151
|
Ronning DR, Vissa V, Besra GS, Belisle JT, Sacchettini JC. Mycobacterium tuberculosis antigen 85A and 85C structures confirm binding orientation and conserved substrate specificity. J Biol Chem 2004; 279:36771-7. [PMID: 15192106 DOI: 10.1074/jbc.m400811200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maintenance of the highly hydrophobic cell wall is central to the survival of Mycobacterium tuberculosis within its host environment. The antigen 85 proteins (85A, 85B, and 85C) of M. tuberculosis help maintain the integrity of the cell wall 1) by catalyzing the transfer of mycolic acids to the cell wall arabinogalactan and 2) through the synthesis of trehalose dimycolate (cord factor). Additionally, these secreted proteins allow for rapid invasion of alveolar macrophages via direct interactions between the host immune system and the invading bacillus. Here we describe two crystal structures: the structure of antigen 85C co-crystallized with octylthioglucoside as substrate, resolved to 2.0 A, and the crystal structure of antigen 85A, which was solved at a resolution of 2.7 A. The structure of 85C with the substrate analog identifies residues directly involved in substrate binding. Elucidation of the antigen 85A structure, the last of the three antigen 85 homologs to be solved, shows that the active sites of the three antigen 85 proteins are virtually identical, indicating that these share the same substrate. However, in contrast to the high level of conservation within the substrate-binding site and the active site, surface residues disparate from the active site are quite variable, indicating that three antigen 85 enzymes are needed to evade the host immune system.
Collapse
Affiliation(s)
- Donald R Ronning
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | | | |
Collapse
|
152
|
Adindla S, Guruprasad K, Guruprasad L. Three-dimensional models and structure analysis of corynemycolyltransferases in Corynebacterium glutamicum and Corynebacterium efficiens. Int J Biol Macromol 2004; 34:181-9. [PMID: 15225990 DOI: 10.1016/j.ijbiomac.2004.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2004] [Indexed: 11/17/2022]
Abstract
The corynemycolyltransferase proteins were identified from Corynebacterium glutamicum and Corynebacterium efficiens genomes using computational tools available in the public domain. Three-dimensional models were constructed for corynemycolyltransferases based on the crystal structures of related mycolyltransferases in Mycobacterium tuberculosis using the comparative modeling methods. The corynemycolyltransferases share overall an alpha/beta-fold characteristic of the mycolyltransferases despite low sequence identity (<20%) shared by some of the corynemycolyltransferases. However, a significant difference is observed in the region between amino acid residues Trp82-Trp97 and Ala222-Asn223 corresponding to mycolyltransferases. The specificity pockets defined by interactions with the trehalose substrate observed in the crystal structure complex of Ag85B mycolyltransferase (PDB code: 1F0P) suggests that trehalose may not bind some corynemycolyltransferases. This is due to critical mutations in corynemycolyltransferase binding subsites that lead to loss of equivalent side-chain interactions with trehalose and unfavorable steric interactions, particularly, in the case of cmytC gene and the protein corresponding to the gene identifier CE0356 with the equivalent Ala222-Asn223 "long insertion loop". Further, the fibronectin binding region (Phe58-Val69), in mycolyltransferases associated with mediating host-pathogen interactions in M. tuberculosis comprises amino acid residue mutations in the corresponding region in the soil bacterium--Corynebacterium corynemycolyltransferases, that suggest a different epitope and therefore possible lack of binding to fibronectin. The corynemycolyltransferase cmytA responsible for the cell shape formation and for maintaining the cell surface integrity is associated with a C-terminal domain that we have recently shown to comprise tandem amino acid sequence repeats that is likely to be associated with a regular secondary structural motif.
Collapse
Affiliation(s)
- Swathi Adindla
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | | | |
Collapse
|
153
|
Woodruff PJ, Carlson BL, Siridechadilok B, Pratt MR, Senaratne RH, Mougous JD, Riley LW, Williams SJ, Bertozzi CR. Trehalose is required for growth of Mycobacterium smegmatis. J Biol Chem 2004; 279:28835-43. [PMID: 15102847 DOI: 10.1074/jbc.m313103200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacteria contain high levels of the disaccharide trehalose in free form as well as within various immunologically relevant glycolipids such as cord factor and sulfolipid-1. By contrast, most bacteria use trehalose solely as a general osmoprotectant or thermoprotectant. Mycobacterium tuberculosis and Mycobacterium smegmatis possess three pathways for the synthesis of trehalose. Most bacteria possess only one trehalose biosynthesis pathway and do not elaborate the disaccharide into more complex metabolites, suggesting a distinct role for trehalose in mycobacteria. We disabled key enzymes required for each of the three pathways in M. smegmatis by allelic replacement. The resulting trehalose biosynthesis mutant was unable to proliferate and enter stationary phase unless supplemented with trehalose. At elevated temperatures, however, the mutant was unable to proliferate even in the presence of trehalose. Genetic complementation experiments showed that each of the three pathways was able to recover the mutant in the absence of trehalose, even at elevated temperatures. From a panel of trehalose analogs, only those with the native alpha,alpha-(1,1) anomeric stereochemistry rescued the mutant, whereas alternate stereoisomers and general osmo- and thermoprotectants were inactive. These findings suggest a dual role for trehalose as both a thermoprotectant and a precursor of critical cell wall metabolites.
Collapse
Affiliation(s)
- Peter J Woodruff
- Departments of Chemistry and Molecular, School of Public Health and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Talaat AM, Lyons R, Howard ST, Johnston SA. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci U S A 2004; 101:4602-7. [PMID: 15070764 PMCID: PMC384793 DOI: 10.1073/pnas.0306023101] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection with Mycobacterium tuberculosis causes the illness tuberculosis with an annual mortality of approximately 2 million. Understanding the nature of the host-pathogen interactions at different stages of tuberculosis is central to new strategies for developing chemotherapies and vaccines. Toward this end, we adapted microarray technology to analyze the change in gene expression profiles of M. tuberculosis during infection in mice. This protocol provides the transcription profile of genes expressed during the course of early tuberculosis in immune-competent (BALB/c) and severe combined immune-deficient (SCID) hosts in comparison with growth in medium. The microarray analysis revealed clusters of genes that changed their transcription levels exclusively in the lungs of BALB/c, SCID mice, or medium over time. We identified a set of genes (n = 67) activated only in BALB/c and not in SCID mice at 21 days after infection, a key point in the progression of tuberculosis. A subset of the lung-activated genes was previously identified as induced during mycobacterial survival in a macrophage cell line. Another group of in vivo-expressed genes may also define a previously unreported genomic island. In addition, our analysis suggests the similarity between mycobacterial transcriptional machinery during growth in SCID and in broth, which questions the validity of using the SCID model for assessing mycobacterial virulence. The in vivo expression-profiling technology presented should be applicable to any microbial model of infection.
Collapse
Affiliation(s)
- Adel M Talaat
- Center for Biomedical Inventions, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8573, USA
| | | | | | | |
Collapse
|
155
|
Sung N, Takayama K, Collins MT. Possible association of GroES and antigen 85 proteins with heat resistance of Mycobacterium paratuberculosis. Appl Environ Microbiol 2004; 70:1688-97. [PMID: 15006794 PMCID: PMC368355 DOI: 10.1128/aem.70.3.1688-1697.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 11/26/2003] [Indexed: 11/20/2022] Open
Abstract
Conflicting reports on the heat resistance of Mycobacterium paratuberculosis prompted an examination of the effect of culture medium on this property of the organism. M. paratuberculosis was cultured in three types of media (fatty acid-containing medium 7H9-OADC (oleic acid-albumin-dextrose-catalase supplement) and glycerol-containing media WR-GD and 7H9-GD [glycerol-dextrose supplement]) at pH 6.0. M. paratuberculosis grown under these three culture conditions was then tested for heat resistance in distilled water at 65 degrees C. Soluble proteins and mycolic acids of M. paratuberculosis were evaluated by two-dimensional electrophoresis (2-DE) and thin-layer chromatography (TLC), respectively. The type of culture medium used significantly affected the heat resistance of M. paratuberculosis. The decimal reduction times at 65 degrees C (D(65 degrees C) values; times required to reduce the concentration of bacteria by a factor of 10 at 65 degrees C) for M. paratuberculosis strains grown in 7H9-OADC were significantly higher than those for the organisms grown in WR-GD medium (P < 0.01). When the glycerol-dextrose supplement of WR was substituted for the fatty acid supplement (OADC) in 7H9 medium (resulting in 7H9-GD), the D(65 degrees C) value was significantly lower than that for the organism grown in 7H9-OADC medium (P = 0.022) but higher than that when it was cultured in WR-GD medium (P = 0.005). Proteomic analysis by 2-DE of soluble proteins extracted from M. paratuberculosis grown without heat stress in the three media (7H9-OADC, 7H9-GD, and WR-GD) revealed that seven proteins were more highly expressed in 7H9-OADC medium than in the other two media. When the seven proteins were subjected to matrix-assisted laser desorption ionization-mass spectrometric analysis, four of the seven protein spots were unidentifiable. The other three proteins were identified as GroES heat shock protein, alpha antigen, and antigen 85 complex B (Ag85B; fibronectin-binding protein). These proteins may be associated with the heat resistance of M. paratuberculosis. Alpha antigen and Ag85B are both trehalose mycolyltransferases involved in mycobacterial cell wall assembly. TLC revealed that 7H9-OADC medium supported production of more trehalose dimycolates and cell wall-bound mycolic acids than did WR-GD medium. The present study shows that in vitro culture conditions significantly affect heat resistance, cell wall synthesis, and protein expression of M. paratuberculosis and emphasize the importance of culture conditions on in vitro and ex vivo studies to estimate heat resistance.
