after obesity surgery makes life-long nutritional monitoring and supplementation essential. Post-operative changes to drug absorption and bioavailability in bariatric patients cast doubt on the validity of standard drug dosage and administration recommendations.
Collapse
Affiliation(s)
- J Stein
- Department of Gastroenterology and Clinical Nutrition, Sachsenhausen Hospital, Frankfurt/Main, Germany; German Obesity Center (GOC), Frankfurt-Sachsenhausen, Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
196
|
Lee TY, Chiang EP, Shih YT, Lane HY, Lin JT, Wu CY. Lower serum folate is associated with development and invasiveness of gastric cancer. World J Gastroenterol 2014; 20:11313-11320. [PMID: 25170216 PMCID: PMC4145770 DOI: 10.3748/wjg.v20.i32.11313] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/26/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the associations of serum folate level with development, invasiveness and patient survival of gastric cancer.
METHODS: In this nested case-control study, patients with newly diagnosed gastric cancer undergoing gastrectomy were enrolled, and patients receiving chemotherapy prior to surgery, with other concurrent malignancy, or of the aboriginal and alien populations were excluded. In total, 155 gastric cancer patients and 149 healthy controls were enrolled for determination of serum folate levels and their correlation with gastric cancer. Using the median value of serum folate computed among the overall population as the cutoff value, the associations between serum folate and gastric cancer in all cases and different age and gender subgroups were analyzed by multivariate logistic regression analysis. In the patient cohort of gastric cancer, receiver-operating characteristic analyses were performed to calculate the best cutoff values of serum folate, and the associations between serum folate levels and clinicopathological features were further analyzed by multivariate regression analysis. Survival analyses were conducted using the Cox proportional hazards model.
RESULTS: The mean serum folate level was significantly lower in gastric cancer patients than that in controls (3.71 ± 0.30 ng/mL vs 8.00 ± 0.54 ng/mL, P < 0.01), and folate levels were consistently lower in gastric cancer patients regardless of age and gender (all P < 0.01). Using the median serum folate value as the cutoff value, low serum folate was significantly associated with gastric cancer risk in the whole population (OR = 19.77, 95%CI: 10.54-37.06, P < 0.001) and all strata (age < 60 years OR = 17.39, 95%CI: 7.28-41.54, age ≥ 60 years (OR = 21.67, 95%CI: 8.27-56.80), males (OR = 17.95, 95%CI: 7.93-40.62), and females (OR = 20.95, 95%CI: 7.66-57.31); all P < 0.001. In the patient cohort of gastric cancer, the respective cutoff values showed that low serum folate levels were significantly associated with serosal invasion (OR = 2.54, 95%CI: 1.23-5.23), lymphatic invasion (OR = 2.23, 95%CI: 1.17-4.26), and liver metastasis (OR = 6.67, 95%CI: 1.28-34.91) of gastric cancer (all P < 0.05). Serum folate level below 1.90 ng/mL was associated with poor patient survival (HR = 1.84, 95%CI: 1.04-3.27, P < 0.05) in univariate analysis.
CONCLUSION: Lower serum folate levels were significantly associated with gastric cancer development and invasive phenotypes. The role of folate depletion in gastric cancer invasion warrants further study.
Collapse
|
197
|
|
198
|
Williams AC, Dunbar RIM. Big brains, meat, tuberculosis and the nicotinamide switches: co-evolutionary relationships with modern repercussions on longevity and disease? Med Hypotheses 2014; 83:79-87. [PMID: 24767939 DOI: 10.1016/j.mehy.2014.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 04/01/2014] [Indexed: 11/27/2022]
Abstract
Meat eating has been an important trigger for human evolution however the responsible component in meat has not been clearly identified. Here we propose that the limiting factors for expanding brains and increasing longevity were the micronutrient nicotinamide (vitamin B3) and the metabolically related essential amino-acid, tryptophan. Meat offers significant sourcing challenges and lack causes a deficiency of nicotinamide and tryptophan and consequently the energy carrier nicotinamide adenine dinucleotide (NAD) that gets consumed in regulatory circuits important for survival, resulting in premature ageing, poor cognition and brain atrophy. If a trophic supply of dietary nicotinamide/tryptophan is so essential for building brains, constraining their size and connectivity, we hypothesise that back-up mechanisms to ensure the supply evolved. One strategy may be increasing the reliance on gut symbionts to break down celluloses that produces NADH and only nicotinamide indirectly, and may cause diarrhoea. We suggest that a direct supplier was the chronic mycobacterial infection tuberculosis (TB) that is a surprise candidate but it co-evolved early, does not inevitably cause disease (90-95% of those infected are healthy), and secretes (and is inhibited by) nicotinamide. We hypothesise that TB evolved first as a symbiont that enabled humans to cope with short-lived shortages of meat and only later behaved as a pathogen when the supply deteriorated chronically, for those in poverty. (TB immunology and epidemiology is riddled with paradoxes for a conventional pathogen). We test this in pilot data showing that sharp declines in TB (and diarrhoea) - `environmental enteropathy' strongly correlate with increasing meat consumption and therefore nicotinamide exposure, unlike later onset cancers and Parkinson's disease that increased in incidence, perhaps - as we propose a hypothetical hypervitaminosis B3 (to include obesity and the metabolic syndrome) - as the trade-off for increased brain power and longevity, a recently evolved human characteristic.