Collapse
Affiliation(s)
- Nackmoon Sung
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
156
|
Wilson RA, Maughan WN, Kremer L, Besra GS, Fütterer K. The structure of Mycobacterium tuberculosis MPT51 (FbpC1) defines a new family of non-catalytic alpha/beta hydrolases. J Mol Biol 2004; 335:519-30. [PMID: 14672660 DOI: 10.1016/j.jmb.2003.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is known to secrete a number of highly immunogenic proteins that are thought to confer pathogenicity, in part, by mediating binding to host tissues. Among these secreted proteins are the trimeric antigen 85 (Ag85) complex and the related MPT51 protein, also known as FbpC1. While the physiological function of Ag85, a mycolyltransferase required for the biosynthesis of the cell wall component alpha,alpha'-trehalose dimycolate (or cord factor), has been identified recently, the function of the closely related MPT51 (approximately 40% identity with the Ag85 components) remains to be established. The crystal structure of M.tuberculosis MPT51, determined to 1.7 A resolution, shows that MPT51, like the Ag85 components Ag85B and Ag85C2, folds as an alpha/beta hydrolase, but it does not contain any of the catalytic elements required for mycolyltransferase activity. Moreover, the absence of a recognizable alpha,alpha'-trehalose monomycolate-binding site and the failure to detect an active site suggest that the function of MPT51 is of a non-enzymatic nature and that MPT51 may in fact represent a new family of non-catalytic alpha/beta hydrolases. Previous experimental evidence and the structural similarity to some integrins and carbohydrate-binding proteins led to the hypothesis that MPT51 might have a role in host tissue attachment, whereby ligands may include the serum protein fibronectin and small sugars.
Collapse
Affiliation(s)
- Rosalind A Wilson
- School of Biosciences, The University of Birmingham, Edgabston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
157
|
Ewann F, Locht C, Supply P. Intracellular autoregulation of the Mycobacterium tuberculosis PrrA response regulator. Microbiology (Reading) 2004; 150:241-246. [PMID: 14702417 DOI: 10.1099/mic.0.26516-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component systems are major regulatory systems for bacterial adaptation to environmental changes. During the infectious cycle of Mycobacterium tuberculosis, adaptation to an intracellular environment is critical for multiplication and survival of the micro-organism within the host. The M. tuberculosis prrA gene, encoding the regulator of the two-component system PrrA-PrrB, has been shown to be induced upon macrophage phagocytosis and to be transiently required for the early stages of macrophage infection. In order to study the mechanisms of regulation of the PrrA-PrrB two-component system, PrrA and the cytoplasmic part of the PrrB histidine kinase were produced and purified as hexahistidine-tagged recombinant proteins. Electrophoretic mobility shift assays indicated that PrrA specifically binds to the promoter of its own operon, with increased affinity upon phosphorylation. Moreover, induction of fluorescence was observed after phagocytosis of a wild-type M. tuberculosis strain containing the gfp reporter gene under the control of the prrA-prrB promoter, while this induction was not seen in a prrA/B mutant strain containing the same construct. These results indicate that the early intracellular induction of prrA depends on the autoregulation of this two-component system.
Collapse
Affiliation(s)
- Fanny Ewann
- INSERM U447, Institut Pasteur de Lille, 1 rue du Professeur Calmette, F-59019 Lille Cedex, France
| | - Camille Locht
- INSERM U447, Institut Pasteur de Lille, 1 rue du Professeur Calmette, F-59019 Lille Cedex, France
| | - Philip Supply
- INSERM U447, Institut Pasteur de Lille, 1 rue du Professeur Calmette, F-59019 Lille Cedex, France
| |
Collapse
|
158
|
Kacem R, De Sousa-D'Auria C, Tropis M, Chami M, Gounon P, Leblon G, Houssin C, Daffé M. Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum. Microbiology (Reading) 2004; 150:73-84. [PMID: 14702399 DOI: 10.1099/mic.0.26583-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycoloyltransferases (Myts) play an essential role in the biogenesis of the cell envelope of members of the Corynebacterineae, a group of bacteria that includes the mycobacteria and corynebacteria. While the existence of several functional myt genes has been demonstrated in both mycobacteria and corynebacteria (cmyt), the disruption of any of these genes has at best generated cell-wall-defective but always viable strains. To investigate the importance of Myts on the physiology of members of the Corynebacterineae, a double mutant of Corynebacterium glutamicum was constructed by deleting cmytA and cmytB, and the consequences of the deletion on the viability of the mutant, the transfer of corynomycoloyl residues onto its cell-wall arabinogalactan and trehalose derivatives, and on its cell envelope ultrastructure were determined. The double mutant strain failed to grow at 34 degrees C and exhibited a growth defect and formed segmentation-defective cells at 30 degrees C. Biochemical analyses showed that the double mutant elaborated 60 % less cell-wall-bound corynomycolates and produced less crystalline surface layer proteins associated with the cell surface than the parent and cmytA-inactivated mutant strains. Freeze-fracture electron microscopy showed that the DeltacmytA DeltacmytB double mutant, unlike the wild-type and cmytA-inactivated single mutant strains, frequently exhibited an additional fracture plane that propagated within the plasma membrane and rarely exposed the S-layer protein. Ultra-thin sectioning of the double mutant cells showed that they were totally devoid of the outermost layer. Complementation of the double mutant with the wild-type cmytA or cmytB gene restored completely or partially this phenotype. The data indicate that Myts are important for the physiology of C. glutamicum and reinforce the concept that these enzymes would represent good targets for the discovery of new drugs against the pathogenic members of the Corynebacterineae.
Collapse
Affiliation(s)
- Raoudha Kacem
- Département des Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS and Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 route de Narbonne, 31077 Toulouse Cedex 04, France
| | - Célia De Sousa-D'Auria
- Laboratoire de Biotechnologie des Micro-organismes d'Intérêt Industriel, Institut de Génétique et Microbiologie, UMR 8621 du CNRS et de l'Université Paris-Sud, 91405 Orsay Cedex, France
| | - Marielle Tropis
- Département des Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS and Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 route de Narbonne, 31077 Toulouse Cedex 04, France
| | - Mohamed Chami
- M.E. Müller Institute (MSB) Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Pierre Gounon
- Institut National de la Santé et de la Recherche Médicale (INSERM U 452), UFR de Médecine, 28 Avenue de Valombrose, 06107 Nice Cedex 02, France
- Institut Pasteur, Service de Microscopie électronique, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Gérard Leblon
- Laboratoire de Biotechnologie des Micro-organismes d'Intérêt Industriel, Institut de Génétique et Microbiologie, UMR 8621 du CNRS et de l'Université Paris-Sud, 91405 Orsay Cedex, France
| | - Christine Houssin
- Laboratoire de Biotechnologie des Micro-organismes d'Intérêt Industriel, Institut de Génétique et Microbiologie, UMR 8621 du CNRS et de l'Université Paris-Sud, 91405 Orsay Cedex, France
| | - Mamadou Daffé
- Département des Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS and Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 route de Narbonne, 31077 Toulouse Cedex 04, France
| |
Collapse
|
159
|
Abstract
Molecular genetics is one of the most rational approaches to determine particular gene functions. Inactivation of putative virulence genes is a powerful tool not only for characterization of pathogenic bacteria. This review summarizes recently described strategies for DNA transfer and gene inactivation in mycobacteria.
Collapse
Affiliation(s)
- Christian Morsczeck
- Stiftung caesar, Center of Advanced European Studies And Research, Bonn, Germany.
| |
Collapse
|
160
|
Bayan N, Houssin C, Chami M, Leblon G. Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol 2003; 104:55-67. [PMID: 12948629 DOI: 10.1016/s0168-1656(03)00163-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Corynebacteria belong to a distinct Gram-positive group of bacteria including mycobacteria and nocardia, which are characterized by the presence of mycolic acids in their cell wall. These bacteria share the property of having an unusual cell envelope structural organization close to Gram-negative bacteria. In addition to the inner membrane, the cell envelope is constituted of a thick arabinogalactan-peptidoglycan polymer covalently linked to an outer lipid layer, which is mainly composed of mycolic acids and probably organized in an outer membrane like structure. In some species, the cell is covered by a crystalline surface layer composed of a single protein species, which is anchored in the outer membrane like barrier. An increasing number of reports have led to a better understanding of the structure of the cell wall of Corynebacterium glutamicum. These works included the characterization of several cell wall proteins like S-layer protein and porins, genetic and biochemical characterization of mycolic acids biosynthesis, ultrastructural description of the cell envelope, and chemical analysis of its constituents. All these data address new aspects regarding cell wall permeability towards macromolecules and amino acids but also open new opportunities for biotechnology applications.
Collapse
Affiliation(s)
- N Bayan
- Unité de Génétique Moléculaire, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
161
|
Gao LY, Laval F, Lawson EH, Groger RK, Woodruff A, Morisaki JH, Cox JS, Daffe M, Brown EJ. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 2003; 49:1547-63. [PMID: 12950920 DOI: 10.1046/j.1365-2958.2003.03667.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycobacterium tuberculosis infects one-third of the world's population and causes two million deaths annually. The unusually low permeability of its cell wall contributes to the ability of M. tuberculosis to grow within host macrophages, a property required for pathogenesis of infection. Mycobacterium marinum is an established model for discovering genes involved in mycobacterial infection. Mycobacterium marinum mutants with transposon insertions in the beta-ketoacyl-acyl carrier protein synthase B gene (kasB) grew poorly in macrophages, although growth in vitro was unaffected. Detailed analyses by thin-layer chromatography, nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, infrared spectroscopy, and chemical degradations showed that the kasB mutants synthesize mycolic acids that are 2-4 carbons shorter than wild type; the defect was localized to the proximal portion of the meromycolate chain. In addition, these mutants showed a significant (approximately 30%) reduction in the abundance of keto-mycolates, with a slight compensatory increase of both alpha- and methoxy-mycolates. Despite these small changes in mycolate length and composition, the kasB mutants exhibited strikingly altered cell wall permeability, leading to a marked increase in susceptibility to lipophilic antibiotics and the host antimicrobial molecules defensin and lysozyme. The abnormalities of the kasB mutants were fully complemented by expressing M. tuberculosis kasB, but not by the closely related gene kasA. These studies identify kasB as a novel target for therapeutic intervention in mycobacterial diseases.
Collapse
Affiliation(s)
- Lian-Yong Gao
- Program in Host-Pathogen Interactions, UCSF Campus Box 2140, 600 16th St, San Francisco, CA 94143-2140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
Mycobacteria protect themselves with an outer lipid bilayer, which is the thickest biological membrane hitherto known and has an exceptionally low permeability rendering mycobacteria intrinsically resistant to many antibiotics. Pore proteins spanning the outer membrane mediate the diffusion of hydrophilic nutrients. Mycobacterium tuberculosis possesses at least two porins in addition to the low activity channel protein OmpATb. OmpATb is essential for adaptation of M. tuberculosis to low pH and survival in macrophages and mice. The channel activity of OmpATb is likely to play a major role in the defence of M. tuberculosis against acidification within the phagosome of macrophages. MspA is the main porin of Mycobacterium smegmatis. It forms a tetrameric complex with a single central pore of 10 nm length and a cone-like structure. This structure differs clearly from that of the trimeric porins of Gram-negative bacteria, which form one 4 nm long pore per monomer. The 45-fold lower number of porins compared to Gram-negative bacteria and the exceptional length of the pores are two major determinants of the low permeability of the outer membrane of M. smegmatis for hydrophilic solutes. The importance of the synergism between slow transport through the porins and drug efflux or inactivation for the development of drugs against M. tuberculosis is discussed.
Collapse
Affiliation(s)
- Michael Niederweis
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
163
|
De Sousa-D'Auria C, Kacem R, Puech V, Tropis M, Leblon G, Houssin C, Daffé M. New insights into the biogenesis of the cell envelope of corynebacteria: identification and functional characterization of five new mycoloyltransferase genes in Corynebacterium glutamicum. FEMS Microbiol Lett 2003; 224:35-44. [PMID: 12855165 DOI: 10.1016/s0378-1097(03)00396-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mycolic acids, the major lipid constituents of Corynebacterineae, play an essential role in maintaining the integrity of the bacterial cell envelope. We have previously characterized a corynebacterial mycoloyltransferase (PS1) homologous in its N-terminal part to the three known mycobacterial mycoloyltransferases, the so-called fibronectin-binding proteins A, B and C. The genomes of Corynebacterium glutamicum (ATCC13032 and CGL2005) and Corynebacterium diphtheriae were explored for the occurrence of other putative corynebacterial mycoloyltransferase-encoding genes (cmyt). In addition to csp1 (renamed cmytA), five new cmyt genes (cmytB-F) were identified in the two strains of C. glutamicum and three cmyt genes in C. diphtheriae. In silico analysis showed that each of the putative cMyts contains the esterase domain, including the three key amino acids necessary for the catalysis. In C. glutamicum CGL2005 cmytE is a pseudogene. The four new cmyt genes were disrupted in this strain and overexpressed in the inactivated strains. Quantitative analyses of the mycolate content of all these mutants demonstrated that each of the new cMyt-defective strains, except cMytC, accumulated trehalose monocorynomycolate and exhibited a lower content of covalently bound corynomycolate than did the parent strain. For each mutant, the mycolate content was fully restored by complementation with the corresponding wild-type gene. Finally, complementation of the cmytA-inactivated mutant by the individual new cmyt genes established the existence of two classes of mycoloyltransferases in corynebacteria.
Collapse
Affiliation(s)
- Célia De Sousa-D'Auria
- Laboratoire de Biotechnologie des Microorganismes d'Intérêt Industriel, Institut de Génétique et Microbiologie, UMR 8621 du CNRS et de l'Université Paris-Sud, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
164
|
Takayama K, Hayes B, Vestling MM, Massey RJ. Transposon-5 mutagenesis transforms Corynebacterium matruchotii to synthesize novel hybrid fatty acids that functionally replace corynomycolic acid. Biochem J 2003; 373:465-74. [PMID: 12879902 PMCID: PMC1223520 DOI: 10.1042/bj20030248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enzymes within the biosynthetic pathway of mycolic acid (C(60)-C(90) a-alkyl,b-hydroxyl fatty acid) in Mycobacterium tuberculosis are attractive targets for developing new anti-tuberculosis drugs. We have turned to the simple model system of Corynebacterium matruchotii to study the terminal steps in the anabolic pathway of a C32 mycolic acid called corynomycolic acid. By transposon-5 mutagenesis, we transformed C. matruchotii into a mutant that is unable to synthesize corynomycolic acid. Instead, it synthesized two related series of novel fatty acids that were released by saponification from the cell wall fraction and from two chloroform/methanol-extractable glycolipids presumed to be analogues of trehalose mono- and di-corynomycolate. By chemical analyses and MS, we determined the general structure of the two series to be 2,4,6,8,10-penta-alkyl decanoic acid for the larger series (C(70)-C(77)) and 2,4,6,8-tetra-alkyl octanoic acid for the smaller series (C(52)-C(64)), both containing multiple keto groups, hydroxy groups and double bonds. The mutant was temperature-sensitive, aggregated extensively, grew very slowly relative to the wild type, and was resistant to the presence of lysozyme. We suggest that a regulatory protein that normally prevents the transfer of the condensation product back to b-ketoacyl synthase in the corynomycolate synthase system of the wild type was inactivated in the mutant. This will result in multiple Claisen-type condensation and the formation of two similar series of these complex hybrid fatty acids. A similar protein in M. tuberculosis would be an attractive target for new drug discovery.
Collapse
Affiliation(s)
- Kuni Takayama
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
165
|
Rousseau C, Sirakova TD, Dubey VS, Bordat Y, Kolattukudy PE, Gicquel B, Jackson M. Virulence attenuation of two Mas-like polyketide synthase mutants of Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1837-1847. [PMID: 12855735 DOI: 10.1099/mic.0.26278-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cell envelope of pathogenic mycobacteria is highly distinctive in that it contains a large number of structurally related very long multiple methyl-branched fatty acids. These complex molecules are thought to play important roles in cell envelope organization and virulence. The genetic and enzymic characterization of the polyketide synthase Mas, which is responsible for the synthesis of one such family of fatty acids (the mycocerosic acids), paved the way towards the identification of other enzymes involved in the synthesis of methyl-branched fatty acids in M. tuberculosis. In an effort to elucidate the origin of these complex fatty acids and their possible involvement in pathogenesis, the two mas-like polyketide genes pks5 and pks7 were disrupted in M. tuberculosis and the effects of their inactivation on fatty acid composition and virulence were analysed. While the disruption of pks7 resulted in a mutant deficient in the production of phthiocerol dimycocerosates, the cell envelope composition of the pks5 mutant was found to be identical to that of the wild-type parental strain M. tuberculosis H37Rv. Interestingly, both the pks5 and pks7 mutants displayed severe growth defects in mice.
Collapse
Affiliation(s)
- Cécile Rousseau
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Tatiana D Sirakova
- Biomolecular Science Center, Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32816-2360, USA
| | - Vinod S Dubey
- Biomolecular Science Center, Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32816-2360, USA
| | - Yann Bordat
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Pappachan E Kolattukudy
- Biomolecular Science Center, Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32816-2360, USA
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Mary Jackson
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
166
|
Ashour J, Hondalus MK. Phenotypic mutants of the intracellular actinomycete Rhodococcus equi created by in vivo Himar1 transposon mutagenesis. J Bacteriol 2003; 185:2644-52. [PMID: 12670990 PMCID: PMC152612 DOI: 10.1128/jb.185.8.2644-2652.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular opportunistic pathogen of immunocompromised people and a major cause of pneumonia in young horses. An effective live attenuated vaccine would be extremely useful in the prevention of R. equi disease in horses. Toward that end, we have developed an efficient transposon mutagenesis system that makes use of a Himar1 minitransposon delivered by a conditionally replicating plasmid for construction of R. equi mutants. We show that Himar1 transposition in R. equi is random and needs no apparent consensus sequence beyond the required TA dinucleotide. The diversity of the transposon library was demonstrated by the ease with which we were able to screen for auxotrophs and mutants with pigmentation and capsular phenotypes. One of the pigmentation mutants contained an insertion in a gene encoding phytoene desaturase, an enzyme of carotenoid biosynthesis, the pathway necessary for production of the characteristic salmon color of R. equi. We identified an auxotrophic mutant with a transposon insertion in the gene encoding a putative dual-functioning GTP cyclohydrolase II-3,4-dihydroxy-2-butanone-4-phosphate synthase, an enzyme essential for riboflavin biosynthesis. This mutant cannot grow in minimal medium in the absence of riboflavin supplementation. Experimental murine infection studies showed that, in contrast to wild-type R. equi, the riboflavin-requiring mutant is attenuated because it is unable to replicate in vivo. The mutagenesis methodology we have developed will allow the characterization of R. equi virulence mechanisms and the creation of other attenuated strains with vaccine potential.