Collapse
Affiliation(s)
- Adrian C Williams
- Institute for Cognitive and Evolutionary Anthropology, University of Oxford, 64 Banbury Road, Oxford OX2 6PN, UK.
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, South Parks Rd, Oxford OX1 3UD, UK
| |
Collapse
|
199
|
Kissei M, Itoh T, Narawa T. Effect of epigallocatechin gallate on drug transport mediated by the proton-coupled folate transporter. Drug Metab Pharmacokinet 2014; 29:367-72. [PMID: 24695276 DOI: 10.2133/dmpk.dmpk-14-rg-015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Folic acid (FA) is a water-soluble vitamin, and orally ingested FA is absorbed from the small intestine by the proton-coupled folate transporter (PCFT). In the present study, we investigated whether epigallocatechin gallate (EGCG), one of the tea catechins, affects the transport of FA by PCFT. EGCG inhibited the uptake of FA into Caco-2 cells and human PCFT-expressing HEK293 cells (PCFT-HEK293 cells). The initial rate of uptake of FA into PCFT-HEK293 cells followed Michaelis-Menten kinetics (K(m) = 1.9 µM). Dixon plots revealed that PCFT-mediated FA uptake was competitively inhibited by EGCG (K(i) ≒ 9 µM). The uptake of the PCFT substrate methotrexate (MTX) was competitively inhibited by EGCG as well (K(i) ≒ 15 µM). In conclusion, it is suggested that when FA or MTX is ingested with tea, it is likely that the intestinal absorption of these compounds by PCFT is inhibited, which could result in insufficient efficacy.
Collapse
|
200
|
Sahoo S, Aurich MK, Jonsson JJ, Thiele I. Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease. Front Physiol 2014; 5:91. [PMID: 24653705 PMCID: PMC3949408 DOI: 10.3389/fphys.2014.00091] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 02/17/2014] [Indexed: 01/18/2023] Open
Abstract
Membrane transporters enable efficient cellular metabolism, aid in nutrient sensing, and have been associated with various diseases, such as obesity and cancer. Genome-scale metabolic network reconstructions capture genomic, physiological, and biochemical knowledge of a target organism, along with a detailed representation of the cellular metabolite transport mechanisms. Since the first reconstruction of human metabolism, Recon 1, published in 2007, progress has been made in the field of metabolite transport. Recently, we published an updated reconstruction, Recon 2, which significantly improved the metabolic coverage and functionality. Human metabolic reconstructions have been used to investigate the role of metabolism in disease and to predict biomarkers and drug targets. Given the importance of cellular transport systems in understanding human metabolism in health and disease, we analyzed the coverage of transport systems for various metabolite classes in Recon 2. We will review the current knowledge on transporters (i.e., their preferred substrates, transport mechanisms, metabolic relevance, and disease association for each metabolite class). We will assess missing coverage and propose modifications and additions through a transport module that is functional when combined with Recon 2. This information will be valuable for further refinements. These data will also provide starting points for further experiments by highlighting areas of incomplete knowledge. This review represents the first comprehensive overview of the transporters involved in central metabolism and their transport mechanisms, thus serving as a compendium of metabolite transporters specific for human metabolic reconstructions.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Maike K Aurich
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Jon J Jonsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland Reykjavik, Iceland ; Department of Genetics and Molecular Medicine, Landspitali, National University Hospital of Iceland Reykjavik, Iceland
| | - Ines Thiele
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| |
Collapse
|