Collapse
Affiliation(s)
- Joseph Ashour
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
167
|
Braunstein M, Bardarov SS, Jacobs WR. Genetic methods for deciphering virulence determinants of Mycobacterium tuberculosis. Methods Enzymol 2003; 358:67-99. [PMID: 12474379 DOI: 10.1016/s0076-6879(02)58081-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
168
|
D'Souza S, Rosseels V, Romano M, Tanghe A, Denis O, Jurion F, Castiglione N, Vanonckelen A, Palfliet K, Huygen K. Mapping of murine Th1 helper T-Cell epitopes of mycolyl transferases Ag85A, Ag85B, and Ag85C from Mycobacterium tuberculosis. Infect Immun 2003; 71:483-93. [PMID: 12496199 PMCID: PMC143283 DOI: 10.1128/iai.71.1.483-493.2003] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BALB/c (H-2(d)) and C57BL/6 (H-2(b)) mice were infected intravenously with Mycobacterium tuberculosis H37Rv or vaccinated intramuscularly with plasmid DNA encoding each of the three mycolyl transferases Ag85A, Ag85B, and Ag85C from M. tuberculosis. Th1-type spleen cell cytokine secretion of interleukin-2 (IL-2) and gamma interferon (IFN-gamma) was analyzed in response to purified Ag85 components and synthetic overlapping peptides covering the three mature sequences. Tuberculosis-infected C57BL/6 mice reacted strongly to some peptides from Ag85A and Ag85B but not from Ag85C, whereas tuberculosis-infected BALB/c mice reacted only to peptides from Ag85A. In contrast, spleen cells from both mouse strains produced elevated levels of IL-2 and IFN-gamma following vaccination with Ag85A, Ag85B, and Ag85C DNA in response to peptides of the three Ag85 proteins, and the epitope repertoire was broader than in infected mice. Despite pronounced sequence homology, a number of immunodominant regions contained component specific epitopes. Thus, BALB/c mice vaccinated with all three Ag85 genes reacted against the same amino acid region, 101 to 120, that was also immunodominant for Ag85A in M. bovis BCG-vaccinated and tuberculosis-infected H-2(d) haplotype mice, but responses were completely component specific. In C57BL/6 mice, a cross-reactive T-cell response was detected against two carboxy-terminal peptides spanning amino acids 241 to 260 and 261 to 280 of Ag85A and Ag85B. These regions were not recognized at all in C57BL/6 mice vaccinated with Ag85C DNA. Our results underline the need for comparative analysis of all three Ag85 components in future vaccination studies.
Collapse
Affiliation(s)
- S D'Souza
- Mycobacterial Immunology, Pasteur Institute of Brussels, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Harth G, Horwitz MA, Tabatadze D, Zamecnik PC. Targeting the Mycobacterium tuberculosis 30/32-kDa mycolyl transferase complex as a therapeutic strategy against tuberculosis: Proof of principle by using antisense technology. Proc Natl Acad Sci U S A 2002; 99:15614-9. [PMID: 12427974 PMCID: PMC137765 DOI: 10.1073/pnas.242612299] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have investigated the effect of sequence-specific antisense phosphorothioate-modified oligodeoxyribonucleotides (PS-ODNs) targeting different regions of each of the 3032-kDa protein complex (antigen 85 complex) encoding genes on the multiplication of Mycobacterium tuberculosis. Single PS-ODNs to one of the three mycolyl transferase transcripts, added either once or weekly over the 6-wk observation period, inhibited bacterial growth by up to 1 log unit. A combination of three PS-ODNs specifically targeting all three transcripts inhibited bacterial growth by approximately 2 logs; the addition of these PS-ODNs weekly for 6 wk was somewhat more effective than a one-time addition. Targeting the 5' end of the transcripts was more inhibitory than targeting internal sites; the most effective PS-ODNs and target sites had minimal or no secondary structure. The effect of the PS-ODNs was specific, as mismatched PS-ODNs had little or no inhibitory activity. The antisense PS-ODNs, which were highly stable in M. tuberculosis cultures, specifically blocked protein expression by their gene target. PS-ODNs targeting the transcript of a related 24-kDa protein (mpt51) had little inhibitory effect by themselves and did not increase the effect of PS-ODNs against the three members of the 3032-kDa protein complex. The addition of PS-ODNs against the transcripts of glutamine synthetase I (glnA1) and alanine racemase (alr) modestly increased the inhibitory efficacy of the 3032-kDa protein complex-specific PS-ODNs to approximately 2.5 logs. This study shows that the three mycolyl transferases are highly promising targets for antituberculous therapy by using antisense or other antimicrobial technologies.
Collapse
MESH Headings
- Acyltransferases/biosynthesis
- Acyltransferases/drug effects
- Acyltransferases/genetics
- Acyltransferases/physiology
- Alanine Racemase/drug effects
- Alanine Racemase/genetics
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/drug effects
- Antigens, Bacterial/genetics
- Antigens, Bacterial/physiology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/drug effects
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Carrier Proteins/biosynthesis
- Carrier Proteins/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cell Division/drug effects
- Drug Design
- Drug Evaluation, Preclinical
- Gene Expression Regulation, Bacterial/drug effects
- Glutamate-Ammonia Ligase/drug effects
- Glutamate-Ammonia Ligase/genetics
- Multienzyme Complexes/drug effects
- Multienzyme Complexes/genetics
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/enzymology
- Mycobacterium tuberculosis/growth & development
- Oligodeoxyribonucleotides, Antisense/chemistry
- Oligodeoxyribonucleotides, Antisense/pharmacology
- RNA, Bacterial/antagonists & inhibitors
- RNA, Messenger/antagonists & inhibitors
- Thionucleotides/chemistry
- Thionucleotides/pharmacology
- Time Factors
- Transcription, Genetic/drug effects
- Tuberculosis/drug therapy
Collapse
Affiliation(s)
- Günter Harth
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles 90095, USA
| | | | | | | |
Collapse
|
170
|
Etienne G, Villeneuve C, Billman-Jacobe H, Astarie-Dequeker C, Dupont MA, Daffé M. The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3089-3100. [PMID: 12368442 DOI: 10.1099/00221287-148-10-3089] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glycopeptidolipids (GPLs) are a class of species- or type-specific mycobacterial lipids and major constituents of the cell envelopes of many non-tuberculous mycobacteria. To determine the function of GPLs in the physiology of these bacteria, a mutant of Mycobacterium smegmatis in which the gene encoding a mycobacterial nonribosomal peptide synthetase has been inactivated by transposon mutagenesis was analysed. Labelling experiments indicated that half of the bacterial GPLs were located on the cell surface and represented 85% of the surface-exposed lipids of the parent strain whereas the mutant was defective in the production of the GPLs. Compared to the parent smooth morphotype strain, the GPL-deficient mutant strain exhibited a rough colony morphology, an increase of the cell hydrophobicity and formed huge aggregates. As a consequence, the mutant cells were no longer able to bind ruthenium red, as observed by transmission electron microscopy. The altered surface properties of the mutant cells also affected the phagocytosis of individual bacilli by human monocyte-derived macrophages since mutant cells were internalized more rapidly than cells from the parent strain. Nevertheless, no specific release of surface constituents into the culture broth of the mutant was observed, indicating that the cell surface is composed of substances other than GPLs and that these are essential for maintaining the architecture of the outermost layer of the cell envelope. Importantly, the absence of these major extractable lipids of M. smegmatis from the mutant strain has a profound effect on the uptake of the hydrophobic chenodeoxycholate by cells, indicating that GPLs are involved in the cell wall permeability barrier of M. smegmatis. Altogether, these data showed that, in addition to being distinctive markers of numerous mycobacterial species, GPLs play a role in the bacterial phenotype, surface properties and cell wall permeability.
Collapse
Affiliation(s)
- Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche du Centre de National de Recherche Scientifique et de l'Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077 Toulouse cedex 04, France1
| | - Christelle Villeneuve
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche du Centre de National de Recherche Scientifique et de l'Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077 Toulouse cedex 04, France1
| | - Helen Billman-Jacobe
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia2
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche du Centre de National de Recherche Scientifique et de l'Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077 Toulouse cedex 04, France1
| | - Marie-Ange Dupont
- Institut d'Exploration Fonctionnelle des Génomes (IFR 109), 118 route de Narbonne, 31062 Toulouse cedex, France3
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche du Centre de National de Recherche Scientifique et de l'Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077 Toulouse cedex 04, France1
| |
Collapse
|
171
|
Kremer L, Maughan WN, Wilson RA, Dover LG, Besra GS. The M. tuberculosis antigen 85 complex and mycolyltransferase activity. Lett Appl Microbiol 2002; 34:233-7. [PMID: 11940150 DOI: 10.1046/j.1472-765x.2002.01091.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The antigen 85 complex (Ag85) from Mycobacterium tuberculosis consists of three abundantly secreted proteins (FbpA, FbpB and FbpC2) which play a key role in the pathogenesis of tuberculosis and also exhibit cell wall mycolyltransferase activity. A related protein with similarity to the Ag85 complex was recently annotated in the M. tuberculosis genome as FbpC1. An investigation was carried out to determine whether FbpC1 may also possess mycolyltransferase activity, a characteristic feature of the Ag85 complex. METHODS AND RESULTS Heterologous expression of FbpA, FbpC1 and FbpC2 was performed in Escherichia coli. Recombinant proteins were purified under non-denaturating conditions and used in an in vitro mycolyltransferase assay. CONCLUSIONS In contrast to FbpA and FbpC2, recombinant FbpC1 did not possess in vitro mycolyltransferase activity and was not recognized by two monoclonal antibodies to the native Ag85. SIGNIFICANCE AND IMPACT OF THE STUDY Mycolyltransferase activity is restricted to FbpA, FbpbB and FbpC2 only; the actual function of FbpC1 remains to be established.
Collapse
Affiliation(s)
- L Kremer
- Department of Microbiology & Immunology, University of Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
172
|
Kremer LS, Besra GS. Current status and future development of antitubercular chemotherapy. Expert Opin Investig Drugs 2002; 11:1033-49. [PMID: 12150700 DOI: 10.1517/13543784.11.8.1033] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tuberculosis (TB), which kills more people than any other infectious disease, was declared a global emergency by the World Health Organization in 1993. The emergence of new Mycobacterium tuberculosis strains that are resistant to some or all current antitubercular drugs seriously hampers the control of the disease. Up to 50 million people may be infected with drug-resistant TB, with resistance being caused by inconsistent or partial treatment when patients do not comply with long-term chemotherapy. Resistance is often a corollary to HIV infection. Besides being more fatal, drug-resistant TB is more difficult and more expensive to treat. In addition to this human cost, TB also represents a significant economic burden for developing countries. Therefore, new approaches to the treatment of TB are needed. During the last few years, important efforts have been made in order to elucidate the molecular mechanism of action of antitubercular drugs and understand the genetic basis of acquired drug resistance in M. tuberculosis. The identification of novel targets requires the characterisation of biochemical pathways specific to mycobacteria. Many unique metabolic processes occur during the biosynthesis of cell wall components, including arabinogalactan and mycolic acids. In this review, the mode of action of first- and second-line agents, as well as the potentiality of some promising drugs that are still at an early stage of development will be described. Finally, some of the attractive targets offered by the mycobacterial cell wall for the rational design of new antitubercular drugs for a future and more effective control of the disease will be examined.
Collapse
Affiliation(s)
- Laurent S Kremer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
173
|
Raynaud C, Guilhot C, Rauzier J, Bordat Y, Pelicic V, Manganelli R, Smith I, Gicquel B, Jackson M. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol Microbiol 2002; 45:203-17. [PMID: 12100560 DOI: 10.1046/j.1365-2958.2002.03009.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipases C play a role in the pathogenesis of several bacteria. Mycobacterium tuberculosis, the causative agent of tuberculosis, possesses four genes encoding putative phospholipases C, plcA, plcB, plcC and plcD. However, the contribution of these genes to virulence is unknown. We constructed four single mutants of M. tuberculosis each inactivated in one of the plc genes, a triple plcABC mutant and a quadruple plcABCD mutant. The mutants all exhibited a lower phospholipase C activity than the wild-type parent strain, demonstrating that the four plc genes encode a functional phospholipase C in M. tuberculosis. Functional complementation of the Delta plcABC triple mutant with the individual plcA, plcB and plcC genes restored in each case about 20% of the total Plc activity detected in the parental strain, suggesting that the three enzymes contribute equally to the overall Plc activity of M. tuberculosis. RT-PCR analysis of the plc genes transcripts showed that the expression of these genes is strongly upregulated during the first 24 h of macrophage infection. Moreover, the growth kinetics of the triple and quadruple mutants in a mouse model of infection revealed that both mutants are attenuated in the late phase of the infection emphasizing the importance of phospholipases C in the virulence of the tubercle bacillus.
Collapse
Affiliation(s)
- Catherine Raynaud
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Watanabe M, Aoyagi Y, Mitome H, Fujita T, Naoki H, Ridell M, Minnikin DE. Location of functional groups in mycobacterial meromycolate chains; the recognition of new structural principles in mycolic acids. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1881-1902. [PMID: 12055308 DOI: 10.1099/00221287-148-6-1881] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterial alpha-, methoxy- and keto-mycolic acid methyl esters were separated by argentation chromatography into mycolates with no double bond, with one trans double bond or with one cis double bond. Meromycolic acids were prepared from each methyl mycolate fraction by pyrolysis, followed by silver oxide oxidation, and analysed by high-energy collision-induced dissociation/fast atom bombardment MS to reveal the exact locations of the functional groups within the meromycolate chain. The locations of cis and trans double bonds, cis and trans cyclopropane rings, methoxy and keto groups, and methyl branches within the meromycolate chain were determined from their characteristic fragment ion profiles, and the structures of the meromycolic acids, including those with three functional groups extracted from Mycobacterium tuberculosis H37Ra, Mycobacterium bovis BCG and Mycobacterium microti, were established. Meromycolic acids with one cis double bond were structurally closely related to those with one cis cyclopropane ring, whereas the meromycolic acids with one trans cyclopropane ring were closely related to the corresponding meromycolic acids with one cis cyclopropane ring. A close relationship between methoxy- and keto-meromycolic acids was also implied. The relationship between the meromycolic acids with a trans double bond and the other meromycolic acids was not clearly revealed, and they did not appear to be immediate substrates for trans cyclopropanation.
Collapse
Affiliation(s)
- Motoko Watanabe
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo, 192-0392 Japan1
| | - Yutaka Aoyagi
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo, 192-0392 Japan1
| | - Hidemichi Mitome
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo, 192-0392 Japan1
| | - Tsuyoshi Fujita
- Suntory Institute for Bioorganic Research, Wakayamadai, Shimamotocho, Mishima-gun, Osaka, 618-8503 Japan2
| | - Hideo Naoki
- Suntory Institute for Bioorganic Research, Wakayamadai, Shimamotocho, Mishima-gun, Osaka, 618-8503 Japan2
| | - Malin Ridell
- Department of Medical Microbiology, University of Gothenburg, Guldhedsgatan 10, S-41346 Gothenburg, Sweden3
| | - David E Minnikin
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK4
| |
Collapse
|
175
|
Lambert P. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol 2002. [DOI: 10.1046/j.1365-2672.92.5s1.7.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
176
|
Puech V, Guilhot C, Perez E, Tropis M, Armitige LY, Gicquel B, Daffé M. Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis. Mol Microbiol 2002; 44:1109-22. [PMID: 12010501 DOI: 10.1046/j.1365-2958.2002.02953.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium tuberculosis produces a series of major secreted proteins, the fibronectin-binding proteins (Fbps), also known as the antigen 85 complex, that are believed to play an essential role in the pathogenesis of tuberculosis through their mycoloyltransferase activity required for maintaining the integrity of the bacterial cell envelope. Four different fbp genes are found in the genome of M. tuberculosis, but the reason for the existence of these Fbps sharing the same substrate specificity in vitro in mycobacteria is unknown. We have shown previously that, in the heterologous host, Corynebacterium glutamicum, FbpA, FbpB and FbpC can all add mycoloyl residues to the cell wall arabinogalactan and that, in M. tuberculosis, the cell wall mycoloylation decreases by 40% when fbpC is knocked out. To investigate whether the remaining 60% mycoloylation came from the activity of FbpA and/or FbpB, fbpA- and fbpB-inactivated mutant strains were biochemically characterized and compared with the previously studied fbpC-disrupted mutant. Unexpectedly, both mutants produced normally mycoloylated cell walls. Overproduction of FbpA, FbpB or FbpC, but not FbpD, in the fbpC-inactivated mutant strain of M. tuberculosis restored both the cell wall-linked mycolate defect and the outer cell envelope permeability barrier property. These results are consistent with all three enzymes being involved in cell wall mycoloylation and FbpC playing a more critical role than the others or, alternatively, FbpC is able to compensate for FbpA and FbpB in ways that these enzymes cannot compensate for FbpC, pointing to a partial redundancy of Fbps. In sharp contrast, FbpD does not appear to be an active mycoloyltransferase enzyme, as it cannot complement the fbpC-inactivated mutant. Most importantly, application of Smith degradation to the cell walls of transformants demonstrated that the multiple Fbp enzymes are redundant rather than specific for the various arabinogalactan mycoloylation regions. Neither FbpA nor FbpB attaches mycoloyl residues to specific sites but, like FbpC, each enzyme transfers mycoloyl residues onto the four sites present in the arabinogalactan non-reducing end hexaarabinosides.
Collapse
Affiliation(s)
- Virginie Puech
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche du Centre de National de Recherche Scientifique et de l'Université Paul Sabatier (UMR 5089), 205, Route de Narbonne, 31077 Toulouse cedex 04, France
| | | | | | | | | | | | | |
Collapse
|
177
|
Kremer L, Gurcha SS, Bifani P, Hitchen PG, Baulard A, Morris HR, Dell A, Brennan PJ, Besra GS. Characterization of a putative alpha-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochem J 2002; 363:437-47. [PMID: 11964144 PMCID: PMC1222496 DOI: 10.1042/0264-6021:3630437] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphatidyl-myo-inositol mannosides (PIMs), lipomannan (LM) and lipoarabinomannan (LAM) are an important class of bacterial factors termed modulins that are found in tuberculosis and leprosy. Although their structures are well established, little is known with respect to the molecular aspects of the biosynthetic machinery involved in the synthesis of these glycolipids. On the basis of sequence similarity to other glycosyltransferases and our previous studies defining an alpha-mannosyltransferase from Mycobacterium tuberculosis, named PimB [Schaeffer, Khoo, Besra, Chatterjee, Brennan, Belisle and Inamine (1999) J. Biol. Chem. 274, 31625-31631], which catalysed the formation of triacyl (Ac(3))-PIM(2) (i.e. the dimannoside), we have identified a related gene from M. tuberculosis CDC1551, now designated pimC. The use of a cell-free assay containing GDP-[(14)C]mannose, amphomycin and membranes from Myobacterium smegmatis overexpressing PimC led to the synthesis of a new alkali-labile PIM product. Fast-atom-bombardment MS established the identity of the new enzymically synthesized product as Ac(3)PIM(3) (i.e. the trimannoside). The results indicate that pimC encodes an alpha-mannosyltransferase involved in Ac(3)PIM(3) biosynthesis. However, inactivation of pimC in Myobacterium bovis Bacille Calmette-Guérin (BCG) did not affect the production of higher PIMs, LM and LAM when compared with wild-type M. bovis BCG, suggesting the existence of redundant gene(s) or an alternate pathway that may compensate for this PimC deficiency. Further analyses, which compared the distribution of pimC in a panel of M. tuberculosis strains, revealed that pimC was present in only 22% of the clinical isolates examined.
Collapse
Affiliation(s)
- Laurent Kremer
- Department of Microbiology and Immunology, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Ewann F, Jackson M, Pethe K, Cooper A, Mielcarek N, Ensergueix D, Gicquel B, Locht C, Supply P. Transient requirement of the PrrA-PrrB two-component system for early intracellular multiplication of Mycobacterium tuberculosis. Infect Immun 2002; 70:2256-63. [PMID: 11953357 PMCID: PMC127906 DOI: 10.1128/iai.70.5.2256-2263.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptive regulation of gene expression in response to environmental changes is a general property of bacterial pathogens. By screening an ordered transposon mutagenesis library of Mycobacterium tuberculosis, we have identified three mutants containing a transposon in the coding sequence or in the 5' regions of genes coding for two-component signal transduction systems (trcS, regX3, prrA). The intracellular multiplication capacity of the three mutants was investigated in mouse bone marrow-derived macrophages. Only the prrA mutant showed a defect in intracellular growth during the early phase of infection, and this defect was fully reverted when the mutant was complemented with prrA-prrB wild-type copies. The mutant phenotype was transient, as after 1 week this strain recovered full growth capacity to reach levels similar to that of the wild type at day 9. Moreover, a transient induction of prrA promoter activity was observed during the initial phase of macrophage infection, as shown by a prrA promoter-gfp fusion in M. bovis BCG infecting the mouse macrophages. The concordant transience of the prrA mutant phenotype and prrA promoter activity indicates that the PrrA-PrrB two-component system is involved in the environmental adaptation of M. tuberculosis, specifically in an early phase of the intracellular growth, and that, similar to other facultative intracellular parasites, M. tuberculosis can use genes temporarily required at different stages in the course of macrophage infection.
Collapse
Affiliation(s)
- Fanny Ewann
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, F-59019 Lille Cedex
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Korycka-Machała M, Ziółkowski A, Rumijowska-Galewicz A, Lisowska K, Sedlaczek L. Polycations increase the permeability of Mycobacterium vaccae cell envelopes to hydrophobic compounds. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2769-2781. [PMID: 11577156 DOI: 10.1099/00221287-147-10-2769] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polycations [protamine, polymyxin B nonapeptide (PMBN) and polyethyleneimine (PEI)] have been shown to increase the cell wall permeability of Mycobacterium vaccae to highly hydrophobic compounds, as manifested in enhanced intracellular bioconversion of beta-sitosterol to 4-androsten-3,17-dione (AD) and 1,4-androstadien-3,17-dione (ADD), and cell sensitization to erythromycin and rifampicin. The quantity of AD(D) formed per biomass unit was twice as high in the presence of PMBN and PEI, and three times higher with protamine. The sensitization factor, i.e. the MIC(50) ratio of the control bacteria to those exposed to polycations, ranged from 4 to 16, depending on the polycation/antibiotic combination. Non-covalently bound free lipids were extracted from the control and polycation-treated cells and fractionated with the use of chloroform, acetone and methanol. Chloroform- and acetone-eluted fractions (mainly neutral lipids and glycolipids, respectively) showed significant polycation-induced alterations in their quantitative and qualitative composition. The fatty acid profile of neutral lipids was reduced in comparison to control, whereas acetone-derived lipids were characterized by a much higher level of octadecenoic acid (C(18:1)) and a considerably lower content of docosanoic acid (C(22:0)), the marker compound of mycolate-containing glycolipids. Methanol-eluted fractions remained unaltered. Cell-wall-linked mycolates obtained from delipidated cells were apparently unaffected by the action of polycations, as judged from the TLC pattern of mycolic acid subclasses, the mean weight of mycolate preparations and the C(22:0) acid content in the mycolates, determined by GC/MS and pyrolysis GC. The results suggest the involvement of the components of non-covalently bound lipids in the outer layer in the M. vaccae permeability barrier.
Collapse
Affiliation(s)
| | - Andrzej Ziółkowski
- Centre for Microbiology & Virology, Polish Academy of Sciences, 93-232 Łódź, Lodowa 106, Poland1
| | - Anna Rumijowska-Galewicz
- Centre for Microbiology & Virology, Polish Academy of Sciences, 93-232 Łódź, Lodowa 106, Poland1
| | - Katarzyna Lisowska
- University of Łódź, Institute of Microbiology and Immunology, Department of Industrial Microbiology, 90-237 Łódź, Banacha 12/16, Poland2
| | - Leon Sedlaczek
- Centre for Microbiology & Virology, Polish Academy of Sciences, 93-232 Łódź, Lodowa 106, Poland1
| |
Collapse
|
180
|
Abstract
Virulence factors of Mycobacterium bovis are the special properties that enable it to infect, survive, multiply and cause disease in an animal host. An understanding of these factors will lead to new strategies including an effective vaccine to control bovine tuberculosis. A few factors have already been identified and two broadly different approaches to discover other virulence factors are now being used. In the first approach, libraries of random M. bovis mutants are produced, the likely attenuated mutants are identified using a screening technique and the interrupted genes in selected mutants are identified. In the second approach, genes encoding putative virulence factors are selected by a range of different methods and then inactivated, usually by allelic exchange, to produce likely attenuated mutants of M. bovis. In both approaches, loss of virulence by a mutant must be determined in an animal model. Subsequently, the mutant must be complemented back to virulence with an active form of the identified gene in order to demonstrate that loss of virulence was not due to polar effects of the mutation on nearby genes. It is almost certain that most of the virulence factors of M. bovis are the same as those of the classical human tuberculosis organism, Mycobacterium tuberculosis, as both organisms can cause identical clinical disease in humans and are genetically very similar. Many putative virulence genes are now being investigated and only the inherent slowness with which mycobacterial work proceeds, delays the inevitable arrival of an exciting new phase in the understanding of mycobacterial disease.
Collapse
Affiliation(s)
- D M Collins
- AgResearch, Wallaceville Animal Research Centre, Upper Hutt, New Zealand.
| |
Collapse
|
181
|
Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA, Gicquel B, Daffe M, Guilhot C. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 2001; 276:19845-54. [PMID: 11279114 DOI: 10.1074/jbc.m100662200] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the few characterized genes that have products involved in the pathogenicity of Mycobacterium tuberculosis, the etiological agent of tuberculosis, are those of the phthiocerol dimycocerosate (DIM) locus. Genes involved in biosynthesis of these compounds are grouped on a 50-kilobase fragment of the chromosome containing 13 genes. Analysis of mRNA produced from this 50-kilobase fragment in the wild type strain showed that this region is subdivided into three transcriptional units. Biochemical characterization of five mutants with transposon insertions in this region demonstrated that (i) the complete DIM molecules are synthesized in the cytoplasm of M. tuberculosis before being translocated into the cell wall; (ii) the genes fadD26 and fadD28 are directly involved in their biosynthesis; and (iii) both the drrC and mmpL7 genes are necessary for the proper localization of DIMs. Insertional mutants unable to synthesize or translocate DIMs exhibit higher cell wall permeability and are more sensitive to detergent than the wild type strain, indicating for the first time that, in addition to being important virulence factors, extractable lipids of M. tuberculosis play a role in the cell envelope architecture and permeability. This function may represent one of the molecular mechanisms by which DIMs are involved in the virulence of M. tuberculosis.
Collapse
Affiliation(s)
- L R Camacho
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr. Roux, 75725 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Tanghe A, D'Souza S, Rosseels V, Denis O, Ottenhoff TH, Dalemans W, Wheeler C, Huygen K. Improved immunogenicity and protective efficacy of a tuberculosis DNA vaccine encoding Ag85 by protein boosting. Infect Immun 2001; 69:3041-7. [PMID: 11292722 PMCID: PMC98258 DOI: 10.1128/iai.69.5.3041-3047.2001] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C57BL/6 mice were vaccinated with plasmid DNA encoding Ag85 from Mycobacterium tuberculosis, with Ag85 protein in adjuvant, or with a combined DNA prime-protein boost regimen. While DNA immunization, as previously described, induced robust Th1-type cytokine responses, protein-in-adjuvant vaccination elicited very poor cytokine responses, which were 10-fold lower than those observed with DNA immunization alone. Injection of Ag85 DNA-primed mice with 30 to 100 microg of purified Ag85 protein in adjuvant increased the interleukin-2 and gamma interferon (IFN-gamma) response in spleen two- to fourfold. Further, intracellular cytokine analysis by flow cytometry also showed an increase in IFN-gamma-producing CD4(+) T cells in DNA-primed-protein-boosted animals, compared to those that received only the DNA vaccination. Moreover, these responses appeared to be better sustained over time. Antibodies were readily produced by all three methods of immunization but were exclusively of the immunoglobulin G1 (IgG1) isotype following protein immunization in adjuvant and preferentially of the IgG2a isotype following DNA and DNA prime-protein boost vaccination. Finally, protein boosting increased the protective efficacy of the DNA vaccine against an intravenous M. tuberculosis H37Rv challenge infection, as measured by CFU or relative light unit counts in lungs 1 and 2 months after infection. The capacity of exogenously given protein to boost the DNA-primed vaccination effect underlines the dominant role of Th1-type CD4(+) helper T cells in mediating protection.
Collapse
Affiliation(s)
- A Tanghe
- Pasteur Institute of Brussels, Mycobacterial Immunology, B1180 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Puech V, Chami M, Lemassu A, Lanéelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffé M. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1365-1382. [PMID: 11320139 DOI: 10.1099/00221287-147-5-1365] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the recent success of the heterologous expression of mycobacterial antigens in corynebacteria, in addition to the importance of these bacteria in biotechnology and medicine, a better understanding of the structure of their cell envelopes was needed. A combination of molecular compositional analysis, ultrastructural appearance and freeze-etch electron microscopy study was used to arrive at a chemical model, unique to corynebacteria but consistent with their phylogenetic relatedness to mycobacteria and other members of the distinctive suprageneric actinomycete taxon. Transmission electron microscopy and chemical analyses showed that the cell envelopes of the representative strains of corynebacteria examined consisted of (i) an outer layer composed of polysaccharides (primarily a high-molecular-mass glucan and arabinomannans), proteins, which include the mycoloyltransferase PS1, and lipids; (ii) a cell wall glycan core of peptidoglycan-arabinogalactan which may contain other sugar residues and was usually esterified by corynomycolic acids; and (iii) a typical plasma membrane bilayer. Freeze-etch electron microscopy showed that most corynomycolate-containing strains exhibited a main fracture plane in their cell wall and contained low-molecular-mass porins, while the fracture occurred within the plasma membrane of strains devoid of both corynomycolate and pore-forming proteins. Importantly, in most strains, the amount of cell wall-linked corynomycolates was not sufficient to cover the bacterial surface; interestingly, the occurrence of a cell wall fracture plane correlated with the amount of non-covalently bound lipids of the strains. Furthermore, these lipids were shown to spontaneously form liposomes, indicating that they may participate in a bilayer structure. Altogether, the data suggested that the cell wall permeability barrier in corynebacteria involved both covalently linked corynomycolates and non-covalently bound lipids of their cell envelopes.
Collapse
Affiliation(s)
- Virginie Puech
- Institut de Pharmacologie et Biologie Structurale, Centre National de la Recherche Scientifique/Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077, Toulouse Cedex 04, France1
| | - Mohamed Chami
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France5
- Laboratoire des Biomembranes, UMR 8619 CNRS-Université Paris-Sud, 91405 Orsay Cedex, France2
| | - Anne Lemassu
- Institut de Pharmacologie et Biologie Structurale, Centre National de la Recherche Scientifique/Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077, Toulouse Cedex 04, France1
| | - Marie-Antoinette Lanéelle
- Institut de Pharmacologie et Biologie Structurale, Centre National de la Recherche Scientifique/Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077, Toulouse Cedex 04, France1
| | - Bettina Schiffler
- Lehrstuhl für Biotechnologie, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany3
| | - Pierre Gounon
- Institut Pasteur, Service de Microscopie électronique, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France4
| | - Nicolas Bayan
- Laboratoire des Biomembranes, UMR 8619 CNRS-Université Paris-Sud, 91405 Orsay Cedex, France2
| | - Roland Benz
- Lehrstuhl für Biotechnologie, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany3
| | - Mamadou Daffé
- Institut de Pharmacologie et Biologie Structurale, Centre National de la Recherche Scientifique/Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077, Toulouse Cedex 04, France1
| |
Collapse
|
184
|
Stahl C, Kubetzko S, Kaps I, Seeber S, Engelhardt H, Niederweis M. MspA provides the main hydrophilic pathway through the cell wall of Mycobacterium smegmatis. Mol Microbiol 2001; 40:451-64. [PMID: 11309127 DOI: 10.1046/j.1365-2958.2001.02394.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MspA is an extremely stable, oligomeric porin from Mycobacterium smegmatis that forms water-filled channels in vitro. Immunogold electron microscopy and an enzyme-linked immunosorbent assay demonstrated that MspA is localized in the cell wall. An mspA deletion mutant did not synthesize detectable amounts of mspA mRNA, as revealed by amplification using mspA-specific primers and reverse-transcribed RNA. Detergent extracts of the DeltamspA mutant exhibited a significantly lower porin activity in lipid bilayer experiments and contained about fourfold less porin than extracts of wild-type M. smegmatis. The chromosome of M. smegmatis encodes three proteins very similar to MspA. Sequence analysis of the purified porin revealed that mspB or mspC or both genes are expressed in the DeltamspA mutant. The properties of this porin, such as single channel conductance, extreme stability against denaturation, molecular mass and composition of 20 kDa subunits, are identical to those of MspA. Deletion of mspA reduced the cell wall permeability towards cephaloridine and glucose nine- and fourfold respectively. These results show that MspA is the main general diffusion pathway for hydrophilic molecules in M. smegmatis and was only partially replaced by fewer porins in the cell wall of the DeltamspA mutant [corrected] This is the first experimental evidence that porins are the major determinants of the exceptionally low permeability of mycobacteria to hydrophilic molecules.
Collapse
Affiliation(s)
- C Stahl
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
185
|
Anderson DH, Harth G, Horwitz MA, Eisenberg D. An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (Antigen 85B), a mycolyl transferase. J Mol Biol 2001; 307:671-81. [PMID: 11254389 DOI: 10.1006/jmbi.2001.4461] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Mycobacterium tuberculosis 30 kDa major secretory protein (antigen 85B) is the most abundant protein exported by M. tuberculosis, as well as a potent immunoprotective antigen and a leading drug target. A mycolyl transferase of 285 residues, it is closely related to two other mycolyl transferases, each of molecular mass 32 kDa: antigen 85A and antigen 85C. All three catalyze transfer of the fatty acid mycolate from one trehalose monomycolate to another, resulting in trehalose dimycolate and free trehalose, thus helping to build the bacterial cell wall. We have determined two crystal structures of M. tuberculosis antigen 85B (ag85B), initially by molecular replacement using antigen 85C as a probe. The apo ag85B model is refined against 1.8 A data, to an R-factor of 0.196 (R(free) is 0.276), and includes all residues except the N-terminal Phe. The active site immobilizes a molecule of the cryoprotectant 2-methyl-2,4-pentanediol. Crystal growth with addition of trehalose resulted in a second ag85B crystal structure (1.9 A resolution; R-factor is 0.195; R(free) is 0.285). Trehalose binds in two sites at opposite ends of the active-site cleft. In our proposed mechanism model, the trehalose at the active site Ser126 represents the trehalose liberated by temporary esterification of Ser126, while the other trehalose represents the incoming trehalose monomycolate just prior to swinging over to the first trehalose site to displace the mycolate from its serine ester. Our proposed interfacial mechanism minimizes aqueous exposure of the apolar mycolates. Based on the trehalose-bound structure, we suggest a new class of antituberculous drugs, made by connecting two trehalose molecules by an amphipathic linker.
Collapse
Affiliation(s)
- D H Anderson
- UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, University of California, Los Angeles, CA 90095-1570, USA.
| | | | | | | |
Collapse
|
186
|
Eggeling L, Sahm H. The cell wall barrier of Corynebacterium glutamicum and amino acid efflux. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80251-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
187
|
EGGELING LOTHAR, SAHM HERMANN. The Cell Wall Barrier of Corynebacterium glutamicum and Amino Acid Efflux. J Biosci Bioeng 2001. [DOI: 10.1263/jbb.92.201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
188
|
Sacchettini JC, Ronning DR. The mycobacterial antigens 85 complex--from structure to function: response. Trends Microbiol 2000; 8:441. [PMID: 11203233 DOI: 10.1016/s0966-842x(00)01843-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- J C Sacchettini
- Dept of Biochemistry and Biophysics Texas A&M University, College Station 77844-2128, USA
| | | |
Collapse
|
189
|
Affiliation(s)
- M Daffé
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherhe du Centre de National de Recherche Scientifique et de l'Université Paul Sabatier, 205 route de Narbonne, 31077, Toulouse cedex, France.
| |
Collapse
|
190
|
Schwander SK, Torres M, Carranza C C, Escobedo D, Tary-Lehmann M, Anderson P, Toossi Z, Ellner JJ, Rich EA, Sada E. Pulmonary mononuclear cell responses to antigens of Mycobacterium tuberculosis in healthy household contacts of patients with active tuberculosis and healthy controls from the community. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1479-85. [PMID: 10903753 DOI: 10.4049/jimmunol.165.3.1479] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protective immunity against Mycobacterium tuberculosis requires CD4+ lymphocyte-mediated immune responses and IFN-gamma activity. As the primary portal of entry of M. tuberculosis is the lung, pulmonary immune responses against multiple M. tuberculosis Ags were compared between both M. tuberculosis-exposed tuberculin skin test-positive healthy household contacts (HHC) of patients with active sputum smear and culture-positive tuberculosis and tuberculin skin test-positive healthy control individuals from the community (CC). Frequencies of M. tuberculosis Ag-specific IFN-gamma-producing cells, IFN-gamma concentrations in culture supernatants, and DNA synthesis in bronchoalveolar cells (BAC) and PBMC were studied in HHC (n = 10) and CC (n = 15). Using enzyme-linked immunospot assay we found higher frequencies of IFN-gamma-producing cells with specificity to M. tuberculosis-secreted Ag 85 (Ag 85) in BAC from HHC than in BAC from CC (p < 0.022) and relative to autologous PBMC, indicating compartmentalization of Ag 85-specific cells to the lungs. Further, IFN-gamma-producing cells with specificity to components A and B of Ag 85 were specifically compartmentalized to the lungs in HHC (p < 0. 05). IFN-gamma concentrations in culture supernatants of BAC and Ag-specific DNA synthesis were low and comparable in the two subject groups. Increased immune responses to Ag 85 at the site of repeated exposure to M. tuberculosis (the lung) may represent an important component of protective immunity against M. tuberculosis. Correlates of protective immunity against M. tuberculosis are required for assessment of the efficiency of anti-tuberculous vaccines.
Collapse
Affiliation(s)
- S K Schwander
- Department of Medicine, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Collins DM. New tuberculosis vaccines based on attenuated strains of the Mycobacterium tuberculosis complex. Immunol Cell Biol 2000; 78:342-8. [PMID: 10947858 DOI: 10.1046/j.1440-1711.2000.00937.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The world urgently needs a better tuberculosis vaccine. Bacille Calmette-Guerin (BCG), an attenuated strain of Mycobacterium bovis, has been very widely used as a vaccine for many years but has had no major effect on reducing the incidence of tuberculosis. A number of alternative living and non-living vaccines are being investigated. Live vaccine candidates include genetically modified forms of BCG, genetically attenuated strains of the Mycobacterium tuberculosis complex and genetically engineered vaccinia virus and Salmonella strains. Non-living vaccine candidates include killed mycobacterial species, protein subunits and DNA vaccines. One requirement for acceptance of any new vaccine will be a favourable comparison of the protection it induces relative to BCG in a range of animal models, some of which may need further development. Molecular genetic techniques are now available that enable production of live attenuated strains of the M. tuberculosis complex with vaccine potential. In the first of two broadly different approaches that are being used, large numbers of mutants are produced by transposon mutagenesis or illegitimate recombination and are screened for properties that correlate with attenuation. In the second approach, putative genes that may be required for virulence are identified and subsequently inactivated by allelic exchange. In both approaches, mutants that are attenuated need to be identified and subsequently tested for their vaccine efficacy in animal models. Many mutants of the M. tuberculosis complex have now been produced and the vaccine properties of a substantial number will be assessed in the next 3 years.
Collapse
Affiliation(s)
- D M Collins
- AgResearch, Wallaceville Animal Research Centre, Upper Hutt, New Zealand.
| |
Collapse
|
192
|
Musser JM, Amin A, Ramaswamy S. Negligible genetic diversity of mycobacterium tuberculosis host immune system protein targets: evidence of limited selective pressure. Genetics 2000; 155:7-16. [PMID: 10790380 PMCID: PMC1461055 DOI: 10.1093/genetics/155.1.7] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A common theme in medical microbiology is that the amount of amino acid sequence variation in proteins that are targets of the host immune system greatly exceeds that found in metabolic enzymes or other housekeeping proteins. Twenty-four Mycobacterium tuberculosis genes coding for targets of the host immune system were sequenced in 16 strains representing the breadth of genomic diversity in the species. Of the 24 genes, 19 were invariant and only six polymorphic nucleotide sites were identified in the 5 genes that did have variation. The results document the highly unusual circumstance that prominent M. tuberculosis antigenic proteins have negligible structural variation worldwide. The data are best explained by a combination of three factors: (i) evolutionarily recent global dissemination in humans, (ii) lengthy intracellular quiescence, and (iii) active replication in relatively few fully immunocompetent hosts. The very low level of amino acid diversity in antigenic proteins may be cause for optimism in the difficult fight to control global tuberculosis.
Collapse
Affiliation(s)
- J M Musser
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| | | | | |
Collapse
|
193
|
Dubnau E, Chan J, Raynaud C, Mohan VP, Lanéelle MA, Yu K, Quémard A, Smith I, Daffé M. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 2000; 36:630-7. [PMID: 10844652 DOI: 10.1046/j.1365-2958.2000.01882.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the Mycobacterium tuberculosis group synthesize a family of long-chain fatty acids, mycolic acids, which are located in the cell envelope. These include the non-oxygenated alpha-mycolic acid and the oxygenated keto- and methoxymycolic acids. The function in bacterial virulence, if any, of these various types of mycolic acids is unknown. We have constructed a mutant strain of M. tuberculosis with an inactivated hma (cmaA, mma4) gene; this mutant strain no longer synthesizes oxygenated mycolic acids, has profound alterations in its envelope permeability and is attenuated in mice.
Collapse
Affiliation(s)
- E Dubnau
- Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Wang L, Slayden RA, Barry CE, Liu J. Cell wall structure of a mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids. J Biol Chem 2000; 275:7224-9. [PMID: 10702292 DOI: 10.1074/jbc.275.10.7224] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mutant strain of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids was recently isolated (Liu, J., and Nikaido, H. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 4011-4016). This mutant failed to synthesize full-length mycolic acids and accumulated a series of long chain beta-hydroxymeromycolates. In this work, we provide a detailed characterization of the localization of meromycolates and of the cell wall structure of the mutant. Thin layer chromatography showed that the insoluble cell wall matrix remaining after extraction with chloroform/methanol and SDS still contained a large portion of the total meromycolates. Matrix-assisted laser desorption/ionization and electrospray ionization mass spectroscopy analysis of fragments arising from Smith degradation of the insoluble cell wall matrix revealed that the meromycolates were covalently attached to arabinogalactan at the 5-OH positions of the terminal arabinofuranosyl residues. The arabinogalactan appeared to be normal in the mutant strain, as analyzed by NMR. Analysis of organic phase lipids showed that the mutant cell wall contained some of the extractable lipids but lacked glycopeptidolipids and lipooligosaccharides. Differential scanning calorimetry of the mutant cell wall failed to show the large cooperative thermal transitions typical of intact mycobacterial cell walls. Transmission electron microscopy showed that the mutant cell wall had an abnormal ultrastructure (without the electron-transparent zone associated with the asymmetric mycolate lipid layer). Taken together, these results demonstrate the importance of mycolic acids for the structural and functional integrity of the mycobacterial cell wall. The lack of highly organized lipid domains in the mutant cell wall explains the drug-sensitive and temperature-sensitive phenotypes of the mutant.
Collapse
Affiliation(s)
- L Wang
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
195
|
Puech V, Bayan N, Salim K, Leblon G, Daffé M. Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85. Mol Microbiol 2000; 35:1026-41. [PMID: 10712685 DOI: 10.1046/j.1365-2958.2000.01738.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycolic acids, long-chain (C70-C90) alpha-alkyl, beta-hydroxy fatty acids, are characteristic cell envelope components of mycobacteria; similar but shorter-chain substances occur in corynebacteria and related taxa. These compounds apparently play an important role in the physiology of these bacteria. The deduced N-terminal region of PS1, one of the two major secreted proteins of Corynebacterium glutamicum encoded by the csp1 gene, is similar to the antigens 85 complex of Mycobacterium tuberculosis which has been shown to be associated in vitro with a mycoloyltransferase activity onto trehalose. Overexpression of PS1 in the wild-type strain of C. glutamicum suggested the implication of the protein in the transfer of corynomycolates, evidenced by an increase esterification of the cell wall arabinogalactan with corynomycolic acid residues and an accumulation of trehalose dicorynomycolates. Overexpression of truncated forms of PS1 demonstrated that the crucial region for transfer activity of the protein involves all the region of homology with antigens 85. To establish the putative mycoloyltransferase activity of PS1, a csp1-inactivated mutant of C. glutamicum was biochemically characterized. Inactivation of the gene resulted in: (i) a 50% decrease in the cell wall corynomycolate content; (ii) the alteration of the permeability of the C. glutamicum cell envelope; (iii) the decrease of the trehalose dicorynomycolate content; (iv) the accumulation of trehalose monocorynomycolate; and (v) the appearance of a glycolipid identified as 6-corynomycoloylglucose. Complementation of the mutant by the csp1 gene fully restored the wild-type phenotype. Finally, a mycoloyltransferase assay established that PS1 possesses a trehalose mycoloyltransferase activity. To define the in vivo function of antigens 85, the csp1-inactivated mutant was complemented with the fbpA, fbpB or fbpC genes. Complementation with the different fbp genes restored the normal cell wall corynomycolate content and permeability, but did not affect either the fate of trehalose corynomycolates or the occurrence of glucose corynomycolate. Thus, PS1 is one of the enzymes that transfer corynomycoloyl residues onto both the cell wall arabinogalactan and trehalose monocorynomycolate, whereas in the whole bacterium the mycobacterial antigens 85A, 85B and 85C can transfer mycolates only onto the cell wall acceptor in C. glutamicum.
Collapse
Affiliation(s)
- V Puech
- Institut de Pharmacologie et Biologie Structurale du Centre National de la Recherche Scientifique (CNRS), UPR 9062, 205 route de Narbonne, 31077, Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
196
|
Armitige LY, Jagannath C, Wanger AR, Norris SJ. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun 2000; 68:767-78. [PMID: 10639445 PMCID: PMC97204 DOI: 10.1128/iai.68.2.767-778.2000] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/1999] [Accepted: 11/09/1999] [Indexed: 11/20/2022] Open
Abstract
The mechanism of pathogenesis of Mycobacterium tuberculosis is thought to be multifactorial. Among the putative virulence factors is the antigen 85 (Ag85) complex. This family of exported fibronectin-binding proteins consists of members Ag85A, Ag85B, and Ag85C and is most prominently represented by 85A and 85B. These proteins have recently been shown to possess mycolyl transferase activity and likely play a role in cell wall synthesis. The purpose of this study was to generate strains of M. tuberculosis deficient in expression of the principal members of this complex in order to determine their role in the pathogenesis of M. tuberculosis. Constructs of fbpA and fbpB disrupted with the kanamycin resistance marker OmegaKm and containing varying amounts of flanking gene and plasmid vector sequences were then introduced as linear fragments into H37Rv by electroporation. Southern blot and PCR analyses revealed disruption of the homologous gene locus in one fbpA::OmegaKm transformant and one fbpB::OmegaKm transformant. The fbpA::OmegaKm mutant, LAa1, resulted from a double-crossover integration event, whereas the fbpB::OmegaKm variant, LAb1, was the product of a single-crossover type event that resulted in insertion of both OmegaKm and plasmid sequences. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis confirmed that expression of the disrupted gene was not detectable in the fbpA and fbpB mutants. Analysis of growth rates demonstrated that the fbpB mutant LAb1 grew at a rate similar to that of the wild-type parent in enriched and nutrient-poor laboratory media as well as in human (THP-1) and mouse (J774.1A) macrophage-like cell lines. The fbpA mutant LAa1 grew similarly to the parent H37Rv in enriched laboratory media but exhibited little or no growth in nutrient-poor media and macrophage-like cell lines. The targeted disruption of two genes encoding mycolyl transferase and fibronectin-binding activities in M. tuberculosis will permit the systematic determination of their roles in the physiology and pathogenesis of this organism.
Collapse
Affiliation(s)
- L Y Armitige
- Department of Pathology and Laboratory Medicine, University of Texas at Houston Medical School, Houston, Texas, USA
| | | | | | | |
Collapse
|